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ABSTRACT 
Peak reduction is an important problem in the context of the electricity grid and has led to 

conservation programs in various jurisdictions. For example, in Ontario, Canada, residential 

customers are charged higher prices during peak times, while large industrial and commercial 

customers pay heavy surcharges that depend on their load during Ontario’s five peak-demand days. 

Reducing these surcharges is a challenging problem for large consumers due to the difficulty of 

predicting peak days in advance. 

We study the impact of this peak reduction program, called 5 Coincident Peaks (5CP), on 

consumers by analyzing the difficulty of predicting peak-demand days and peak hours on those 

days. We find that even the state-of-the art peak-prediction algorithms require consumers to curtail 

load ten or more times, and even then, they may not identify all five peak-demand days. We also 

analyze alternative policies that cold help reduce peak demand in Ontario. 
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1. INTRODUCTION 

Peak reduction is an important problem in many contexts, including the electricity grid. Since 

the grid must be provisioned for peak consumption, reducing peak demand can eliminate the need 

for costly infrastructure expansion. Furthermore, the additional supply required to meet peak 

demand often involves activating dirty and inefficient power sources, or purchasing electricity from 

other jurisdictions at high prices. As a result, various peak reduction programs are employed in 
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many jurisdictions. For example, in Ontario, Canada, residential customers are subject to Time-of-

Use (TOU) pricing with higher rates during peak times, whereas large industrial and commercial 

customers incur additional charges based on their load during peak times.  

Let Class-A customers be those whose monthly peak exceeds 5 Megawatts (Independent 

Electricity System Operator, 2015a), and let the Global Adjustment (GA) be the difference between 

the expenses and revenues of Ontario’s power system (Independent Electricity System Operator, 

2015b). To balance the budget, in any given year, every customer pays a share of the GA deficit 

accumulated in the previous year1. Class-A customers have two choices: their GA share may be 

calculated based on their total annual load, or based on its contribution to Ontario’s load in the 

previous year during Ontario’s five peak hours (on different days) of the year (Independent 

Electricity System Operator, 2015d). The latter option is called the 5-Coincident-Peaks (5CP) 

program. The rest of the GA is covered by the remaining customers in various ways, not based on 

the 5CP program. 

Table 1 lists the top five hours of peak demand (on different days) between May 1, 2013 and 

April 30, 2014, along with Ontario’s total load at that hour, and the load of a hypothetical Class-A 

customer at that hour. To calculate the GA share of this customer, we divide the customer’s demand 

by Ontario’s total demand during the five peak hours. This gives 38.8/120571 = 0.00032.  The total 

GA in 2013/2014 was $8.45 billion, meaning that this customer’s GA charges are 0.00032x8.45 

billion = $2.7 million. Larger customers may pay even higher GA surcharges: for example, Western 

University, located in London, Ontario, reports that $7 million of its $17 million electricity bill consists 

of GA charges (Western, 2015).  Thus, Western University can reduce their GA charges by 

$700,000 with a ten-percent load reduction on the (peak hour of the) five peak days.  As the GA 

costs continue to rise (DiRuscio and Hilbig, 2014), these potential savings will become even higher. 

To benefit from the 5CP program, class-A customers must predict when each of the five days 

with Ontario’s highest peak hourly load will occur, so they know when to reduce load and therefore 

 
1 More precisely, the GA share based on May 1 of year i-1 till April 30 of year i is paid between July 1 of year i and June 

30 of year i + 1.  
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reduce their GA charges.  We refer to these five peak days as 5CP days. However, while various 

short-term and long-term demand forecasts are provided by the Ontario electricity system operator 

(IESO), without the benefit of hindsight it is not obvious which five days will be the actual 5CP days 

in a given year until the end of the year. In this paper, we analyze how the issue of peak load 

prediction impacts consumers in the context of the 5CP program. Our objective is twofold: 

• To show that the 5CP program may be impacting large consumers more than intended 

due to the difficultly of predicting peak-demand days; 

• To explore related policies for reducing peak demand. 

