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ABSTRACT
In this paper, we propose a heuristic algorithm for day-ahead pre-
diction of the top K days having the highest peak hourly demand
for electricity over a given year. This problem, which arises in the
context of critical peak pricing in Ontario, Canada, is difficult be-
cause we may have to wait till the end of the year to find out which
K days ended up being the peak days. Our solution is to leverage
short-term load forecasts and call tomorrow a peak day if it has suf-
ficiently high probability of being a peak day in the time window
covered by the forecast. Using Ontario demand data from 2005
till 2013, we show that our algorithm is more consistent from year
to year and outperforms existing solutions to problems related to
ours.

1. INTRODUCTION
Reducing peak electricity consumption is an important problem,

which has led to a variety of peak pricing schemes in many ju-
risdictions. In this paper, we analyze the Five-Coincident-Peaks
(5CP) program that affects large industrial and commercial con-
sumers (whose monthly peak exceeds 5 megawatts) in the province
of Ontario, Canada. In this program, large consumers pay heavy
surcharges for the electricity they consumed during the five days
with the highest peak hourly demand [1]. For some customers,
these surcharges are higher than their volumetric charges [9].

The 5CP program is different to, e.g., California’s Critical Peak
Pricing (CPP) [3], in which utilities choose which days will be
peak-pricing days according to some criteria, and they notify the
participating customers in advance. In 5CP, Ontario’s Electricity
System Operator (IESO) waits till the end of the year and applies
the surcharge to each large consumer based on its contribution to
the load (at the peak hour) on the actual five peak days of the year.
Without the benefit of hindsight, it is difficult for consumers to
know when to curtail load in order to avoid surcharges.

We propose an algorithm that, at the end of every day, predicts
whether tomorrow will be one of the five peak days of the current
year, given only the publicly-available information such as short-
term and long-term load forecasts and historical load statistics. We
define the precision of such an algorithm as the fraction of days
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identified by it that are in fact peak days, and recall as the fraction
of actual peak days that were identified as such by the algorithm.
For example, suppose the actual peak days for some year were June
1, July 2, July 3, July 25 and August 8. Suppose that during the
course of this year, the algorithm predicts the following six days as
being peak days: June 1, July 1, July 2, July 3, July 20 and August
8. Its precision is 4

6
and recall is 4

5
.

Obtaining perfect recall is easy: we predict that each day will
be a peak day. Of course, precision will be very low and there
will be many false alarms, causing customers to curtail operations
unnecessarily and lose business. Ideally, we should achieve high
precision (few false alarms) and high recall (few missed alarms).

The IESO publishes 12-month load forecasts, but they are not
accurate because Ontario’s peak demand is correlated with daily
high temperatures, especially in the summer when the daily peak is
caused by high air-conditioning use in the afternoon. The 14-day
short-term forecasts are quite accurate, and the proposed algorithm
uses these. For comparison, we also implemented three existing
algorithms that solve related problems and may be adapted to our
problem, including a technique based on historical load data, an
algorithm based on stopping theory, and a dynamic programming
algorithm that utilizes the full long-term forecast. We tested all four
algorithms on Ontario’s hourly demand data from 2005 to 2013,
and found that our algorithm performs more consistently from year
to year and obtains better recall while achieving similar precision.

The remainder of this paper is organized as follows. Section 2
discusses related work; Section 3 describes the proposed algorithm
and extensions of three existing algorithms; Section 4 describes
the experimental results; and Section 5 concludes the paper with
directions for future work.

2. RELATED WORK
Ad-hoc solutions are often employed in the context of peak re-

duction programs such as 5CP and CPP. For instance, the Univer-
sity of Western Ontario, which is classified as a large customer, re-
duces its air conditioner usage during 2-6 p.m. from June 20 to Au-
gust 31 in response to the 5CP program [5]. Other large consumers
may try to reduce demand whenever tomorrow’s peak demand fore-
cast exceeds some threshold, e.g., 23,000 megawatts. Both of these
methods sacrifice precision for recall.

An approach that uses historical peak demand data is used by a
utility in California to decide which days to call in the CPP program
[6]. Based on past data, this algorithm computes, on average, how
many peak days tend to occur in each half-month. It then uses
this distribution, along with temperature forecasts, to decide which
days to call in the current year. We compare our algorithm against
a variant of this technique in Section 3.

