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ABSTRACT 
 
When production yield is random and demand needs 
to be satisfied in full, several production runs may 
need to be attempted until the number of usable 
products is sufficient.  The tradeoff is then between 
using small lots possibly incurring setup cost many 
times and large lots which may result in costly 
overproduction.  We generalize this problem to 
include inspection costs and show how to compute 
the optimal lot size and the expected number of 
inspections.  Four useful models with binomial, 
discrete uniform, all-or-nothing, and interrupted 
geometric yields are examined in detail.  Numerical 
results are presented to obtain insights into the 
lotsizing in production systems with random yields. 
 
Key words:  Random Yield, Inspection, Rigid 

Demand, Dynamic Programming 
 
 
1.  Introduction 
 
We consider a manufacturing facility (machine or 
work center) where production is in lots or runs 
involving a fixed setup cost and a variable per-unit 
processing cost.  When such a facility has quality 
problems and demands need to be satisfied in their 
entirety, several production runs may be needed until 
the total number of usable units is sufficient.  We 

assume that defective units and usable units in excess 
of the demand have no value and must be scrapped.  
This situation often arises when demand is for small 
quantities and products are custom made as, for 
example, in some high-tech industries (see more 
applications in Yano and Lee [6] (1995)).  The 
tradeoff is then between using small lots, possibly 
incurring setup cost many times, and large lots, which 
may result in costly overproduction. 
 
 This problem dates back to 60-70's, when it 
was often referred to as "reject allowance" (e.g. Klein 
[4] (1966); Beja [2] (1977)).  Many authors 
considered binomial yields - a situation where 
successes of units within a lot are independent of each 
other, with the same success probability (see, for 
example, Sepheri, Silver and New [5] (1986) and 
references therein).  Yano and Lee [6] (1995) 
provides a comprehensive literature review 
concerning manufacturing with random yields.  They 
consider both rigid demand and non-rigid demand 
(non-rigid demand is a situation where there is only 
one production run and a penalty for shortage).  
Grosfeld-Nir and Gerchak [3] (1992) establish certain 
general properties related to lotsizing problems and 
show examples where intuitions could fail. 
 
 Clearly, inspection is an intrinsic part of this 
model; products must be inspected and their quality 
be determined in order to decide when to cease 
production.  Yet, in the context of rigid demand, 
authors have ignored inspection cost, i.e., implicitly 
assumed that inspection is free (or that the whole lot 
is inspected - in which case inspection cost is simply 
added to the variable cost).  We formulate the 
problem with costly inspection and provide recursions 
for optimal lotsizing and for computing the expected 
number of inspections.  Our assumptions are: 
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· Inspection does not require setup; units exiting 
the manufacturing facility are inspected one-at-a-
time until the demand is satisfied, or all units 
have been exhausted. 

· Units to be inspected are selected at random. 
 
 The rest of the paper is organized as follows. 
 In Section 2, the model of interest is introduced.  A 
recursive formula which is convenient for computing 
the optimal lot size and its corresponding expected 
total costs is derived.  Section 3 deals with the 
Binomial yield model.  It shall be proved that the 
optimal lot size is independent of the inspection cost 
in this model.  Section 4 briefly examines models 
with discrete uniform, all-or-nothing, and interrupted 
geometric yields.  Several numerical examples are 
presented in Sections 3 and 4.  Finally, Section 5 
summarizes the results obtained in this paper. 
 
 
2.  The Model 
 
A machine produces in lots or runs.  The cost 
associated with a lot of size N is a+bN, where the 
parameters a and b are referred to as the “setup cost” 
and the “variable cost” (per-unit processing cost), 
respectively.  As a batch exits the machine, units are 
inspected one-at-a-time until the demand is satisfied 
or all units are exhausted.  Inspection cost is g per 
unit.  If inspection reveals that the number of usable 
units, in a batch exiting the machine, is short of the 
outstanding demand, the problem repeats itself with 
the demand remaining.  Defective units and usable 
units in excess of the demand have no value and are 
scrapped.  The objective is to determine, for demand 
D, the optimal lot size ND which minimizes the 
expected total of setup, variable, and inspection costs. 
 