 

Table 1: Ontario’s 5CP days in 2013/2014 (Independent Electricity System Operator, 2015a) 

Top 5 Peak Hours Ontario Demand Customer’s Demand 

July 17, 2013, 5pm 24689 MW 7.1 MW 

July 16, 2013, 5pm 24207 MW 8.4 MW 

July 18, 2013, 5pm 24070 MW 7.9 MW 

July 19, 2013, 2pm 24009 MW 8.1 MW 

July 15, 2013, 5pm 23596 MW 7.3 MW 

Total during top 5 peak hours 120571 MW 38.8 MW 
 

The 5CP program is different to Critical Peak Pricing (CPP) programs employed by various 

utilities in California (Bode et al., 2013; Newsham and Bowker, 2010). Both programs are designed 

to reduce peaks by targeting large customers. However, in CPP programs, utilities choose which 

days will be peak-pricing days according to some criteria, and notify the participating customers 

one day in advance. Furthermore, the number of called CPP days can range from 9 to 14. While 

we focus on the 5CP program, studying the difficulty of predicting peak-demand days is also 

relevant in the context of CPP. 

We do not address the related question of evaluating the effectiveness of the 5CP program in 

terms of peak reduction.  Ontario’s peak demand has been declining since 2011, but it is difficult to 

determine the root cause of this reduction, especially since the IESO does not publish load data for 

Class-A consumers, only aggregated demand data for the entire province.  
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2. RELATED WORK 

In practice, various ad-hoc methods are used to predict 5CP days and reduce load on those 

days. For instance, Western University, which is a Class-A customer, turns down the air 

conditioning during July and August afternoons, which is when 5CP days often occur (De Adder, 

2012). We also discussed the 5CP program with several industrial customers in Ontario and found 

that they use very simple heuristics, e.g., plan to reduce demand whenever tomorrow’s peak 

demand forecast exceeds 23,000 megawatts.  

In the context of California’s CPP, Gallagher (2008) describes the following methodology for 

calling peak-pricing days. Based on past history, the first step is to compute the fraction of peak 

days that have occurred in each half-month. During the current year, the idea is to adjust the 

demand threshold for peak-pricing days by comparing how many peak-pricing days have been 

called up to now with how many peak-pricing days have occurred up to this time of the year in the 

past. If more peak days have been called so far in the new year than in past years, the threshold 

is lowered, and vice versa. There is also work on optimal scheduling of peak-pricing days under 

various objectives (Chen et al. 2013; Park et al. 2015; Tyagi et al. 2011; Zhang, 2014). 

Predicting peak days is related to optimal stopping problems. In these problems, we are given 

a sequence of values drawn from some distribution, one value at a time. Immediately after seeing 

each value, we need to decide whether we should stop and declare it to be the largest value in the 

sequence or whether we should keep going. There are also extensions of this basic approach to 

choosing k largest values for some integer k; see, e.g., (Babaioff et al. 2007; Kleinberg, 2005; 

Preater, 1994; Stockbridge and Zhu, 2012). 

In previous work, we proposed an algorithm for day-ahead prediction of peak days that uses 

the short-term load and weather forecasts as input (Jiang et al., 2014; Jiang et al., 2014b).  We 

found that our algorithm makes more accurate predictions than the above-mentioned CPP method 

(Gallagher 2008), the scheduling algorithm proposed by Tyagi et al. (2011) and the optimal 

stopping algorithm given by Babaioff et al. (2007). The insight behind our algorithm is to only use 

the 14-day short-term load forecast rather than long-term forecast, which we found to be much less 
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accurate.  In the remainder of this paper, we use our peak-prediction algorithm to illustrate the 

policy implications of the 5CP program.  

3. METHODOLOGY 

To analyze the impact of the 5CP programs on consumers, we play-back our peak-prediction 

algorithm on Ontario’s load and weather data from 2007 till 2014. We input the 14-day short-term 

IESO load forecast (Independent Electricity System Operator, 2015c) and the day-ahead weather 

forecast for the City of Toronto (Government of Canada, 2015) to the algorithm, day by day. For 

each day, the algorithm predicts whether tomorrow will be a peak day. Then, for each year, we 

determine the actual five 5CP days from Ontario’s historical demand data (Independent Electricity 

System Operator, 2015e), and we compare them with the peak days identified by the algorithm. To 

enable others to reproduce our analysis, we have made the algorithm source code freely available 

at https://github.com/y29jiang/Probabilistic-Algorithm-for-5CP. 

