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Abstract

Analyzing the impact of pricing policies such as time-of-use (TOU) is challenging in the presence of con-

founding factors such as weather. Motivated by a lack of consensus and model selection details in prior

work, we present a methodology for modelling the e↵ect of weather on residential electricity demand. The

best model is selected according to explanatory power, out-of-sample prediction accuracy, goodness of fit

and interpretability. We then evaluate the e↵ect of mandatory TOU pricing in a local distribution company

in southwestern Ontario, Canada. We use a smart meter dataset of over 20,000 households which is par-

ticularly suited to our analysis: it contains data from the summer before and after the implementation of

TOU pricing in November 2011, and all customers transitioned from tiered rates to TOU rates at the same

time. We find that during the summer rate season, TOU pricing results in electricity conservation across

all price periods. The average demand change during on-peak and mid-peak periods is �2.6% and �2.4%

respectively. Changes during o↵-peak periods are not statistically significant. These TOU pricing e↵ects are

less pronounced compared to previous studies, underscoring the need for clear, reproducible impact analyses

which include full details about the model selection process.

Keywords: time-of-use pricing, e↵ect of weather on residential electricity demand, regression models

1. Introduction

Pricing schemes intended to reduce peak electricity consumption such as time-of-use (TOU) are becoming

tractable as advanced metering proliferates. The Ontario Energy Board established a three-tier TOU pricing

scheme with three objectives: i) to more accurately reflect the wholesale market cost of electricity in the

price consumers pay; ii) to encourage electricity conservation across all hours of the day; and iii) to shift

electricity use from high-demand periods to lower-demand periods (Ontario Energy Board, 2004). Properly

evaluating the impact of such policies is critical for policy makers trying to reduce demand, reduce emissions
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and defer new generating capacity. However, isolating the moderate e↵ects of TOU pricing is challenging

in the presence of substantial confounding factors. For example, a mild or extreme summer may skew the

estimated impact of TOU pricing if the e↵ects of weather are not adequately modelled.

We observe that there is no consensus in prior work for modelling weather e↵ects and discussion of variable

selection criteria is limited. To ensure reliable results, policy makers should insist on clear, reproducible

impact analyses which include details of the explanatory variable selection process and justification for

any variable transformation used. To help produce such analyses, this paper presents a methodology for

modelling the e↵ects of weather on residential demand in the context of pricing policies.

The crux of our methodology is to compare a number of aggregate electricity demand models which

have each modelled the e↵ects of weather di↵erently. We use statistical measures of their explanatory

power, out-of-sample prediction accuracy, and goodness of fit to select a model that is both well-performing

and readily interpretable. After careful analysis, we have chosen a multiple regression modelling structure

for its interpretability, tractability, and modularity. To enumerate the possible models, we define three

independent components: coincident weather (e.g., incorporating humidity and windchill in addition to

temperature), delay or build-up of temperature that household thermal controls react to (e.g., moving

average of temperature or cooling/heating degree-hours) and the non-linear relationship of temperature

with demand (e.g., piecewise linear and natural spline transformations). We hypothesize that the e↵ect of

temperature on aggregate residential electricity demand is non-linear. Furthermore, we hypothesize that

past temperature observations and coincident weather observations each provide additional explanatory

value.

The second contribution of this paper is an application of the proposed methodology to evaluate the e↵ects

of Ontario’s mandatory TOU implementation according to two of its stated objectives: energy conservation

and shifting consumption out of peak demand periods. We use a smart meter dataset of over 20,000

households in southwestern Ontario, Canada that is particularly suited to our analysis. It has an adequate

numbers of observations before and after the implementation of TOU pricing. Furthermore, the local

distribution company transitioned all customers from tiered rates to TOU rates at a single point in time,

meaning that there is no uncertainty introduced by a staggered TOU billing roll-out. Though the sample

size and rate transition are positive assets of the dataset, the sample time period does not include adequate

pre-TOU observations during the winter rate season to assess its e↵ectiveness. Given this limitation, we

present results only for the summer TOU rate season and make conclusions in that context.
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2. Prior Work

A literature review performed by Newsham and Bowker (2010) discusses the impacts of three types of

dynamic pricing pilots: critical peak pricing, time-of-use, and peak time rebates. Their review includes 13

TOU pilot studies conducted after 1997. They conclude that basic TOU pricing programs like Ontario’s can

expect to see residential on-peak demand change by �5%. An earlier TOU literature review by Faruqui and

Sergici (2010) covering 12 TOU pilot studies concluded that TOU pricing induces a �3% to �6% change

in residential on-peak demand. From 2010 onwards, there have been several impact studies of mandatory

TOU pricing. We summarize these recent studies as well as several of the older ones in Table 1.

Our first observation is that results from opt-in experiments and pilot studies such as Hydro One (2008),

Lifson and Miedema (1981), Ontario Energy Board et al. (2007) and Train and Mehrez (1994) are often more

pronounced than mandatory studies such as Faruqui et al. (2013b), Navigant Research and Newmarket-Tay

Power Distribution (2010) and Navigant Research and Ontario Energy Board (2013). Our second observation

is that most studies in our review either have a pronounced demand shift from on-peak to o↵-peak hours

or conservation across all hours. Only two subsets of one study by Jessoe et al. (2013) showed the opposite

e↵ect. Finally, we observe that the tiered roll-out of TOU to high-use customers first, analyzed by Jessoe

et al. (2013), showed substantial flexibility to shift demand.

Across these TOU studies, we observed many di↵erent techniques being used to model weather. When

deciding on which modelling techniques to consider in our methodology, we broadened our literature review

to residential electricity demand analysis in general. Table 2 summarizes this broadened literature review,

grouping prior work by the technique used to transform temperature observations. An explanatory variable

transformation is a mathematical process that creates derived values from observed values. For example, a

series of dry-bulb temperature observations may be transformed using humidity and wind chill to become a

series of perceived temperatures. The derived variable would be used as input to the modelling procedure

in place of the observed variable.

We define coincident weather to be measurable weather phenomena which coincide with temperature

observations. For example, the humidity observed at time i is coincident with dry-bulb temperature observed

at time i. Several studies transform temperature by taking humidity into account via the temperature

humidity index (Faruqui et al., 2013a; Navigant Research and Ontario Energy Board, 2013), the Canadian

Humidex (Faruqui et al., 2013b), or by incorporating humidity into some other transformation of temperature

(Mountain and Lawsom, 1992). Humidity may have a direct e↵ect on load via dehumidification equipment,

or an indirect e↵ect via human perception and comfort levels. Wind speed has also been incorporated
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into temperature transformations (Friedrich et al., 2014; Mountain and Lawsom, 1992). Wind may reduce

electricity demand if customers choose to cool their home by leaving windows open during transition seasons.

Wind chill may also a↵ect perception of winter outdoor temperatures, inclining a customer to stay indoors.

Temporal transformations account for the delay between when an outdoor temperature occurs to when

its e↵ects are felt within a customer’s home. Heating degree-days and cooling degree-days are derived values

used to measure the prolonged heating and cooling requirements of a home over time. They have been

extended to heating degree-hours and cooling degree-hours, derived by summing the di↵erence between

recent observations and a selected temperature break point. For modelling long-term and mid-term analysis

horizons, heating and cooling degree-days are su�cient (Pardo et al., 2002; Cancelo et al., 2008). Heating

and cooling degree-hours are better suited to the analysis of short-term and mid-term horizons (Navigant

Research and Newmarket-Tay Power Distribution, 2010).