 We define ID(y, N), D£y£N, to be the 
expected number of inspections, if the remaining 
demand is D and there are y³D good units among N 
units waiting for inspection.  Then 
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 We denote by  p(y,N), 0£y£N, the probability 
that the yield is y when the lot size is N, and define 
the following cost functions: 
 
      UD    is the optimal (minimal) expected cost to 

satisfy demand D. 
      UD(N)     is the expected cost to satisfy demand D, 

if the lot size is N whenever the demand 
is D and an optimal lot size is chosen 
whenever the remaining demand is less 
then D. 

 
Obviously,  UD = minN{UD(N)} and 
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This leads to 
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Therefore, the optimal lot size and the expected cost 
can be computed recursively in D.  
 
 Next, we show that there is a surprisingly 
simple way to compute ID(y,N).  First note that 
ID(N,N)=D,  D£N and for D£y<N,  
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In particular, for 1£y<N,  
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 1 1I y, N  =  1 +  1 - y
N

I y, N - 1( ) ( ) ( ).  (5) 

 
Proposition 2.1 
 

 DI y, N  =  N + 1
y + 1

D,  D y N.( ) £ £  (6)  

 
Proof.  We will use induction over D (and, induction 
over N within the induction over D).  Consider D=1; 
we must prove that

 1I y, N  =  N + 1
y + 1

,  1 y N.( ) £ £  (7)  

 
Clearly equation (7) holds true for N=1 (which 
implies that y=1 and recall that ID(N, N) = D, D£N).  
Suppose that equation (7) holds true for N, then 
(using equation (5)) 
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Therefore, equation (6) is true for D=1, 1£y£N.  
Suppose that equation (6) is true for D.  For D+1, we 
must prove that, for D+1£y£N. 

 D+1I y, N  =  N + 1
y + 1

D + 1( ) ( ).  (9) 

 
Clearly equation (9) holds true for N=D+1 (which 
implies y=D+1, then ID+1(D+1,D+1)=D+1).  
Suppose that equation (9) holds true for N;  then, for 
N+1, we have (using equation (4)) 
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This completes the proof. 
 
Corollary 2.2  As a consequence of equations (3) and 
(6), we have 
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 An efficient algorithm for computing the 
optimal lot size and its corresponding expected total 
costs (including setup, processing, and inspection 
costs) can be developed using formulas obtained in 
this section. Numerical examples are shown in 
Sections 3 and 4 where several special cases are 
examined in more detail. 
 
 
3.  Binomial Yield 
 
In this section, we assume that yields are binomial, 
i.e. 
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where q is the success probability.  We shall prove 
that the optimal lot size with costly inspection is the 
same as the optimal lot size when inspection is free.  
This will follow from showing that the expected total 
inspection cost does not depend upon the production 
policy (the lots to enter the machine).  Let 
 

ID      be the expected number of inspections - 
until the end of production, if the demand 
is D and all lot sizes are optimal. 

ID(N)   be the expected number of inspections - 
until the end of production, if the lot size 
is N whenever the demand is D, and lot 
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sizes are optimal whenever the remaining 
demand is less than D. 

Then ID = minN{ID(N)} and, by incorporating 
equation (6), 
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The expected inspection number can be calculated 
using equation (12) for any yield distribution. 
 
 Next, we shall show that for binomial yield 
ID(N) does not depend upon N.  The next lemma is 
helpful in proving that the expected number of 
inspections does not depend upon the lot size 
(Theorem 3.2). 
 
Lemma 3.1  For the binomial yield case,  
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for7 D<i<N,  and note that 
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Then 
 
(b)  for  i=D, D+1, ..., N-1, 

 

 D,NS i = -p i + 1, N i + 1- D 1-( ) ( )( ) ;q
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 (c)  SD,N(N) = 0 . 

