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Abstract 
 
This paper studies a queueing system with a Markov arrival process and cyclic service times.  
When customers are distinguished by the types of their service times, the queueing processes 
experienced by different types of customers are different.  First, a computational approach is 
developed to find the distributions of the queue length and waiting time of each type of customer.  
The results are useful in comparing the queueing processes experienced by different types of 
customers.  Second, since a number of servers is utilized cyclically, the issue of how to sequence 
these servers is addressed.  Algorithms are proposed for computing the best and worst sequences 
of servers in terms of the mean queue length or the mean waiting time.  Numerical examples are 
presented to show in which sequence (of servers) the mean queue length or the mean waiting 
time is minimized or maximized for queueing systems with bursty and nonbursty input 
processes. 
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1. Introduction 
 
This paper considers a queueing system with K servers and a Markov arrival process (MAP).  
Customers form a single queue.  At any time only one of the K servers is utilized to serve 
customers while the other K-1 servers await their turns in an idle server pool.  After serving a 
customer, the server joins the idle server pool (at the end of the line), and one of the idle servers 
(at the head of the line) then becomes responsible for serving the next customer.  Thus, the 
servers serve customers cyclically.  This queueing model is denoted as MAP/G[K]/1. 
 
 The MAP/G[K]/1 queue is equivalent to a queueing system with a single server and K 
types of customers arriving cyclically.  The service times of the K types of customers are 
different, but the service times of the same type of customers have a common distribution 
function.  From this point of view, the MAP/G[K]/1 queue is a special case of the 
MMAP(K)/G(K)/1 considered in HE [3], where the superposition arrival process of K types of 
customers is modeled as a Markov arrival process with marked transitions (MMAP(K)).  In this 
paper, the queueing system of interest will be formulated both as a queueing system with one 
customer type and K servers and as a queueing system with K types of customers and a single 
server.  The former is used to analyze the queue lengths at departure epochs and the later is used 
to study the actual waiting time processes. 
 
 The MAP/G[K]/1 queue is a generalization of the M/G/1 queue with cyclic service times  
studied in Iravani and Posner [4] (1996) where arrivals have a Poisson process.  Iravani and 
Posner [4] focused on the queue length distribution and obtained the mean queue length.  A 
literature review and some applications of such queueing models are provided in their paper as 
well.  It is shown in [4] that the MAP/G[K]/1 queue finds applications in manufacturing and 
telecommunications industries.  Like [4], other early papers on cyclic queueing systems 
(Coffman and Gilbert [2], Morrice, Gajulapalli and Tayur [7], etc.) assumed a Poisson input 
process and considered the queue length and waiting time processes.  Unlike [4], this paper 
considers a more general input process and brings some new issues into consideration.  
 
 The queueing model of interest is also a special case of the queueing systems with service 
times depending on the arrival state (see Takine and Hasegawa [11] (1994) and HE [3] (1996)) 
and the queueing systems with a semi-Markovian service process (see Neuts [10] (1989)).  Many 
useful performance measures of such queueing systems have been discussed in the literature.  
Nonetheless, there are still some things to contribute.  First, the special structure of the queueing 
system should be exploited in order to get more explicit results.  Second, the queueing process of 
each type of customer needs to be studied.  Third, sequencing of servers so as to minimize or 
maximize the mean queue length (the mean waiting time) should be investigated.  These issues 
have not been addressed in the literature before. 
 
 This paper addresses the above issues from two directions.  First, the queue length and 
waiting time processes are investigated.  The focus is on the queue lengths (the waiting times) 
observed (experienced) by different types of customers served by different servers.  By analyzing 
the difference between these queueing processes, more insights into such queueing systems are 
learned.  In addition, some of the results about the queue length obtained in Iravani and Posner 
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[4] are generalized.  Second, sequencing of servers is studied.  It is easy to see that the queueing 
process and the waiting process have much to do with the sequence of servers because servers 
have different service times, but it is difficult to find the best and worst sequences of servers in 
which the mean queue length and the mean waiting time are minimized and maximized 
respectively.  Algorithms are developed for computing performance measures for each sequence 
of servers for the MAP/G[K]/1 queue.  Thus, the best and worst sequences can be found by 
enumeration.  However, the enumeration approach is inefficient.  Therefore, a queueing system 
with a deterministic arrival process and constant service times (D/D[K]/1) is analyzed in detail.  
The worst sequence in the D/D[K]/1 queue is found, while the best sequence can be found by 
solving an integer programming problem.  It is expected that the solutions of the D/D[K]/1 queue 
are close to the best and worst sequences of its corresponding MAP/G[K]/1 queue.  It is worth 
mentioning that both the best and the worst sequences are discussed to see whether sequencing of 
servers makes a difference and, if it does, how big the difference could be. 
 
 The rest of the paper is organized as follows.  In Section 2, the MAP/G[K]/1 queue is 
defined explicitly, along with the Markov arrival process and the Markov arrival process with 
marked transitions.  Sections 3 and 4 present results about the queue lengths and the waiting 
times respectively.  In Section 5, attempts are made to solve optimization problems concerning 
the sequence of servers with respect to the mean queue length (the mean waiting time).  Section 5 
is focused on the D/D[K]/1 queue.  In Section 6, numerical results are presented for several special 
cases.  A number of interesting conclusions about the queues observed by different types of 
customers and the sequences of servers are drawn from numerical experimentation.  Finally, in 
Section 7, some discussion of the obtained results and future research is presented. 
  
 
2.  The MAP/G[K]/1 Queue 
 
The queueing system of interest is defined explicitly in this section.  Two approaches are used to 
formulate the queueing system.  First, customers are distinguished at the departure epochs 
depending on what kind of service they have received.  This approach is convenient for analyzing 
the queue lengths at the departure epochs.  Second, customers are distinguished at their arrival 
epochs.  This approach is convenient for analyzing the actual waiting time processes. 
 
 In general, the MAP/G[K]/1 queue has a Markov arrival process and K servers.  The K 
servers serve customers cyclically (one server at a time).  Customers are served on a FCFS basis. 
 
 The Markov arrival process (MAP) was introduced by Neuts (see Neuts[8]) as a 
generalization of a phase-type renewal process (see Neuts [9]).  It is defined on a finite Markov 
process J(t) (called the underlying Markov process) which has m states and an irreducible 
infinitesimal generator D.  In the MAP, the sojourn time in state j is exponentially distributed 
with parameter  (-D0)j,j  (³-(D)j,j).  At the end of the sojourn time in state j,  there occurs a 
transition to another (possibly the same) state and that transition may or may not correspond to an 
arrival.  Let D0  be the (matrix) rate of transitions in the phase process that does not generate 
arrivals and D1  be the rate of arrivals.  The matrix D0  has strictly negative diagonal elements 
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and nonnegative off-diagonal elements, the matrix D1  is a nonnegative matrix, and  D = D0  + 
D1. 
 
 Let q  be the stationary probability vector of the Markov process with generator D, i.e., 
q satisfies qD = 0 and q e = 1, where e  is a column vector of 1's.  The stationary arrival rate is 
then given as l q= D e1 .  Note that, throughout this paper, vectors are underlined. 
 