Harvey and Koopman (1993) considered lagged hours of temperature observations in early models of

their study. Mountain and Lawsom (1992) used a four-hour moving average of recent temperatures as a

component of the space heating index used in their model. Friedrich et al. (2014) refined work by Bruhns

et al. (2005) to account for thermal transfer inertia. The authors define an exponentially weighted moving

average filter to be the smoothed temperature.

Moral-Carcedo and Vicéns-Otero (2005) describe a single temperature break point as a switching re-

gression to model temperature’s non-linear relationship with electricity demand. The coe�cient found for

temperatures below the break point represents household heating e↵ects. The coe�cient for temperatures

above the break point represents cooling e↵ects. It is used by Faruqui et al. (2013b), Navigant Research

and Newmarket-Tay Power Distribution (2010), and Navigant Research and Ontario Energy Board (2013).

Lifson and Miedema (1981), and Train and Mehrez (1994) also use switching regression, but the lower region

has a slope of zero because households in their regions of study have no heating e↵ects.

Intuitively, the boundary between heating and cooling e↵ects is not an abrupt break. When subjected

to moderate temperatures, occupants may not heat or cool their home. Each household will heat or cool

their home at di↵erent temperatures, resulting in a smoothed transition region when data is analyzed in

aggregate (Bruhns et al., 2005; Friedrich et al., 2014; Moral-Carcedo and Vicéns-Otero, 2005). Cancelo et al.

(2008) note that extreme low temperatures and extreme high temperatures exhibit saturation of heating

and cooling e↵ects. At these temperatures, all household thermal controls such as space heaters, electric

baseboard heating, fans, or air conditioning are working constantly.

Regression splines, a widely-used explanatory variable transformation in econometric literature, are ca-
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pable of modelling the smooth transitions between heating e↵ects, mid-temperatures, cooling e↵ects, and

saturation plateaus at temperature extremes (Engle et al., 1986; Harvey and Koopman, 1993). The regres-

sion spline transformation first divides the range of temperatures into a number of regions. Within each

region, a polynomial function is fit to the data and constraints may be placed on the polynomial functions

to connect them at the region boundaries.

3. Data Description

List of Symbols

N the number of hours in the sample period

J the number of residential smart meters (i.e., households) in
the sample

⌧ the N ⇥1 vector of hourly, dry-bulb temperature observations

⌧ 0 the intermediate N ⇥ 1 vector resulting from the transforma-
tion of ⌧ incorporating coincident weather observations

⌧ 00 the intermediate N ⇥ 1 vector resulting from the transfor-
mation of ⌧ 0 incorporating past observations. It represents
temperature’s e↵ects over time

⌥ the N ⇥ J matrix of hourly electricity demand per household

Y the N ⇥ 1 vector of hourly, aggregate residential electricity
demand

X the temporal explanatory variable transformation matrix

V the price explanatory variable transformation matrix

T the weather explanatory variable transformation matrix

Ŷ the N ⇥ 1 vector representing the model’s estimate of Y

�̂0 the estimated intercept term from which all other coe�cients
are o↵set

�̂ the vector of coe�cient estimates for temporal explanatory
variables in X

!̂ the vector of coe�cient estimates for price explanatory vari-
ables in V

✓̂ the vector of coe�cient estimates for weather explanatory vari-
ables in T

The smart meter dataset used in

this paper was provided by a local

distribution company in southwest-

ern Ontario. The observations oc-

cur over a period of 20 months, from

March 1, 2011 through October 17,

2012. The switch from a seasonal,

flat pricing scheme to TOU pric-

ing occurred on November 1, 2011.

The TOU rates, illustrated in Fig-

ure 1, are comprised of three price

levels: o↵-peak, mid-peak and on-

peak. Summer o↵-peak hours are

7:00pm through 6:59am (overnight)

at 6.5¢/kWh. Mid-peak hours are

7:00am through 10:59am and 5:00pm

through 6:59pm at 10¢/kWh. On-

peak hours are 11:00am through

4:59pm at 11.7¢/kWh. All hours of weekends and holidays are o↵-peak rates.

The data contains hourly smart meter readings from 23,670 residential customers across a four-city service

region. We removed 3,100 meters with customer account changes (e.g., tenant changes). Additionally, we

performed a data cleaning step to remove extreme outliers. The maximum short-term overloading of a

distribution transformer is 300% of its nameplate rating (IEEE Standards Association, 2012, Section 8.2.2).

Using this as a guideline, 14 smart meters had an hourly reading that violated the maximum short-term
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overloading capacity of the transformer they were connected to and hence, were removed from the sample.

The remaining sample contains J = 20, 556 smart meter time series for study, each with up to N =

14, 328 data points (the number of hours in our sample period). Individual meter readings were stored with

< 1Wh precision. Missing observations were stored as zero values, and nearly all meters have at least a few

missing observations over the course of the sample period. 0.46% of the individual readings were missing.

Often, a meter’s missing values occur as irregularly positioned gaps lasting multiple hours, such that data

interpolation is not suitable. We consider the data in aggregate by deriving the average household demand

in each hour from all households. Let the variable ⌥1 represent the N ⇥J matrix of household smart meter

readings from March 1, 2011 through October 17, 2012. I(⌥i,j > 0) is an indicator function that returns 1

if there exists a reading during hour i for meter j. As Eq. (1) is evaluated from i = 1, ..., N , an N ⇥ 1 vector

Y representing the aggregate electricity demand for each hour of the sample period will be created.

yi =

PJ
j=1 ⌥i,j

PJ
j=1 I(⌥i,j > 0)

, i = 1, ..., N (1)

The aggregate electricity demand observations fall in the range 0.49 kWh–3.54 kWh and are approxi-

mately lognormally distributed with mean 1.18 kWh and median 1.03 kWh. We use the vector Y as the

response variable for the remainder of this study, plotted over time in Figure 2. Notice the summer air

conditioning demands during the summer months and less noticeable heating e↵ects during winter.

We also obtained the corresponding hourly weather data from two nearby Environment Canada (2015a)

monitoring stations. Weather observations were paired with each meter by selecting the nearest monitoring

station, all within 5-25 kilometres. Hourly observations recorded are dry-bulb temperature, relative humidity,

dew point, wind direction, wind speed, visibility, atmospheric pressure, humidex, wind chill and a weather

condition description. We define ⌧ to be an N ⇥ 1 vector of hourly temperature observations averaged from

the two weather stations, weighted by the number of meters reporting near that station each hour. The

two summers are not drastically di↵erent from one another, as shown by key summary statistics in Table 3.

Summer 2012 had a slightly higher median drybulb temperature of 20.2�C compared to 19.1�C in 2011.

Throughout Section 4.3, ⌧ will be used as input to temperature transformation functions which create

a matrix T of dimension N ⇥ Pweather, where Pweather is the number of columns in T, determined by the

variable transformation applied. Left untransformed, T = ⌧ .

1We use regular font for scalar variables, and bold font for vector and matrix variables.
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4. Methodology for Modelling the E↵ects of Weather

We use a multiple regression model shown in Eq. (2) to represent electricity consumption as a function

of time, price and weather related variables. Let Ŷ be an N ⇥ 1 vector representing the model’s estimate

of Y. Let �̂0 be the estimated intercept term. We store the explanatory variables using three matrices X,

V and T which represent time, price and temperature transformations respectively. The e↵ects of these

explanatory variables are represented by the coe�cient estimate vectors �̂, !̂ and ✓̂ fit using ordinary least

squares.