Predicting peak days in a day-ahead manner is related to stop-



ping problems. For example, in the Secretary Selection problem,
we interview up to n job applicants in random order, and, at the
end of each interview, we decide (irrevocably) whether to hire this
candidate or continue the interviews. The goal is to hire one best
candidate. There exist extensions to multiple candidates (see, e.g.,
[7, 8, 10]), but they require knowledge of the probability distribu-
tion over the candidates. One exception is [2], which we extend to
our problem and compare to our algorithm in Section 3.

There are also optimization algorithms for maximizing various
functions in the context of California’s CPP program, including
scheduling CPP days by entities that sell wind energy [12] and
maximizing savings functions [4, 11]. We implemented a variant
of the most recent of these algorithms [4] and compare it to our
algorithm in Section 3.

3. ALGORITHMS
We start by presenting three algorithms based on existing solu-

tions to related problems: an algorithm based on that used by a
California utility for the CPP program [6], an algorithm based on
stopping theory [2], and an optimization algorithm that maximizes
the sum of the forecasted peak demand values of the five predicted
peak days [4]. We then discuss our algorithm.

At the beginning of the year, each algorithm is given the actual
peak hourly demand for each day in the past year and the IESO 12-
month long-term forecast for the current year. At the end of each
day in the current year, we will be given the actual peak demand
for that day, the 14-day short-term forecast from the IESO and the
weather forecast for tomorrow. At the end of each day, we need
to decide whether or not to classify tomorrow as a peak day1. Let
Di be the actual peak hourly demand on day i and let D̂iL be the
estimated peak hourly demand on day i+ L as of day i. Let K be
the number of peak days we need to call, i.e., for 5CP, K = 5.

Each algorithm maintains a demand threshold τD , which is a
lower bound for a peak day, i.e., any day whose peak demand fore-
cast is below τD will not be called a peak day. Some algorithms
will require an initial value of τD , which we set to be the peak de-
mand of the Kth highest day in the previous year minus a small
number that will be defined shortly.

We apply the following optimizations to each algorithm based on
domain knowledge. First, only non-holiday weekdays can be peak
days since the demand on weekends and holidays is much lower.
Second, since Ontario has been a summer-peaking province since
2005, rather than running the algorithms for a whole year, we only
run them from May 1 till September 30. Let N be the number of
days in this interval.

3.1 The CPP Approach
The first algorithm which we call “CPP” analyzes historical peak

demand data and computes, on average, how many of the K peak-
demand days occur in each half-month. This distribution is then
used in the current year as follows. If tomorrow’s forecast exceeds
the threshold τD , we predict that tomorrow will be a peak day. Now
suppose that, based on historical data, there are on average two
peak days by July 15. If we have already predicted two peak days,
say, by July 1, then we raise τD by a small amount δ. If we did not
yet predict any peak days and it is already July 14, then we lower
τD by δ. Thus, the historical distribution of peak days throughout
the year is used to dynamically adjust the threshold.

1In 5CP, large consumers only need to reduce load during the peak
hour of one of the five peak days. We focus on predicting whether
tomorrow will be a peak day, and predicting the peak hour can be
done separately from the IESO day-ahead load forecast.

1. P = 0 // how many peak days called up to now
2. FOR i= 0 to N-1
3. IF D̂i1 > τD
4. Predict “tomorrow will be a peak day”
5. P = P + 1
6. IF i is the 1st or 15th day of the month
7. IF P > H[i]
8. τD = τD + δ // raise threshold
9. ELSE IF P < H[i]
10. τD = τD − δ // lower threshold

Figure 1: The CPP Algorithm.

The pseudocode of the CPP algorithm is shown in Figure 1. The
algorithm requires three additional inputs: an initial value of τD ,
a value for the threshold adjustment δ, and an array H[i] with the
average number of actual peak days that have occurred by day i in
past years. As for δ, we can, for instance, use the average difference
between the ith and the i+1st ranked peak days from the previous
year, for i between 1 and K. We will experiment with different
values of τD and δ in Section 4.

The algorithm works as follows. Every day, we compare tomor-
row’s peak forecast to the current threshold (line 3). Additionally,
on the 1st and the 15th of every month, we adjust the threshold by
comparing the number of peak days we have called up to now with
the average number of actual peak days that have occurred up to
this day in previous years (lines 6-10).

3.2 The Stopping Approach
In stopping problems, we are given a sequence of numbers, one-

by-one, and we need to decide when to stop examining the numbers
and declare the current number to be the largest2. One solution is
to view the first m numbers without stopping and keep track of the
maximum number we have seen. Then, from the m + 1st number
onwards, we examine the remaining numbers one at a time and we
stop as soon as we see a number that is greater than the maximum
of the firstm numbers. If we know the underlying distribution from
which these numbers were generated, we can calculate an optimal
value for m that gives the highest probability of finding one of the
largest numbers in the sequence.

