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Abstract

We present a survey of data exploration methods that extract multidimen-
sional patterns from datasets consisting of dimension and measure attributes.
These patterns are designed to summarize common properties of tuples shar-
ing the same values of the measure attributes. We review motivating applica-
tions, we provide a categorization of the characteristics of patterns produced
by various solutions to this problem, we categorize and experimentally eval-
uate commonly used performance optimizations, and we suggest directions
for future research.
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1. Introduction1

Data volumes have been growing rapidly in recent years. As a result,2

data-intensive methods are now common in many contexts, including busi-3

ness, science, and public governance. This motivates the need for tools that4

allow users who are not necessarily data management experts to explore large5

datasets. Such tools range from data visualization and aggregation [14, 19]6

to flexible search interfaces such as keyword search in structured databases7

[26].8

In this paper, we focus on the exploration of datasets containing dimen-9

sion attributes and binary or numeric measure attributes. In traditional10

business datasets, dimension attributes often describe products or employees,11

and measure attributes indicate sales totals or salaries. In Internet-of-Things12

(IoT) and infrastructure monitoring, dimension attributes may describe de-13

vice properties and measure attributes correspond to performance statistics.14
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In Web datasets, dimension attributes may describe products, with aggre-15

gate user ratings as measure attributes. Additionally, in any of these applica-16

tions, derived measure attributes may exist, e.g., a binary attribute denoting17

whether a given record was determined to be an outlier or to contain an18

error.19

The data cube [12] has traditionally been used to explore these kinds of20

datasets, by allowing users to aggregate, roll-up and drill-down using vari-21

ous subsets of group-by attributes. However, in large-scale databases, the22

data cube may be very large and may not immediately reveal interesting23

trends. As argued in a recent vision paper by Vassiliadis and Marcel [22],24

next-generation Business Intelligence (BI) tools require new concepts and op-25

erators to help users discover information, among them those for automatic26

mining of models and patterns. This motivates the need for richer data ex-27

ploration tools that can operate over data cubes and other multi-dimensional28

data models.29

We observe that recent work on exploring multi-dimensional and OLAP30

datasets proposed a variety of methods to identify interesting fragments of31

the data, described using combinations of values of the dimension attributes32

[1, 2, 5, 7, 9, 11, 15, 18, 20, 21, 24, 25]. These value combinations are33

referred to as patterns. Below, we give examples to show that this class of34

methods provides interpretable summaries and explanations of trends in the35

data, aligning well with the anticipated needs of next-generation BI and data36

exploration tools.37

Table 1 shows a flight dataset that will serve as a running example. For38

each flight, the dataset includes a record id, followed by three dimension39

attributes, Day of the week, flight Origin and flight Destination, as well as40

two measure attributes, a numeric attribute denoting how late the flight41

was and a binary attribute denoting whether the flight was full. First, note42

that the following two patterns summarize most of the tuples corresponding43

to full flights: (Day=*, Origin=*, Dest=London) and (Day=*, Origin=*,44

Dest=Frankfurt), where a star matches all the values of the corresponding45

attribute. In other words, full flights are mainly those that arrive in London46

or Frankfurt. Next, consider the pattern (Day=Mon, Origin=*, Dest=*),47

corresponding to flights scheduled on Mondays. This pattern may be inter-48

esting because none of these flights are full, which di↵ers significantly from49

the fraction of full flights in the entire table. Finally, suppose a data analyst50

is surprised by the high average delay of flights in Table 1. Here, the pattern51

(Day=*, Origin=*, Dest=London) can serve as a potential explanation since52
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Table 1: A flight dataset

id Day Origin Dest. Late Full
1 Fri SF London 20 1
2 Fri London LA 16 1
3 Sun Tokyo Frankfurt 10 1
4 Sun Chicago London 15 1
5 Sat Beijing Frankfurt 13 1
6 Sat Frankfurt London 19 1
7 Tue Chicago LA 5 0
8 Wed London Chicago 6 0
9 Thu SF Frankfurt 15 1
10 Mon Beijing SF 4 0
11 Mon SF London 7 0
12 Mon SF Frankfurt 5 0
13 Mon Tokyo Beijing 6 0
14 Mon Frankfurt Tokyo 4 0

flights arriving in London have some of the longest delays in the table.53

We survey methods that automatically identify such patterns. Users may54

then inspect the patterns and explore tuples covered by the patterns. They55

may then extract patterns corresponding to smaller subsets of the data found56

to be interesting in the earlier exploration step, and so on. Of course, there57

are other approaches to data exploration and analysis, such as visualization58

and fitting models to predict the measure attributes based on the dimension59

attributes (we will comment on the role of prediction models in data cube60

exploration in Section 3.2). We restrict the scope of this survey to pattern-61

based exploration and refer the reader to [19] for a survey of data visualization62

methods. Furthermore, visualization may be thought of as complementary63

to pattern-based exploration. For example, interesting patterns may be iden-64

tified, followed by visualizing the statistical properties of the corresponding65

tuples.66

Wemake the following contributions towards an understanding of pattern-67

based data exploration methods.68

1. We survey recent work on data exploration using multi-dimensional69

patterns and propose a categorization based on the properties of pat-70

terns suggested for exploration: coverage, contrast, and information.71
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2. We categorize and experimentally evaluate performance optimizations72

frequently used in pattern-based data exploration: top-down pruning,73

row pruning, column pruning and parallel processing. Notably, we ex-74

perimentally demonstrate that some performance optimizations origi-75

nally proposed for one method are also e↵ective when applied to other76

methods. This observation should be of interest to researchers working77

in this area since it points out existing performance optimizations that78

may be beneficial for newly developed data exploration techniques.79

3. We suggest open problems for future research.80

In the remainder of this paper, we present the required background in81

Section 2, we categorize existing solutions in Section 3, we classify and ex-82

perimentally evaluate performance optimizations in Sections 4 and 5, respec-83

tively, and we conclude in Section 6 with directions for future work.84

A short version of this survey was presented at DOLAP 2021 [10]. This85

extended version includes two new sections with a classification (Section 4)86

and an experimental study (Section 5) of performance optimizations.87

2. Background88

We are given a dataset S with a set D of dimension attributes and a set89

M of measure attributes (also referred to as outcomes in some prior work [6]).90

Let D1, D2, . . . , Dd be the d dimension attributes and let M1,M2, . . .Mm be91

them measure attributes. For now, we assume, as in the majority of previous92

work, that the dimension attributes are categorical, and we will comment on93

ordinal and numeric dimension attributes in Section 6. Measure attributes94

may be binary or numeric.95

Let dom(Di) be the active domain of the ith dimension attribute. A pat-96

tern p is a tuple from dom(D1) [ {⇤} ⇥ · · · ⇥ dom(Dd) [ {⇤}, i.e., from the97

data cube over the dimension attributes, with ‘*’ denoting all possible values98

of that attribute. A tuple t 2 S matches p, denoted by t ⇣ p, if p[Dj] =99

‘*’ or t[Dj] = p[Dj] for each dimension attribute Dj. For example, tuple100

4 from Table 1 matches the patterns (⇤, ⇤, ⇤) and (⇤, ⇤, London), but does101

not match the pattern (Fri, ⇤, ⇤); to simplify the notation, we drop attribute102