While our algorithm identifies peak days, it is only necessary for Class-A customers to reduce 

load during the peak hour of each 5CP day, not for the entire day. Thus, we also need to solve the 

problem of predicting the peak hour on a given day. We do this using the day-ahead hourly load 

forecast published in the IESO System Status Reports (Independent Electricity System Operator, 

2015e), and will evaluate the accuracy of this approach in Section 4. 

The algorithm uses the following variables.  L(i) is the actual peak hourly load on day i and E(i,d) 

is the peak hourly load forecast for day i as of day i-d, i.e., d days in advance. Let k be the number 

of peak days we want to identify, i.e., for 5CP, k=5. Let T be a load threshold that serves as a lower 

bound for the load on a peak day, i.e., any day i whose peak demand forecast E(i,d) is below T will 

never be called a peak day. For each year that we test, the initial value of this threshold T is the 

peak demand of the kth highest day of the previous year minus one percent.   

Since Ontario has been summer-peaking, we only run the algorithm from May 1 till September 

30 of each year and assume that 5CP days outside this range never happen.  We also skip over 

holidays and weekends, which have lower peak demand, and only test weekdays.  We also need 

a definition of extreme weather, which we set to be 30 degrees Celcius or higher. 
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Our algorithm proceeds as follows.  For each upcoming day i (between May 1 and September 

30), we predict that day i will be a peak day if the following three conditions are true: the day-ahead 

peak forecast, E(i,1), must be at least T, the weather forecast for i must be extreme, and the 

probability that E(i,1) ranks among the k highest values out of all the days (of the current year) we 

have seen so far plus all 14 days for which we have a short-term load forecast must exceed a 

threshold R.  We refer to this probability as P(rank(i) <=k), and will explain how to derive it and the 

threshold R shortly.  Next, we decide whether we should raise or lower the threshold T.  We raise 

it to be equal to E(i,1) if E(i,1)>T and the weather forecast for i is not extreme.  This may happen if 

the current year’s demand is higher than last year’s demand due to some external factors, and 

even normal-weather days have high demand.  In this case, we need to use a higher T for the 

remainder of the current year.  On the other hand, we lower T to be equal to E(i,1) if E(i,1)<T and 

the weather forecast for i is extreme.  This may happen if the current year’s demand drops due to 

some external factors and even an extreme-weather day has a lower expected demand than T. We 

summarize the algorithm below. 

1. FOR each upcoming day i 

2.    IF E(i,1) > T AND extreme weather AND P(rank(i) <= k) > R 

3.       PREDICT tomorrow will be a peak day 

4.    IF (E(i,1) > T AND not extreme weather) OR (E(i,1) < T AND extreme weather) 

5.       T = E(i,1) 

We remark that raising or lowering the threshold T in lines 4-5 is done with the assumption that 

there has been a permanent change in electricity demand from the previous to the current year, 

e.g., a weakening or strengthening of the economy. If we have reasons to believe that the change 

is temporary, we can choose not to adjust the threshold (e.g., it has been observed that electricity 

consumption drops when popular sporting events are being televised (Fischer, 2013)). 

We now discuss how to compute P(rank(i) <= k). We need to know if tomorrow’s peak is likely 

to be one of the k largest values from all the days we have seen so far plus the short-term peak 

forecast for the next 14 days. We performed the Chi-square goodness of fit test on the residuals of 
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the short-term forecasts, i.e., L(i)-E(i,d), and verified that they are normally distributed with a mean 

of zero and some standard deviation that depends on d. For example, the residuals of the day-

ahead forecasts (d=1) are smaller than those of, say, ten-days-ahead forecasts (d=10). Thus, as 

we will illustrate shortly, we can use the probability density function for the normal distribution to 

determine the probability that tomorrow’s forecasted demand, E(i,1), exceeds an actual peak load 

L(p) from some day p from the past, or the probability that E(i,1) exceeds E(n,d) for some day n in 

the next 14 days for which we have a short-term load forecast. 