Ŷ = �̂0 +X�̂ +V!̂ +T✓̂ (2)

Our treatment of time and price explanatory variables, selecting categorical variables for inclusion using

forward selection and analysis of variance (ANOVA), follows well-established statistical learning methods

(James et al., 2013, Ch.6). ANOVA performs a hypothesis test comparing two models. The null hypothesis

is that the less-complex model with fewer explanatory variables is su�cient to describe the response. The

alternate hypothesis is that a more complex model is required. ANOVA tests whether the variance explained

by an added explanatory variable or interaction is significantly di↵erent from the original model . We direct

the reader to (Faraway, 2002, Ch. 10) for full details of the formulation and use of ANOVA. During forward

selection, we begin with the null model, which contains the intercept �0 but no explanatory variables in X,

V, or T. We then fit a number of alternate models, each with a single explanatory variable added to X or

V. The explanatory variable which results in an alternate model with the lowest residual sum of squares is

added to the null model. The process of adding explanatory variables one at a time is continued until the

ANOVA stopping condition is met. Some of the variables that were considered during forward selection but

were ultimately ruled out are: weather description, visibility, day-of-week, and a schoolyear indicator.

The remainder of this section presents the details of our methodology. The first step is to select time-

dependent variables (Section 4.1). The second step is to select price-related variables (Section 4.2). The

third step is to select and justify a model for weather e↵ects, which comprises the bulk of our e↵ort and

contribution (Sections 4.3 and 4.4).

4.1. Time-Related Variables

We model hour-of-day as a categorical variable with 24 terms, represented in X by 23 sparse columns

with indicators for each hour. Figure 3 shows a box plot of electricity demand grouped by hour-of-day and

exhibits the expected patterns of user activity within the home. People use less electricity in the middle of
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the night from 01:00–06:00 and are most active in the evening from 18:00–22:00.

Residential electricity demand also di↵ers by day-of-week and on holidays. We are able to achieve a high

level of explanatory power using only one degree of freedom by defining a working day indicator, similar to

Møller Andersen et al. (2013); Moral-Carcedo and Vicéns-Otero (2005), such that weekends and holidays

are non-working days.

The use of a working day indicator allows for meaningful variable interactions to be fit. The main

e↵ects of each explanatory variable represent deviation from the sample mean and the two-way interactions

represent deviation from their main e↵ects. An interaction between two categorical factors such as hour-of-

day and working day is a sparse matrix with indicators for each unique combination of two variables not

represented by their main e↵ects. For example, the baseline for hour-of-day is 00:00 and the baseline for

working day is working day=FALSE. If observation i occurs at 00:00 on a non-working day, neither variable’s

main e↵ects will be added to �̂0. If observation i is 07:00 on a non-working day, only the coe�cient estimate

for 07:00 will be added to �̂0 (i.e., main e↵ects). If observation i is 07:00 on a working day, an interaction

e↵ect (denoted by 07:00 ⇥ working day=TRUE) is added to �̂0 representing the deviation from the main

e↵ects of each variable. An example of working day ⇥ hour-of-day interaction coe�cient estimates is given

in Table 4. Aggregate electricity demand begins earlier on working days, indicated by a positive coe�cient

estimate that is of noticeable e↵ect size and has a statistically significant p-value. This is likely caused

by residential customers preparing for work around 07:00 or 08:00 on working days. 10:00 through 17:00

on working days has a negative coe�cient estimate, likely because many residential customers are away at

work.

As suggested by Figure 2, there are clear seasonal patterns during summer and winter months. Fitting a

model with a categorical explanatory variable for month is statistically significant and increases AdjustedR
2.

However, our goal is to evaluate temperature transformations used to generate T. Any explanatory variable

that is collinear with the temperature transformation matrix masks its e↵ects, meaning that the estimated

e↵ects of two explanatory variables increase and decrease together. We check for collinearity using variance

inflation factor (VIF) (Fox and Weisberg, 2011). Table 5 shows VIF values when a categorical variable for

month is considered; a V IF > 5 indicates collinearity (James et al., 2013). Using this measure, we determine

that addition of month masks the e↵ects of temperature. For this reason we do not include month as a

categorical variable.

As a result of forward selection and the justification process described above, we arrive at a desired set

of temporal explanatory variables in X (we define the notation x•,p to represent the pth column and all
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rows of X; this same notation will be used with other matrices going forward).

x•,p=1 through x•,p=23 are hour-of-day indicators representing 01:00 through 23:00.

x•,p=24 is a working day indicator.

x•,p=25 through x•,p=48 are indicators representing the hour-of-day ⇥ working day interaction.

4.2. Price-Related Variables

We use two pricing categorical variables. The first is a TOU billing indicator. The second is a cate-

gorical variable representing the local distribution company’s billing seasons: summer or winter. We were

concerned that similar to the month categorical variable, the utility rate seasons might also be collinear

with temperature. However, Table 6 shows that the addition of pricing variables are not collinear with a

temperature transformation as we iterate through transformations of T.

We will later saturate the price explanatory variable matrix V with interactions in our TOU case study

in Section 6 after finding a suitable temperature transformation. To summarize, the explanatory variables

included in V are:

v•,p=1 is a utility rate season indicator representing summer and winter rates.

v•,p=2 is a TOU active indicator representing whether customers are billed according to flat rates or TOU

rates.

4.3. Weather-Related Variables and Transformations

To select a weather e↵ects model, we define three steps of temperature transformations which are used

in conjunction with one another to generate variations of T.

1. Coincident Weather Transformations: dry-bulb temperature or feels like temperature

2. Temporal Transformations: current observation, lagged observations or moving average

3. Non-Linear Transformations: switching regression or natural cubic splines

Our methodology iterates over all combinations of temperature transformations listed above. Each

iteration uses a di↵erent combination of transformation functions to generate the temperature transform

matrix T while holding the matrices X and V fixed. We begin each temperature transformation with an

N ⇥ 1 vector of outdoor, dry-bulb temperature observations ⌧ . Algorithm 1 shows the general process for

transforming ⌧ into T.
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Algorithm 1 Overview of how temperature transformations are combined to generate the matrix T.

1. Transform dry-bulb temperature observations ⌧ into the vector ⌧ 0 using coincident weather observa-
tions.

2. Transform the vector ⌧ 0 into the vector ⌧ 00 using a transformation which incorporates past observations.
This transformation represents temperature’s e↵ects over time.

3. Finally, use the vector ⌧ 00 as input into a transformation which models the non-linear relationship
between ⌧ 00 and aggregate electricity demand Y. The result of this third step is the matrix T used in
the multiple regression model.

In Section 4.3.4, we add two complex transformations to our comparison which violate Algorithm 1: the

heating/cooling degree-hour transformation and the exposure-lag-response transformation. Both transfor-

mations combine algorithm steps two and three, transforming ⌧ 0 directly to the matrix T.

4.3.1. Coincident Weather Transformations

During the first step of Algorithm 1, relative humidity and wind speed are used to transform dry-bulb

temperature observations to a feels like temperature comprised of heat index and wind chill values where

applicable. Algorithm 2 defines the feels like transformation.

Algorithm 2 The feels like temperature transformation. Formulation of heat index is described by Rothfusz
(1990) and wind chill formulation is described by Environment Canada (2015b).

if ⌧i > 27 andRelativeHumidityi > 40% then

⌧ 0
i = Heat Indexi

else if ⌧i  10 andWindSpeedi > 4.8kph then

⌧ 0
i = WindChilli

else

⌧ 0
i = ⌧i

end if

If ⌧ is left untransformed during this step, then ⌧ 0 would remain a vector of dry-bulb temperature

observations such that ⌧ 0 = ⌧ .