names from patterns and only include attribute values. Some approaches103

(e.g., [11]) support richer patterns with disjunctions and dimension hierar-104

chies. Other methods described in this paper can also support disjunctions105

and dimension hierarchies, at the cost of a larger search space of candidate106
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patterns. However, for simplicity of presentation, in the remainder of this pa-107

per, we will illustrate the methods using simple conjunctive patterns without108

hierarchies.109

Let sup(p) be the support of p in S, i.e., the number of tuples matching p,110

and let supr(p) be the number of tuples matching p and satisfying a predicate111

r over the measure attributes. For example, sup(⇤, ⇤, London) = 4 and112

supFull=0(⇤, ⇤, London) = 1. Furthermore, let ✓r(p) = supr(p)
sup(p) , which is the113

fraction of tuples matching p that also satisfy the predicate r. For example,114

✓Full=1(⇤, ⇤, London) = 3
4 .115

Let sumMi(p) be the sum of the values of a measure attribute Mi over all116

the tuples matching p. Let sumMi
r (p) be the sum of the values of a measure117

attribute Mi over all the tuples matching p and satisfying a predicate r over118

the measure attributes. For example, sumLate(⇤, ⇤, London) = 20+15+19+119

7 = 61 and sumLate
Full=0(⇤, ⇤, London) = 7.120

We survey solutions to the following data exploration problem: given a121

dataset S, produce a set or a list of patterns P over the dimension attributes122

of S, as defined above, that summarize common properties of tuples sharing123

the same values of the measure attribute(s). The number of patterns in124

P should be limited to direct the user’s attention to the most important125

or interesting regions of the data. This limit may be set explicitly by the126

user (in terms of the maximum number of patterns in P ) or implicitly by127

retrieving the fewest possible patterns that jointly satisfy some property such128

as covering some fraction of the data.129

This data exploration problem has the following applications.130

• Explaining the results of aggregate queries. Suppose a data analyst131

issues the following query over Table 1: SELECT SUM(Late) FROM132

S. Suppose the analyst wishes to understand why the result, of 145, is so133

high. Here, interesting patterns are those which cover tuples that make134

a significant contribution to the result, i.e., those with a high sumLate()135

such as (⇤, ⇤, London). The analyst may then zoom into flights landing136

in London and investigate potential reasons for the lengthy delays.137

• Analyzing outliers and data quality issues. Suppose we have a binary138

measure attribute denoting whether a given tuple contains an error or is139

an outlier. This attribute could be created manually by domain experts140

or automatically by identifying tuples that violate data quality rules141

or deviate from the expected distribution. We may wish to produce142
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patterns that summarize the properties of erroneous tuples to help143

determine the root cause of data quality problems.144

• Feature selection and explainable AI. Before building prediction mod-145

els, a data scientist may explore interesting patterns to understand146

which dimension attributes are related to the measure attribute that is147

to be predicted. Furthermore, suppose a data analyst wants to under-148

stand how a black-box model makes classification decisions. Here, the149

dimension attributes are the features given to the model as input, and,150

as the measure attribute, the analyst records the predictions made by151

the model. The analyst may then want to find interesting patterns that152

explain the prediction decisions. For example, in Table 1, the pattern153

(Mon, ⇤, ⇤) is associated with tuples having Full = 0, suggesting that154

flights scheduled on Mondays are usually not full1.155

3. Solutions156

In this section, we provide a categorization of previous work on data157

exploration using multi-dimensional patterns based on the pattern proper-158

ties and ranking strategies used for pattern selection. We categorize these159

properties into three types: those focusing on coverage, contrast and infor-160

mation. Table 2 categorizes the surveyed methods and lists their motivating161

applications, as mentioned in the corresponding papers.162

Additionally, Table 3 lists the inputs and outputs of the surveyed meth-163

ods. As explained in Section 2, these methods operate over datasets with164

multiple dimension attributes and a measure attribute that needs to be cov-165

ered, contrasted or explained. MRI and Smart Drilldown also require a166

function that assigns pattern weights. CAPE is unique in its inputs in that167

it requires a specific pattern that can be thought of as a starting point for168

further exploration. In terms of outputs, most methods produce k best pat-169

terns according to some properties. Methods based on contrast identify k170

patterns with the highest contrast scores (details in Section 3.2). Methods171

based on coverage and information typically use greedy heuristics to solve an172

1Model explanations may be global (to summarize how classification decisions are
made) or local (to explain why a specific example was classified in a particular way); see
[13] for a survey. The methods discussed in this paper are examples of global explanations.
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Table 2: Methods surveyed

Method Approach Applications
CAPE [18] Contrast Explaining queries

Data Auditor [9] Coverage Data quality analysis
Data X-ray [24] Contrast Data quality analysis

DIFF [2] Contrast Outlier analysis
Explanation tables [7] Information Feature selection

Macrobase [1] Contrast Outlier analysis
MRI [5] Coverage Explaining queries over product ratings

RSExplain [20] Contrast Explaining queries
Scorpion [25] Contrast Outlier analysis
Shrink [11] Information Explaining queries

Smart Drilldown [15] Coverage Explaining queries, data cube exploration
SURPRISE [21] Information Explaining queries

underlying NP-hard problem related to maximizing the coverage or informa-173

tion content of the selected patterns. Thus, their outputs are approximately174

optimal with respect to the associated coverage, weighted coverage, or infor-175

mation metric.176

3.1. Methods Based on Coverage177

The goal of these methods is to identify patterns that cover tuples of178

interest; this may refer to covering tuples in the entire dataset, covering tuples179

with a given value of a measure attribute, or covering tuples that contribute180

to the result of a query. We discuss three coverage-based methods: Data181

Auditor [9], MRI [5], and Smart Drilldown [15].182

3.1.1. Method Details183

Suppose we want to cover tuples having Full = 1 in Table 1 to sum-184

marize the characteristics of full flights. A simple coverage-oriented ap-185

proach is to sort the patterns according to supFull=1() and output the top-186

ranking patterns. Ignoring (⇤, ⇤, ⇤), which always covers everything but is187

not useful in data exploration, the top candidates are (⇤, ⇤, London) and188

(⇤, ⇤, F rankfurt), which cover three full flights each, followed by the follow-189

ing patterns that cover two such tuples each: (Fri, ⇤, ⇤), (Sun, ⇤, ⇤), (Sat, ⇤, ⇤)190

and (⇤, SF, ⇤).191
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Table 3: Inputs and outputs of methods surveyed