 The service times of the K servers have distribution functions Fk(x),  and Laplace Stieltjes 
transform (LST) f*

k(x), 1£k£K.  Since the K servers serve a single queue cyclically, the service 
time of a customer is determined by the server which serves the customer.  Let 1/mk  be the mean 
service time of server k and denote by rk=l/mk , 1£k£K.    The traffic intensity of the queueing 
system is defined as  
 

 r r=
=

å1
1K k

k

K

( ).  (2.1) 

 
 Let X(t) be the queue length (including the one in service, if any) at time t; I(t) the index 
of the server in use at time t; and J(t) be the phase of the underlying Markov chain at time t.  X(t) 
Î {0, 1, 2, ...}, I(t) Î {1, 2, ..., K}, and J(t) Î {1, 2, ..., m}.  Let tn  be the departure epoch of the 
nth customer, n³0.  It is easy to see that ( ( ), ( ), ( ))X I Jn n nt t t+ - +  is a Markov chain, which is 
called the embedded Markov chain of the process (X(t), I(t), J(t)) at departure epochs.  To 
determine the transition matrix of the embedded Markov chain, the counting process of the 
Markov arrival process is defined.  Let 
 
 p n t n t J t j J i i j mi j, ( , ) { arrivals in ( , ), ( ) | ( ) }, , .= = = £ £P         0 0 1  (2.2) 
 
Let P(n, t) be an m´m matrix with elements pi,j(n, t).  Define the matrix generating function 
 

 P z t P n t z
n

n* ( , ) ( , )=
=

¥

å
0

. (2.3) 

 
It has been proved that (see Lucantoni [5]) 
 
 P z t D zD t* ( , ) exp{( ) }.= +0 1  (2.4) 
 
The transition matrix of the embedded Markov chain ( ( ), ( ), ( ))X I Jn n nt t t+ - +  can be written as 
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This is a Markov chain of M/G/1 type, which has been studied extensively (see Neuts [10]). 
 
 Although some useful results can be obtained by analyzing the embedded Markov chain, 
it is inconvenient to study the waiting time processes.  Thus, the following formulation of the 
queueing system, which distinguishes customers at arrival epochs, is established.  Suppose there 
are K types of customers and one server.  The K types of customers are distinguished by marking 
the arrivals of the MAP cyclically, i.e, 1, 2, ..., K, 1, 2, ..., etc.  All customers are served based on 
FCFS.  The service time is determined by the type of the customers.  Type k customers have a 
common service time distribution function Fk(x), 1£k£K.  As was discussed in Section 1, this 
definition of the system is equivalent to the previous one. 
 
 Consider a Markov arrival process with marked transitions (MMAP(K)) (see HE [3]) with 
a matrix representation ( $ , $ , , $ )D D DK0 1 L , where $D0  is an mK´mK matrix with all diagonal 

blocks D0  and, $Dk , 1£k£K, are mK´mK matrices.  Partition $Dk  into m´m blocks.  Then all the 

blocks of $Dk  are zero matrices execpt that the (k, k+1)st block is D1, i.e., 
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The matrix $Dk  represents the arrival rate of the customers with a service time distribution Fk(x), 
1£k£K.  Apparently, this marked MAP is characterized by the cyclic nature of its arrivals.  The 
MAP ( $D0 , D1 ), where D D D DK1 1 2= + + × × ×$ $ $ , is the same as the MAP (D0, D1).  The new 

underlying Markov process D D= $
0 + D1   has a state space {(k, j), 1£k£K, 1£j£m}.  The index 

“k” no longer represents the type of server in use, but the type of incoming customer (the next 
arrival).  The stationary distribution of this underlying Markov process is $ ( , , ) /q q q= × × × K . 
 
 With this setting, results obtained in HE [3] (or Takine and Hasegawa [11]) can be used 
to study the busy cycle, idle period, and waiting time processes of the cyclic queueing system of 
interest.  Some results about the waiting time processes will be presented in Section 4. 
 
 
3.  The Queue Length 
 
This section focuses on the queue length at departure epochs.  The main issues are the 
computation of the probability that the system is empty at a departure epoch and, the queues 
observed by different types of customers as well as their differences. 
 
 Let, for n³0, 1£k£K, and 1£j£m, 
 
 x X n I k J j X I Jn k j l n n n, , lim { ( ) , ( ) , ( ) | ( ), ( ), ( )}= + = - = + =

®¥
P       t t t 0 0 0 , 

  xn,k = (xn,k,1, ..., xn,k,m),     xn = (xn,1, ..., xn,K),    and x = (x0, x1, ...). 

The vector x is the stationary distribution of the embedded Markov chain.  Therefore, x satisfies 

xP = x and xe = 1.  Let  X z x zn
n

n

* ( ) =
=

¥

å
0

, 0£z£1.  Following routine procedures, it can be shown 

that 

 X z zI P z x zP z P z* * * *( )( ( )) ( $ ( ) ( ))- = -0 , (3.1) 
 
where  
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and, for 1£k£K, 

 P zk
* ( ) = dF t D zD xk ( ) exp{( ) )},0 1

0

+
¥

ò
 

(3.4) 

 $ ( )*P zk = ( )- -D D0

1

1 dF t D zD xk ( ) exp{( ) )0 1
0

+
¥

ò = ( ) ( )*- -D D P zk0

1

1 . 

 
After some routine simplifications, the following basic equation can be established. 
 
 X z zI P z x z D D D D I P z( )( ( )) ( diag , , ) ) ( )* *- = - - -- -

0 0
1

1 0
1

1 (  . . .  . (3.5) 
 
 Using existing results and algorithms (see Neuts [10] and Lucantoni [6]), the distribution 
of the queue length and its moments can be found.  For completeness, formulas used in 
computation are presented in Appendix D for the mean queue length.  Next, by exploiting the 
special structure of the embedded Markov chain P, the computation of the vector x0  is made 
easier and an analysis of the queues observed by different types of customers is conducted. 
 
 Let G be the minimal nonnegative solution to the equation 
 

 G P Gn
n

n=
=

¥

å
0

.  (3.5)  

 
The ((k, i), (k¢, j))th element of the matrix G is the probability that the Markov chain P enters 
level q-1 in the state (q-1, k¢, j), given that the Markov chain was in state (q, k, i) initially, 1£k, 
k’£K, 1£i, j£m.  Let L = - -( $ )D D G0

1
1 .  According to Neuts [10], matrix L is a stochastic matrix 

and x x0 0L = .  To determine the vector x0, the following result is useful. 
 
Lemma 3.1.  lim ( ( ), ( ))[ ( )] [ / ( $ )]*

z
diag D z D z zI P z e e

®

-- = -
1

1 1  . . . ,  l r , where D(z) = D0+zD1. 
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Proof.  The proof is based on the special structure of the matrix P z* ( ) .  See Appendix B. 
 
 Using Lemma 3.1, the following result is obtained immediately. 
 

Theorem 3.2    x D e0 0
1 1( $ )- =

-- r
l

, where $D0  is defined in Section 2. 