4.3.2. Delayed E↵ects of Temperature

We also need to account for the delay between when an outdoor temperature occurs to when its e↵ects

are felt within a customer’s home. To assess the importance of past temperature in predicting present

electricity consumption, Table 7 shows the correlation coe�cient of 0-12 lags of dry-bulb temperature ⌧

with yi. The correlation of yi with past temperatures suggests that there may be an underlying temporal

process interacting with temperature.

The lagged observation transformation shown in Eq. (3) considers the possibility that temperature’s

e↵ects on electricity demand may be delayed by a number of hours `, also known as lags. The cause for
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this delay may be the time it takes an outdoor temperature to pass through a building’s insulation. After

the time delay, the household’s thermal controls react. This interim transformation vector has ` fewer rows

than ⌧ 0 used as input, requiring that rows i = 1, ..., ` must also be removed from Y, X and V.

⌧ 00
i = ⌧ 0

i�`, i = (1 + `), ..., N (3)

A moving average of recent temperatures shown in Eq. (4) reflects the possibility that household thermal

control systems are not reacting only to temperature at time i or some past time i � `. Instead, thermal

control systems may be reacting to a number of recently experienced temperatures. The variable L represents

the number of recent temperatures used in the moving average. The moving average transformation vector

has L � 1 fewer rows than ⌧ 0 used as input, requiring that rows i = 1, ..., ` must also be removed from Y,

X and V.

⌧ 00
i =

PL�1
`=0 ⌧ 0

i�`

L
, i = L, ..., N (4)

If ⌧ 0 is left untransformed during the second step of the temperature transformation Algorithm 1, then

the output of the past weather observation transformation would be current observations ⌧ 0 such that

⌧ 00 = ⌧ 0.

4.3.3. Non-Linear Temperature E↵ects

The top graph of Figure 4 shows the coe�cient estimate ✓̂ fit for an untransformed vector of dry-bulb

temperature observations. It is clear that temperature’s relationship with aggregate electricity demand in

our dataset is non-linear. The non-linear relationship between temperature and aggregate electricity demand

can be approximated by a number of linear regions. This approach is generally referred to as a piecewise

linear transformation or linear splines (James et al., 2013). Moral-Carcedo and Vicéns-Otero (2005) describe

piecewise linear models with two linear regions as switching regression, giving meaning for electricity demand

analyses; the break point represents the switch from heating e↵ects to cooling e↵ects. Eq. (5) shows the

transformation of ⌧ 00 into a column of T representing heating e↵ects.

ti,1 = (⇠break � ⌧ 00
i )+, i = 1, ..., N (5)

Similarly, Eq. (6) shows the transformation of ⌧ 00 into a column of T representing cooling e↵ects.

ti,2 = (⌧ 00
i � ⇠break)+, i = 1, ..., N (6)
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Let (x)+ := max(0, x) and let ⇠break be a temperature break point estimated empirically (Muggeo, 2003,

2008). The fitted regression line for this switching regression transformation is shown in the middle graph

of Figure 4.

Moving beyond piecewise transformations, regression splines have been used to first divide the range of

temperatures into a number of regions. Within each region, a polynomial function is fit to the data and

constraints are placed on the polynomial functions to connect them at the region boundaries, known as

knots. Similar to switching regression, the goal of piecewise polynomial transformation is to break ⌧ 00 into

regions using break points called knots, represented by the K ⇥ 1 vector ⇠. Let K be the number of knots,

such that there are K +1 regions. For each region, a polynomial function is used to transform observations

in ⌧ 00. The bottom graph of Figure 4 illustrates K = 3 knots.

Additional restrictions about the continuity of the polynomial functions at each knot can be added,

known as the order of the spline, denoted by M . An order M = 1 spline indicates that the polynomial

function fit to each region can be discontinuous at the knots. Order M = 2 restricts piecewise polynomial

functions of adjacent regions to be continuous at their shared knot. M = 3 places the additional restriction

that the functions’ first derivative must be continuous at the knots. M = 4 places yet another restriction

that the functions’ second derivative must be continuous at the knots. We have chosen order M = 4 splines,

also known as cubic splines, which are widely used (Hastie et al., 2005). The first M columns of T represent

the order of the spline (i.e., continuity restrictions), shown in Eq. (7).

ti,m = ⌧ 00
i (7)

The subsequent K columns of T represent the polynomial function applied to each temperature region,

shown in Eq. (8).

ti,M+k = (⌧ 00
i � ⇠k)

M�1
+ , k = 1, ...,K (8)

One further refinement, used to address erratic behaviour of polynomials at the extremes where few

observations exist, is to place additional constraints on the fit of the outer spline regions. Natural cubic

splines restrict the polynomial functions of the outer regions to be linear beyond the sample boundaries.

This added bias at the boundaries is often reasonable considering the sparse number of observations. The

bottom graph of Figure 4 illustrates a natural cubic spline fit of aggregate electricity demand to dry-bulb

temperature. There are three knots placed at 3 �C, 23 �C and 30 �C, selected empirically using the highest
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AdjustedR
2 as the selection criterion. A smooth transition between heating and cooling e↵ects is visible

around 17 �C.

If ⌧ 00 is left untransformed during the third step of Algorithm 1, then the output of the non-linearity

transformation would be a vector of observations generated by the first two transformation steps, such that

T = ⌧ 00.

4.3.4. Complex Temperature Transformations

Heating degree-hours (HDH) and cooling degree-hours (CDH) are derived values which represent the

build-up of temperature beyond a given threshold during a recent window of time. Similar to switching

regression, a temperature break point ⇠break is chosen. HDH is determined by summing the number of

degrees below ⇠break during a window of L recent hours, shown in Eq. (9).

ti,1 =
LX

`=0

(⇠break � ⌧ 0
i�`)+, i = L, ..., N (9)

Similarly, CDH is determined by summing the number of degrees above ⇠break during a window of L

recent hours, shown in Eq. (10).

ti,2 =
LX

`=0

(⌧ 0
i�` � ⇠break)+, i = L, ..., N (10)

The resulting (N � L)⇥ 2 transformation matrix T is a piecewise linear regression, similar to switching

regression. Rows i = 1, ..., L from Y, X and V must also be removed from the sample. Since CDH and

HDH values are approximately linear, we do not fit a model using these values as input to a natural cubic

splines transformation.

A finite distributed lag model was initially proposed by Almon (1965) to compute a weighted sum of

past explanatory variable e↵ects on a response variable. A more recent implementation of this concept

by Gasparrini et al. (2010); Gasparrini (2011) has come to be known as distributed lag non-linear models

(DLNM). In the DLNM framework, the e↵ects of weather and its relation with time are represented by the

concept of basis. It assumes that the e↵ect at time i is a basis that can be expressed as a linear combination

of exposure and lag transformations of ⌧ 0. These transformations are known as basis functions. For example,

the basis function of temperature’s e↵ects may be modelled with natural cubic splines and is known as the

exposure-response association. The weight of the e↵ect may change with time. The basis function describing

e↵ect weights over time is known as the lag-response association. Together, they comprise the basis known

as exposure-lag-response association.
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4.4. Metrics for Model Selection

Having described the space of possible models, we now explain how to choose the best model for the

task at hand. For each model, we compute a measure of variance explained, AdjustedR
2. We also check

the value of the Bayesian Information Criterion (BIC). As AdjustedR
2 increases, BIC’s value should de-

crease. If AdjustedR
2 decreases and BIC increases or if both AdjustedR

2 and BIC increase, then added

explained variance is not justified by added model complexity (James et al., 2013; Ramsey and Schafer,

2012). Additionally, we compute the Mean Absolute Error (MAE) and Mean Absolute Percentage Error

(MAPE) to indicate out-of-sample predictive power. We seek a model that balances explanatory power with

out-of-sample predictive power, while being parsimonious and interpretable.