We define P(rank_past(i)=j) as the probability of E(i,1) ranking jth compared to the actual peak 

demand values we have seen so far, i.e., L(1) through L(i-1). Similarly, we define P(rank_future(i)=j) 

as the probability of E(i,1) ranking jth among the 14 days in our short-term forecast, i.e., E(i,1) 

through E(i+13,14). Assuming that the short-term forecasts for different days are independent, we 

can compute, for example, P(rank_future(i)=1) as P(E(i,1) > E(i+1,2)) * P(E(i,1) > E(i+2,3)) * … * 

P(E(i,1) > E(i+13,14)).  

Next, we define q(x,y)= P(rank_future(i)=x) * P(rank_past(i) = y). With that, P(rank(i) = j) can be 

computed as shown below in Table 2. Finally, we compute P(rank(i) <=5) as P(rank(i)=1) + 

P(rank(i)=2) + P(rank(i)=3) + P(rank(i)=4) + P(rank(i)=5.   

Table 2: Computing P(rank(i) = j) 

P(rank(i)=1) = q(1,1) 
P(rank(i)=2) = q(1,2) + q(2,1) 
P(rank(i)=3) = q(1,3) + q(2,2) + q(3,1) 
P(rank(i)=4) = q(1,4) + q(2,3) + q(3,2) + q(4,1) 
P(rank(i)=5) = q(1,5) + q(2,4) + q(3,3) + q(4,2) + q(5,1) 

 

We now discuss how to obtain the threshold R, which must be exceeded by P(rank(i) <= k) in 

order for day i to be called a peak day.  The idea is to examine the actual 5CP days from the 

previous year and see what their P(rank(i) <= 5) was; we then take the minimum of these five 

probabilities.  For example, in 2012, each actual 5CP day had P(rank(i) <= 5) of at least 0.1, so we 

use R=0.1 in 2013. 
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Worked Example: Suppose T=23,275 megawatts, R=0.1, and assume that tomorrow’s 

weather is expected to be extreme. For brevity, assume we only have a short-term forecast for six 

days, not 14. These are shown in Table 3, along with their standard deviations, s, computed from 

historical data. To compute P(E(i,1) > P(E(i+n,1+n)), we use the probability density function for a 

normal distribution with mean µ and standard deviation s: 

𝑓(𝑥, 𝜇, 𝜎) = 	
1

𝜎√2𝜋
𝑒!

("#$)&

&'&  

For example, P(E(i,1) > E(i+1,2)) = f(23665-23932, 0, 210+584) = 0.368; the other probabilities are 

computed similarly and are shown in the right-most column of Table 3.  

Table 3: Peak demand forecast for the next six days 

 forecast 𝝈 P(E(i,1) > E(i+n,1+n)) 

E(i,1) 23665 210 - 

E(i+1,2) 23932 584 0.368 

E(i+2,3) 16630 666 1 

E(i+3,4) 17635 716 1 

E(i+4,5) 16172 804 1 

E(i+5,6) 18158 954 1 
 

Furthermore, assume that the five days with the highest peak demand we have seen so far are 

as shown in Table 4. To compute the probability that tomorrow’s peak forecast of 23,665 exceeds 

the actual demand on some previous day p, L(p), we again use f(23665-L(p), 0, 210). Note that the 

standard deviation term is simply the standard deviation of the day-ahead forecast since actual 

demand does not have a standard deviation. The right-most column of Table 4 lists the P(E(i,1) 

<L(p)) for each day p in the current list of top-5 days. 