 
Proof.  The result is obtained by using Lemma 3.1, equation (3.4), and X(1)e = 1. 
 
 With Theorem 3.2, an algorithm for computing vector x0 can be developed.  Once x0 is 
found, some other performance measures can be obtained accordingly (see Neuts [10]). 
 
Remark:  Let y

0   be the probability vector that the queue is empty at an arbitrary time.  It can be 

proved that y x D
0 0 0

1= - -l ( $ ) .  Then y
0   e = 1- r, i.e., the probability that the queueing system is 

empty at an arbitrary time is 1-r.  This result is obtained in Iravani and Posner [4] for cyclic 
queueing systems with a Poisson arrival process. 
 
Remark:  Theorem 3.2 was obtained in Lucantoni [5] for a standard MAP/G/1 queue in which 
there is only one type of customer (or service). 
 
 Next, a result of the queues observed by different types of customers is presented.  Define 

X k z* ( , ) = x zn k
n

n
,

=

¥

å
0

, 1 £ £k K  and  X z X z X K z* * *( ) ( ( , ), , ( , ))= 1  . . .  .  It is easy to prove, and 

intuitively it is true, that X k e K( , ) /1 1= .  Therefore, X*(k, z)K is the generation function of the 
queue length right after the departure of an arbitrary type k customer.  
 
Theorem 3.3.  The difference between the mean queue lengths left behind by two types of 
customers is given by, for 1£k£K, 
 

  
K X k e X k e K x e K x D D X k

P k I D e D e
k k k[ ' ( , ) ' ( , ) ] [ ( ) ( , )]

[ ' ( , ) ]( ) .
, ,

*

1 1 1 1 1 1

1 1
0 1 0 1 0

1
1

1
1

- - = - + + - -

× - - +

- -
-

-

r

q

+

                                                                          
  (3.6) 

 
Proof.  See Appendix B.  The corresponding constant vectors {X*(k, 1), 1£k£K} are also given in 
Appendix B. 
 
 For cases with a Poisson input process, equation (3.6) is simplified to 
 
 K X k X k Kx k k[ ' ( , ) ' ( , )]* *

,1 1 1 10 1- - = + -- r  . (3.7) 
 
Equations (3.6) and (3.7) show that the computation of the differences between mean queue 
lengths is simpler than that of the mean queue lengths themselves (see Appendices B and D). 
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Remark:   Higher moments of the queue length will not be discussed further since little more 
detail has been obtained than those for the Markov chains of M/G/1 type presented in Neuts [10].  
Therefore, readers are referred to [10] for more detail (see Appendix D for a formula for the 
mean queue length). 
 
 
4.  Waiting times 
 
When the queueing system of interest is interpreted as a queueing system having K types of 
customers (that arrive at the system cyclically), results in HE [3] (also see Takine and Hasegawa 
[11]) can be applied to study the (actual) waiting time processes of different types of customers.  
In this section, the LST of the waiting time of each type of customers is derived.  The difference 
between the mean waiting times is derived as well.  In addition, necessary results for developing 
algorithms are given. 
 
 Let W sa k j, ,

* ( )  be the LST of the waiting time of an arbitrary customer, given that the state 

of the underlying Markov process $D  right after the arrival of the customer is (k, j).  According to 
definition, the state of the underlying Markov process is in one of the states of {(k, j), 1£j£m} 
right after the arrival of a type k-1 customer.  Since the index “k” represents the type of incoming 
customer, W sa k j, ,

* ( )  is the LST of the waiting time of an arbitrary type k-1 customer.  (Note that 

W sa j, ,
* ( )1  is for an arbitrary type K customer.)  Let W sa k,

* ( )  = ( ( ), ... ( )), ,
*

, ,
*W s W sa k a k m1  ,  and W sa

* ( )  
= ( ( ), . . . ( )),

*
,

*W s W sa a K1  ,  .  It has been obtained in HE [3] that 
 

 W s s D sI D f s D Da k k
k

K
* *( ) $ [ $ ( ) $ ]= - + +- -

=
åp 0 0

1
0

1

1
1 ,  (4.1) 

 
where p0 is the (vector) probability that the queueing system is empty at a departure epoch, p0 = 
(p0,1, ..., p0,K ), and p0,k = (p0,k,j, ..., p0,k,m ).  Notice that p0 and x0 are different.  For x0, its index 
“k” represents the type of the server just used (not the current server).  For p0, its index “k” 
represents the type of the incoming customer when an arbitrary customer (its type is unknown) 
completes its service.  Algorithms for computing p0 and x0 are different as well. 
 
 Using the special structure of D1 , $D1 , $D2 , ..., $DK  defined in (2.8), W*

a(s) can be 
simplified as follows: 
 

[ $ ( ) $ ]*sI D f s Dk
k

K

k+ +
=

-å0
1

1
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+

+

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷-

-

0 1 1

1 1

1 0

1*

*

*

( )

( )
( )

O O

O

 
 



 11

= -

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷

æ

è

ç
ç
ç
çç

ö

ø

÷
÷
÷
÷÷

-

-

I

D s f s

D s f s
D s f s

K

K

0

0

1

1

1* *

* *

* *

( ) ( )

( ) ( )
( ) ( )

O O

O
diag sI D sI D[( ) , , ( ) ]+ +- -

0
1

0
1L  

 

= ( [ ( )] )J s i

i

K

=

-

å
0

1

diag[ ( )I - -D 1 , ..., ( )I - -D 1 ] diag sI D sI D(( ) , , ( ) )+ +- -
0

1
0

1L  

  

= ( [ ( )] )J s i

i

K

=

-

å
0

1

diag[ ( )I - -D 1 ( )sI D+ -
0

1 , ..., ( )I - -D 1 ( )sI D+ -
0

1 ], (4.2) 

 
where  D s sI D D* ( ) ( )= - + -

0
1

1   and  
 

 J s

D s f s

D s f s
D s f s

K

K

( )

( ) ( )

( ) ( )
( ) ( )

* *

* *

* *

=

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷-

-

0

0

1

1

1

O O

O
,  (4.3) 

 
and 

 D =
=

Õ f sk
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K
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1

[ ( ) ] .- + -sI D D K
0

1
1  (4.4)  

 
Then it follows 
 

        s Dp 0 0
1$ - ( $sI D+ +0 f s Dk

k

K

k
* ( ) $ )

=

-å
0

1    

        = s p 0 0
1$D- [ ( )]J s k
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K

=

-

å
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1

[( )I - -D 1 ( )sI D+ -
0

1 , ..., ( )I - -D 1 ( )sI D+ -
0
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This leads to, for 1£k£K, 
 

  W sa k,
* ( ) = - -

= + -
ås Dj

j k k j

p 0 0
1

1 1
,

, ,...,

f si
i k j

*

,...