Since we do not know the distribution of peak demand values
throughout the year, we extend the distribution-agnostic stopping
algorithm from [2] to our problem as shown in Figure 2; we call
this algorithm “Stopping”. For the first half of the year, we never
call any peak days. We then set the peak demand threshold τD to
equal the Kth-highest peak demand we have seen in the first half
of the year (line 3). In the second half of the year (line 4), any days
whose day-ahead peak demand forecast exceeds the threshold will
be predicted as peak days (lines 5-6). In Section 4, we comment
on the performance of this algorithm relative to how many days we
initially skip.

3.3 The Optimization Approach
We now give an optimization algorithm based on that presented

in [4], which, on any given day, uses the peak demand forecast
for all the remaining days in the current year. The objective is to
maximize the sum of the peak demand values of the five days that
will be predicted to be peak days. In other words, this objective
function aims to identify those five days which have the highest

2Of course, the declared number may not really be the largest num-
ber in the sequence.



1. FOR i=0 to bN
2
c

2. Do nothing
3. τD = Kth largest Dj for 1 ≤ j ≤ bN

2
c

4. FOR i= dN
2
e to N-1

5. IF D̂i1 > τD
6. Predict “tomorrow will be a peak day”

Figure 2: The Stopping Algorithm

1. P = 0 // how many peak days called up to now
2. FOR i=0 to N-1 // for each day of the year
3. Recompute optimal value for τD

given 5− P and D̂i1 through D̂i,N−i

4. IF D̂i1 > τD
5. Predict “tomorrow will be a peak day”
6. P = P + 1

Figure 3: The Optimization Algorithm

forecasted peak demand, which is exactly what we want.
A high-level pseudocode of the “Optimization” algorithm is

shown in Figure 3. The idea is to update the peak demand threshold
τD every day based on the number of remaining peak days that we
can call and based on the long-term forecast of the peak demand
of all the remaining days in the year (line 3). The threshold update
process uses finite-horizon dynamic programming and is described
in detail in [4].

3.4 The Probabilistic Approach
The long-term demand forecast is not accurate, meaning that the

above optimization algorithm may not work well. We now propose
an algorithm that only uses the 14-day short-term forecast provided
by the IESO. The idea is to compute the probability of each day
being one of the top-K days out of all the days we have seen so far
plus all the days for which we have a short-term forecast. If this
probability exceeds a threshold τp that will be defined shortly, the
given day will be classified as a peak day.

3.4.1 Calculating Probabilities
In order to compute probabilities over the short-term forecasts,

we need to identify their distributions. According to the chi square
goodness-of-fit test, we verified that the residuals of the short-term
forecasts, computed as D̂iL − Di, from 2006 till 2013 are nor-
mally distributed with a mean of zero and some standard deviation
that depends on L. Thus, every short-term forecast is a random
variable with a mean equal to the forecast value and a standard
deviation computed from historical data. We define the follow-
ing probabilities: P (Rankfuture = j), P (Rankpast = j), and
P (Rankoverall = j).

• P (Rankfuture = j) is the probability of D̂i1 ranking jth

among the 14 days for which we have a short-term forecast,
i.e., among D̂i1 through D̂i,14.

• P (Rankpast = j) is the probability of D̂i1 ranking jth com-
pared to the peak demand on the days we have seen so far,
i.e., D1 through Di.

• P (Rankoverall = j) is the probability of D̂i1 ranking jth

among the days we have already seen plus those for which
we have a short-term forecast, i.e., D1 through Di and D̂i1

through D̂i,14.

Table 1: Computing ranking probabilities. Define θ(x, y) as
follows: θ(x, y) = P (Rankfuture = x)× P (Rankpast = y)

Final Ranking Formula
P (Rankoverall = 1) θ(1,1)
P (Rankoverall = 2) θ(1,2) + θ(2,1)
P (Rankoverall = 3) θ(1,3) + θ(2,2) + θ(3,1)
P (Rankoverall = 4) θ(1,4) + θ(2,3) + θ(3,2) + θ(4,1)
P (Rankoverall = 5) θ(1,5) + θ(2,4) + θ(3,3) + θ(4,2) +

θ(5,1)

Assuming the short-term forecasts for different days are inde-
pendent, P (Rankfuture = j) and P (Rankpast = j) are easy to
compute. For example:

P (Rankfuture = 1) =

14∏
j=1

P (D̂i1 ≥ D̂ij) (1)

Since we assumed that the residuals of the short-term forecast are
normally distributed, we compute P (D̂i1 ≥ D̂ij) using the proba-
bility density function for a normal distribution.
P (Rankoverall = j) is more complex. Table 1 shows how to

compute it for j between one and five. For example, D̂i1 can rank
third overall under three conditions: either it ranks first in the past
and third in the short-term future, or it ranks second in the past and
second in the short-term future, or it ranks third in the past and first
in the short-term future.

