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ABSTRACT  A level crossing analysis is used to characterize the virtual waiting-time process in a 
MAP/G/1 queue.  The basic relation between the number of upcrossings and downcrossings over 
level x is established.  Based on this basic relation, a generalized Pollaczek-Khinchin formula for 
the virtual waiting time is derived. 
 
 
 
1.  INTRODUCTION 
 
 
The MAP/G/1 queue was introduced by Lucantoni, Meier-Hellstern and Neuts (1990) (also see 
Lucantoni (1991), Neuts (1989b) and Ramaswami (1980)).  This is an algorithmically tractable 
queueing model which can be used to model a wide variety of systems due to the rich class of input 
processes the Markov arrival process (MAP) can represent.  The Poisson process, Erlang process, 
PH-renewal process and Markov-Modulated Poisson process are all special cases of a Markov 
arrival process.  Existing methods for analysing the MAP/G/1 queue rely on Markov renewal 
theory, via matrix generalizations of embedded Markov chains.  In this paper, a level crossing 
analysis of the virtual waiting time process is used to analyze the MAP/G/1 queue from a different 
perspective. 
 The level crossing method was pioneered in the mid 1970's by Brill (1975). The same level 
crossing idea was later applied to cycles in regenerative processes (see, for example, Cohen (1977) 
and Shanthikumar (1980)). Level crossing analysis has been used successfully in analysing waiting-
time processes in various queueing models (e.g. Brill and Posner (1977), Shanthikumar (1980), 
Jewkes and Buzacott (1991), and Doshi (1992)).  However, no work has been published so far on 
the level crossing analysis as applied to the MAP/G/1 queue, though related ideas can be found in 
Asmussen (1989,1992). 
 The main contributions of this paper are twofold:  first, a level crossing analysis is used to 
characterize the virtual waiting-time process in the MAP/G/1 queue. Though the MAP/G/1 queue 
has been studied by others, the level crossing analysis provides a much simpler and more compact 
method for deriving the basic results for the MAP/G/1 queue. The second contribution is that the 
level crossing analysis yields a new generalized Pollaczek-Khinchin formula (see Neuts (1986) and 



Ramaswami (1980)). 
 The rest of the paper is organized as follows:  Section 2 introduces the MAP/G/1 queue.  In 
Section 3, the basic relation between the number of upcrossings and downcrossings over level x of 
the virtual waiting-time process will be established.  Section 4 will show how the basic relation can 
be used in the analysis of the MAP/G/1 queue by deriving a new generalized Pollaczek-Khinchin 
formula for the virtual waiting time. 
 
 
 
2.  The MAP/G/1 queue 
 
 
We consider a single server queueing system characterized by a Markov arrival process (MAP), 
general independent service times and a "first come first served" service discipline. The Markov 
arrival process was first introduced by Neuts (1979) as a generalization of a phase-type renewal 
process (also see Lucantoni, Meier-Hellstern and Neuts (1990)).  It is defined on a finite Markov 
process (called the underlying Markov process) which is irreducible and has m states and an 
irreducible infinitesimal generator D.  In the MAP, the sojourn time in state i is exponentially 
distributed with parameter Dii.  At the end of the sojourn time in state i, a transition occurs to state j, 
1£j£m, where the transition may or may not represent an arrival.  Let D0 be the (matrix) rate of 
transitions without an arrival and D1 be the rate of transitions with an arrival.  D0 and D1 are m´m 
matrices where D0 has negative diagonal elements and non-negative off-diagonal elements. D1 is a 
non-negative matrix and D=D0+D1. 
 Using ? to symbolize the stationary probability vector of the Markov process with the 
generator D, ? will satisfy the equations ?D=0 and ?e=1, where e is a column vector with all 
components 1.  The stationary arrival rate of the Markov arrival process is then ?=?D1e. 
 The service time of a customer is a random variable with finite mean and variance.  It will 
be denoted by t. Further, let F(x) be the distribution function of t and denote the Laplace-Stieltjes 
transform (LST) of F(x) by f*(s).  In addition, tn will be used to represent the service time of the nth 
customer, where {tn, n³1} are i.i.d. random variables independent of the input process. Throughout 
this paper, we assume that the queueing system is in steady state.  We use the terms phase and state 
of the MAP synonymously. 
 
 
 
3.  The Level Crossing Analysis 
 
 
First, we consider a busy cycle for the MAP/G/1 queue.  For simplicity, we assume that the busy 
cycle begins at time t = 0 with the first arrival, ends at time t = C and that Nc customers are 
served in the busy cycle.  Other definitions used are as follows: 
 
   tn: the arrival epoch of the nth customer; 
   wn:  the actual waiting time of the nth customer; 
   vt:  the virtual waiting time of the MAP/G/1 queue at time t; 
   J(t): the phase of the input MAP at time t. 



Figure 1: A Sample Path of the Virtual Waiting Time Process for a Type i1 Busy Cycle. In  Figure 
1, in and jn are used to denote the phase of the input MAP just prior to and just  after the arrival 
of the nth customer, respectively. 
 