( )
=
Õ [ ( )]*D s j i- +1 ( ) ( )I sI D D- +- -D 1

0
1

1 .  (4.6) 

 
Note that the LST of the waiting time of type k-1 customers is given by KW*

a,k(s).  For brevity, 
the moments of the waiting times are not discussed.  Only a formula for the mean waiting time is 
presented in Appendix D for use in Section 6.  Next, the difference between the mean waiting 
times is given. 
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Theorem 4.1.  The difference between the mean waiting times of an arbitrary type k and an 
arbitrary type k-1 customer is given as, for 1£k£K, 
 

  K W W ea k a k[( ' ( )) ( ' ( ))],
*

,
*- - -+1 0 0  = K D ek

kp
r
l0 0

1 11
, ( )- -

-- - . (4.7) 

 
Proof.  See appendix C. 
 
 Similar to the mean queue length case, the computation of the difference between mean 
waiting times is easier.  Numerical examples are given in Section 6 to show when the difference 
is significant and how large the difference could be. 
 
 The computation of the mean waiting time (see Appendix D) and equation (4.7) depends 
on the vector p0, which can be found using results obtained in HE [3].  Denote by G  the minimal 
nonnegative solution to the equation 
 

 G diag dF x I dF x I dF x I T T G xK=
¥

ò  ,   . . . ,  +
0

1 3 0 1( ( ) ( ) , ( ) ) exp{( ) },  (4.8) 

 
where T0  and T1  are mK2´mK2 matrices defined as 
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Let g > -max{ ( ) }.

i iiD0  
Using exp{( ) }T T G x0 1+ = e I T T G xx- + +g g gexp{[ ( / )( )] }1 0 1 , 

 

 
G diag e x

n
e x

n
I T T G

n

n n

K
n

x x
dF x I dF x I=

=

- -
 . . .   

0 0
1

0
0 1

1¥ ¥ ¥

å ò ò + +[
! !

[ ( )] .( ) , ( ) ]
g g

g
  (4.9) 

 
Solve the following equation for an mK2 - dimension vector ~ (~ , , ~ ), ,p p p0 0 1 0=   L K , 
 

 ~ ( ) ~ and ~ ( ) .p p p
r

l0 0
1

1 0 0 0
1 1

- = - =
-- -T T G T e       (4.10) 

 
Then p0 is obtained as p p p0 0 1 0= + +~ ~

, ,   L K .  With equations (4.9) and (4.10), an efficient 
algorithm can be developed for computing p0  (see Lucantoni [5]) as well as an algorithm for the 
mean waiting times. 
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 ~ ( ) ~ and ~ ( ) .p p p
r

l0 0
1

1 0 0 0
1 1

- = - =
-- -T T G T e       (4.10) 

 
Then p0 is obtained as p p p0 0 1 0= + +~ ~

, ,   L K .  With equations (4.9) and (4.10), an efficient 
algorithm can be developed for computing p0  (see Lucantoni [5]) as well as an algorithm for the 
mean waiting times. 
 
 
5.  Sequencing of servers and system optimization 
 
In this section, an attempt is made to determine the best and worst sequences of the servers in 
which the mean waiting time and the mean queue length are minimized and maximized, 
respectively. 
 
 It seems difficult to obtain an explicit relationship between the service sequence and the 
mean waiting time or the mean queue length because of the complexity of the queueing system of 
interest.  The results obtained in Sections 3 and 4 and Appendix D can be used for computing the 
mean waiting time for each sequence of servers.  The search for the best and worst squences can 
be done by enumerating all the possible sequences.  However, this approach is time consuming 
and expensive.  In order to get some insights into such problems, a D/D[K]/1 cyclic queue is 
constructed and studied.  The interarrival time of the D/D[K]/1 queue is the mean interarrival time 
{1/l} of the original MAP/G[K]/1 cyclic queue.  The service times of the D/D[K]/1 queue are the 
mean service times {1/mk, 1£k£K} of the original MAP/G[K]/1 queue.  Although the MAP/G[K]/1 
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queue and its corresponding D/D[K]/1 queue are dramatically different, they do share some 
common features.  It is expected that their best and worst sequences are the same or close to each 
other.  If their best and worst sequences are close, the solutions of the D/D[K]/1 queue can be used 
as approximations for the MAP/G[K]/1 queue.  An advantage of this approach is that the solutions 
of the D/D[K]/1 queue are much easier to find.  Therefore, this section focuses on the D/D[K]/1 
queue.  Algorithms shall be developed for computing the best and worst sequences for this 
special case.  Numerical results will be presented in Section 6. 
 
 Because of Little’s law on the relationship between the mean queue length and the mean 
waiting time,  discussions in terms of the mean queue length and the mean waiting time are 
equivalent.  Thus, only the mean waiting time will be discussed. 
 
The D/D[K]/1 cyclic queue  Let vk be the service time of server k, k=1, 2, ..., K, u the interarrival 
time between two consecutive customers, and Wn the waiting time of the nth customer, n³0.  It 
follows 
 
 W W W v u nn n n0 10 1= = + - ³-

+, ( ) , ,          (5.1) 
 
where v v k K nnK k k+ = = ³, , , . . . , ,       1 2 1 .  To ensure the waiting times are finite, it is assumed 
that v v v KuK1 2+ + × × × + < , which is equivalent to saying that the traffic intensity r is less one.  
Let y v uk k= - , k=1, 2, ..., K.  Equation (5.1) becomes: 
 
 W y y y y y y y y yn n n n n n n n n= + + + + + × × × +- - - -max( , , , , ... , )0 1 1 2 1 1     , (5.2) 
 
where y ynK k k+ = , for  k=1, 2, ..., K, and n³0. 
 
 The condition y y yK1 2 0+ + × × × + <  and the periodicity of the sequence {yn} imply that 
there is a positive integer N, such that  WN = 0.  The value of waiting time Wn from N onward, 
becomes periodic with a period of K, i.e., WnK+k+N = Wk+N .  Hence, for the optimal solution, it is 
sufficient to consider a single period.  For convenience, let N=0.  {W1, W2, ..., WK,} are used to 
denote the waiting times in a cycle with WK  = 0 and, are given by equation (5.2).  Let   
 
 W W W WK= + + × × × +1 2  (5.3) 
 
Then W/K corresponds to the long term average waiting time.  The issue of interest is to find the 
sequences which minimize and maximize W respectively.  First, the following proposition gives 
the worst squence of servers. 
  
Proposition 5.1   When the servers are sqeuenced such that y1³y2³ ... ³yK, then the 
corresponding total waiting time of one cycle, W, is the largest among all the squences. 
 
Proof:  From the decreasing nature of  {yk ,  k = 1, 2, ..., K},  for the stated sequence of servers, 
equation (5.2) becomes 
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 W y y yk k= + + × × ×max( , )0 1 2 , k K= 1 2, , ......, . (5.4) 
 
Let W1*, W2*, ..., and WK*, where WK* = 0, be the waiting times of one cycle for an arbitrary 
sequence of servers.  Then 
 
 W0 0* = ,   Wk

*  = max{0, Wk-1
*  + xk }, k K= 1 2, , ......, , (5.5) 

 
where (x1, x2, ..., xK) is a permutation of (y1, y2, ..., yK).  Denoted by W*   = W1

*+W2
*+ ... +WK

* .  It 
needs to be shown that W*£ W. 
 
