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Abstract:  This paper develops an efficient algorithm for computing the optimal 
replenishment policy in an inventory-production system consisting of a warehouse and a 
workshop.  The inventory process is formulated into a Markov decision process and a quasi-
birth-and-death Markov process respectively.  An interesting relationship between 
performance measures of interest for the two formulations is found.  As a result, an 
algorithm for computing the optimal replenishment policy is developed.  Using the 
algorithm developed, a numerical example is analyzed so as to gain insights into the 
inventory-production system of interest. 
 
 
1.  Introduction 
 
This paper deals with a simple supply chain which is modelled as an inventory-production 
system consisting of a warehouse and a workshop (see Figure 1.1).  Demands from 
customers are accepted at the workshop.  Products are produced in the workshop to satisfy 
customer demands.  Raw materials used in production are supplied by an outside supplier 
through the warehouse to the workshop. 
 
 One of the most important problems associated with the inventory-production 
system is to reduce inventory costs in the warehouse.  In order to do so, a “good” inventory 
control policy must be found and used in inventory control in the warehouse (see HE [5] for 



 

more discussion).  The objective of this paper is to develop an algorithm to find the optimal 
replenishment policy. 
 
    Orders  
            Warehouse Raw Materials     Workshop                     Demands  
  
                                  (Raw Materials                               (Production 
               Inventory)                    Facility) 
       Replenishment  
                       Finished  
          Products 
 

Figure 1.1  The Inventory Production System 
 

 The inventory-production model of interest is a special two echelon system (see 
Federgruen [4]).  However, inventory control in such a special echelon system has not been 
addressed yet.  The inventory-production model also has much to do with the M/M/1 queue 
(see Cohen [3]), the stochastic EOQ model (see Bartmann and Beckman [1]), and quasi-
birth-and-death (QBD) Markov processes since it is a combined queueing and inventory 
model.  Although the M/M/1 queue and the stochastic EOQ model are simple and well 
studied, their combined model is complicated and has not been investigated, especially the 
optimal inventory control in such a combined model.  This paper is the first attempt to study 
the combined model. 
 
 The main mathematical tools used in this paper are matrix analytic methods (MAM) 
and Markov decision processes (MDP).  By using matrix analytic methods, numerically 
tractable solutions can usually be obtained.  By using Markov decision processes, efficient 
algorithms for computing the optimal policy can usually be developed.  This explains why 
matrix analytic methods and Markov decision processes are utilized in this paper.  Readers 
are referred to Neuts [7] and [8] for more about matrix analytic methods and Chakravarthy 
and Alfa [2] for more recent development of matrix analytic methods.  Readers are referred 
to Puterman [9] and Tijms [10] for more details about Markov decision processes. 
 
 The rest of the paper is organized as follows.  Section 2 defines the inventory-
production of interest explicitly and introduces several useful concepts.  In Section 3, the 
model of interest is formulated into a Markov decision process and some functional 
equations are established.  In Section 4, the model of interest is formulated into QBD 
Markov process.  Some results about the fundamental periods, costs incurred in 



 

fundamental periods are presented.  In Section 5, an interesting relationship between a set 
of Markov decision process measures and a set of matrix analytic method measures is 
derived.  In Section 6, an algorithm is developed for computing the optimal 
replenishment policy using the relationship obtained in Section 5 and the policy iteration 
method.  A numerical example is presented in Section 7 where a detailed analysis is 
conducted to gain insights into inventory control of the inventory-production system.  
Section 8 summarizes this paper and discusses some future research directions. 
 
2.  Modelling of the Inventory-Production System 
 
The inventory-production system of interest is defined explicitly as follows.  In the 
workshop, raw materials are processed into products according to customer demands.  
Before the workshop begins to process each customer demand, a call for a unit of raw 
materials is sent to the warehouse.  Raw materials are sent from the warehouse to the 
workshop if the warehouse is not empty when the call arrives; otherwise, production in the 
workshop is delayed until the call is filled when new raw materials arrive to the warehouse. 
 As soon as raw materials are available, production begins in the workshop.  Finished 
products are delivered to customers immediately.  Orders for raw materials are issued 
according to some replenishment policy from the warehouse to the outside supplier.  
Ordered raw materials are transported from the supplier to the warehouse.  Once stored in 
the warehouse, raw materials await calls from the workshop.  The warehouse and the 
workshop are close to each other so that the transportation time between them is negligible. 
 