Proof.  Using equation (11), the left-hand side of (a) 
becomes 
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which proves (a).  To prove (b), we use induction on 
i.  Consider i=D; we must show that  

 D,NS D  =  - p D + 1, N 1-( ) ( ) q
q

10.  

Now 
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Suppose that (b) holds for i (i<N-1). For i+1, we have 
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To prove (c), simply note that 
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This completes the proof. 
 
Theorem 3.2.  For binomial yields, we have 
 

 DI N  =  D  ,  D 1,  N 1.( )
q
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Proof.  We will use induction.  Consider D=1; then 
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The first equality follows by equation (11); the 
second by Lemma 3.1 (a). 
 
 Suppose that equation (13) holds for demand 
1, 2, ..., D-1, i.e., Iy=y/q, 1£y<D.  Then, for demand D 
and N<D, we have (using equation (12)) 
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where the third equality follows from 
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Incorporating part (c) of Lemma 3.1, we obtain 
ID(N)= D/q.  This completes the proof. 
 
 On average, one out of 1/q products is good 
when yields are binomial.  Thus, in average, it will 
take 1/q inspections to identify a good units 
regardless of the lot size.  Therefore, the average 
number of inspections is independent of the lot size.  
This result implies that the optimal lot size can be 
found without considering the inspection cost - a 
model which has been considered by many authors 
(see Sepheri, Silver, and New [5] and references 
therein). 
 
Example 3.1.  Consider a system with a setup cost 
a=40, a unit-processing cost b=1, and a binomial 
yield with parameter q=0.9.  The optimal lot sizes are 
given in Figure 3.1 for any nonnegative inspection 
cost. 
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Figure 3.1  The optimal lot sizes for demands from 
zero to 50 

 
 
 The optimal order size increases when the 
demand increases.  The reason is that the expected 
number of usable units in a lot  - qN -  increases in the 
lot size N.  Thus, a large lot means more usable units, 
which implies a large optimal lot size when the 
demand is large. 
 
 
4.  Other Yields 
 
In this section, we briefly discuss manufacturing 
models with discrete uniform (p(y, N)=1/(N+1), 
y=0,1,...,N), all-or-nothing (p(N, N)=1-p(0, N)=q, 
0<q<1), and interrupted geometric yields. 
 
4.1  Discrete  Uniform  Yield 
 
This type of yield has been studied by Anily [1] 
(1992).  She proved that (when inspection is free) the 
optimal lot size strictly increases in the demand, 
which (for discrete uniform yield) also implies that 
the optimal lot size is no less than the demand.  She 
also proved certain robustness properties: a small 
deviation in lot sizes will result in little extra 
production cost. 
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 We have studied the consequence of costly 
inspection on a manufacturing facility with discrete 
uniform yields.  We found out that the optimal lot size 
does not exceed that of free inspection.  However, the 
proof turns to be extremely tedious and we choose to 
not include it here.  Instead, we provide numerical 
results (Figure 4.1) which are of interest. 
 
Example 4.1 (Example 3.1 continued)  Consider a 
system with a setup cost a=40, a unit-processing cost 
b=1, and a discrete uniform yield.  The optimal lot 
sizes are given in Figure 4.1 for inspection cost from 
0 to 75.  The horizontal axis represents the inspection 
cost and the vertical axis represents the optimal lot 
size. 
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Figure 4.1  The optimal lot sizes for discrete uniform 

yields 
 
 Figure 4.1 shows that the optimal lot size 
varies as a function of the inspection cost.  This 
reveals a difference between the binomial yield and 
the discrete uniform yield.  Furthermore, Figure 4.1 
shows that the optimal lot size decreases when the 
inspection cost increases.  The reason is that the 
inspection cost is equivalent to the processing cost in 
certain sense.  Thus, an increase in inspection cost 
means an increase in the processing cost, which 
implies a smaller optimal lot size. Nonetheless, the 
optimal lot size is always as large as the demand. 
 