 Since W0

* = 0 = WK
*, the waiting time sequence Wk *, k K= 1, .. . ,  can be broken into P  

groups, 1 £ £P K , such that only the last element of each group is zero.  Clearly, a group of size 
one only contains a zero element.  For the value of W *, it is sufficient to consider only those 
groups of size two or larger.  To be more specific, assume that the Lth group contains 
W W Wn n n kL L L L+ + +1 2

* * *, ,  . . . ,  , where W Wn k nL L L+ = =* * 0  and Wn kL + >* 0 , k=1, 2, ..., kL –1,  
2 £ £k KL , L = 1, 2, ..., P  and 2£ k1 +k2 + ...+ kP  £ K.  It follows from equation (5.5) 
 
 0 < +Wn kL

* = x xn n kL L+ ++ × × × +1  , k k L= -1 1, . . . , , (5.6) 
 
which implies 
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By its decreasing nature, the sum of any n  elements of  {y1 ,  y2 , ...,  yK , 1 £ £n K } is less or 
equal to the sum of its first n elements. Hence when n = k1 +k2 + ...+kL-1  – (L–1)+ k , from 
equations (5.7) and (5.4), 
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Therefore, 
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This completes the proof. 
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Notice:  The solution of the worst sequence may not be unique. 
 
 While the worst sequence is simple and easy to find, the best sequence is usually 
complicated.  In fact, the search for the best sequence is an NP hard problem except for a few 
special cases (see Chen [1]).  Thus, no polynomial algorithm can be developed for computing the 
best sequence.  Nonetheless, when the number of servers to be sequenced is not large (less than 
30), the search for the best sequence can be done by formulating the problem as an integer 
program and solving it using existing algorithms and software (such as CPLEX or LINDO).  The 
integer programming problem can be formulated as follows. 
 

 

min

. .

( . ) , , { , , ..., };

( . ) ( ), , { , , ... , };

{ , }, , , { , , ... , };
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 (5.10) 

 
where M is a constant which can be chosen as M = max{0, y1}+...+max{0, yK}+max{1£k£K} 
{max{0, yk}}.  In this formulation, constraints (s.1) construct subtours;  constraints (s.2) along 
with the objective calculate the max{0, yi + wk} when i follows k in the sequence.  (See Lawler, 
Lenstra, Rinnooy Kan, and Shmoys [6] for more details about such integer programming 
formulations.) 
 
 The solution to (5.10) consists of a set of subtours, each subtour representing a cyclic 
sequencing of a subset of servers.  In the solution, xi,k = 1 means that yk follows yi in a cycle.  The 
cycles can therefore be easily constructed from the {xi,k, 1£i, k£K} by starting with any xi,k,= 1, 
and finding the succeeding members of the sequence by choosing j such that xk,j,= 1, etc. 
 
 Sequencing of servers becomes even more complicated when randomness is considered.  
Based on the results of the D/D[K]/1 queue, it seems unrealistic to obtain any analytical results of 
the best sequence for the MAP/G[K]/1 queue immediately.  Therefore, further discussion of the 
MAP/G[K]/1 queue will continue in Section 6 with numerical examples. 
 
Remark:  The worst sequence of servers is of interest because, when compared to the best 
sequence, it provides information about whether or not one should pay special attention to the 
issue of server sequencing.  For example, when the difference between the mean waiting times 
associated with the best and worst sequences is insignificant, sequencing of servers is less 
important.  On the other hand, when the difference is significant, some effort must be made to 
avoid the worst sequence or nearly worst sequences so as to improve system efficiency. 
 
 
6.  Numerical Examples 
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In this section, two examples are presented with some detailed discussions.  The queue lengths 
(waiting times) observed by different types of customers of some MAP/G[K]/1 queues are studied 
and compared.  Special attention goes to the comparison of the queueing systems with the best 
and worst sequences as well as their deterministic counterparts.  Some conclusions are drawn 
with regard to when sequencing of servers is important in terms of the mean waiting time. 
 
Example 6.1  The M/M[K]/1 cyclic queue  In this queueing system, customers arrive according to 
a Poisson process with parameter l.  The service times of the K servers are assumed to be 
exponential with service rates m1, ..., mK respectively.  Let q(t) be the queue length and I(t) be the 
type of the service at time t.  It is clear that (q(t), I(t)) is a quasi birth-and-death process with an 
infinitesimal generator 
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A00  = –lI, A0  = lI ,  and A1 = –lI  – diag( m1, m2 , ..., mK).  Let x P q t q I t kq k t. lim { ( ) , ( ) }= = =

®¥
, 

xq  = (xq,1 , ..., xq,K ) and x = (x0, x1, ... ), which satisfies  xQ = 0 and xe = 1.   Let R  be the minimal 
nonnegative solution of the matrix equation 
 
 A RA R A0 1

2
2 0+ + =  (6.2) 

 
By Neuts [9],  the stationary distribution x is given as xn  = x1 R

n-1
, for n³1, where x0  and x1  are 

the unique solution to the following equation: 
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(6.3) 

Expanding xQ = 0 in terms of {xn, n³1} and adding all equations together: 
 
 y A2  = y  diag( m1, m2 , ..., mK ), (6.4) 
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The mean queue length at an arbitrary departure epoch (and the arrival epoch) of a type k 
customer is given by L xk k/ $ .  The mean queue length at an arbitrary departure epoch (an arrival 
epoch or an arbitrary time) is given by L = L1 + ... + LK because of the PASTA property. 
 
 Since this system is represented by a quasi birth-and-death process, the solutions are 
much simpler.  As a result, a simple algorithm is developed for computing the mean queue length 
and the mean waiting time, based on equations from (6.2) to (6.6).  Briefly, the following steps 
are involved: 
 

1. Input system parameters: {K, l, m1, ..., mK } and construct the transition blocks in the 
infinitesimal generator (see equation (6.2)). 

2. Compute the matrix R using equation (6.2). 
3. Solve equation (6.3) for x0  and x1, which are useful to find the difference between 

mean queue lengths of different types of customers. 
4. Use equation (6.6) to find the mean queue length.  The mean waiting time W is 

obtained by using Little’s law: L = r + lW. 
 
 Table 6.1 gives the difference between the mean queue lengths of different types of 
customers: L x L xk k k k/ $ / $- - -1 1 .  Notice that L L x xK K0 0= =  and $ $   Each row of Table 6.1 
shows an example.  The last column in Table 6.1 gives the (overall) mean queue length. 
 