 This paper considers an inventory-production model with a Poisson demand 
process with parameter l.  Production times of products have a common exponential 
distribution with parameter m (>l).  The production times and the demand process are 
independent.  The leadtimes of raw materials are zero.  There is a fixed ordering cost K 
associated with each order, regardless of the order size.  The holding cost is Ch per unit 
raw materials held per unit time.  The inventory-production system is reviewed 
continuously so that replenishment decisions can be made anytime. Production occurs in 
the workshop whenever there are demands and raw materials in the system.  No shortage 
of raw materials is allowed. 
 
 According to its definition, the inventory-production system of interest can be 
decomposed into two subsystems: an M/M/1 queue (the workshop) and an inventory 
system (the warehouse) as depicted in Figure 2.1.  The workshop can be modeled as an 
M/M/1 queue since no shortage of raw materials is allowed so that the queueing process is 
not influenced by the raw material replenishment process.  The warehouse is modeled as 



 

an inventory system with zero leadtimes and demands from the workshop (which occurs 
every time when the workshop begins to produce a new product).  The status of the 
M/M/1 queue at time t is represented by the number of customers (or unfilled demands) in 
the workshop, denote by q(t), i.e., the queue length.  Assuming that r=l/m<1 so that the 
M/M/1 queue can reach its steady state.  The status of the inventory system at time t is 
represented by the number of units of raw materials in the warehouse, denote by I(t), i.e., 
the inventory level.  Thus, the status of the inventory-production system can be 
represented by (q(t), I(t)) at time t. 
 
 
    The Inventory System                         The M/M/1 Queue 

              Orders        Demand           Poisson 

      Leadtime=0                                Demand 

    Replenishment Raw materials        Process (l) 
 

Figure 2.1  The Inventory-Production System with Zero Leadtimes 

 
 Raw materials inventory in the warehouse is controlled according to a 
replenishment policy, which determines when and how much to order raw materials from 
the outside supplier.  In this paper, only replenishment policies based on system status 
(q(t), I(t)) are considered.  Thus, a replenishment policy p is a function of (q(t), I(t)).  At 
an arbitrary epoch t, if p(q(t), I(t))>0, an order of size p(q(t), I(t)) is issued and filled; 
otherwise, no action is taken.  Since the leadtimes are zero, it makes no sense to order raw 
materials when I(t) is positive.  Thus, p(q(t), I(t))=0 when I(t)>0.  This observation implies 
that a replenishment policy can be represented by a vector p = (p(0), p(1), p(2), ...), where 
p(q) is the order size when the inventory level is zero and the number of unfilled demands is 
q. 
 
 Inventory control under the above definition depends on information about the 
queue length. However, complete information about the queue length may not be available 
to the decision maker in the warehouse.  Thus, the concept of information level is 
introduced and feasible replenishment policies with certain level of information are 
introduced next. 
 
 Information of the level l (³-1) is defined explicitly as follows.  With information 
of the level l, if the queue length q(t)£l at time t, q(t) is known to the inventory decision 
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maker.  If q(t)>l, only the fact “q(t)>l” is known but not the exact value of q(t).  For 
instances, information of the level -1 means that no information about the queue length is 
available.  When information of the level zero is available, the decision maker in the 
warehouse can find out whether or not the queue is empty, or equivalently, whether the 
workshop is busy or idle. 
 
 When information of the level l is available, the order size can be adjusted 
according to the queue length up to l.  When the queue length is larger than l, the order 
sizes are the same since the exact queue length is not available.  Thus, the set of the 
feasible replenishment policies under consideration when information of the level l is 
available is defined as 
 
 Õ[l] º {p: p(q) £ 2(Km/Ch)0.5 +2, q³0, p(q)=p(¥) for q> l and p(¥)>0}. (2.1) 
 
Note that all the policies in Õ[l] have a fixed tail.  The order size for large queue length is 
called the tail order size.  The upper bound of the order size is introduced since it is never 
optimal to order more than 2(Km/Ch)0.5 +2 units of raw materials at a time (see Chapter 4 
in HE [5]).  The upper bound 2(Km/Ch)0.5 +2 can be proved by splitting any order with an 
order size larger than 2(Km/Ch)0.5 +2 into two smaller orders with equal order sizes.  It can 
be shown that the total inventory costs (ordering costs plus holding costs) are reduced. 
 