Aside from examining the relationship of each explanatory variable with aggregate electricity demand

individually, the residuals remaining after fitting a model to data can provide an indication of underlying

issues with the estimated model. The N ⇥ 1 vector of residuals should be normally distributed, mean zero

and independent of each explanatory variable.

5. Results for Modelling the E↵ects of Weather

Table 8 shows the results for each weather model. We also include several trivial models for comparison:

a null model (i.e., intercept-only) in which X, V and T have been omitted; non-temperature explanatory

variables only in which T has been omitted; and dry-bulb temperature without any transformation in

which T = ⌧ . By comparing all combinations of temperature variable transformations and selecting a well-

performing model, a substantial amount of variance can be explained by weather. Though combinations

of temperature transformation steps each produce incremental improvements, the proportion of variance

explained by any temperature transformations is notable.

Our clearest descriptive results pertain to the time delay between observed temperature and its e↵ects

within residential households. If an analyst is to use a single temperature observation to explain electricity

demand at time i, the temperature observation at time i�2 should be used. Of single temperature variables,

it also has the highest AdjustedR
2 and out-of-sample predictive power. We interpret this to mean that

residential customer’s household thermal controls are reacting to temperatures experienced in the past, not

the current hour.

All three temporal transformations which include a window of past observations have high AdjustedR
2

values and improved out-of-sample prediction accuracy. This suggests that a window of recently-observed

temperatures is important to properly describe its relationship with electricity demand. Both CDH/HDH
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and the moving average transformations showed that a six-hour window of temperature observations yielded

the highest AdjustedR
2. We feel this validates part of our hypothesis, that past hours’ temperature ob-

servations have an e↵ect on the current hour’s electricity demand. Notably, despite the prevalence of the

CDH/HDH metric in literature, the moving average transformation has greater explanatory power and pre-

dictive power in our dataset. This may be caused by the smoothing e↵ect that moving average has on the

temperature explanatory variable.

The use of heat index and wind chill as components of feels like temperature has greater AdjustedR
2

than the use of dry-bulb temperature in all cases but two. Our analysis cannot provide additional insight

about the underlying process, whether human perception or mechanical. Conversely, feels like temperature

has less out-of-sample predictive power than dry-bulb temperature. Due to this mixed result, we reject part

of our hypothesis. Namely, the part that stated coincident weather observations have an e↵ect on electricity

demand. We conclude that the feels like temperature transformation has little added value over simply

using dry-bulb temperature observations.

Despite the strong assumption of linearity made by the switching regression transformation, it explains

untransformed aggregate electricity demand reasonably well using either dry-bulb temperature or feels like

temperature. When estimating unlagged temperature observations, its AdjustedR
2 ⇡ 0.85 is comparable to

AdjustedR
2 ⇡ 0.86 using natural splines. The temperature breakpoint has a straightforward interpretation

in relation to electricity demand. The empirical switching point for dry-bulb temperature in our data

is 17.9 �C. Natural cubic splines do provide more flexibility in modelling the temperature’s non-linear

relationship with aggregate electricity demand and has higher AdjustedR
2 than switching regression. Both

results support part of our hypothesis, that temperature’s e↵ects on electricity demand are non-linear, having

greater impact at low and high temperature extremes.

Finally, we comment on the exposure-lag-response transformation, which we have not found in electricity

demand analysis literature. Its intended purpose, to model the weight of an exposure e↵ect over time, is

not easily interpretable when applied to our data sample. Combined with its minimal improvements to

explanatory power and prediction accuracy, we do not feel its use is justified.

Based on these results, we select the model that uses dry-bulb temperature, combined with the six-hour

moving average and the natural spline transform. This model obtained an AdjustedR
2 of 0.902. A similar

model that uses feels-like temperature instead has a slightly higher AdjustedR
2 of 0.904 but lower out-of-

sample predictive power. Furthermore, a similar model with exposure-lang-response transformation rather

than the six-hour moving average has an even higher AdjustedR
2 of 0.910, but as mentioned above, is not
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easily interpretable.

Finally, we comment on the residuals of the selected model, which fulfill the first assumption of linear

regression analysis, that errors be normally distributed with mean zero. The next step of residual analysis is

to assess heteroscedasticity of residuals. The plots in Figure 5 indicate that heteroscedastic and autocorre-

lation consistent (HAC) standard errors must be used when performing hypothesis tests in the TOU pricing

case study (Zeileis, 2004). The first plot shows increased variability of residuals at warm temperatures. The

middle plot shows greater variance associated with summer and winter seasons. This is likely a result of

temperature and season’s collinearity with dry-bulb temperature. This result is supported quantitatively by

the Durbin-Watson statistic in Table 8. A Durbin-Watson value < 1 indicates positive serial correlation of

residuals Bhargava et al. (1982). The bottom plot illustrates that variance of residuals increases with larger

values of the response variable. This too is likely related to temperature. Because warmer temperatures are

associated with higher electricity demand, it follows that greater residual variance is associated with higher

electricity demand.

6. Methodology for TOU Impact Analysis

In Section 4, we described the methodology for modelling time, price and weather explanatory variables

as the matrices X, V and T. We show Eq. (2) below again for clarity, since the same form will be used

during the TOU impact analysis.

Ŷ = �̂0 +X�̂ +V!̂ +T✓̂

We set the temperature transformation matrix T to be a dry-bulb, six-hour moving average, natural

cubic splines transformation. Because collinearity of temperature and seasonal explanatory variables is not

a concern when analyzing the e↵ects of TOU, we add a categorical explanatory variable for month to X,

supported by ANOVA, such that the categorical variables in X are:

x•,p=1 through x•,p=11 are month indicators representing January through December.

x•,p=12 through x•,p=34 are hour-of-day indicators representing 00:00 through 23:00.

x•,p=35 is a working day indicator.

x•,p=36 through x•,p=58 are indicators representing the hour-of-day ⇥ working day interaction.

To model e↵ects associated with TOU pricing with hourly fidelity, the time and temperature matrices

X and T are then held constant. We will use backward selection, ANOVA and HAC standard errors to
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remove insignificant variables from a saturated matrix V of explanatory variables related to price. Backward

selection starts with all possible explanatory variables inX,V andT. All two-way and three-way interactions

combining a TOU billing indicator, working day, hour-of-day and utility rate season are included. This initial

model is also called the saturated model. The variable interactions provide the necessary degrees of freedom

to explain the e↵ects of TOU billing for each hour of day. We remove variables with the largest p-value (i.e.,

the least statistically significant variable) one at a time until the analysis of variance stopping condition is

met (James et al., 2013). The remaining, significant explanatory variables in V are used as components

of the multiple regression model in a “what if” analysis. We use the results from the “what if” analysis

to quantify the change in demand associated with TOU pricing. The categorical variables in V before

backward selection are:

v•,p=1 is a utility rate season indicator representing summer and winter rates.

v•,p=2 is a TOU active indicator representing whether customers are billed according to flat rates or TOU

rates.

v•,p=3 through v•,p=25 are indicators representing the hour-of-day ⇥ rate season interaction.

v•,p=26 through v•,p=48 are indicators representing the hour-of-day ⇥ TOU active interaction.

v•,p=49 is an indicator representing the working day ⇥ rate season interaction.

v•,p=50 is an indicator representing the working day ⇥ TOU active interaction.

v•,p=51 is an indicator representing the rate season ⇥ TOU active interaction.

v•,p=52 through v•,p=74 are indicators representing the hour-of-day⇥ working day⇥ rate season interaction.

v•,p=75 through v•,p=97 are indicators representing the hour-of-day ⇥ working day ⇥ TOU active interac-

tion.

v•,p=98 through v•,p=120 are indicators representing the hour-of-day ⇥ rate season ⇥ TOU active interac-

tion.

v•,p=121 is an indicator representing the working day ⇥ rate season ⇥ TOU active interaction.