Method Input Output
CAPE Dataset, a pattern p k patterns with the highest

counterbalance score w.r.t. p
Data Auditor Dataset, coverage thresholds

✓r(p)
Fewest patterns that satisfy
the coverage thresholds

Data X-ray Dataset k patterns with the highest
diagnosis cost

DIFF Dataset, contrast metric,
support threshold

k patterns (that satisfy the
support threshold) with the
highest contrast

Explanation tables Dataset k most informative patterns
Macrobase Dataset k patterns with the highest

risk ratio
MRI Dataset, coverage threshold,

pattern weighting function
k patterns that cover the re-
quired fraction of tuples with
a minimal sum of weights

RSExplain Dataset k patterns with the highest
intervention score

Scorpion Dataset k pattern with the highest in-
fluence score

Shrink Dataset k patterns that best summa-
rize the distribution of the
measure attribute

Smart Drilldown Dataset, pattern weighting
function

k patterns that maximize the
product of coverage and sum
of weights

SURPRISE Dataset k most informative patterns

There are two problems with this simple approach: there may be many192

patterns with a nonzero supFull=1(p), and some of these patterns may also193

cover tuples with other values of the measure attribute (here, Full = 0). To194

reduce the size of the output and to ensure that each pattern co-occurs with195

the specified value of the measure attribute, Data Auditor solves the following196

set cover problem. Continuing with our example, Data Auditor requires197
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a minimum threshold for ✓Full=1(p), i.e., the fraction of tuples covered by198

p that correspond to full flights. Suppose we require ✓r(p) � 0.75. This199

threshold defines the candidate sets for the set cover problem, i.e., all the200

patterns p with ✓r(p) � 0.75. The set cover objective is to select the fewest201

such patterns that together cover a specified fraction of tuples in S having202

Full = 1. Suppose this coverage fraction, which would again be set by the203

user, is 0.5. The goal is then to find the fewest patterns, as defined above,204

to cover half the full flights. Alternatively, Data Auditor may produce k205

patterns that (approximately) maximize coverage.206

The set cover problem is NP-hard, and Data Auditor uses the standard207

greedy heuristic that achieves a logarithmic approximation ratio in the size of208

the solution: it iteratively chooses the pattern that covers the most uncovered209

tuples (having the desired value of the measure attribute), until the desired210

fraction of such tuples has been covered (or until k patterns have been cho-211

sen). In our example, the first pattern added to P is either (⇤, ⇤, London) or212

(⇤, ⇤, F rankfurt) – they each cover three full flights and their ✓Full=1(p) val-213

ues are 0.75 each. Suppose the set cover algorithm selects (⇤, ⇤, F rankfurt).214

Since there are seven full flights in the dataset and our coverage threshold is215

0.5, we need to cover one more full flight. In the next iteration, the pattern216

that (has ✓Full=1(p) � 0.75 and) covers the most remaining full flights is217

(⇤, ⇤, London) and the algorithm terminates, with P consisting of these two218

patterns.219

Data Auditor solves a set cover problem in which patterns are prioritized220

by their coverage (of tuples that have a given value of the measure attribute221

and have not yet been covered). The other two coverage-based methods take222

into account pattern weights in addition to coverage, as described below.223

The next method, Smart Drilldown, produces k patterns. In each of the224

k iterations of the algorithm, the chosen pattern maximizes the following225

objective: the number of tuples not yet covered multiplied by the weight of226

the pattern corresponding to some measure of interestingness. One simple227

weighting function proposed in [15] is the number of non-star values in the228

pattern; i.e., more specific patterns are considered to be more desirable. In229

Table 1 for example, this weighting function prefers (Tue, Chicago, LA) over230

(Tue, ⇤, ⇤) – both of these patterns have a support of one, but the former has231

more non-star values.232

The third method based on coverage, MRI, finds k patterns that cover233

a user-specified fraction of the data and satisfy additional properties related234

to the variance of the measure attribute within each pattern. Here, the235
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weight of a pattern corresponds to this notion of variance, and patterns236

with smaller weights are preferred. The motivating example for MRI was to237

explain queries over product reviews, with the dimension attributes corre-238

sponding to information about the reviewers (such as their gender and age)239

and the numeric measure attribute corresponding to the average rating. Min-240

imizing variance amounts to returning patterns (having high coverage and)241

describing reviewers with similar opinions. For example, when applying MRI242

to Table 1 with Late as the measure attribute, the pattern (⇤, ⇤, F rankfurt)243

is preferred over (⇤, ⇤, London). Both patterns cover four tuples, but the244

former has a lower variance of the Late attribute within the covered tuples.245

Both Smart Drilldown and MRI prioritize patterns with high coverage (of246

tuples that have not yet been covered) and take pattern weights into account.247

However, while Smart Drilldown uses a modified version of the greedy set248

cover heuristic also used by Data Auditor, MRI uses a hill climbing heuristic.249

First, MRI selects k patterns at random. Next, it makes small changes to the250

patterns, if necessary, to ensure that the user-specified coverage threshold is251

satisfied. A small change to increase coverage may correspond to replacing252

one attribute value in a pattern with a ‘*’. Finally, MRI makes a second253

round of small changes to the patterns in an attempt to reduce the sum of254

their weights.255

3.1.2. Pros and Cons256

One advantage of coverage-based methods is conciseness: by design, they257

identify (approximately) the fewest patterns that cover the desired fraction of258

tuples of interest, or they produce k patterns that (approximately) maximize259

coverage. On the other hand, in Data Auditor, some trial-and-error may be260

required on the user’s part to select good values for the two required thresh-261

olds. For example, a high value of ✓ will ensure that each selected pattern262

co-occurs mainly with the specified value of the measure attribute, but will263

disqualify more patterns from consideration, possibly leading to lower cover-264

age. Similarly, MRI and Smart Drilldown require users to set parameters for265

coverage and other pattern properties.266

3.2. Methods based on Contrast267

This group of methods includes CAPE [18], Data X-ray [24], DIFF [2],268

Macrobase [1], RSExplain [20] and Scorpion [25]. Contrast-based methods269

often assume a binary measure attribute, and select patterns co-occurring270

with one value of the measure attribute but not the other. These patterns271
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reflect the contrast between tuples having di↵erent values of the measure272

attribute.273

One could argue that interpretable classifiers such as decision trees and274

rule-based methods (see, e.g., [16]) can also be used for contrast-based data275

exploration. These methods identify patterns of values of the feature at-276

tributes that have high discriminative power in terms of the class variable277

(in our case, the binary measure attribute). These patterns are therefore278

likely to provide contrast as well. However, classification algorithms usu-279

ally focus on out-of-sample predictive power and include optimizations such280

as rule pruning to avoid overfitting. On the other hand, the methods cov-281

ered in this survey focus explicitly on identifying a concise set of interesting282