 
  Generally, the total number of upcrossings and downcrossings over level x by the virtual 
waiting time process in a busy cycle are equal (see (1.7) in Cohen (1977)).  It is through this 
observation that the distribution functions for the virtual and actual waiting time can be related.  To 
do so, it is useful to distinguish those upcrossings and downcrossings of vt over level x by the phase 
of the MAP when they occur.  It is also useful to characterize a busy cycle by the state of the MAP 
just prior to the first arrival in the busy cycle:  a type i busy cycle is one in which the MAP just prior 
to the start of a busy cycle is in phase i.   Accordingly, for a type i busy cycle, the number of 
downcrossings over the level x during the busy period when the MAP is in phase j (for 1£i, j£m) is 
defined by:  

Throughout this paper, the downcrossing (upcrossing) level x is assumed to be positive. 
 Similarly, we define the upcrossings in terms of the phase of the MAP just after the arrival 
(j) and the type of the busy cycle (i): 

 Let O(x) be an m´m matrix with the elements Oi,j(x) and U(x, y) an m´m matrix with the 
elements Ui,j(x, y).  Thus O(x) records the number of down-crossings over level x in a busy cycle 
and U(x, y) records the number of up-crossings over level x and under level x+y in a busy cycle. 
  The first task in relating the virtual and actual waiting time distributions is to establish the 
relationship between O(x) and U(x, y).  To do so, we introduce the matrices G and F(y).  We define 
the m´m matrix G with elements Gi,j (1£i, j£m) in the following way, 
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 Gi,j =  P{ A busy period ends when the MAP is in phase j, given that the phase of the MAP 

just after the start of the busy period was i. }, 
 
where P{×××} denotes probability.  It is known that G is the minimal non-negative solution to the 
equation (see Neuts (1989a) and (1989b) and Lucantoni (1991)): 

Further, we define the m´m matrix F(y) with the elements Fi,j(y) (1£i, j£m) as: 
 
           Fi,j(y) = I({ A busy period begins with an amount of work y and ends when the MAP 
   is in phase j, given that the phase of the MAP just after the start of the busy 

period was i. }), 
 
where I(×) is an indicator function, i.e., I(×) = 1 or 0 depending on whether the statement is true or 
not.  By Theorem 2 in Neuts (1989a) (or see Lucantoni (1991)), the expectation of F(y) is given by: 

where E means mathematical expectation.  With (4), the relation between O(x) and U(x, y) can now 
be defined. 
 
 
THEOREM 1.  For the MAP/G/1 queue: 

where "dy" means differentiation with respect to y. 
 
Proof.  First, observe that during a busy period, a downcrossing over level x must be preceded by 
an up-crossing over level x (see Figure 1).  In particular, we are concerned with the phase of the 
MAP just prior to the upcrossing and later when the downcrossing occurs. Consider an upcrossing 
over level x which brings the virtual waiting time to x+y and the phase of the MAP from phase i to 
phase k.  If the phase of the MAP at the next downcrossing of level x is j, then we refer to this 
downcrossing of level x as one which started from phase i and concluded in phase j.  The total 
number of downcrossings over level x is found by summing over all possible intermediate phases k 
(1£k£m) and all values of y (y>0).  Conditioning on the phase of the MAP just after the upcrossings 
over level x and the magnitude of the upcrossing over x gives the following basic relation: 
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The matrix form of this equation is the first equation in (5). 
 By the Markovian property of the input MAP, Fk,j(y) is independent of Ui,k(x, y) for 1£i, k, 
j£m.  Taking mathematical expectation on both sides of (6), the second equation in (5) is obtained 
by (4). ¦ 
 
 
 It is noteworthy that the equations in (5) can also be proved by using a ladder height 
analysis (some applications of ladder height analysis in queueing theory can be found, for example, 
in Asmussen (1989,1992)).  The derivation starts by defining the matrix Q as: 

 Then (4) can also be written as EF(y)=exp{yQ} and (3) as G=òexp{yQ}dF(y).  In Asmussen 
(1989, 1992), it was shown that Q is an irreducible infinitesimal generator satisfying 

by using a ladder heights analysis for the Markov-Modulated M/G/1 queue.  The proof is also valid 
for the MAP/G/1 queue.  A probabilistic interpretation of Q is given in those papers. 
 Asmussen (1989) also gave a probabilistic interpretation of the matrix Q:  Let { S(t) } be a 
process which starts at zero, decreases linearly between arrivals and takes an upwards jump upon 
the arrival of a customer with an amount equal to the service time of that customer.  The Markov 
jump process m(x) is obtained by observing J(t) when S(t) is at its minimum, i.e., m(x)=j when for 
some t we have S(t)=-x, J(t)=j, S(t)<S(u) for u<t.  The matrix Q is then the intensity matrix (or 
infinitesimal generator) of the Markov jump process m(x). 
 