4.2  All-Or-Nothing Yield 
 

When the yields are all-or-nothing with (p(N, N)=1-
p(0,N)=q, 0<q<1), expression (10) becomes 
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Clearly, for this yield, the optimal lot size ND=D and 
UD = (a+bD+gD)/q.  Furthermore, there is no point 
for inspecting the whole lot when the yield 
distribution is known as all-or-nothing; all we need to 
do is inspect one unit.  Therefore, the optimal 
expected cost is given by UD = (a+bD+g)/q.  All-or-
nothing yield illustrates that inspecting the whole lot 
is not always optimal. 
 
4.3  Interrupted Geometric Yield 
 
Suppose that while processing a unit there is a 
constant probability q that the machine gets out of 
control, then, this unit and all units processed 
afterwards are defective, while all items produced 
prior to this event are good.  In such a case, 
 
 p(y, N) = (1-q)qy,  y = 0,1,...,N-1,  p(N, N) = qN. 
 
 It is interesting to observe that for interrupted 
geometric yield a major concern is the order in which 
items are selected for inspection.  The inspection 
scheduling rule should be chosen to minimize the 
expected number of inspections corresponding to a 
specific lot size.  At the present time the optimal 
lotsizing problem is still open.  For the random 
inspection scheme considered in this paper, the 
optimal lot size problem is illustrated by the 
following example. 
 
Example 4.2 (example 3.1 continued) Consider a 
system with a setup cost a=40, a unit-processing cost 
b=1, and an interrupted geometric yield with 
parameter q=0.9.  The optimal lot sizes are given in 
Figure 4.2 for inspection cost from 0 to 100.  The 
horizontal axis represents the inspection cost and the 
vertical axis represents the optimal lot size. 
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Figure 4.2  The optimal lot sizes for interrupted 

geometric yields 
 
 
 It is interesting to see that the optimal lot size 
converges to 1 when the inspection cost goes to 
infinity.  This observation has much to do with the 
property that any units following a defective one are 
defective.  Thus, when the inspection cost is larger, it 
is better to avoid inspecting defective units.  This 
characteristic also makes the interrupted geometric 
yield quite different from other yields. 
 
 
5.  Conclusion 
 
In this paper we have shown how to incorporate 
inspection cost in “rigid demand” models.  An 
efficient algorithm has been developed for computing 
the optimal lot size as well as the minimal mean total 
production costs.  Several models with special yield 
distributions are discussed as well.  As there is 
growing awareness of the importance of quality in 
manufacturing, it is clear that more manufacturers 
choose to carefully inspect their products, even 
though inspection may be quite expensive.  For this 
reason the study of  optimal lotsizing with costly 
inspection becomes more important. 
 
 By exploring a few special cases, we have 
learned that optimal lots might be dramatically 
different when yield distributions are different (see 
Figures 3.1, 4.1, and 4.2, and Section 4.2).  Knowing 
the type of production yield can be useful in making 
lotsizing decisions, even without exact calculations.  

For binomial yields units may be selected at random 
for inspection, and all units should be inspected - as 
long as there are demands remaining.  This is not 
always true for other type of yields as we have 
demonstrated in the last section.  In particular, the 
interrupted geometric yield reveals that the optimal 
lot size depends on the inspection procedure.  This 
area calls for additional research. 
 
 We also learned that the influence of the 
inspection cost on the optimal lot size may change 
dramatically when the yield distributions are 
different.  For binomial and all-or-nothing yields, the 
inspection cost have no influence at all.  For discrete 
uniform and interrupted geometric yields, the 
influence is significant. 
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In general, numerical results demonstrate that the 
optimal lot size decreases when the inspection cost 
increases (see Figures 4.1 and 4.2). 
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