fragments of the data for user exploration.283

Contrast-based methods can also explain the results of aggregate queries.284

Consider the following query over Table 1: SELECT SUM(Late) FROM S285

WHERE Full=1. Here, one measure attribute corresponds to the quantity286

being aggregated. We then set the other (binary) measure attribute to one for287

all tuples that participate in the query (i.e., tuples that match the WHERE288

predicate), and we select patterns of tuples that contribute to the result of289

the query (but would not contribute had the query been issued against the290

other tuples in the dataset).291

3.2.1. Method Details292

DIFF is a recent solution that generalizes earlier contrast-based methods,293

including Data X-ray, Macrobase, RSExplain and Scorpion. The authors of294

DIFF observe that these methods all use a similar algorithmic framework but295

di↵erent contrast metrics. DIFF supports these di↵erent contrast metrics.296

To summarize the pattern mining framework used in DIFF to generalize297

prior work, a contrast metric is calculated for each candidate pattern and the298

highest-ranking patterns are returned. DIFF additionally implements several299

performance optimizations that will be discussed in Section 4. Below, we give300

several examples of contrast metrics originally used in earlier methods and301

now supported by DIFF. We again use the running example in Table 1, with302

Full as the binary measure attribute and Late as the additional numeric303

measure attribute when needed.304

Risk ratio was originally used by Macrobase; a related metric called Di-305

agnosis Cost is used by Data X-ray. It is the ratio of the following two prob-306

abilities: 1) the probability that a tuple with a particular value is covered307

by the given pattern, and 2) the probability that a tuple with this particular308
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value occurs outside this pattern. In our example,309

riskFull=1(p) =
✓Full=1(p)

supFull=1(⇤,⇤,⇤)�supFull=1(p)
(supFull=1(⇤,⇤,⇤)�(supFull=1(p))+(supFull=0(⇤,⇤,⇤)�supFull=0(p))

.

For instance, riskFull=1(⇤, ⇤, London) = 0.75
0.4 = 1.875, and riskFull=1(⇤, SF, ⇤) =310

0.5
0.5 = 1. This indicates that (⇤, ⇤, London) represents full flights better than311

(⇤, SF, ⇤).312

Mean shift computes the ratio of the mean of the measure attribute values
co-occurring with the two values of the binary measure attribute. In our
example,

meanLate
Full=1(p) =

sumLate
Full=1(p)/supFull=1(p)

sumLate
Full=0(p)/supFull=0(p)

.

For instance, meanLate
Full=1(⇤, ⇤, London) = 54/3

7/1 = 2.57, indicating that full313

fights to London have delays that are 2.57 times longer than non-full flights314

to London.315

Intervention was originally used by RSExplain; a related metric called
Influence is used by Scorpion. It measures the ratio of contribution towards
the numeric measure attribute for tuples occurring with the di↵erent values
of the binary measure attribute. In our example,

interventionLate
Full=1(p) =

sumLate
Full=1(⇤, ⇤, ⇤)� sumLate

Full=1(p)

sumLate
Full=0(⇤, ⇤, ⇤)� sumLate

Full=0(p)
.

For instance, interventionLate
Full=1(⇤, ⇤, London) = 108�54

37�7 = 1.8. In other316

words, if flights to London were removed from the dataset then full flights317

would have delays on average 1.8 times longer than non-full flights. On the318

other hand, interventionFull=1(⇤, SF, ⇤) = 108�35
37�12 = 2.92, meaning that re-319

moving flights departing from SF from the dataset would create a greater320

contrast between the delays of full and non-full flights.321

Finally, we discuss CAPE. Given a specific pattern p as input, CAPE322

finds patterns whose tuples have measure attribute values that counterbalance323

those of p. Thus, instead of ranking patterns according to some contrast324

metric, CAPE ranks patterns according to a counterbalance metric with325

respect to p, and outputs the highest-ranking such patterns.326

For example, suppose a user runs the following query on Table 1: SE-327

LECT AVG(Late) FROM T WHERE Day = ’Mon’. This query outputs328
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the value 5.2 and touches tuples identified by the pattern (Mon, ⇤, ⇤). This329

average delay is lower than the average delay in the entire table, which is330

10.4. The user may then input this pattern to CAPE and request patterns331

that counterbalance the lower delays seen in this pattern. CAPE may then332

return patterns such as (Fri, ⇤, ⇤) and (Sat, ⇤, ⇤), whose average delays are333

higher than average (18 and 16, respectively). Thus, counterbalancing refers334

to finding related patterns whose measure attribute values are “outliers” in335

the other direction (in our example, higher than average) compared to the336

input pattern (in our example, lower than average).337

In CAPE, the pattern mining algorithm has two main modules.338

The first module finds regression relationships in the data; then counter-339

balancing can be used to find outliers with respect to these relationships. In340

our example above, counterbalancing was based on a trivial regression rela-341

tionship involving the Late attribute, namely that AVG(Late)=10.5. Since342

the input pattern had lower than average delays, CAPE searched for patterns343

having higher than average delays. To see an intuitive example of a more344

complex regression pattern, paraphrased from [18], consider a database with345

authors and their publications such as DBLP. In this example, a regression346

pattern may hold for most authors such that they publish more papers over347

time. Here, an unusual (with respect to the identified regression relationship)348

pattern corresponding, say, to a lower-than-expected number of publications349

in a given year for given author, can be counterbalanced by finding pat-350

terns corresponding to years in which this author published more than the351

expected number of papers.352

After identifying regression relationships, the second module finds pat-353

terns to counterbalance a given input pattern. Such patterns must satisfy354

two objectives. First, they must be “outliers” in the opposite direction to355

the input pattern with respect to some aggregate function over the measure356

attribute. Second, they must be “close” to the input pattern in terms of the357

values of the dimension attributes. In the DBLP example above, if the input358

pattern refers to, say, year 2015, then patterns with similar years, say 2014359

or 2016, would be preferred for counterbalancing.360

3.2.2. Pros and Cons361

By design, contrast-based methods are useful when exploring di↵erences362

between data subsets – something that coverage-based methods do not di-363

rectly optimize for. On the other hand, contrast-based methods may not364

guarantee concise results. One exception is Data X-ray, which performs a365
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Table 4: An explanation table of size four for the binary measure attribute Full