Using backward selection, we remove variables from the saturated matrixV to create a more parsimonious

model. The following interactions cannot be justified by ANOVA and are dropped from V: working day ⇥
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rate season ⇥ TOU active, hour-of-day ⇥ working day ⇥ TOU active and working day ⇥ TOU active. The

model used in this case study yields AdjustedR
2 = 0.935.

Algorithm 3 “What if” analysis used to quantify the e↵ects of mandatory TOU electricity pricing.

1. Fit a model to the entire sample of data. Our sample runs from March 1, 2011 – October 17, 2012.

2. For the summer utility rate season, select subset where TOU active = FALSE (i.e., May 2011 – October
2011).

3. Group the selected observations by working day indicator. For each working day type find the mean
electricity demand observations for each hour. These hourly averages for each working day type
represent the observed summer.

4. Copy the selected sample data from step 2 into a new hypothetical sample of data called the counter-

factual summer.

5. In the counterfactual summer, change the TOU active indicator from FALSE to TRUE.

6. Estimate a response vector using the adjusted counterfactual summer from step 5. Because TOU
active has been changed to TRUE, the coe�cients estimated in step 1 will create a response vector as
if TOU billing had been active during summer 2011. This estimated response vector is the “what if”
analysis.

Algorithm 3 describes our “what if” methodology, similar to that used by Navigant Research and Ontario

Energy Board (2013). However, because our sample of data does not have a complete winter utility rate

season of TOU active = FALSE from November 2010 through May 2011, we are only able to carry out the

analysis for summer utility rate season.

7. Results for TOU Impact Analysis

The average demand change during summer on-peak and mid-peak periods is �2.6% and �2.4% respec-

tively. This translates to �0.035kWh (±0.024kWh) per household each hour during on-peak periods and

�0.030kWh (±0.024kWh) change during mid-peak periods. Changes during working day and non-working

day o↵-peak periods are �0.9% and �0.6% but are not statistically significant. Table 9 summarizes the

hourly e↵ects averaged by TOU price period. Figure 6 shows this same information graphically. The esti-

mated e↵ects of TOU pricing for each hour are plotted over coloured regions representing the three price

periods of a summer working day.

The results from Table 9 can be extrapolated to all 20,556 residential customers in the local distribution

company’s service region. Demand during each on-peak hour would change by �0.72 MWh (±0.49 MWh),

mid-peak hours would change by�0.62 MWh (±0.49MWh), o↵-peak would change by�0.23 MWh (±0.49 MWh),

and each hour of non-working days would change by �0.17 MWh (±0.62 MWh).
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We study the daily peak-to-average ratio since it is a metric often used by utilities to measure how

extreme demand fluctuations are. Each day’s peak-to-average ratio is defined as the peak demand for the

day divided by the average demand during that day. The average observed peak-to-average ratio for summer

2011 under flat pricing was 1.441. The estimated summer peak-to-average ratio of the counterfactual sample

is 1.429. This represents an estimated change of �0.844% to the peak-to-average ratio, with a 95% confidence

interval of ±0.6%.

The local distribution company’s peak hour observed during the pre-TOU summer occurred on Thursday,

July 21, 2011 at 18:00 EDT, averaging 3.54 kWh per household. Using estimated demand from the “what

if” analysis, on-peak TOU pricing would have reduced the average household consumption during that hour

to 3.42 kWh (±0.03 kWh), a reduction of 3.4%. The most extreme peak-to-average ratio was observed on

Tuesday, June 21, 2011 with a value of 1.65. Had TOU pricing been in place that summer, the estimated

peak-to-average ratio on that date would have been 1.57, a reduction of 4.8%.

8. Conclusions and Policy Implications

The main policy implication of this paper is the introduction of a methodology that energy researchers

and practitioners may use to model residential demand, including the e↵ects of weather, when analyzing the

impact of pricing strategies such as TOU. Our methodology evaluates a wide variety of approaches used to

cope with the e↵ects of time, weather and price, and selects the best model based on explanatory power,

out-of-sample prediction accuracy, interpretability and goodness of fit. These e↵ects can vary greatly by

region, so no single residential electricity demand model is universally applicable. For this reason, policy

makers should insist on clear, reproducible methodologies such as ours, which include details about variable

selection and model assessment measures. The results of an analysis should only be considered reliable if

adequate supporting metrics are provided.

Furthermore, policy makers should strive to make more electricity demand data available in order to

validate new pricing schemes and conservation programs; our analysis would not have been possible without

access to a large smart meter dataset.

The second policy implication stems from our TOU impact analysis. We conclude that TOU helped

mitigate peak electricity demand, reducing summer on-peak demand by 2.6%. Our findings are consistent

with those of Newsham and Bowker (2010), which estimates that TOU implementations typically see on-

peak demand reductions < 5%. However, we observe that the estimated e↵ects in our dataset are less

pronounced than initial results elsewhere in Ontario. Faruqui et al. (2013b) estimated first-year results from
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four Ontario TOU programs with summer on-peak reductions in the range 2.6% to 5.7%. Our result falls

at the bottom of that range. Our result is also lower than that of Navigant Research and Ontario Energy

Board (2013), which analyzed a sample of 10,000 residential consumers in various locations within Ontario,

finding a summer on-peak reduction of 3.3%. It is worth noting that Navigant’s 3.3% demand reduction

estimate falls within our 95% confidence interval.

Both the slight decrease in peak-to-average ratio and the hourly demand reduction across all TOU price

periods indicate that mandatory TOU pricing can achieve electricity conservation. However, analysis of

electricity demand shifting is more complex. Table 9 shows that the majority of estimated summer demand

reduction occurs in on-peak and mid-peak periods. Change during o↵-peak periods for both working days

and non-working days is minimal. We interpret this to mean that electricity demand is not being shifted

to o↵-peak periods, but is only being conserved. Conservation is focused during on- and mid-peak periods.

Given this finding, the local distribution company should adjust its long term forecasts. If conservation

is the trend in many other local distribution companies, the province might be able to defer construction

of new generation facilities. If demand shifting were more substantial (e.g., an increase during o↵-peak

periods) it would result in a flattened demand curve. If such a trend were to exist in many local distribution

companies, then the make-up of generation facilities throughout the province could shift from those with

fast ramp rates, such as natural gas or reservoir hydroelectric, to those that are more constant, such as

nuclear.

The demand reduction during the o↵-peak hours of 19:00 through 21:00 during working days is counter-

intuitive. When the hours 17:00 through 18:00 during the second mid-peak period are also considered,

demand reduction seems focused during the evening after typical work hours. Residential customers may

be attempting to conserve electricity, but they may only have flexibility in their after-work household

activity. Because Ontario’s TOU pricing also applies to commercial customers, it may not be optimally

structured around residential demand flexibility. This misalignment was also noted by Adepetu et al.