Tables 3 and 4 have all the information we need to compute P(rank(i) =1) through P(rank(i) = 

5), as per Table 2. These probabilities are shown in Table 5. Finally, we compute P(rank(i) <= 5) = 

P(rank(i)=1) + P(rank(i)=2 + P(rank(i)=3) + P(rank(i)=4) + P(rank(i)=5) = 0 + 0.007 + 0.038 + 0.05 

+ 0.034 = 0.129. Given that R=0.1, we would predict that tomorrow will be a 5CP day. 
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Table 4: Five days with the highest actual peak demand so far 

Rank so far L(p) P(E(i,1) <L(p)) 

1 24636 1 

2 24107 0.9823 

3 23910 0.8783 

4 23801 0.7413 

5 23745 0.6484 

 

Table 5: Computing P(rank(i)=j) 

j P(rank_future(i) = j) P(rank_past(i) = j) P(rank(i) = j) 

1 0.368 0 0 

2 0.632 0.017 0.007 

3 0 0.104 0.038 

4 0 0.136 0.05 

5 0 0.093 0.034 
 

4. RESULTS AND DISCUSSION  

There are two types of errors a peak-prediction algorithm can make: false positives and false 

negatives. If a peak day is identified, but it does not end up being one of the actual 5CP days, it is 

a false positive. If an actual 5CP day is not identified as such by the algorithm, it is a false negative. 

Thus, false positives may lead to unnecessary load curtailment, while false negatives mean lost 

opportunities for reducing the GA charges. 

We begin by analyzing the number of peak days called by our algorithm, the number of false 

positives and the number of false negatives. Results are shown in Table 6. For example, in 2007, 

the algorithm identified ten peak days in a day-ahead manner, but only four of these ended up 

being actual 5CP days (hence the one false negative). In other words, six of the ten peak days 

were false positives.  Thus, it is difficult to correctly guess all five or even four out of five actual 5CP 

days in a day-ahead fashion without incurring any false positives. This means that Class-A 

customers who want to reduce load on all five actual 5CP days, and therefore reduce their GA 

charges, have to reduce load on many other days as well. 
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Table 6: Number of called peak days, false positives and false negatives returned by the tested peak-
prediction algorithm from 2007 to 2014 

Year Number of called peak days Number of false positives Number of false negatives 

2007 10 6 1 

2008 9 4 0 

2009 7 3 1 

2010 7 2 0 

2011 8 3 0 

2012 10 5 0 

2013 11 6 0 

2014 9 4 0 
 

False negatives result in missed opportunities for GA savings. False positives also have a cost, 

ranging from minor discomfort due to turning down the air conditioning to loss of revenue due to a 

stopped production line. In the worst case, the operational losses due to load reduction may exceed 

the GA savings. Our results suggest that a customer should consider enrolling in the 5CP program 

if its expected GA savings exceed the operational cost of curtailing load on at least ten days.  

Next, we move to the problem of identifying the peak hour on a given day. In this experiment, 

we compared the actual peak hour (Independent Electricity System Operator, 2015e) with the 

predicted peak hour from the IESO hourly day-ahead load forecast (Independent Electricity System 

Operator, 2015f) between May 1 and September 30, 2015. Out of 104 non-holiday weekdays in 

this time range, the peak hour was predicted correctly on 65 days, i.e., 63 percent of the time. On 

22 days, the prediction was off by one hour, with the load on the predicted peak hour being only 

slightly lower than the load on the actual peak hour; e.g., (hour ending) 6pm instead of 5pm or 8pm 

instead of 7pm. On the remaining 17 days, there were two daily peaks several hours apart, one 

slightly higher than the other, and the predicted peak hour corresponded to the lower peak; e.g., 

5pm instead of 8pm or vice versa. In general, we found that peak hours happened most often 

between 12 and 2pm, and 5 and 8pm. Thus, not only do class-A customers have to curtail load on 

more than five days to satisfy the 5CP program, on each day they may have to curtail load on 

several hours. 
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One may ask whether the 5CP program can be made more customer-friendly while still 

achieving its goal of reducing Ontario’s peak demand.  We now investigate the effect of 

“downgrading” to a 2CP or 1CP program, in which it suffices to curtail load on (the peak hour of) 

one or two days rather than five. For each year from 2007 to 2014, we calculate the number of 

peak days our algorithm would have had to call to ensure that there were zero false negatives that 

year, i.e., that all of the top-five peak days were identified. We then repeat this analysis assuming 

a 4CP program, i.e., the GA surcharge is calculated based on consumption (in the peak hour) on 

the top four peak-days, a 3CP program, a 2CP program and a 1CP program. Table 7 presents the 

results, with the first row of numbers corresponding to 5CP, the second row to 4CP and so on.  