Day Origin Dest. Full
* * * 0.5

Mon * * 0
* London 0.75
* Frankfurt 0.75

set-cover-like operation on the extracted patterns as a post-processing step366

to eliminate redundant patterns.367

3.3. Methods based on Information368

Finally, we discuss three methods that select patterns based on the infor-369

mation they provide about the distribution of the measure attribute: Expla-370

nation Tables [7], SURPRISE [21] and Shrink [11]. We show two examples of371

explanation tables, one with a binary measure attribute and one with a nu-372

meric measure attribute, followed by a greedy heuristic to construct (almost)373

optimal explanation tables, and an overview of SURPRISE and Shrink.374

3.3.1. Method Details375

Table 4 shows an explanation table of size four (i.e., containing four pat-376

terns) for the binary measure attribute Full based on Table 1. In addition377

to values of the dimension attributes, each explanation table pattern also in-378

cludes the fraction of matching tuples that have Full = 1. The first pattern379

in an explanation table is always the all-stars pattern, and, in this example,380

it indicates that half the flights in the entire dataset are full. The next pat-381

tern suggests that no flights on Mondays are full, and the last two patterns382

indicate that three-quarters of flights to London and Frankfurt are full.383

In Table 5, we show an explanation table of size four for the measure384

attribute Late based on Table 1. Here, each pattern includes the average385

value of Late across its matching tuples. Again, we start with the all-stars386

pattern, which states that flights are 10.4 minutes late on average. The next387

pattern indicates that flights to London are 15.3 minutes late on average,388

and so on.389

The greedy heuristic for constructing explanation tables used in [6, 7, 8]390

iteratively selects patterns that contain the most information about the dis-391

tribution of the measure attribute. To do so, the algorithm maintains a392
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Table 5: An explanation table of size four for the numeric measure attribute Late

Day Origin Dest. Late
* * * 10.4

* London 15.3
Fri * * 18
Sat * * 16

maximum-entropy estimate of the distribution based only on the patterns393

that have been added to the explanation table so far, and without assum-394

ing any other information; recall that the entropy of a random variable X395

with outcomes x1 through xn is defined as E(X) =
Pn

1 �P (xi) logP (xi).396

The algorithm also keeps track of the distance between the estimated distri-397

bution and the true distribution by computing their Kullback-Leibler (KL)398

divergence. Given two random variables, X and Y , with the same space399

of outcomes, x1 through xn and y1 through yn, respectively, the KL diver-400

gence of their distributions is defined as KL(X, Y ) =
Pn

1 P (xi) log
P (xi)
P (yi)

. To401

quantify the information contained in a candidate pattern p, the algorithm402

computes the reduction in KL-divergence if p were to be added to the expla-403

nation table.404

Returning to Table 4, the greedy algorithm starts by inserting the pattern405

(⇤, ⇤, ⇤||0.5). At this point, knowing only this one piece of information, the406

maximum-entropy estimate of the distribution of Full is to assign Full = 0.5407

to every tuple in Table 12. That is, knowing only that the average value of408

Full in the entire table is 0.5, we obtain maximum entropy by assigning 0.5 to409

each tuple. Next, it turns out that (Mon, ⇤, ⇤||0) gives the greatest reduction410

in KL-divergence. Based on this new pattern, the maximum-entropy estimate411

for tuples 10 through 14 in Table 1 changes to Full = 0. This revision causes412

the estimates of the first nine tuples to change (from 0.5 to 7
9) in order413

to maintain consistency with the first pattern, which asserts that Full =414

0.5 on average over the entire table. Given the updated maximum-entropy415

estimate, the next pattern with the greatest reduction in KL-divergence is416

2Full is a binary attribute that can only be zero or one. However, for the purpose of
measuring the divergence between the true and the estimated distributions, the maximum-
entropy estimates are allowed to be real numbers between zero and one.
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(⇤, ⇤, London||0.75), and so on.417

Similar reasoning can explain how Table 5 was created. The first pattern418

asserts that flights are late by 10.4 minutes on average. Given this estimate,419

(⇤, ⇤, London||15.3) provides the most information about the distribution of420

Late. The maximum-entropy estimate of Late is now updated accordingly,421

That is, tuples 1, 4, 6 and 11, corresponding to flights to London, receive422

an estimate of 15.3, and the remaining tuples receive an estimate of 8.4423

to maintain consistency with the first pattern. The next most-informative424

pattern is then selected, and so on.425

SURPRISE is a similar method, whose goal is to identify surprising frag-426

ments of a dataset where the distribution of the measure attribute is di↵erent427

than what the user has seen so far. Suppose the user queries Table 1 and428

finds out that flights are 10.4 minutes late on average. SURPRISE finds the429

most informative non-overlapping and contained patterns, i.e., those which430

lead to the greatest reduction in KL-divergence between the true distribu-431

tion of Late and the maximum-entropy estimated distribution. Restricting432

the output to such patterns makes it easier to update the estimated distri-433

bution. In our example, the most informative pattern is (⇤, ⇤, London) and434

its most informative subset is (⇤, SF, London).435

Finally, we discuss Shrink. The motivation behind Shrink was to create a436

new OLAP operator to reduce the size of a data cube after a user has drilled437

down to a fine-grained level. This is done by merging similar slices while438

balancing the tradeo↵ between the number of merged slices returned and439

accuracy of the corresponding aggregate function over the measure attribute.440

In the context of pattern-based exploration, we can position Shrink as a441

method that starts with a full data cube (i.e., all possible patterns) and442

produces k non-overlapping patterns that summarize the distribution of the443

measure attribute with (approximately) a minimal sum of squared errors.444

Notably, Shrink explicitly allows patterns with disjunctions of values and445

dimension hierarchies. Table 6 shows an example of a summary with two446

patterns that may be considered by Shrink based on Table 1. We assume447

that the aggregate function is AVG(Late). Given the average values of the448

Late measure attribute reported by the summary, the sum of squared errors449

is 77.1.450

Merging slices is done greedily. In each iteration, pairs of slices are chosen451

for merging if merging the corresponding aggregate values of the measure452

attributes leads to the smallest increase in sum of squared errors.453
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Table 6: A summary of size two considered by Shrink [11]

Day Origin Dest. Late
Fri,Sun,Sat,Thu * * 15.4
Tue,Wed,Mon * * 5.3

3.3.2. Pros and Cons454

By design, information-based methods produce informative patterns that455

highlight fragments of the data with surprising distributions of the measure456

attribute. However, these methods tend to be expensive, especially as the457

number of dimension attributes grows.458

4. Performance Optimizations459

A critical challenge in pattern-based data exploration arises from the460

size of the search space: the number of possible patterns is exponential in461

the number of dimension attributes. Coverage-based methods therefore deal462

with a large number of candidate patterns when constructing a set cover,463

contrast-based methods must compute contrast scores for many candidate464

patterns, and information-based methods must keep track of the information465

content of many patterns. In this section, we categorize frequently used466

performance optimizations to address these challenges and enable interactive467

data exploration.468

We identify the following categories of optimizations: top-down pruning,469

row pruning, column pruning and parallel processing. Table 7 lists the meth-470

ods that originally used these optimizations, indicated by a ‘*’; for brevity,471

we do not explicitly list methods whose contrast metrics are supported by472

DIFF since the optimizations implemented in DIFF also apply to those meth-473

ods. As we will explain throughout this section, some optimizations may474

potentially be applicable to other methods, indicated by ’a’ in Table 7. In475

particular, optimizations that will be experimentally evaluated in Section 5476

are indicated by an ’E’.477

4.1. Top-Down Pruning478

Top-down pruning refers to traversing the space of candidate patterns479

from general (all-stars) to specific and pruning candidates along the way.480
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Table 7: Performance optimizations, methods that use them (indicated by a ‘*’), methods
that may potentially use them (indicated by an ’a’), and new method-optimization com-
binations that will be tested experimentally in Section 5 (indicated by an ’E’). Methods
are ordered by category, divided by horizontal lines: coverage-based, followed by contrast-
based, followed by information-based.