3.4.2 The Algorithm
Figure 4 gives the pseudocode for the new algorithm which we

call “Probabilistic”. It requires two additional input variables: ini-
tial values for τD and τp; we will discuss how to compute τp
shortly. As in the previous algorithms, every day we check whether
the day-ahead demand forecast exceeds the peak demand threshold
τD (line 2). We also check if the day-ahead weather forecast is “ex-
treme”. We define extreme as exceeding 30 degrees Celcius. The
motivation for this additional condition is to avoid false positives at
the beginning of the year in case the initial threshold τp is too low.

If the day-ahead forecast exceeds τD , we compute the required
probabilities (lines 4-6) and we check if tomorrow has a high prob-
ability of ranking Kth or higher. If this probability exceeds the
threshold τp, we predict that tomorrow will be a peak day.

The last thing we need to do is to see if τD should be adjusted
(lines 9-12). For this, we use the weather forecast again. If tomor-
row is going to be a “normal weather” day, but it is still expected to
exceed the demand threshold, then we should raise the threshold;
specifically, we raise it to tomorrow’s peak demand forecast (lines
9-10). On the other hand, if tomorrow’s weather is expected to be
“extreme” but the demand threshold is not going to be exceeded,
then we should lower the threshold (lines 11-12).

3.4.3 Setting τp

In line 7, we obtain the probability that tomorrow’s peak demand
will be ranked Kth or higher among all the days we have seen so
far plus the days for which we have a short-term demand forecast.
In order to classify tomorrow as a peak day, this probability needs
to exceed τp. To choose a value for τp, we use the following data-
driven approach. Using the actual and estimated demand data from
the previous year, we compute P (Rankoverall ≤ K) for each day
in the past year. We then check this probability for the actual K
peak days and choose τp to be the minimum of these. For example,



1. FOR i=0 to N-1 // for each day of the year
2. IF D̂i1 ≥ τD and extreme weather forecast
3. FOR j=1 to K
4. Compute P (Rankfuture = j)
5. Compute P (Rankpast = j)
6. Compute P (Rankoverall = j) based on Table 1
7. IF P (Rankoverall ≤ K) ≥ τp
8. Predict “tomorrow will be a peak day”
9. ELSE IF D̂i1 ≥ τD and normal weather
10. τD = D̂i1

11. ELSE IF D̂i1 < τD and extreme weather
12. τD = D̂i1

Figure 4: The Probabilistic Algorithm.

Table 2: An example of a six-day peak demand forecast
Forecast D̂iL σ P(D̂i1>D̂iL)
D̂i1 23665 210 N/A
D̂i2 23932 584 0.368
D̂i3 16630 666 1
D̂i4 17635 716 1
D̂i5 16172 804 1
D̂i6 18158 954 1

in 2012, each one of the five peak days had P (Rankoverall ≤ 5)
above 0.1, so for 2013 we can set τp = 0.1. We will comment on
the effect of τp on our algorithm in Section 4.

3.4.4 An Example
Let the current value of τD be 23,275 megawatts and assume

that tomorrow’s weather is expected to be extreme. Assume the
demand forecasts and their standard deviations (as computed from
historical data) are shown in the Table 2. To simplify the example,
assume that our short-term forecast is only for the next six days,
not 14. Note that the standard deviation increases as L increases.

Since we assumed that the residuals of the short-term forecast
are normally distributed, we can compute P(D̂i1>D̂iL) using the
probability density function for a normal distribution:

f(x, µ, σ) =
1

σ
√
2π
e
−
(x− µ)2

2σ2 (2)

Thus, for example, P(D̂i1>D̂i2) = f(23665 − 23932, 0, 210 +
584) = 0.368.

