
DIFFERENTIABILITY OF THE MATRICES R AND G
IN THE MATRIX-ANALYTIC METHOD

Qi-Ming HE

Department of Management Science
University of Waterloo

Waterloo, Ontario, Canada, N2L 3G1
E-mail: qiming@mansci.uwaterloo.ca

ABSTRACT

The differentiability, with respect to a parameter of the model, of the ma-
trices R and G that arise in the matrix-analytic method is studied. Some
conditions for the differentiability of R and G are given.
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1. Introduction

Let Ω be an open set of real numbers. For x ∈ Ω, let {An(x), n ≥ 0}
be a sequence of nonnegative square matrices of order m such that the matrix
A(x) =

∑∞
n=0 An(x) is an irreducible stochastic or substochastic matrix. R(x)

is the minimal nonnegative solution to the equation

X =
∞∑

n=0

XnAn(x), (1)

and G(x), the minimal nonnegative solution to

X =
∞∑

n=0

An(x)Xn. (2)

We study the differentiability of R(x) and G(x) under certain conditions on
the sequence {An(x), n ≥ 0}, especially when {An(x), n ≥ 0} have only finitely
many nonzero matrices.

R(x) and G(x) are two important matrices in the matrix-analytic method
(see Neuts [3], [4]; Ramaswami [5], [6]). They are useful in the computation of
the distributions of queue lengths, waiting times and busy periods of GI/MAP/1
and MAP/G/1 queues. R(x) arises in the study of GI/MAP/1 queues and
G(x) of MAP/G/1 queues. {An(x)} are blocks in the transition matrices of
the embedded Markov chains, either at arrivals or departures, and x is a system
parameter. In He and Neuts [2], the differentiability of R(x) and G(x) is
discussed for a special quasi birth-and-death process. The present results are
used there to derive second order expansions of some system descriptors.

In Section 2, we study the differentiability of R(x) in irreducible cases. In
Section 3, the differentiability of G(x) is discussed. In Section 4, the technical
details associated with reducible cases and cases related to continuous param-
eter Markov processes are discussed. In Section 5, we summarize the results
obtained.

2. Differentiability of the Matrix R

Let π(x) be the left eigenvector corresponding to the maximal eigenvalue,
sp(A(x)), of A(x). π(x) is nonnegative and normalized by π(x)e = 1, where
e is the column vector with all components one. Clearly, sp(A(x)) ≤ 1. Let
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β(x) =
∑∞

n=0 nAn(x)e. We define the matrix

Mr(x1, x2) =
∞∑

n=1

n−1∑
i=0

[Ri(x1)]
T ⊗ [Rn−i−1(x2)An(x2)], x1, x2 ∈ Ω, (3)

where the superscript T denotes transpose and ⊗ is the Kronecker product of
matrices (see Graham [1]). The matrix Mr(x1, x2) exists since R(xi), i = 1, 2,
and {An(x2)} are nonnegative matrices. Furthermore, the next lemma shows
that Mr(x1, x2) is finite and its maximum eigenvalue is less than 1.

Lemma 2.1. Assume that A(x) is an irreducible stochastic or substochastic
matrix. If A(xi)e < e, or if A(xi)e = e and π(xi)β(xi) > 1, i = 1, 2, we have
that

sp(Mr(x1, x2)) < 1, x1, x2 ∈ Ω.

Proof. By Corollary 1.3.1, Lemmas 1.3.4 and 1.3.5 in Neuts [3], sp(R(xi)) < 1,
i = 1, 2. We rewrite Mr(x1, x2) as

Mr(x1, x2) =
∞∑

n=0

[Rn(x1)]
T ⊗Bn(x2),

where Bn(x2) =
∑∞

i=0 Ri(x2)An+i+1(x2), n ≥ 0. Since A(x2)e ≤ e,

∞∑
n=0

Bn(x2)e =
∞∑

n=1

[
n−1∑
i=0

Ri(x2)]An(x2)e

= (I −R(x2))
−1(A(x2)−R(x2))e ≤ e,

so that sp(
∑∞

n=0 Bn(x2)) ≤ 1.