Table 6.1  The difference between mean queue lengths 
 

 
K 

 
l      (r) 

Service rate 
(m1, m2, ..., mK) 

L x L xk k k k/ $ / $- - -1 1  
k=1, 2, ..., K 

 
L 

3 6      (0.97) (4        6      14)    0.76  0.99   -1.75  45.05 
3 5      (0.77) (6        4      20)    0.88  0.82   -1.7    3.91 
3 4      (0.71) (83     39       2)   -3.8   0.03   3.77    4.15 
4  0.3   (0.81) (0.25    0.45   0.22   10)   4.12  -0.3    0.99    -4.81    5.20 
4 0.04 (0.99) (0.024  0.14   0.022   0.2)   4.34  -3.2     3.42   -4.56 173.4 
4 0.1   (0.95) (0.06    0.3    0.07      0.25)   2.15  -2.3     2.03   -1.87  26.54 
5 0.04 (0.96) (0.033  0.05  0.03  0.028   1) 11.23  -0.28   0.61   0.69  -12.2  29.43 
5 0.5   (0.89) (0.4      0.8    0.6    0.3      5)   3.85  -0.62   0.12   1.32  -4.67    9.93 
5 1      (0.69) (2         0.9    8       0.6    20)   1.38   1.02  -0.98   2.51  -2.94    3.02 
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 It is clear that the difference between the mean queue lengths is significant, especially 
when the service times of different types of customers are dramatically different.  For example, 
the last row in Table 1 shows that the mean queue length after a customer with a service time 
0.05 (service rate 20) is much shorter than the mean queue length after other types of service.  
This further implies that the average waiting time of the customers served by other servers is 
shorter than the average waiting time of the customers served by the fastest server, an interesting 
observation which will be discussed further in Example 6.2. 
 
 Table 6.2 presents the best and worst sequences of servers of the M/M[K]/1 queues and 
their corresponding D/D[K]/1 queues.  Every two consecutive rows in Table 6.2 show the results 
of an example.  The first row shows the results of the M/M[K]/1 queue and the second row shows 
the results of its corresponding D/D[K]/1 queue.  Notice that 1/l and (1/m1,, 1/m2,, ..., 1/mK) are the 
interarrival time and the service times of the D/D[K]/1 queue respectively.  Lmin  and Lmax  are the 
mean queue lengths corresponding to the best and worst sequences respectively.  For the 
M/M[K]/1 queue, Lmin  and Lmax  are obtained using equation (6.6).  For the D/D[K]/1 queues, Lmin  
and Lmax  are obtained using equation (5.3). 

 
Table 6.2  The best and worst sequences, and their mean queue lengths 

 
K l 

(r) 
 The best sequence 

(m1, m2, ..., mK) 
 

Lmin 
The worst sequence 

(m1, m2, ..., mK) 
 

Lmax 
3   6  (4    6   14) 45.05 (4      6   14) 45.06 
 (0.97)  (4    6   14) 1.132 (4      6   14) 1.300 
3   5  (6    4   20) 3.914 (4      6   20) 3.921 
 (0.77)  (6    4   20) 0.85 (4      6   20) 0.88 
3   4 (83  39    2) 4.149 (39   83    2) 4.158 
 (0.71) (83  39    2) 1.054 (39   83    2) 1.078 
4    0.3 (0.25   0.45   0.22   10) 5.204 (0.22   0.25   0.45   10) 5.245 
 (0.81) (0.25   0.45   0.22   10) 0.951 (0.22   0.25   0.45   10) 1.100 
4   0.04 (0.024  0.14  0.022  0.2) 173.4 (0.022  0.024  0.14  0.2) 173.5 
 (0.99) (0.024  0.14  0.022  0.2) 1.358 (0.022  0.024  0.14  0.2) 1.750 
4   0.1 (0.06    0.3    0.07    0.25) 26.54 (0.06  0.07  0.25  0.3) 26.59 
 (0.95) (0.06    0.3    0.07    0.25) 1.225 (0.06  0.07  0.25  0.3) 1.499 
5   0.04 (0.033  0.05  0.03  0.028  1) 29.43 (0.028  0.03  0.033  0.05  1) 29.48 
 (0.96) (0.033  0.05  0.03  0.028  1) 1.229 (0.028  0.03  0.033 0.05  1) 1.550 
5   0.5 (0.4  0.8   0.6  0.3   5) 9.937 (0.4   0.3   0.6   0.8   5) 10.00 
 (0.89) (0.4  0.8   0.6  0.3   5) 1.073 (0.3   0.4   0.6   0.8   5) 1.432 
5   1 (2     0.9    8    0.6   20) 2.916 (0.6    0.9    2    8    20)  3.019 
 (0.69) (2     0.9   8     0.6   20) 0.845 (0.6    0.9    2    8    20) 1.034 

 
 The results in Table 6.2 and other examples conducted show that, in general, the 
difference between the mean waiting times of the best and worst sequences for the stochastic 
models (M/M[K]/1) are relatively small.  Thus, sequencing of servers is not an important factor.  
The reason is that the input process is a Poisson process where the variation coefficient is 1, 
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which is not small.  Such a variation in the input process reduces the influence of the sequence of 
servers on the queueing process.  On the other hand, the difference between the mean waiting 
times could be considerably large for the deterministic models.  Thus, sequencing of servers is 
more important when the service times and interarrival times are deterministic. 
 
 Second, the mean waiting times of the stochastic queueing systems (M/M[K]/1) are 
dramatically larger than the mean waiting times of their corresponding deterministic ones.  
Apparently, variations in the input process and the service process play an important role.  A 
conclusion drawn from Table 6.2 is that the higher the variation is, the longer the waiting time 
would be. 
 
 Third, it is shown that the best and worst sequences of the M/M[K]/1 queue and it 
corresponding D/D[K]/1 queue are the same except for one case (see the fourth line from the 
bottom of Table 6.2).  In fact, results of an extensive numerical experimentation demonstrate that 
the solutions are either the same or close.  Thus, instead of working on the M/M[K]/1 queue, it is 
good enough to find the best (worst) sequence of its corresponding deterministic model, then use 
the solutions of the deterministic model as approximations of the M/M[K]/1 queue.  This approach 
does not guarantee an optimal solution for the M/M[K]/1 queue but it is efficient.  Besides, Table 
6.2 shows that this approach works well most of the time. 
 
Example 6.2  Consider a MAP/D[K]/1 queue in which the service times are constants {d1, d2, ..., 
dK}.  This example gets special attention since it has potential applications in telecommunication 
industry, especially ATM systems.  The focus of this example is on the influence of the input 
process on waiting time processes and the sequencing of servers.  Bursty, nonbursty, and 
moderate input processes are considered together.  A brief description of the algorithm used in 
computation is given as follows. 
 

1. Input system parameters: {K, m1, ..., mK,, m, D0, D1} and compute related constants 
(see Section 4 for details). 

2. Compute the matrix G  using equation (4.9). 
3. Compute the vector p0 using equation (4.10). 
4. Calculate the difference between mean waiting times using equation (4.7). 
5. Calculate the mean waiting time using equations (D.9) and (D.11). 

 
For this system, computation of the matrix G becomes simpler since fk*(s)=exp{-sdk} and 
 

 a
n

d d k K nn k k
n

k, !
( ) exp{ }, , .= - £ £ ³

1 1 0g g      (6.7) 

 
 Tables 6.3 and 6.4 present results for several examples with deterministic service times.  
Two sets of deterministic service times are considered: Set I = {0.25, 0.167, 0.07} and Set II = 
{1, 0.7, 0.6, 0.05}.  Four input processes are used: a bursty process (BURST), a Poisson process 
(Poisson), an Erlang process (Erlang(3)), and a deterministic process (D).  The input processes 
are chosen to investigate the influence of the input process on the sequence of servers in terms of 
the mean waiting time. 
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 In Table 6.3, the difference between the waiting times of different types (k and k-1) of 
customers, K W e W ek k[( ( )) ( ( )) ]* *- - -+1 0 0 , is presented.  Parameter l is the arrival rate of the 
Markov arrival process.  The last column of Table 6.3 shows the overall mean waiting time. 
 