(2013) in their results when studying aggregate provincial data. The province of Ontario could study the

impact of placing commercial and residential customers on separate TOU schedules and adjusting rates

accordingly. If Ontario’s residential TOU rate schedule remains unchanged, there is an opportunity for

technology companies in the realm of connected devices. This result suggests that residential customers,

unaided by automated devices, have di�culty reacting to TOU rates when outside the home. Devices and

software which can incorporate the user’s TOU rate schedule could reduce the household electricity bill and

associated on-peak emissions to a greater extent.
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Because our sample of data is from one local distribution company in south west Ontario, we acknowledge

that our results are only directly applicable to that region. Additionally, because we only have data for one

summer of before and after the switch to TOU pricing, we cannot assess the e↵ects of TOU pricing during

winter rates. We restate our original question in this context: Is Ontario’s mandatory TOU policy associated

with energy conservation or load shifting during the winter rate season in this local distribution company’s

service region?
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Table 1: Results from prior TOU electricity pricing studies.

Study Pilot Mand. Season
Total Change

(%)

On-Peak

(%)

Mid-Peak

(%)

O↵-Peak

(%)
Weekend

Hydro One (2008) Yes No summer �3.30 �3.70 NR NR NR

Lifson and Miedema
(1981)

Yes No summer �3.17 �8.84 �3.95 +2.86 NA

Ontario Energy
Board et al. (2007)

Yes No summer �6.00 �2.40 (NS) NR NR NR

Train and Mehrez
(1994)

Yes No full year NR �9.02 NA +6.51 NA

Jessoe et al. (2013) No Yes
summer
summer
summer

�3.14a

+0.39b

+2.64c

�6.09a

+1.16b

+3.11c

NA

NA

NA

�2.00a

+0.06b

+2.4c

NA

NA

NA

Faruqui et al.
(2013b)

No Yes summer
winter

0 to �0.45d

0 to �0.45d
�2.60 to �5.70
�1.60 to �3.20

decrease
decrease

increase
increase

NR

Navigant Research
and Newmarket-Tay
Power Distribution
(2010)

No Yes full year �0.66 (NS) �2.80 �1.39 +0.16 (NS) +2.21

Navigant Research
and Ontario Energy
Board (2013)

No Yes

summer
summer shoulder
winter
winter shoulder

0 to �0.10
NR

NR

NR

�3.30
�2.20
�3.40
�2.10

�2.20
�1.50
�3.90
�2.30

+1.20
+1.50
�2.50
�1.10

+1.90
+1.40
�1.20
+0.50 (NS)

Maggiore et al.
(2013)

No Yes Jan–Jun NR �0.83 NA NR NA

Mei and Qiulan
(2011)

No Yes Feb–Dec increase increase NA increase NA

NR – not reported, NA – not applicable, NS – not statistically significant
a high-use customers only, b medium-use customers only, c low-use customers only, d annual
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Table 2: Categories of temperature transformations found in prior work, used when modelling residential electricity demand.

Coincident Weather Transformations

Humidity Mountain and Lawsom (1992)

Humidex Faruqui et al. (2013b)

Temperature Humidity Index Faruqui et al. (2013a); Navigant Research and Ontario Energy Board
(2013)

Wind Speed Friedrich et al. (2014); Mountain and Lawsom (1992)

Temporal Transformations

Lagged Observations Harvey and Koopman (1993)

Heating and Cooling Degree-Days Pardo et al. (2002); Cancelo et al. (2008)

Heating and Cooling Degree-Hours Navigant Research and Newmarket-Tay Power Distribution (2010)

Moving Average Mountain and Lawsom (1992)

Weighted Moving Average Friedrich et al. (2014); Bruhns et al. (2005)

Non-Linear Transformations

Switching Regression Moral-Carcedo and Vicéns-Otero (2005); Faruqui et al. (2013b); Nav-
igant Research and Newmarket-Tay Power Distribution (2010); Navi-
gant Research and Ontario Energy Board (2013); Lifson and Miedema
(1981); Train and Mehrez (1994)

Linear Regions with Smoothed Transitions Bruhns et al. (2005); Friedrich et al. (2014); Moral-Carcedo and
Vicéns-Otero (2005)

Regression Splines Engle et al. (1986); Harvey and Koopman (1993)

Table 3: Summary statistics for ⌧ , the weighted average of drybulb temperatures (�C) within the service region during summer
2011 and summer 2012 rate seasons.

Year Minimum 1st Quartile Median Mean 3rd Quartile Maximum

Summer 2011 0.4 14.0 19.1 18.8 23.8 37.2

Summer 2012 1.3 15.6 20.2 19.8 24.3 37.7

Figure 1: This chart from the Ontario Energy Board (2012) shows the 24-hour schedule in a clock-like format. O↵-peak prices
are shown in green, mid-peak in yellow, and on-peak in orange. The summer schedule is on the left, weekend schedule in the
middle (both seasons), and winter schedule on the right.
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Figure 2: Aggregate residential electricity demand plotted as a function of time. Transparency has been used to give a sense
of density.

Figure 3: Plot of aggregate electricity demand grouped by hour. Note that this plot contains data from both working and
non-working days.
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Table 4: Coe�cient estimates and p-values illustrating the intuition behind the hour-of-day ⇥ working day interaction. Starred
p-values are statistically significant. The coe�cient estimates will change slightly with each temperature transformation
compared, but the sign, intuition and statistical significance remain applicable.

Interaction Term
Coe�cient

Estimate
p-value

01:00⇥working day=TRUE 0.001 0.9772

02:00⇥working day=TRUE -0.009 0.8642

03:00⇥working day=TRUE 0.007 0.8814

04:00⇥working day=TRUE 0.017 0.7278

05:00⇥working day=TRUE 0.031 0.5377

06:00⇥working day=TRUE 0.066 0.1850

07:00⇥working day=TRUE 0.135 0.0066 **

08:00⇥working day=TRUE 0.152 0.0022 **

09:00⇥working day=TRUE -0.010 0.8336

10:00⇥working day=TRUE -0.140 0.0048 **

11:00⇥working day=TRUE -0.208 0.0000 ***

12:00⇥working day=TRUE -0.246 0.0000 ***

13:00⇥working day=TRUE -0.261 0.0000 ***

14:00⇥working day=TRUE -0.268 0.0000 ***

15:00⇥working day=TRUE -0.252 0.0000 ***

16:00⇥working day=TRUE -0.214 0.0000 ***

17:00⇥working day=TRUE -0.153 0.0020 **

18:00⇥working day=TRUE -0.086 0.0817 .

19:00⇥working day=TRUE -0.061 0.2205

20:00⇥working day=TRUE -0.025 0.6088

21:00⇥working day=TRUE 0.016 0.7501

22:00⇥working day=TRUE 0.043 0.3919

23:00⇥working day=TRUE 0.038 0.4386

Table 5: VIF of explanatory variable main e↵ects with a categorical variable for month. Note: A natural cubic spline

transformation of temperature has been used in this example, though similar results are achieved with nearly all temperature

transforms discussed in Section 4.3.

Explanatory Variable(s) VIF Degrees of Freedom

Natural Cubic Splines T 8.52 4

Month 7.60 11

Hour-of-Day 1.29 23

Working Day 1.01 1
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Table 6: VIF of explanatory variable main e↵ects with addition of utility rate season and a TOU billing indicator. Note: A

natural cubic spline transformation of temperature has been used in this example, though similar results are achieved with

nearly all temperature transforms discussed in Section 4.3.

Explanatory Variable(s) VIF Degrees of Freedom

Natural Cubic Splines T 3.08 4

Rate Season 2.85 1

TOU Active 1.08 1

Hour-of-Day 1.17 23

Working Day 1.00 1

Table 7: Up to 5 lags of dry-bulb temperature are correlated with aggregate electricity demand at levels comparable to dry-bulb
temperature at time i.