If sp(R(x1)) = 0, R(x1) has the Jordan canonical decomposition

R(x1) = P


0 ∗ · · · ∗

. . . . . .
...

. . . ∗
0

 P−1,

where P is an invertible matrix. Hence, we have

∞∑
n=0

[Rn(x1)]
T ⊗Bn(x2) = [(P−1)T ⊗ I]


0

∗ . . .
...

. . . . . .

∗ · · · ∗ 0

 (P T ⊗ I).

3



Therefore, sp(Mr(x1, x2)) = 0.

If sp(R(x1)) > 0, since A(x1) is irreducible, then by Lemma 1.3.2 in Neuts
[3], the left eigenvector u of R(x1) corresponding to sp(R(x1)) may be chosen
to be positive. Hence, we have

[
∞∑

n=0

(Rn(x1))
T ⊗Bn(x2)](u

T ⊗ e) =
∞∑

n=0

[(sp(R(x1)))
nuT ]⊗ (Bn(x2)e)

< uT ⊗ [(
∞∑

n=0

Bn(x2))e]

≤ uT ⊗ e.

Therefore, since u is positive, we have sp(Mr(x1, x2)) < 1. 2

Set

A∗(z, x) =
∞∑

n=0

znAn(x). 0 < z < 1, x ∈ Ω.

It is obvious that A(x) = limz→1 A∗(z, x).

Lemma 2.2. If the sequence {An(x)} satisfy the conditions of Lemma 2.1 for
all x in Ω and its terms are continuous in Ω, then R(x) is continuous in Ω.

Proof. Let ρ(x) = sp(R(x)). First, we claim that for x0 ∈ Ω, there exists a
neighborhood S(x0) of x0 such that ρ(x) < δ(x0) < 1, for x ∈ S(x0).

Suppose that the claim is false, then there exists a nondecreasing subse-
quence ρ(xn) → 1, with limn→∞ xn = x0. Let u(x) be the left eigenvector of
R(x) corresponding to ρ(x) with u(x)e = 1. Since R(xn) satisfies equation (1),
we have that

u(xn)R(xn) = u(xn)ρ(xn) = u(xn)A∗(ρ(xn), xn). (4)

Furthermore, there exists a subsequence {xni
} of {xn} such that {u(xni

)} con-
verges to a nonnegative vector u with ue = 1. Therefore u = uA(x0). Since
A(x0) is irreducible, we know that u = π(x0). For {R(xn)}, there exists a
subsequence {R(xni

)} such that {R(xni
)} converges to a nonnegative matrix R̂

with uR̂ = u.

By Lemma 2.1,
∑∞

i=0 Bi(xn)e ≤ e so that u(xn)
∑∞

i=0 Bi(xn)e ≤ u(xn)e = 1.
Therefore,

sup
n→∞

u(xn)
∞∑
i=0

Bi(xn)e ≤ 1. (5)
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On the other hand,

u(xn)
∞∑
i=0

Bi(xn) = u(xn)
∞∑
i=1

i−1∑
j=0

ρj(xn)Ai(xn).

Since limxn→x0 ρ(xn) = 1, limxn→x0 u(xn) = u and limxn→x0 Ai(xn) = Ai(x0), it
follows that

sup
n→∞

u(xn)
∞∑
i=0

Bi(xn)e ≥ u
∞∑
i=1

iAi(x0)e = π(x0)β(x0) > 1.

This contradicts equation (5). Therefore, the claim is true.