 The objective of this paper is to develop an algorithm for computing the optimal 
replenishment policy in Õ[l] - the optimal replenishment policy of the level l - which 
minimizes the average total cost per product. 
 
3.  The Average Total Costs per Product - an MDP Approach 
 
Based on system assumptions, it is easy to see that, for any replenishment policy pÎÕ[l], 
the corresponding stochastic process (q(t), I(t)) is a Markov process.  It is clear that the 
queueing system can reach its steady state when l<m and so does the inventory-
production system.  In this section, functional equations are established for computing the 
average total cost per product for any pÎÕ[l], following an MDP approach.  Suppose that 
pÎÕ[l] is applied in inventory control.  For 0£q, i£n and n³1, define 
 
 Vp(q, i, n) = The average total cost to produce n products, given that there are q 

demands and i units of raw materials in the system initially. 
 Vp(q, n)    = The average total cost to produce n products, given that there are q 

demands and zero units of raw materials in the system initially. 



 

 
 In steady state (when r=l/m<1), the average total cost per product is defined as 
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Clearly, g(p) is independent of the initial state and is finite.  Define the relative cost 
function 
 
 hp(q, i, n) = Vp(q, i, n) - Vp(1, 1, n),   q³0, i³0, n³1.  (3.2) 
 
By Theorem 3.1 in Tijms [10], the limit of {hp(q, i, n), n³1} exists and is finite for each 
state (q, i).  Denote by, for q³0 and i³0,  
 
 hp(q, i) = lim{n®¥}hp(q, i, n) = lim{n®¥} [Vp(q, i, n) - Vp(1, 1, n)]. (3.3) 
 
Then, for q³0, i³0, n³0,  
 
 V q i n ng h q i q i np p e( , , ) ( ) ( , ) ( , , ),» + +p  (3.4) 
 
where e(q, i, n)®0 as n®¥.  It can be proved that {g(p), hp(q, i)} satisfy 
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where w=m/(l+m).  Let I{×} be the 0 - 1 function.  Then 
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 Theoretically, when l<m, an algorithm can be developed for computing the 
average total cost per product g(p) using equation (3.5) and the idea of value iteration 
method (see Puterman [9]).  Furthermore, an algorithm for computing optimal 
replenishment policy can be developed by using equation (3.5) and the policy iteration 
method (also see Puterman [9]).  However, there are two technical difficulties. 
 
 The first one is related to the tail order size p(¥) when only information of the 
level l is available.  The Markov decision process defined by equation (3.5) cannot be 
solved as an ordinary Markov decision process since it is not clear how to determine the 
optimal tail order size.  For Markov decision processes with this type of constraints, to 
our knowledge, little research has been done except Kulkarni and Serin [6].  An 
enumeration method is proposed to get around of this problem in Section 6. 
 
 The second difficulty has much to do with the infinite state space of (q(t), I(t)). 
There is no direct way to evaluate the summations with infinite items in equation (3.5).  
Fortunately, since the tail order size is fixed, the problem can be transformed into a finite 
semi-Markov decision process with a finite state space using matrix analytic methods.  
Subsequently, an algorithm for computing the optimal replenishment policy can be 
developed (see Sections 4, 5, and 6). 
 
4  The Average Total Cost per Product - an MAM approach 
 
In this section, the Markov process (q(t), I(t)) corresponding to a particular replenishment 
policy pÎÕ[l] is constructed.  Inventory costs incurred in a busy period are analyzed and 
an algorithm is developed for computing the average total cost per product.  For brevity, 
details are omitted.  Readers are referred to HE [5] and Neuts [7] for derivations and proofs 
of the results given in this section. 
 