Method Top-down Row Column Parallel
pruning pruning pruning processing

Data Auditor [9] * a E a
Smart Drilldown [15] * * a a

CAPE [18] a a * a
DIFF [2] * E * *

Explanation tables [7] E * * *
Shrink [11] a a a

SURPRISE [21] a a a a

The idea is similar to that of the Apriori algorithm for frequent itemset481

mining [3].482

In the context of data exploration using patterns, we define the an-483

cestors of a pattern p as all patterns p0 such that p ✓ p0, and the de-484

scendants of p as all patterns p0 such that p0 ✓ p. We can generate the485

ancestors of p by replacing non-star values with stars. Similarly, we can486

generate the descendants of p by replacing one or more stars with val-487

ues from the corresponding column. For example, in Table 1, the ances-488

tors of (⇤, SF, London) are (⇤, ⇤, London), (⇤, SF, ⇤) and (⇤, ⇤, ⇤). Simi-489

larly, the descendants of (⇤, ⇤, London) are (⇤, SF, London), (Fri, ⇤, London),490

(Mon, SF, London), and so on.491

Note that if p is a descendant of p0 (equivalently, if p0 is an ancestor of p)492

then sup(p)  sup(p0). DIFF exploits this observation by requiring the user493

to set a minimum support threshold for a candidate pattern. Then, similar494

to Apriori frequent itemset mining, DIFF traverses the space of candidate495

patterns from the top down. When a pattern p is encountered with a sup-496

port below the threshold, p and all of its descendants can be ignored (i.e.,497

their contrast measure will not be calculated). Since DIFF supports vari-498

ous contrast metrics used in other contrast-based methods, this performance499

optimization also applies to other contrast-based methods.500

Coverage-based methods such as Data Auditor and Smart Drilldown also501
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use top-down pruning. In each iteration of the greedy set cover heuristic,502

these methods select the next best pattern based on the number of uncovered503

tuples it covers (multiplied by the weight in case of Smart Drilldown). Thus,504

a performance bottleneck results from having to keep track of the number505

of uncovered tuples that can be covered by the candidate patterns – this506

changes in every iteration, whenever a new pattern is added to the solution.507

Here, an important observation is that a descendant of a pattern p cannot508

cover more uncovered elements than p. Data Auditor exploits this observa-509

tion and does not generate all the patterns that serve as input to greedy set510

cover beforehand. Instead, patterns are generated on-demand, only after all511

of their ancestors have already been considered. For example, a pattern such512

as (Fri, ⇤, London) would only be generated after all of its ancestors - includ-513

ing (Fri, ⇤, ⇤) and (⇤, ⇤, London) - have already been considered. Until then,514

(Fri, ⇤, London) can be safely ignored: it cannot cover more elements than515

its ancestors and therefore is guaranteed to not be selected by the greedy516

set cover heuristic at this time. This optimization can greatly reduce the517

number of generated patterns whose coverage (of uncovered elements) must518

be re-computed while constructing the solution.519

Top-down pruning has not been applied to information-based methods.520

One problem is that a descendant pattern may be more informative, even if521

its support is lower. In Section 5, we will investigate whether the approach522

used in DIFF, which is to require the user to set a minimum support threshold523

for a candidate pattern, is beneficial for information-based methods.524

Finally, as we indicated in Table 7, there does not appear to be an obvious525

way to apply top-down pruning to Shrink. During pattern mining, Shrink526

starts with all possible patterns and iteratively merges patterns until the527

final result contains only k merged patterns, for some user-supplied value528

of k. This is a bottom-up approach. Furthermore, ignoring patterns with529

low support does not appear to be helpful since these patterns would not530

be merged and instead would appear individually in the final output. This531

would increase the size of the output, which is the opposite of the intended532

goal of reducing the number of patterns.533

4.2. Row Pruning534

A simple example of row pruning is sampling: we draw a random sample535

from the input dataset and run a data exploration algorithm on the sample536

instead of the entire dataset. In principle, sampling applies to all the methods537

discussed in this survey. In particular, sampling is used by information-based538

19



methods such as Explanation Tables to reduce the number of patterns whose539

information gain must be computed, and by coverage-based methods such as540

Smart Drilldown to reduce the number of patterns whose coverage must be541

computed. Furthermore, sampling may speed up the computation of infor-542

mation gain or coverage of candidate patterns since there is less data to scan.543

For example, the explanation table construction algorithm in [6, 7, 8] draws544

a random sample in every iteration. Next, the set of candidate patterns cor-545

responds to only those patterns that have a non-zero support in the sample.546

The intuition is that patterns with frequently occurring combinations of di-547

mension attribute values are likely to be sampled and also likely to contain548

information about the distribution of the measure attribute.549

However, a disadvantage of generating patterns from a sample is that550

any pattern statistics calculated from a sample, such as contrast scores or551

information gain, may not be accurate with respect to the full dataset. This552

is in contrast to top-down pruning, which does not a↵ect the quality of the553

output: candidates are ignored only if they are guaranteed to not be included554

in the output because their support is below the minimum support threshold555

set by the user. Flashlight, which is one of the explanation table algorithms556

proposed in [6], suggests the following compromise: sampling is used only to557

restrict the candidate pattern space (to those with non-zero support in the558

sample), but the information gain of candidate patterns is computed over559

the full dataset, not the sample. This way, the resulting explanation table560

is more informative since the patterns reflect the distribution of the measure561

attribute in the entire dataset rather than the distribution within the sample.562

4.3. Column Pruning563

This category of optimizations removes some columns from consideration564

in order to reduce the space of candidate patterns. We identified two exam-565

ples of column pruning: removing correlated columns and limiting pattern566

size. Again, both of these optimizations apply to all the methods surveyed567

in this paper.568

In terms of removing correlated columns, both CAPE and DIFF include a569

pre-processing step that removes attributes that are functionally determined570

by other attributes. The modified dataset is then used for exploration.571

Limiting pattern size refers to limiting the number of non-star values that572

appear in a pattern, which again reduces the space of candidate patterns.573

This optimization is used by CAPE, DIFF and SIRUM [8], which is one of574

the explanation table construction algorithms.575
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4.4. Parallel Processing576