Table 7: Number of peak days that would have to be called to ensure no false negatives 

K-CP 2007 2008 2009 2010 2011 2012 2013 2014 

5 10 9 11 7 8 10 11 9 

4 8 7 9 6 7 8 7 7 

3 7 6 6 5 5 4 6 4 

2 5 4 6 5 4 3 4 4 

1 2 2 4 3 2 3 3 2 
 

Our results suggest that in a 2CP program, Class-A customers could use our algorithm to 

identify roughly 5-6 days on which to curtail load. However, even then, there may be occasional 

false negatives, which are more serious than in the 5CP program.  In 2CP, missing one of the two 

2CP days cuts the potential GA savings in a half; in 5CP, missing one of the five peak days only 

reduces the potential GA savings by one fifth.  

Another downside of a 2CP program is that it may not reduce Ontario’s annual peak as much 

as the 5CP program could.  To see this, consider Table 8, which lists the peak demand from 2007 

to 2014, along with the difference between the top-1 and top-2 demand day, the difference between 

the top-2 and top-3 demand, and so on.  These differences are relatively small, meaning that the 

fifth-highest peak is not much lower than the highest peak. 
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Table 8: Differences between top peak-days from 2007 to 2014 (in MW) 

Difference 2007 2008 2009 2010 2011 2012 2013 2014 

1st 25628 24001 24005 24566 25285 24470 24708 24140 

1st-2nd 210 379 1175 59 982 669 628 433 

2nd-3rd 141 398 427 18 645 18 17 144 

3rd-4th 81 30 381 78 546 249 369 469 

4th-5th 533 58 23 26 138 4 9 81 
 

5. CONCLUSIONS AND POLICY IMPLICATIONS 

In this paper, we examined the impact of the 5CP peak reduction program on large electricity 

consumers in the province of Ontario, Canada. This program effectively requires consumers to 

predict when Ontario’s five peak days will occur in a day-ahead manner and to curtail load on the 

peak hour of those days. In exchange, customers can reduce their electricity surcharges, which 

depend on their contribution to Ontario’s load on the five peak days. 

The main policy implication of our results is that the 5CP program may be impacting the 

business operations of large consumers---and therefore also Ontario’s economic prosperity and 

growth---more than intended. As illustrated in Table 6, even a state-of-the-art peak prediction 

algorithm may call more than ten peak days per year, and even then, these potential peak days 

may not include all five actual peak days for that year. Thus, consumers may have to reduce 

operations on ten or more days in order to reduce their electricity surcharges under the 5CP 

program. Moreover, it is not always possible to predict the peak hour from the day-ahead hourly 

load forecast, meaning that consumers may have to shed load on more than one hour (up to four 

or five hours according to our analysis) of each peak day. 

Our results from Table 6 can also answer the question of what might happen if a CPP-like 

program replaced the 5CP program in Ontario. We argue that the province could use our algorithm 

to identify roughly 10 to 15 peak-pricing days in a day-ahead fashion and be reasonably certain 

that these would include five (or at least four) days with the highest actual demand. 

Another important policy implication of our findings is that changing from a 5CP to a 2CP 

program, in which it suffices to curtail loads on the top two peak-demand days of the year to reduce 
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the electricity surcharges, is less effective for peak reduction. The number of days on which 

consumers have to curtail load drops to five or six, but, as we showed in Table 8, even the fifth-

highest peak day may have nearly as much demand as the highest and second-highest peak days.  

Thus, reducing demand only on the top-2 days still leaves us with a high annual peak. 

Finally, an interesting direction for future work is to evaluate the difficulty of predicting peak-

demand days in other jurisdictions and characterize what makes a jurisdiction a good candidate for 

a 5CP or CPP like program. Locations with a moderate climate may have more difficulties with 

peak prediction, whereas peak-demand days in those with a more extreme climate (hot summers 

and/or cold winters) may be easier to predict since peak demand tends to be correlated with heating 

and/or air conditioning usage due to extreme weather.  
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