4.1  The QBD Markov Process 
 
For a replenishment policy p in Õ[l], the stochastic process (q(t), I(t)) is a two-
dimensional Markov process.  The state space and the infinitesimal generator of the 
Markov process (q(t), I(t)) are constructed as follows.  Denote by 
 
 pmax = max{q³0}{p(q)}   and    qmax = min{q³0}{q:  p(q) = pmax}. (4.1) 
 
pmax is the maximum order size of p.  qmax is the smallest queue length where the order 
size is pmax.  The envelope function pe is defined recursively as 
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While p may fluctuate dramatically, pe is a nondecreasing function and is no less than p.  
The state space of (q(t), I(t)) is then given by S = È¥

q=0 Sq, where 
 
 S0 = {(0, max{I{p(0)¹0} ,0}), ..., (0, pe(0))}   and    
            Sq = {(q, 1), ..., (q, pe(q))},  q³1. 
 
The subset Sq in which all states have a queue length q is called the level q.  Then (q(t), 
I(t)) is an irreducible QBD Markov process with an infinitesimal generator 
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where all the matrix blocks are given explicitly in Appendix and all other elements are 
zero.  It can be proved that he Markov process (q(t), I(t)) is positive recurrent when l<m. 
 
4.2  Fundamental Periods 
 
A fundamental period is defined as the first passage time period during which the Markov 
process (q(t), I(t)) reaches the level q, given that the Markov process starts in the level 
q+1 (see Neuts [7]).  It is easy to see that the busy period is a special type of fundamental 
period where the Markov process goes from level 1 to level 0 for the first time. 
  
 First, consider state transitions during fundamental periods.  For q>l, the 
fundamental periods from level q+1 to q are probabilistically equivalent since they have a 
common infinitesimal generator.  Define, for 1£i, j£pmax, 
 



 

 Gp
i,j(k) = The probability that the Markov process (q(t), I(t)) reaches, for the first 

time, the level q in (q, j) and there are a total of k products produced 
during this period of time, given that the Markov process started in state 
(q+1, i) at time 0. 

Define 
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Let G*,p(z) be a pmax´pmax matrix with elements defined in equation (4.4).  Then G*,p(z) is 
the minimum nonnegative solution to the equation 
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Denote by Gp = lim{z®1}G*,p(z), this limit exists and Gp is the minimal nonnegative 
solution to the equation 
 
 A A G A G2 1 0

2 0+ + =p p( ) .  (4.6) 
 
In fact, Gp

i,j is the probability that the Markov process (q(t), I(t)) reaches, for the first 
time, the level q in state (q, j), given that the Markov process starts in state (q+1, i).  It 
can be proved that Gp is a stochastic matrix when the Markov chain is positive recurrent. 
 
 For boundary levels 0<q£l, define the matrix G*,p(q, z) (Gp(q)) analogous to 
G*,p(z) (Gp) for the fundamental period from the level q to the level q-1.  The matrix 
G*,p(q, z) and Gp(q) are pe(q+1)´pe(q) matrices and they satisfy equations 
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For the level zero, define G0

*,p(z) as the transform of the total number of products 
produced during the first passage time from the level zero to the level zero.  This time 
period is equivalent to a busy cycle.  It consists of the time the Markov process stays in 
the level zero (and then left the level zero) and the time period it takes to move from the 
level one to the level zero for the first time.  It is then easy to see that 
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where Gp(0) = lim{z®1}G*,p(0, z). 
 
4.3  The Average Costs Incurred in Fundamental Periods 
 
For q>l, let 
 
 Fp

i,j =  The average total cost incurred during the fundamental period during 
which the Markov process reaches the level q-1 for the first time in state 
(q-1, j), given that it started in state (q, i). 

 
Let Fp be a pmax´pmax matrix with elements defined above.  It can be proved that 
 
 F F F Fp p p p p p= + - +-

0 1
1

0( )( ),A A G G  (4.10) 
 
where  
 F 0 1

1
21 0 0p pp= - +-A C diag G diag K Ah[ ( , , ) ( , , , ) ].maxL L  (4.11) 

 
 Apparently, the elements of the matrix F0

p are the average costs incurred before 
the next transition.  The second part on the right hand side of equation (4.10) is the 
average cost after the first transition. 
 