Table 6.3  The difference between mean waiting times 
 

l,  r, and 
Service times 

Input process The differences 
k = 1, 2, ..., K 

 
EWa 

    BURST   -0.004     -0.086        0.09 8.394 
  l = 6,  r = 0.95    Poisson   -0.0035   -0.0865      0.09 2.987 
{0.167, 0.25, 0.07}    Erlang(3)   -0.0027   -0.0843      0.087 0.985 
    D   -0.081      0.              0.081 0.027 

    BURST  -0.097  -0.003  -0.235   0.336 0.343 
  l = 0.5,  r = 0.29    Poisson  -0.070   0.003   -0.145  0.217 0.148 
 {0.7, 0.6, 1, 0.05}    Erlang(3)  -0.017   0.006   -0.050  0.062 0.023 

    D   0          0           0         0 0 
 
 Like Table 6.1, Table 6.3 shows that the queues experienced by difference types of 
customers are different.  In general, the waiting time of a customer is small if its predecessor’s 
service time is small or if its own service time is much longer than others.  For example, for Set I 
and Set II, customers with the longest service time 0.25 get the smallest mean waiting time for all 
four input processes.  On the other hand, customers with the shortest service time receive the 
longest mean waiting time.  Although these observation may not always be true, most numerical 
examples show that customers with the shortest service time usually have the longest (or close to 
the longest) mean waiting time.  The reason is that customers with the shortest service time 
contribute the least to the waiting times of other types of customers, while all other types of 
customers contribute more to their waiting times.  Since customers arrive cyclically, the 
opportunity for each type of customer to contribute to the waiting time process is equal.  
Therefore, customers with the shortest service time actually experience a longer waiting time.  
Another observation is that the type of customer following the type of customer with the longest 
service time experiences a longer waiting time as well.  (Notice that the observation does not 
apply to the sojourn times of customers.) 
 
 The above observations can be used to argue for setting up express checkouts in 
supermarkets.  Usually, the numbers of items customers at checkout can be dramatically 
different.  If customers with fewer items join the queues with other customers, the above 
observation shows that their waiting times are, on average, longer than other customers.  Thus, 
by setting up express checkouts, not only can the flow of customers in the supermarket be 
improved, but also customers with fewer items are treated more fairly. 
 
 Next in Table 6.4, the results of the best and worst sequences are presented for series of 
queueing systems with the same deterministic service times.  The main objective is to show how 
a queueing system performs when its input process is bursty or nonbursty. 
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Table 6.4  The best and worst sequences, and their mean waiting times 

 
 Input process              Service times EWa 

    BURST     Best    0.25     0.07       0.167 8.394 
      Worst    0.25     0.167     0.07 8.396 
  l = 6    Poisson     Best    0.25     0.07       0.167   2.979 
  r = 0.95      Worst    0.25     0.167     0.07   2.982 
  Set I    Erlang(3)     Best    0.25     0.07       0.167   0.985 
      Worst    0.25     0.167     0.07   0.992 
    D     Best    0.25     0.07       0.167   0.027 
      Worst    0.25     0.167     0.07   0.055 
    BURST     Best    0.7    0.6       1        0.05 0.343 
      Worst    1       0.7       0.6     0.05 0.359 
  l = 0.5    Poisson     Best    0.7    0.6       1        0.05   0.148 
  r = 0.29      Worst    0.7     1         0.6     0.05   0.156 
  Set II    Erlang(3)     Best    0.7    0.6       1        0.05   0.024 
      Worst     1      0.7       0.6     0.05   0.026 
    D     Best     any sequence   0 
      Worst     any sequence   0 

 
 Two trends are easy to see:  1)  the more bursty the input process, the smaller the 
difference between the mean waiting times associated with the best and worst sequences of 
servers; 2)  the more bursty the input process, the larger the mean waiting time of any particular 
sequence of servers.  In fact, numerical experimentation shows that 1) and 2) are true whenever 
the variation in the input process or the service process increases.  Also, Tables 6.3 and 6.4 show 
that sequencing of servers becomes more important when the service times of different servers 
are dramatically different.  Based on these observations, it can be concluded that sequencing of 
servers makes little sense when the service times of servers are not dramatically different and the 
uncertainty in the system is high.  In such cases, management has to seek other approaches to 
decrease the mean waiting time, for instance, reducing uncertainty in the input or service process. 
 
 Similar to Table 6.2, Table 6.4 shows that the best and worst sequences are almost the 
same for four different types of input processes.  For the exceptions, numerical results (not 
presented) show that their resulting mean waiting times are close.  Therefore, for any cyclic 
queueing system, it makes sense to use the best and worst seqeunces of its corresponding 
D/D[K]/1 queue as approximations to its own.  By doing so, heavy calculation is avoided. 
 
 Numerical examples also show that the sequencing of servers has something to do with 
the traffic intensity of the system.  When the traffic intensity r is small, sequencing of servers 
makes a relatively larger difference in mean waiting times.  However, the influence of the traffic 
intensity is not as strong as the uncertainty in the system nor the difference between servers. 
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7.  Summary and future research 
 
In this paper, a queueing system with cyclic service times is studied.  Performance measures such 
as the mean queue lengths and the mean waiting times are analyzed and sequencing of servers is 
discussed. 
 
 By exploiting the special structure of an embedded Markov chain, an equality for the 
empty probability vector x0  is obtained, which is useful in developing algorithms for computing 
x0.  An expression of the difference between the mean queue lengths (the mean waiting times) of 
customers of different types is obtained as well.  These results are useful in analyzing the 
queueing processes of different types of customers.  Numerical examples show that the 
difference between the queueing processes of different types of customers is significant in 
general and it becomes smaller when the variation in the input process or the service process 
becomes larger.  Numerical results also show that customers with the shortest (average) service 
time have a longer (average) waiting time. 
 
 For sequencing of servers for a D/D[K]/1 queue, the worst sequence (which maximizes the 
mean waiting time) is obtained explicitly.  Finding the best sequence (which minimizes the mean 
waiting time) turns out to be an NP hard problem.  Consequently, the problem of searching for 
the best sequence is transformed into an integer programming problem so that existing 
algorithms and software can be used.  For a MAP/G[K]/1 queue, the search for its best (worst) 
sequence is difficult.  Then an associated D/D[K]/1 queue is constructed.  Numerical examples 
suggest the use of the best (worst) sequence of the D/D[K]/1 queue as approximations to the best 
(worst) sequence of the original MAP/G[K]/1 queue. 
 
 Two more results are worth mentioning.  First, a MAP/G[K]/1 queue usually has a longer 
queue (waiting time) than its corresponding D/D[K]/1 queue.  Thus, reduction in variation may 
help to increase system efficiency.  Second, sequencing of servers becomes more important when 
variation in the input process or the service process decreases. 
 