Similarly, to compute the probability that tomorrow’s forecast of
23,665 exceeds the actual peak demand on some day in the past,
say Di, we use f(23665−Di, 0, 210). Since actual demand does
not have a standard deviation, the standard deviation term in the
probability function equals the standard deviation of the day-ahead
forecast. Table 3 gives an example of the current top-five peak de-
mand values since the beginning of the year and the corresponding
probabilities with respect to tomorrow’s forecast.

Based on the numbers from Table 2 and Table 3, we can compute
the overall ranking probabilities as shown in Table 4. This gives
P (Rankoverall ≤ 5) = 0 + 0.007 + 0.038 + 0.050 + 0.034 =
0.129. Assuming τp = 0.1, we would indeed predict that tomor-
row will be a peak day.

3.5 Discussion

Table 3: An example showing five predicted peak days
Rank Di P(D̂i1<D)

1 24636 1
2 24107 0.9823
3 23910 0.8783
4 23801 0.7413
5 23745 0.6484

Table 4: An example of computing the ranking probabilities
Rank P (Rankfuture) P (Rankpast) P (Rankoverall)

1 0.368 0 0
2 0.632 0.017 0.007
3 0 0.104 0.038
4 0 0.136 0.050
5 0 0.093 0.034
6 0 0.648 N/A

Table 5 summarizes selected features of the four algorithms dis-
cussed in this section. All but the Stopping algorithm use a dynamic
threshold τD that is updated throughout the year; the Optimization
and Probabilistic algorithms may update the threshold as often as
every day, while the CPP algorithm considers updating the thresh-
old every 2 weeks. Furthermore, our algorithm (Probabilistic) is the
only one that uses the short-term forecast. Also note that the Op-
timization algorithm is the only one that predicts exactly K peak
day, while the other algorithms may predict more of fewer peak
days.

4. RESULTS
We implemented the algorithms using Matlab R2010.b and eval-

uated their precision, recall and running time on Ontario’s demand
data from 2005 till 2013. The historical load, short-term and long-
term forecast data were downloaded from the IESO Website at
ieso.ca, and we obtained the day-ahead weather forecasts for
the city of Toronto from climate.weather.gc.ca. The eval-
uation was done on a Windows machine with an Intel Core i5 pro-
cessor and 4 GB of RAM.

There was some data pre-processing that had to be done. The
short-term forecast data had some gaps (missing forecasts) and du-
plicates (two or more forecasts for the same day); roughly 2 percent
of the data had these problems. We filled in the gaps by interpola-
tion and we removed duplicates by ignoring all but the latest fore-
casts. As a “sanity check”, we compared the total demand before
and after data cleaning and found that they are very similar. Note
that only the Probabilistic algorithm uses the short-term forecast
and is affected by our data cleaning decisions.

We gave all but our (Probabilistic) algorithm an unfair advan-
tage: instead of providing demand forecasts as input, we give them
the actual peak demand values. Our algorithm continues to use
short-term forecasts. For those algorithms which need an initial
value of τD (CPP and Probabilistic), we set it to be the maxi-
mum peak demand from the long-term forecast, assuming normal
weather, minus a Load-Forecast-Uncertainty (LFU) value of 1600
megawatts. The LFU value is provided by the IESO and is related
to the uncertainty of the long-term forecast. The initial τD and
δ values used by the CPP algorithm in each year are shown in Ta-
ble 6. Our algorithm uses the same initial τD’s. The (fixed) demand
thresholds calculated by the Stopping algorithm for each year are
also listed in Table 6.



Table 5: Comparison of the four algorithms
Algorithm Threshold Required Threshold update

forecast frequency
CPP Dynamic Next Day 2 weeks

Stopping Fixed Next Day Daily
Optimization Dynamic Long-term Daily
Probabilistic Dynamic Short-term Daily

Table 6: Initial parameter values
CPP Stopping

Year τD δ τD
2005 22521 16 25126
2006 24776 16 23045
2007 24859 16 23299
2008 24822 16 22302
2009 23404 16 19044
2010 22426 16 22806
2011 22393 16 20689
2012 22355 16 22791
2013 22396 4 21385

4.1 Summary of Results
Figure 5 provides an executive summary of our results. It shows

the average and the standard deviation of precision and recall of
each algorithm on Ontario demand data from 2005 till 2013. Our
algorithm has the second-highest precision (only 0.01 behind the
winner), and easily the highest recall. It has few false alarms (high
precision) while still being able to identify 94 percent of the actual
peak days (high recall). The standard deviation of the precision
and recall of our algorithm from year to year is significantly lower
than that of the other algorithms. This means that our algorithm is
more consistent, while the other algorithms may have “bad years”
with very low precision and recall. Interestingly, the CPP algo-
rithm outperformed Stopping and Optimization on average, though
its standard deviation was higher.