 For boundary levels 0<q£l, define the matrix Fp(q) analogous to Fp for the 
fundamental period from the level q to the level q-1.  Then 
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When q=0 and p(0)=0, 
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When q=0 and p(0)>0, Fp

0 is obtained by removing the second term on the right hand 
side of equation (4.15). In addition, the inventory level at state (0, i) is i instead of i-1.  
The corresponding correction should be made in equation (4.15) as well. 
4.4  The Average Total Cost per Product 
 
Finally, an algorithm for computing the average total cost per product g(p) can be 
developed.  To find the average total cost per product, consider the embedded Markov 
chain at the beginning epochs of busy cycles.  By definition, it is known that this 
embedded Markov chain has a transition matrix Gp(0) which is given in equation (4.9).  
Denote by b the left invariant vector of Gp(0), i.e., bGp(0) = b,  b³0, and be = 1.  
Conditioning on the initial state of a busy cycle, the average total cost incurred in a busy 
cycle can be obtained as 
 

 b i i
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i.e., the product of vectors b and Fp(0)e:  bFp(0)e. 
 
 According to Cohen [3], the average number of customers served in a busy cycle 
is m/(m-l) for the M/M/1 queue.  Since the total number of products produced in a busy 
cycle equals the total number of customers served in a busy cycle for the M/M/1 queue, 
the average total cost per product is given by 
 
 g(p) = bFp(0)e(m-l)/m. (4.17) 
 
 In summary, an algorithm for computing the average total cost per product 
corresponding to a replenishment policy p in Õ[l] by using equations given in this section. 
 
Note:  For more general QBD Markov processes, the average number of customers 
served in a busy cycle may not be m/(m-l).  For those cases, equations (4.5) and (4.7) can 
be used to derive necessary formulas. 
 
5.  A Key Relationship 
 
This section proves a relationship between the functions {g(p) hp(q, i), q³0, i³0} defined 
in Section 3 and the matrices {Gp, Fp, Gp(q), Fp(q), 0£q£l} defined in Section 4 for p in 
Õ[l].  The relationship between the two sets of measures is interesting since it brings 



 

Markov decision processes and matrix analytic methods closer.  This relationship shall be 
used in developing an algorithm for computing the optimal replenishment policy in 
Section 6.  For q³0, n³1, denote by  
 
 Vp(q, n) = (Vp(q, 1, n), ..., Vp(q, pe(q), n))T   and  
                hp(q) = (hp(q, 1), ..., hp(q, pe(q)))T,  
 
where “T” represents matrix transpose.  
 
Theorem 5.1  When the inventory-production system with replenishment policy p in Õ[l] 
can reach its steady state, it has, for q>l, 
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for 1<q£l, 
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for q=1, 
 g G A A( ) ( ) ( ) ( ) ( )[ ( ) ( )],, ,p u h e hp p p p p p1 1 1 1 0 10 0 0

1
0 1+ = + - -F F  (5.3) 

 
where 

 u  e   u  e      .  p p p p p p= ¥ = =
=

¥

=

¥

=

¥

å å åkG k q kG q k G q G q k
k k k

( , ) , ( ) ( , ) and ( ) ( , )
1 1 1

 (5.4) 

 
where up(q) (and up) is the average number of products produced during the first passage 
from the level q to the level q-1, and Gp(q, k) was defined in Section 4.2. 
 
 For the inventory-production system of interest, since the queueing system is not 
affected by inventory control, the number of products produced in a fundamental period is 
the same as that of the M/M/1 queue, which is given explicitly as m/(m-l), regardless of 
the inventory levels.  Then, for q>0,  
 
 up(q) = m/(m-l)e  and  up = m/(m-l)e. (5.5) 
 
Proof.   Similar to the cost function Fp

i,j defined in Section 3, define 
 



 

 Fp
i,j(q, n) the average total costs incurred before or when n products are 

completed during the first passage time from level q to the level q-1 
in the state (q-1, j), given that the process started in the state (q, i). 