 Although this paper answered some questions associated with queues with cyclic servers, 
it also raises a lot of questions to be explored.  Based on our experience, three suggestions are 
made to conclude this paper.  First, further exploiting the special structure in order to obtain more 
explicit results about the queue length and waiting time distributions will be useful.  Second, an 
efficient algorithm should be developed to search for the best sequence for MAP/G[K]/1 queues.  
At the least, more work should be done to improve the algorithm for computing the best 
sequence of a D/D[K]/1 queue.  Lastly, stochastic comparison associated with sequences of 
servers will be useful since the search for the best sequence is a difficult problem. 
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Appendixes 
 
Appendix A  Proof of Lemma 3.1. 
 
First, the special structure of the matrix P*(z) leads to ( ( ) / ) ( , ,*P z z diagK

K= D D D1 2 . . . ,  ) ,  
where D k k k K K kP P P P P P= × × × ×- - +
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since 
 
 ( ( ) / )*P z z Kn l+ = diag ( , ,D D D1 2

n
K

n n . . . , ) ( ( ) / )*P z z l . (A.2) 
 
Since D D D= +0 1  is irreducible, D z D zD( ) = +0 1  is irreducible as well.  Let c(z) be the 
eigenvalue of D(z) with the largest real part, then c(z) is real.  Let q(z) and e(z) be the left and 
right eigenvectors corresponding to c(z), i.e. q(z)D(z)=c(z)q(z) and D(z)e(z)=c(z)e(z).  q(z) and 
e(z) are normalied by q(z)e=1 and  q(z)e(z)=1.  Also, D(z) have the following decomposition 
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where Q(z) is an m´m matrix and T(z) is an (m-1)´(m-1) matrix.  The first row of Q-1(z) is q(z) 
and the first column of Q(z) is e(z).  Substituting equation (A.3) into equation (3.4), it yields 
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where $ ( ) exp{ ( ) } ( )T z T z x dF xk k=
¥

ò
0

.  Since the first column of the matrix Q(1) is e and the first 

row of matrix Q-1(1)  is q, it can be proved that (see Neuts [9]): 
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Also, it can be proved that 
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 Since D(z) is irreducible, the eigenvalue c(z) is single and all other eigenvalues have 

negative real parts for z £ 1.  Therefore,  lim[ $
, ,...,z

K
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It follows from (A.5), (A.7), and (A.8) that 
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This completes the proof. 
 
 
Appendix B.  Proof of Theorem 3.3 
 
Expanding equation (3.4) yields 
 
  zX z X K z x z D D I P zK( , ) { ( , ) [ ( ) ]} ( , ),

*1 10 0
1

1= + - -- ,      
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zX z X z x z D D I P z( , ) { ( , ) [ ( ) ]} ( , ),

*2 1 20 1 0
1

1= + - --

               M
,  (B.1) 

  zX K z X K z x z D D I P K zK( , ) { ( , ) [ ( ) ]} ( , ),
*= - + - --

-1 0 1 0
1

1 . 
 
Setting z = 1 in (B.1) yields 
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 X K X K x D D I P KK( , ) { ( , ) [( ) ]} ( , ),
*1 1 1 10 1 0

1
1= - + - --

- . 
 
It is easy to find out that 
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Notice that the summation and product orders are k, k+1, ..., K, 1, 2, ..., k-1.  Since  
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Notice that  X k e K( , ) /1 1= .  Differentiating both sides of (B.1) with respect to z, yields 
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This leads to 
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This completes the proof. 
 
 
Appendix C.  Proof of Theorem 4.1 
 
Let 
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(Based on experience, lV*(s) should be the LST of the virtual waiting time, but it needs to be 
proved.)  Notice that W V s D W s V s Da a k k

* *
,

* *( ) $ and ( ) ( )= = -1 1 1    .  Rewrite (C.1) as 
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Let {V*k(s), 1£k£K} be m-vectors satisfying V*(s) = (V*1(s), ...,  V*K(s)).  Then  
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Taking the first and second derivatives on both sides of equation (C.3) leads to 
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Letting  s = 0  in (C.2) yields V D* ( ) $0 0= , which implies 
 
 V k

* ( )0 = q l/ ( )K , 1 £ £k K .   
  (C.5) 
Substituting (C.7) into (C.4) yields 
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 V D V Dk k
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,  + m k-1 q lD K1 / ( )  – q l/ ( )K . (C.6) 
 
Combining equations (C.6) and (D0+D1)e=0 leads to the conclusion.  This completes the proof. 
 
 
Appendix D.  The mean queue length and the mean waiting time 
 
For completeness of the paper and computational purpose, the mean queue length at the 
departure of an arbitrary customer and the mean waiting time of an arbitrary customer are given 
in this appendix. 
 
The mean queue length   Let S = diag( - -D D0

1
1 , ..., - -D D0

1
1 ). Differentiating both sides of 

equation (3.4) with respect to z yields 
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Substituting (D.3) into (D.2) gives us 
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 (D.4) 

 
Differentiating both side of equation (D.1) with respect to z, it yields 
 

     
X z zI P z X z I P z X z P z

x SP z zS I P z

' ' ( )( ( )) ' ( )( ' ( )) ( ) ' ' ( )

[ ( ) ( ) ' ' ( )],
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- + - -

+ -

2

20                                 =
 (D.5) 

 
which implies 
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 2 1 2 1 1 1 1 1 2 10X e X P e X P e x S I P SP e' ( ) ' ( ) ' ( ) ( ) ' ' ( ) [( ) ' ' ( ) ' ( )]* * * *= + + - +  (D.6) 
 
Substituting (D.3) and (D.4) into (D.6), after some algebraic simplifications, mean queue length 
at the departure epoch of an arbitrary customer is given by 
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1
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r

r
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              +

  

 
The mean waiting time  Differentiating both sides of equation (C.1) with respect to s, it yields 
 

 V s* ' ( ) ( $sI D+ +0 f s Dk
k

K

k
* ( ) $ )

=
å

1

 + V s* ( ) ( I + f s Dk
k

K

k
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=
å

1

 = – x D0 0
1$ - . (D.7) 

 
Substituting s=0 into (D.7) gives 
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=

åV I f Dk
k

K

k
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1
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K
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This leads to the mean waiting time: 
 

 - = -W e V D ea
* *( ) ( )0 0 1  = [ $ $( $ )]x D I D
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K

k0 0
1

1

1-

=

+ - åq
m

( $ $ $ )D e D e+ -q 1
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The term V*’(0)e is obtained as follows.  Differentiating (D.7), it yields 
 

 V s* ' ' ( ) ( $sI D+ +0 f s Dk
k

K

k
* ( ) $ )

=
å

1

+ 2 V s* ' ( ) ( ' ( ) $ )*I f s Dk
k

K
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å
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k

K

k
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=
å
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Combining (C.1), (D.8) and (D.10) yields 
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that is, 
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. (D.11) 

 
This completes the proof. 
 
 
 
 