For any subsequence {xm} of {xn} such that limxm→x0 R(xm) = R̂, there
exists a subsequence {xmi

} such that {ρ(xmi
)} converges to a nonnegative num-

ber ρ̂ (< δ(x0) < 1). Since ρ(xn) < δ(x0) < 1, {Ri(xn)} converges to the zero
matrix uniformly in n. Hence, it can be proved that R̂ =

∑∞
i=0 R̂iAi(x0). By

(4), we have uA∗(ρ̂, x0) = uρ̂. By Theorem 1.3.3 in Neuts [3], we know that
the solution X to equation (1) with sp(X) < 1 at x0 is unique. Therefore, we
have R̂ = R(x0). This implies that limxn→x0 R(xn) = R(x0). 2

For a matrix C of dimensions m1 ×m2, φ(C) is the m1m2-vector obtained
by forming the direct sum of the rows of C. Call φ the direct sum transform of
matrices. If X, Y and Z are matrices and their product XY Z is well defined,
then φ(XY Z) = φ(Y )XT ⊗ Z. This property is used in the proof of Theorem
2.3.

Theorem 2.3. Suppose that, for all x in Ω, An(x) = 0 for n > N > 0 and
{An(x), n ≤ N} are differentiable up to order K(≥ 1) and satisfy the conditions
of Lemma 2.1. If {A(K)

n (x)} are continuous, the minimal nonnegative solution,
R(x), of (1) is differentiable in Ω up to order K.

Proof. From (1), we have, for x0 ∈ Ω,

R(x)−R(x0) =
N∑

n=1

n−1∑
i=0

Ri(x0)[R(x)−R(x0)]R
n−i−1(x)An(x)

+
N∑

n=0

Rn(x0)[An(x)− An(x0)].

Taking direct sum transforms of both sides, we have, by the property of the
transform φ, that

φ(R(x0)−R(x)) = φ(
N∑

n=0

Rn(x0)(An(x)− An(x0))) · [I −Mr(x0, x)]−1. (6)
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By virtue of the proofs of Lemmas 2.1 and 2.2, [I −Mr(x0, x)]−1 exists and is
continuous at x0 in x. Dividing both sides of (4) by x− x0 and letting x → x0,
it follows that

φ(R′(x0)) = φ(
N∑

n=0

Rn(x0)A
′
n(x0)) · [I −Mr(x0, x0)]

−1. (7)

Therefore, R(x) is differentiable at x0.

Suppose that R(x) is differentiable up to order i < K. We shall show that
R(x) is differentiable up to order i + 1. By induction, R(i)(x) satisfies

R(i)(x) =
N∑

n=1

n−1∑
j=0

[R(x)]jR(i)(x)[R(x)]n−j−1An(x) + fi(x), (8)

where

fi(x) =
N∑

n=0

[
∑

j1+···+jn+1=i

0≤j1,···,jn<i

i!

j1! · · · jn+1!
R(j1)(x) · · ·R(jn)(x)A(jn+1)

n (x)], i ≥ 1,

Then, similar to (6), we have

φ(R(i)(x0)−R(i)(x))

= φ(
N∑

n=0

n−1∑
j=0

[R(x0)]
jR(i)(x0)[(R(x0))

n−j−1An(x0)− [R(x)]n−j−1An(x)]

+
N∑

n=0

n−1∑
j=0

[(R(x0))
j − (R(x))j]R(i)(x)(R(x))n−j−1An(x)

+fi(x0)− fi(x)) · [I −Mr(x0, x)]−1.

Dividing both sides by x− x0 and letting x → x0, we obtain

φ(R(i+1)(x0)) = φ(fi+1(x0)) · [I −Mr(x0, x0)]
−1, (9)

and, since the {An(x)} are differentiable at x0 up to order K, so is R(x). 2

Note 2.1. Theorem 2.3 also holds for N = ∞ if fi(x) (defined in the proof of
Theorem 2.3) exists, 1 ≤ i ≤ K. However, we have

f1(x) =
∞∑

n=0

Rn(x)A′
n(x). (10)
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and fi(x) is much more complicated for i ≥ 2. So, it is next to impossible to
verify the existence of {fi(x)} when N = ∞.