Lagged Dry-Bulb

Temperature
Correlation with yi

⌧i 0.539

⌧i�1 0.551

⌧i�2 0.558

⌧i�3 0.558

⌧i�4 0.550

⌧i�5 0.533

⌧i�6 0.509

⌧i�7 0.477

⌧i�8 0.440

⌧i�9 0.400

⌧i�10 0.361

⌧i�11 0.328

⌧i�12 0.302
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Figure 4: Top: Linear regression line fit to untransformed, outdoor, dry-bulb temperature observations. Middle: Fitted
regression line for switching regression transformation of outdoor, dry-bulb temperature. Temperature break point at 17.9 �C.
Bottom: Natural cubic splines fit of outdoor, dry-bulb temperature fit to aggregate electricity demand. Knots are placed at
3 �C, 23 �C and 30 �C. All three plots are conditioned for visualization purposes using a process described by Breheny and
Burchett (2015).
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Table 8: Results of temperature transformation comparison. The first three columns show how temperature transformations
from the three categories are combined. AdjustedR2 column is our primary evaluation criterion. BIC and Durbin-Watson
columns provide secondary measures of model complexity and serially correlated errors. The final two columns report predictive
accuracy using average MAE and average MAPE measured using time series cross-validation (Hyndman and Fan, 2010). The
model identified in Section 5 as having the greatest explanatory power, out-of-sample prediction accuracy, and interpretability
has been bolded.

Temporal

Transform

Weather

Transform

Non-Linearity

Transform
Adj. R2

BIC
Durbin-

Watson

Avg. MAE

(kWh)

Avg. MAPE

(%)

ideal=1 ideal=low ideal=2 ideal=0
ideal=0,
max=100

Null Model (i.e., intercept only) 0.000 22339.7 0.056 0.432 37.57

Non-Temperature Explanatory Variables Only 0.438 14497.9 0.042 0.397 37.36

None (i-0) None (Drybulb) None (Linear) 0.580 10324.2 0.060 0.266 23.51

None (i-0) None (Drybulb) Switching Regression 0.854 -4822.3 0.201 0.166 14.20

None (i-0) None (Drybulb) Natural Splines 0.862 -5551.9 0.198 0.157 13.19

None (i-0) Feels Like Switching Regression 0.857 -5097.0 0.208 0.164 14.00

None (i-0) Feels Like Natural Splines 0.862 -5550.1 0.210 0.158 13.35

i-1 None (Drybulb) Switching Regression 0.875 -7068.5 0.229 0.149 13.05

i-1 None (Drybulb) Natural Splines 0.884 -8028.3 0.228 0.141 12.02

i-1 Feels Like Switching Regression 0.878 -7326.9 0.236 0.149 12.82

i-1 Feels Like Natural Splines 0.884 -8036.4 0.241 0.143 12.19

i-2 None (Drybulb) Switching Regression 0.881 -7741.3 0.258 0.144 12.71

i-2 None (Drybulb) Natural Splines 0.889 -8722.6 0.262 0.135 11.64

i-2 Feels Like Switching Regression 0.883 -7974.6 0.266 0.144 12.46

i-2 Feels Like Natural Splines 0.890 -8810.8 0.276 0.137 11.76

i-3 None (Drybulb) Switching Regression 0.873 -6803.5 0.248 0.149 12.96

i-3 None (Drybulb) Natural Splines 0.880 -7627.2 0.250 0.138 11.72

i-3 Feels Like Switching Regression 0.875 -7026.7 0.257 0.149 12.73

i-3 Feels Like Natural Splines 0.882 -7807.8 0.266 0.139 11.81

i-4 None (Drybulb) Switching Regression 0.853 -4683.5 0.232 0.159 13.50

i-4 None (Drybulb) Natural Splines 0.859 -5294.1 0.231 0.147 12.05

i-4 Feels Like Switching Regression 0.855 -4925.3 0.240 0.158 13.28

i-4 Feels Like Natural Splines 0.862 -5563.3 0.244 0.147 12.13

i-5 None (Drybulb) Switching Regression 0.825 -2171.8 0.192 0.173 14.29

i-5 None (Drybulb) Natural Splines 0.830 -2628.2 0.191 0.160 12.84

i-5 Feels Like Switching Regression 0.828 -2437.6 0.199 0.172 14.11

i-5 Feels Like Natural Splines 0.834 -2940.9 0.201 0.161 12.94

i-6 None (Drybulb) Switching Regression 0.790 387.4 0.166 0.189 15.39

i-6 None (Drybulb) Natural Splines 0.796 -9.7 0.165 0.179 14.34

i-6 Feels Like Switching Regression 0.794 114.4 0.171 0.188 15.24

i-6 Feels Like Natural Splines 0.801 -321.1 0.172 0.179 14.41

CDH/HDH (L=6) None (Drybulb) Switching Regression 0.895 -9493.4 0.183 0.133 11.53

CDH/HDH (L=6) None (Drybulb) Natural Splines N/A N/A N/A N/A N/A

CDH/HDH (L=6) Feels Like Switching Regression 0.896 -9629.3 0.184 0.134 11.36

CDH/HDH (L=6) Feels Like Natural Splines N/A N/A N/A N/A N/A

Moving Avg. (L=6) None (Drybulb) Switching Regression 0.895 -9492.1 0.195 0.139 12.33

Moving Avg. (L=6) None (Drybulb) Natural Splines 0.902 -10537.5 0.196 0.128 10.94

Moving Avg. (L=6) Feels Like Switching Regression 0.897 -9771.0 0.193 0.138 11.99

Moving Avg. (L=6) Feels Like Natural Splines 0.904 -10718.9 0.199 0.130 11.16

Lag-Response:
Cubic Polynomial (L=6)

None (Drybulb)
Exposure-Response:
Switching Regression

0.902 -10388.5 0.197 0.127 10.93

Lag-Response:
Cubic Polynomial (L=6)

None (Drybulb)
Exposure-Response:
Natural Splines

0.910 -11559.9 0.209 0.118 9.86

Lag-Response:
Cubic Polynomial (L=6)

Feels Like
Exposure-Response:
Switching Regression

0.901 -10257.2 0.192 0.129 10.88

Lag-Response:
Cubic Polynomial (L=6)

Feels Like
Exposure-Response:
Natural Splines

0.911 -11732.2 0.213 0.123 10.43
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Figure 5: Top: Residuals as a function of dry-bulb temperature observations, resulting from a comparison model using dry-bulb,
six-hour moving average and natural cubic splines to generate the temperature transformation matrix T. Middle: Residuals
as a function of time, resulting from a comparison model using dry-bulb, six-hour moving average and natural cubic splines
to generate the temperature transformation matrix T. Bottom: Residuals as a function estimated response, resulting from a
comparison model using dry-bulb, six-hour moving average and natural cubic splines to generate the temperature transformation
matrix T. 30



Table 9: Estimated change in average household electricity demand for each TOU price period.

Summer

Price Period

Hourly

Impact

(kWh)

95% Conf.

Interval

(kWh)

Hourly

Impact

(%)

95% Conf.

Interval

(%)

On-Peak -0.035 ± 0.024 -2.641 ± 1.819

Mid-Peak -0.030 ± 0.024 -2.403 ± 1.933

O↵-Peak -0.011 ± 0.024 -0.888 ± 1.901

Non-Working Day -0.009 ± 0.030 -0.617 ± 2.212

Figure 6: The hourly e↵ects of a “what if” analysis estimated using summer 2011 data from our sample. The observed data is
the solid, black line, indicating the mean of observed demand for each hour of working days. The dotted blue line indicates the
mean of estimated demand for each hour of working days, had TOU billing been in place. A 95% confidence interval is also
plotted for each hour.
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