Parallel processing is used by DIFF and explanation tables (SIRUM). In577

a contrast-based method such as DIFF, there are many candidate patterns578

whose contrast measure needs to be computed. These computations can579

be done independently for each pattern, and therefore can be parallelized.580

In explanation table construction, every iteration requires the computation581

of information gain of candidate patterns. This can also be parallelized,582

but only within an iteration, not across iterations, since information gain583

of the remaining patterns may change when a new pattern is added to the584

explanation table. Finally, in coverage-based methods, it may be possible to585

parallelize the computation of coverage of candidate patterns.586

5. Experiments587

In Section 4, we suggested that some performance optimizations origi-588

nally proposed in the context of one method may apply to other methods.589

In this section, we experimentally verify this claim, by applying optimiza-590

tions originally proposed for a method in one category to a representative591

method from another category. In particular, we evaluate the following new592

combinations of methods and optimizations.593

1. DIFF (contrast-based) uses top-down pruning by ignoring patterns594

whose support is below a user-specified threshold. To evaluate the im-595

pact of this optimization on information-based methods, we add this596

optimization to the Flashlight algorithm for explanation table construc-597

tion. In other words, in each iteration, the modified Flashlight algo-598

rithm does not compute the information gain of any patterns whose599

support is below the threshold.600

2. Row pruning (sampling) was originally used in Flashlight (information-601

based) and Smart Drilldown (coverage-based). To evaluate the impact602

of this optimization on contrast-based methods, we compare the per-603

formance on DIFF on a full dataset and DIFF on a random sample of604

a dataset.605

3. DIFF (contrast-based) and SIRUM (information-based) limit the num-606

ber of non-star values that a pattern may use, which is an example607

of column pruning. We apply this optimization to the Data Auditor608

coverage-based method. To do this, we modify the Data Auditor al-609

gorithm to ignore patterns with more than a user-specified number of610

non-star values.611
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Note that we do not investigate new applications of parallel processing612

optimizations. These kinds of optimization usually require a redesign of the613

underlying algorithm (e.g., the SIRUM algorithm for parallel construction of614

explanation tables [8]), which is outside the scope of this survey and is an615

interesting direction for future work.616

5.1. Experimental Setup617

Overview: Experiments were performed in Ubuntu Linux 16.04, on a618

device with Intel Core i7-6700HQ 2.60 GHz processor and 12 GB of RAM.619

Each experiment (i.e., each combination of method, dataset, and parameter620

settings) was repeated three times. For each experiment, we report the aver-621

age running time across the three runs, as well as a measure of the goodness622

or quality of the output, such as coverage percentage or information gain.623

624

Data: We use the following datasets:625

• Flight Upgrade: This dataset includes 5794 United Airlines ticket records,626

with 7 categorical flight information attributes (origin, destination, air-627

plane model, etc.), and a binary measure attribute determining whether628

or not the passenger had their ticket upgraded to business class. The629

dataset was used to evaluate explanation tables in previous work [7]630

and was obtained from the authors of the corresponding paper. We631

use this dataset in Experiments 1 and 3 to evaluate optimizations of632

the Flashlight algorithm for explanation tables and Data Auditor, re-633

spectively.634

• Adult Income: There are 32561 records in this US Census dataset,635

where each record includes 8 categorical attributes about the adult636

person demographics (age, sex, education, etc.), and a binary measure637

attribute denoting whether the income level of the person is above or638

below $50,000. This dataset is accessible from the UCI repository3, and639

we use this dataset for Experiment 2 to test optimizations of DIFF.640

Note that we do not use the smaller Flight Upgrade dataset to test641

DIFF because DIFF queries run much faster than the other methods,642

and thus measuring DIFF runtimes on small datasets does not show643

any meaningful di↵erences.644

3https://archive.ics.uci.edu/ml/datasets/adult
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• Bank Marketing : This dataset, which can be accessed from UCI repos-645

itory4, includes records of bank marketing campaign outcomes, includ-646

ing 10 categorical attributes about the demographic information of each647

customer and the campaign contacts with the customer. The binary648

measure attribute determines whether the campaign was e↵ective and649

the customer subscribed to the service that was advertised. We use the650

smaller version of the dataset with 4119 records for Experiments 1 and651

3 (explanation tables and Data Auditor), and the larger full version652

with 41188 records for Experiment 2 (DIFF).653

Source code: We obtained the DIFF source code from the project654

Github page5. We obtained the Flashlight source code, written in C++,655

from the authors of [23], and the Data Auditor code, also written in C++,656

from the authors of [9].657

5.2. Experiment 1: Impact of top-down pruning on information-based meth-658

ods659

In this experiment, we compare the original Flashlight algorithm with660

a modified algorithm that ignores patterns whose support is below a user-661

specified threshold. This reduces the space of candidate patterns, at the662

expense of solution quality since some of the pruned patterns may have been663

informative. We thus investigate the tradeo↵ between running time and the664

information gain of the resulting explanation tables for various minimum665

support thresholds: 0.005, 0.01, 0.05. We fix the size of the explanation666

table at ten patterns, and we set the sample size for pattern generation to667

16 (which was shown to be e↵ective in previous work [6]).668

Figure 1 displays the results of this experiment on the Flight (left) and669

Bank (right) datasets. The plots show how the information gain (y-axes)670

and execution time (x-axes) of the Flashlight algorithm change for di↵erent671

minimum support thresholds (the blue points), compared to the original672

algorithm without any top-down pruning (the black point).673

Our results show that top-down pruning does not reduce the running time674

significantly, while the information gain of the resulting explanation tables675

degrades. Further analysis showed that the main performance bottleneck676

in the Flashlight algorithm is the generation of candidate patterns, and the677

4http://archive.ics.uci.edu/ml/datasets/Bank+Marketing
5https://github.com/stanford-futuredata/macrobase

23



Figure 1: Experiment 1 results using Flashlight on Flight (left) and Bank (right) datasets

performance gain from not having to compute the information gain of some678

of the generated patterns (i.e., those below the given support threshold) is679

minimal. Furthermore, we noticed that patterns with large support increase680

the time taken by the algorithm to update the maximum-entropy estimate of681

the distribution of the measure attribute via iterative scaling. Thus, the time682

savings resulting from not having to compute the information gain of some683

patterns are often o↵set by the extra time taken to update the estimated684

distribution.685

5.3. Experiment 2: Impact of row pruning on contrast-based methods686

Next, we run DIFF on an entire dataset and on samples of the dataset.687

Reducing the sample size should make DIFF faster, at the expense of a larger688

error in the computed contrast scores. We thus evaluate the tradeo↵ between689

running time and the accuracy of contrast scores computed from a sample.690

We test the following sample fractions of the full dataset: 0.01, 0.05,691

0.1 and 0.2. From the contrast metrics supported by DIFF, we test the692

risk ratio and the mean shift in two separate sets of experiments (recall693

Section 3.2.1). For the risk ratio scores, we compute the contrast between694

subsets of the data with di↵erent values of the binary measure (denoting695

high income in the Adult Income dataset or marketing campaign success in696

the Bank Marketing dataset). For the mean shift scores, we use numeric697

measure attributes (denoting the number of working hours per week in the698

Adult Income dataset and the number of times the customer was contacted699

in the Bank Marketing dataset). We use the default DIFF parameters for700
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Figure 2: Experiment 2 results using DIFF risk ratio score on Income (left) and larger
Bank (right) datasets