Note 2.2. We consider an M/M/1 queue with an arrival rate λ(x) and a
service rate 1. Routine calculations give that

R(x) =


λ(x), if λ(x) ≤ 1;

1, if λ(x) > 1.
(11)

Equation (11) shows that for any x0 with λ(x0) = 1 and λ′(x0) 6= 0, R(x) may
not be differentiable at x0. Therefore, Ω is assumed to be an open set.

To compute the derivatives of R(x), we solve equation (8). We can use
an iterative process to obtain approximation solutions. Alternately, we use the
direct sum transformation (9), which gives the explicit solution for {R(i)(x), i ≥
1}, provided that R(x) is known.

3. Differentiability of the Matrix G

We define

Mg(x1, x2) =
∞∑

n=1

(
n−1∑
i=0

An(x1)G
i(x1))

T ⊗Gn−1−i(x2), x1, x2 ∈ Ω. (12)

As in the case with the matrix Mr(x1, x2), the invertibility of the matrix Mg(x1, x2)
is the key to the differentiability of the matrix G(x).

Lemma 3.1. Assume that A(x) is an irreducible stochastic or substochastic
matrix. If A(xi)e < e, or if A(xi)e = e and π(xi)β(xi) < 1, i = 1, 2, we have
that

sp(Mg(x1, x2)) < 1, x1, x2 ∈ Ω.

Proof. (12) may be rewritten as

Mg(x1, x2) =
∞∑

n=0

[B̄n(x1)]
T ⊗Gn(x2),

where B̄n(x1) =
∑∞

i=0 An+i+1(x1)G
i(x1), n ≥ 0.

When A(x1)e < e, sp(G(x1)) < 1. By routine calculations, we have

∞∑
n=0

B̄n(x1) = [A(x1)−G(x1)][I −G(x1)]
−1.
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Therefore, π(x1)
∑∞

n=0 B̄n(x1) < π(x1), so that sp(
∑∞

n=0 B̄n(x1)) < 1.

When A(x1)e = e, we have sp(G(x1)) = 1. Denote by g, the left invariant
vector of G(x1). By routine calculations,

∞∑
n=0

B̄n(x1) = (A(x1)−G(x1) + β(x1)g)(I −G(x1) + eg)−1.

The matrix I −G(x1) + eg is invertible since π(x1)β(x1) < 1. Hence,

π(x1)(
∞∑

n=0

B̄n(x1)) = π(x1) + (π(x1)β(x1)− 1)g < π(x1).

Therefore, since every component of π(x1) is positive, sp(
∑∞

n=0 B̄n(x1)) < 1.

Combining the results of the two cases, we have sp(
∑∞

n=0 B̄n(x1)) < 1. By
applying the Tc transform (see Appendix) to the matrix Mg(x1, x2),

Tc(Mg(x1, x2)) =
∞∑

n=0

Tc((B̄n(x1))
T ⊗Gn(x2)) =

∞∑
n=0

Gn(x2)⊗ [B̄n(x1)]
T .

The proof that sp(Tc(Mg(x1, x2))) < 1 is similar to that of Lemma 2.1. Since
sp(Tc(Mg(x1, x2))) = sp(Mg(x1, x2)), we have sp(Mg(x1, x2)) < 1. 2

As in Lemma 2.2 and Theorem 2.3, the following results hold for G(x).

Lemma 3.2. If {An(x)} satisfy the conditions given in Lemma 3.1 for all
x in Ω and are continuous in Ω, then G(x) is continuous in Ω. 2

Theorem 3.3. Suppose that, for all x in Ω, An(x) = 0 for n > N > 0 and
{An(x)} are differentiable up to order K(≥ 1) and satisfy the conditions given
in Lemma 3.1. If {A(K)

n (x)} are continuous, the minimal nonnegative solution,
G(x), to equation (2) is differentiable up to order K. 2

4. Discussion

The results given by Theorems 2.3 and 3.3 can be generalized to the cases
where A(x) is reducible. Suppose that A(x) has the structure

A(x) =


A(1, x) · · · ∗

. . .
...