 
 
4. The Virtual and Actual Waiting Times 
 
 
Now, as for an application of Theorem 1, we consider the waiting times in the MAP/G/1 queue. 
This leads to a generalization of the classical Pollaczek-Khinchin formula. We will use the results 
of the previous section to define the relationship between the virtual and actual waiting time 
distributions.  For this purpose, we define (for 1£i, j£m): 
 
      Vi,j(x) = P{ The virtual waiting time at an arbitrary time is no more than x and the phase is j, 

given that the current busy cycle is type i. } 
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      Wi,j(x) = P{ The waiting time of an arbitrary customer is no more than x and the phase just 

after the arrival of the customer is j, given that the current busy cycle is type i.} 
 
 Let V(x) be the m´m matrix with elements Vi,j(x) and W(x) be the m´m matrix with elements 
Wi,j(x).  Also, let V*(s) and W*(s) denote the LSTs of V(x) and W(x), respectively. Now, let { tn(i) } 
be the epochs at which type i busy cycles begin.  For a given i, it is clear that { tn(i) } are 
regeneration points of the virtual waiting-time process and so define what we will refer to as type i 
regeneration cycles (see Figure 2 for a type i1 regeneration cycle).  Let C(i) = (tn+1(i)-tn(i)) be the 
length of a type i regeneration period and N(i) the number of customers served during the time 
interval [tn(i), tn+1(i)). 
 The following lemma gives the relations between U(x, y) and W(x) as well as between O(x) 
and V(x).  Similar relations for the GI/G/1 queue are given in Cohen [Error! Reference source not 
found.]. 
 
 
LEMMA 2.  For the MAP/G/1 queue, 

where diag() means diagonal matrix. 
 
Proof.  Let w be the stationary waiting time of an arbitrary customer and v the stationary virtual 
waiting time at an arbitrary time.  Also let J(t, 0-) denote the phase just prior to the current busy 
cycle (including time t), Jn, 0- the phase just prior to the start of the busy cycle which includes the 
nth arrival, and 

Figure 2  A Sample Path of a Type i1 Regeneration Cycle 
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Ĵ 11 is the phase just after the arrival of an arbitrary customer and J -0ˆ 12 is the phase just prior the 
busy cycle which includes an arbitrary customer. 
 
 For a fixed i, we consider type i regeneration cycles.  The number of up-crossings Ui,j(x, y) 
is the same for a type i busy cycle and for a type i regeneration cycle.  By definition, we have 

From the theory of regenerative processes (see Cohen (1976)), we have 

and 

Taking mathematical expectations on both sides of (11), by (12) and (13), the first part of (9) is 
obtained by referring to equations (4) and (7). 
 
 Now, consider the following function of x: 

This function is an almost everywhere continuous, nondecreasing and piecewise linear function and 
is differentiable for all x>0.  By the definition of Oi,j(x), we have 

Taking mathematical expectations on both sides and by the theory of regenerative processes, the 
second equation in (9) is obtained. ¦ 
 
 
 Therefore, by Lemma 2, we have 

Since ? is the arrival rate of the MAP, we must have ?=EN(i)/EC(i), for all 1£i£m.  Taking LSTs 
on both sides of (16), we have, for s>0, 
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The matrix sI+Q is invertible since Q is an infinitesimal generator and s>0. 
 For the MAP, the probability that there is an arrival in (t, t+?t) is approximately ??t.  The 
probability that there is an arrival in (t, t+?t) and finding a waiting time (in LST form) V*(s) is 
approximately V*(s)D1?t.  Then the waiting time of an arrival is approximately V*(s)D1?t/??t.  
Letting ?t goes to zero, we obtain (as in Lucantoni, Meier-Hellstern and Neuts (1990) and Neuts 
(1989b)): 

  Finally, by (8), (17) and (18), we are able to obtain the LST of the virtual waiting time. 
 
 
THEOREM 3.  In the MAP/G/1 queue, we have: 
 

 ¦ 
 
 
 The classical Pollaczek-Khinchin formula is obtained from (19) when m=1, i.e., for the 
Poisson input process.  The vector generalization of the Pollaczek-Khinchin formula can be 
obtained from (19) with the following probabilistic interpretation on the matrix V(0). 
 The (i, j)th element of V(0) is the probability that at an arbitrary time the waiting time is 
zero and the MAP is in phase j, given that the phase just prior to the start of the current busy cycle is 
i.  Let y0j be the probability that at an arbitrary time the queue is empty, 1£j£m.  y0 = (y01, y02, ..., 
y0m).  Let bj be the probability that a busy cycle starts in phase j.  b = (b1, b2, ..., bm).  Then we have 

It has been proved in Lucantoni, Meier-Hellstern and Neuts (1989) that y0Q=0.  Therefore, when 
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we multiply both sides of (19) by b, the vector form LST of the virtual waiting time is obtained, 
which was obtained first in Ramaswami (1980). 
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