Furthermore, the number of peak days identified by our algo-
rithm varied from 7 to 11. Thus, to identify four or five of the
actual five peak days, we may need to call a total of about 10 days
as peak days.

As for the running time, Probabilistic and Optimization took 6
seconds on average to make day-ahead decisions. This is slower
than CPP and Stopping (under 1 second on average), but still very
reasonable in a day-ahead scenario. Additionally, our algorithm
incurs the overhead of setting τp based on historical data, but this
also takes only a few seconds. Thus, our algorithm obtains high
precision and recall, consistently performs well, and is fast enough
that it can be used in practice.

4.2 Detailed Results
Figures 6 and 7 show the precision and recall, respectively, of

each algorithm for each tested year. Note that the results for our
algorithm start in 2007. This is because the short-term forecast is
only available since 2006 and the Probabilistic algorithm needs one
year of past data to determine the probability threshold τp.

The CPP algorithm computed the historical distribution of actual
pea days as: one in June, three in July and one in August. Even
though this algorithm had reasonably good precision and recall on
average, it was inconsistent from year to year. For example, in
2005, it predicted 37 peak days, which led to perfect recall but low

Figure 5: Average and standard deviation of the precision and
recall of each algorithm

precision. This was largely because the initial threshold of 22521
(see Table 6) was too low. In June 2005 alone, 12 peak days were
predicted before the demand threshold was raised. On the other
hand, in 2008, the initial threshold was too high and zero peak days
were predicted, even though the threshold was being lowered every
15 days. Thus, the precision and recall are both zero.

We experimented with larger values of δ to see if more drastic
threshold adjustments would help when the initial thehesold values
were too low or too high. However, even after we tripled the value
of δ, the CPP algorithm still obtained zero precision and recall in
2008, and precision increased only slightly in 2005.

In general, the Stopping algorithm performed poorly because it
never calls any peak days in the first half of the year (more pre-
cisely, before mid-July). Thus, it misses many peak days that hap-
pen early in the summer. We modified the Stopping algorithm to
skip fewer than half the year, down to 1/e of the year, but precision
and recall improved only slightly.

The Optimization algorithm had high precision, but the lowest
recall, mainly because it is limited to predicting exactly five peak
days. Thus, it was the most conservative of the four algorithms.
Notably, in 2011, this algorithm did not predict any peak days, so
its precision and recall that year were zero. We then allowed the
Optimization algorithm to predict more than five peak days but the
results did not improve. Even if it was allowed to predict up to 10
peak days, the precision and recall for 2011 were still zero.

Finally, our Probabilistic algorithm was the most consistent from
year to year. Its precision did not drop below 0.4 and recall did not
drop below 0.8. It had very few false negatives and relatively few
false positives. The Optimization algorithm had even fewer false
positives, but many more false negatives.

We also experimented with different values of τp for the Prob-
abilistic algorithm and found that by raising τp from 10 percent
(computed as described in Section 4.4.3) to 20 percent, we obtained
an increase in precision but a drop in recall and an increase in the
number of false negatives, i.e., we made the algorithm more con-
servative.



Figure 6: Precision of each algorithm from 2005 to 2013

Figure 7: Recall of each algorithm from 2005 to 2013

5. CONCLUSIONS
In this paper, we presented an algorithm for making day-ahead

predictions in the context of Ontario’s 5CP program, regarding the
likelihood of tomorrow being one of the top five peak-demand days
of the year. One of the insights behind our algorithm was to only
use the short-term peak demand forecast, which is more accurate
than the long-term forecast. Experimental results on Ontario’s de-
mand data from 2005 till 2013 confirmed the advantages of our
approach versus existing algorithms that solve related problems.

From a policy-making point of view, one observation that fol-
lows from our results is that it is very difficult to achieve 100 per-
cent precision and recall in the 5CP setting where peak-pricing
events are not broadcast by the utility, i.e., it is very difficult to
correctly guess all the actual peak days in an on-line fashion with-
out incurring any false positives. This means that consumers who
want to make sure they reduce load on all five actual peak days end
up having to reduce load on a few other days as well. This may
impact their business operations more than intended.

We envision at least two directions for future work. One is to
do further investigation on the effect of the probability threshold
τp used by our algorithm on precision and recall. Another is to
include a way for customers to specify how serious false positives
and false negatives are to them, and use this information to adjust
the thresholds used by the algorithm.
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