A(k, x)

 ,
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where the diagonal blocks A(i, x), 1 ≤ i ≤ k, are irreducible matrices. Then
{An(x)} have the same structure as A(x) and we denote their corresponding
diagonal blocks by {An(i, x), 1 ≤ i ≤ k}. The minimal nonnegative solution
R(x) to the matrix equation (1) has the same structure as A(x). The diagonal
blocks of R(x), R(i, x), 1 ≤ i ≤ k, satisfy

R(i, x) =
∞∑

n=0

Rn(i, x)An(i, x), 1 ≤ i ≤ k.

By routine calculations, we have

Mr(x1, x2) =



∞∑
n=0

(Rn(1, x1))
T ⊗Bn(x2))

...
. . .

∗ · · ·
∞∑

n=0

(Rn(k, x1))
T ⊗Bn(x2)

 .

If {An(i, x)}, 1 ≤ i ≤ k, satisfy the conditions in Lemma 2.1 and Theorem 2.3,
we obtain the results in Theorem 2.3 for R(x).

There is an entirely analogous theory for the cases where An(x), n ≥ 0 and
n 6= 1, are nonnegative matrices, A1(x) has nonnegative off-diagonal elements
and negative diagonal elements, and A(x)e ≤ 0. The matrix R(x) is here
defined as the minimal nonnegative solution to the equation

0 =
∞∑

n=0

XnAn(x). (13)

If there is an analytic function τ(x) satisfying

τ(x) > 1 + max
1≤j≤m

{−(A1(x))jj},

for x ∈ Ω, then (13) may be rewritten as

X =
∞∑

n=0

XnÃn(x), (14)

where Ãn(x) = An(x)/τ(x), n ≥ 0 and n 6= 1, and Ã1(x) = I + A1(x)/τ(x).
Equation (14) is the same as equation (1), so Theorem 2.3 is applicable. Similar
results hold for the matrix G(x).
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5. Conclusions

We have proved that, under certain conditions on {An(x)}, the matrices
R(x) and G(x) are differentiable. Let us use R(x) as an example. For the
first order differentiability, R(x) is differentiable when {A′

n(x), n ≥ 0} exist
and are continuous, and

∑∞
n=0 Rn(x)A′

n(x) exists (see Lemma 2.1, Theorem 2.3
and (10)). For {An(x)} with only finitely many nonzero matrices, R(x) is
differentiable up to order K when {An(x)} are differentiable up to order K and
{A(K)

n (x)} are continuous (see Lemma 2.1 and Theorem 2.3).

Although we obtained some conditions for the differentiability of R(x) and
G(x), this paper raises more questions than it has solved. For example, when
{An(x)} have infinitely many nonzero matrices, for higher order differentiability,
the conditions imposed on {fi(x)} are too complicated to be explicitly checked.
More tangible conditions in terms of {An(x)} are required in applications.
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APPENDIX

We define a transform, Tc, on the Kronecker product of matrices A and B
by

Tc(A⊗B) = B ⊗ A,

where A and B are square matrices of orders m1 and m2 respectively.

Lemma A. There exists a permutation matrix Pm1m2 , P 2
m1m2

= I, satisfying

Tc(A⊗B) = Pm1m2(A⊗B)Pm1m2 . (15)

Hence, Tc(A⊗B) and A⊗B are similar.

Proof. See (2.14), Graham [1].

2

Using Lemma A, we can define a generalized Tc on sums of Kronecker prod-
ucts of matrices, i.e., the transform Tc(A1 ⊗B1 + A2 ⊗B2) is well-defined and

Tc(A1 ⊗B1 + A2 ⊗B2) = Tc(A1 ⊗B1) + Tc(A2 ⊗B2),

where A1 and A2 are of the same dimension and so are B1 and B2. Lemma A
still holds for the generalized transformation.
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