minimum support (10%) and minimum contrast score (1.5) thresholds.701

To compare the DIFF contrast scores for full and sampled datasets, for702

each sample size, we compute the di↵erence between the contrast scores of703

every pattern common between the full dataset result and the sampled result,704

and we take the average of these di↵erences as the overall average error.705

The results of the experiments with DIFF risk ratio score for the Income706

(left) and larger Bank (right) datasets are shown in Figure 2. The mean shift707

results are shown in Figure 3. The average contrast score errors for di↵erent708

sample size fractions are shown (blue points), compared with the full dataset709

(the black point).710

Based on the four plots, we conclude that sampling is e↵ective in reduc-711

ing the running time (x-axes), with the average contrast score errors becom-712

ing quite small at 0.1 and 0.2 sample fractions (y-axes). However, smaller713

samples appear to increase the error without a significant corresponding im-714

provement in running time.715

5.4. Experiment 3: Impact of column pruning based on pattern size on coverage-716

based methods717

Finally, we compare the original Data Auditor algorithm with a modified718

version that limits the number of non-star values a pattern may have. This719

optimization should reduce the space of candidate patterns and therefore720

the running time, possibly at the expense of solution quality (more patterns721

may be required to reach the desired coverage). However, patterns with722
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Figure 3: Experiment 2 results using DIFF mean shift score on Income (left) and larger
Bank (right) datasets

many non-star values are expected to have low coverage, meaning that this723

optimization should be quite e↵ective.724

We test the following thresholds for pattern size, i.e., the maximum num-725

ber of non-star values in a pattern: 1, 2, 3 and 4. We set the ✓r(p) threshold726

to 0.9. By default, Data Auditor terminates when the generated patterns727

collectively have the user-specified coverage. However, in order to compare728

the results obtained using di↵erent maximum non-star thresholds based on729

their total coverage, we modified the code to output a fixed maximum num-730

ber of patterns, which in our experiments is set to 10, similar to the first731

experiment with explanation tables.732

Figure 4 shows the results for the Flight (left) and Bank (right) datasets.733

The blue points represent the coverage and running time for di↵erent values734

of the pattern size threshold (denoted by m), while the black point shows the735

result of the original Data Auditor algorithm without any pattern pruning.736

Limiting the number of non-star attributes significantly reduces the exe-737

cution time (by multiple orders of magnitude; x-axes) without degrading the738

total coverage significantly (y-axes). In the Flight dataset, setting the thresh-739

old to two results in the best trade-o↵ between performance and accuracy,740

while in the Bank dataset, a higher threshold of four provides significant741

improvements in running time with a small decrease in coverage. In both742

plots, we see that having only one non-star attribute in the patterns reduces743

the total coverage significantly, likely because there are few such patterns744

that meet the ✓r(p) threshold, and therefore there are few candidate sets for745
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Figure 4: Experiment 3 results using Data Auditor on Flight (left) and Bank (right)
datasets

the set cover solution produced by Data Auditor. In general, finding a good746

value of m for a given dataset is an interesting open problem.747

6. Conclusions and Open Problems748

We surveyed recent data exploration methods that extract interesting or749

informative fragments of the data, represented as patterns over the dimension750

attributes. We categorized these methods according to the properties of pat-751

terns they select, and we identified and experimentally evaluated frequently752

used performance optimizations. Our experimental study should be of in-753

terest to researchers working in the area of pattern-based data exploration754

as it suggests that many existing performance optimizations may apply to755

newly developed techniques. Specifically, our experiments showed that using756

a sample of a dataset is e↵ective in improving the performance of contrast-757

based methods supported by DIFF, and we observed a performance gain758

after applying a limit on pattern size in the Data Auditor coverage-based759

method.760

Below, we o↵er suggestions for future work in this area.761

Benchmarks: A performance comparison of contrast-based methods im-762

plemented within the DIFF frameworks appears in [2]. In terms of e↵ective-763

ness, prior work reports that methods based on information provide more764

information about the distribution of the measure attribute than coverage-765

based methods [6, 7]; similarly, methods based on contrast provide more766

precise outlier explanations than methods based on coverage [24]. Some ap-767
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proaches were also evaluated through user studies against simple baselines768

[18]. An interesting direction for future work is to develop a benchmark to769

highlight the e↵ectiveness of various types of methods in various applications.770

New applications: Popular motivating applications that guided the de-771

velopment of prior work were outlier and data error analysis, as well as query772

result explanation. Recent interest in explainable AI motivates further stud-773

ies on exploring the behaviour of black-box machine learning models such as774

neural networks using multi-dimensional patterns, as was suggested in [7].775

Since deep learning methods have been successful in the context of unstruc-776

tured data such as text, images and graphs, future research should investigate777

new ways of formulating interpretable patterns over these high-dimensional778

unstructured datasets.779

Correlated measure attributes: Another characteristic of prior work is780

that it usually formulates exploration problems involving a single measure781

attribute. Pattern-based exploration of multiple measure attributes is an782

interesting area for future work.783

Feature reduction: In terms of performance and scalability, the large num-784

ber of possible patterns remains a challenge for many methods, especially785

those based on information which cannot leverage Apriori-like pruning strate-786

gies. This is an important challenge for interactive methods that allow users787

to continuously issue new exploration tasks. As a result, some techniques788

such as DIFF limit the number of dimension attributes for use in patterns789

and discard redundant dimension attributes such as those functionally deter-790

mined by other attributes. Distributed versions of some methods, including791

DIFF [2] and Explanation Tables [8], have also been proposed to parallelize792

the search for interesting patterns. In machine learning, there exists a vari-793

ety of dimension reduction methods such as Principal Component Analysis794

(PCA) and word embeddings. However, these methods are not known for795

being interpretable and thus their suitability for pattern-based exploration796

requires further study.797

Bringing order to dimension attributes: Much of the previous work con-798

siders categorical dimension attributes. However, there exist methods for799

covering a multi-dimensional dataset using hyper-rectangles corresponding800

to intervals over numeric dimension attributes [17], there exists a method to801

cover data anomalies using intervals over numeric features [27], and expla-802

nation tables have recently been extended to support ordinal and numeric803

dimension attributes [23]. These extensions further increase the space of804

candidate patterns and require additional performance optimizations. For805
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example, returning to Table 1, the Day attribute may lead to additional pat-806

terns with ranges or intervals such as ([Mon�Fri], ⇤, ⇤) or ([Sat�Sun], ⇤, ⇤).807

Techniques used to construct optimal histograms and optimal decision trees808

may help to optimize the discovery of these types of patterns.809

Exploring data evolution: Finally, recent work motivates the need for tools810

to explore how data (and metadata) change over time [4]. Here, patterns may811

summarize fragments of the data that have changed recently or are updated812

often.813
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