 
Fp(q, n) is an pe(q)´pe(q-1) matrix with elements Fi,j(q, n).  Clearly, Fp(q, n)£Fp(q), 
{Fp(q, n), n>0} is a nondecreasing sequence and lim{n®¥}Fp(q, n)=Fp(q). 
 
 Consider the average total cost vector Vp(q, n).  It is clear that Vp(q, n) can be 
decomposed into two parts: the total cost incurred during the first passage from the level 
q to the level q-1 and the total cost incurred thereafter.  Conditioning on the initial 
inventory level and the queue length at the first transition from level q to level q-1, it has, 
for q>0, 
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Note that when k³n, product completes before the first passage ends.  Writing the above 
equation into a matrix form, yields 
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Using equation (3.4), yields, for q>0,  
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Thus, to prove equation (5.1) or (5.2), one only needs to prove 
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since the mean number of customers served in a fundamental period up(q) is finite, for 
q>0. 
 
 To prove equation (5.3), the level 0 is considered.  Note that (see equation (4.14)): 
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1
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This leads to 
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which proves equation (5.3).  This completes the proof. 
 
 Using equations (5.1), (5.2), and (5.3), it is possible to calculate {g(p), hp(q), q³1} 
from {Gp, Fp, Gp(q), Fp(q), 0£q£l} for any replenishment policy p in Õ[l].  This leads to 
an algorithm for computing the optimal replenishment policy of the level l. 
 
Note:  It is clear from the proof of Theorem 5.1 that the relationship between {g(p), hp(q), 
q³1} from {Gp, Fp, Gp(q), Fp(q), 0£q£l} may hold for much more general stochastic 
models where the cost structure is defined appropriately and the model can be represented 
by a QBD Markov process (with level dependent transitions).  Equations (5.1), (5.2), and 
(5.3) show that the relative cost functions are determined by the difference of the total 
costs incurred during fundamental periods with different initial (inventory) states. 
 
6.  An Algorithm for Computing the Optimal Replenishment Policy 
 
This section presents an algorithm for computing the optimal replenishment policy based 
on Theorem 5.1 and the policy iteration method in the theory of dynamic programming. 
 
 As was indicated in Section 3, any algorithm directly developed from equation 
(3.5) may have two difficulties:  1) how to determine the optimal tail order size; 2) how to 
do summations with infinite items.  To overcome these difficulties, the following 
algorithm which completes the search for the optimal replenishment policy in two steps is 
proposed.  The following algorithm is developed in a top-down manner. 
 

Step 1)  For a fixed p(¥) (1£p(¥)£2(Km/Ch)0.5 +2), find the suboptimal replenishment 
policy p*

1(p(¥)) which minimizes the average total cost per product in      
Õ[l, p(¥)], where 



 

 
 Õ[l, p(¥)] º {p: p(q)£ 2(Km/Ch)0.5 +2, q³0, p(q)=p(¥) for q> l}; (6.1) 
 
 p p

pl l
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Step 2)  Compare all the suboptimal replenishment policies when p(¥) going from 1 

to 2(Km/Ch)0.5 +2 so as to find the optimal replenishment policy, i.e., 
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 When l = -1, i.e., no information about the queue length is available, Step 1) is 
completed in one iteration.  The search for the optimal replenishment policy is completed 
by considering only p = (p(¥), p(¥), ...) for p(¥) going from 1 to 2(Km/Ch)0.5 +2.  In fact, 
an explicit solution has been found (see HE [5]). 
 
 When l > -1, Step 1) of the algorithm can be carried out using the policy iteration 
method.  The basic idea is, starting with a carefully chosen replenishment policy, to 
calculate {hp(q), 1<q<l} for p in Õ[l, p(¥)] using equations (5.1), (5.2), and (5.3).  Then 
an new replenishment policy p’ is obtained as 
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p’(0) = 0 since the leadtimes are zero (Information of {q(t)=0}is available when l > -1) 
and p’(q) = p(¥), for q>l, since the tail order size is fixed.  Then Step 1) can be expanded 
to 
 

Step 1.1)  Initialize the policy iteration process by choosing p = (0, pmax, ..., pmax, p(¥), 
...); 

Step 1.2)  Calculate {g(p), up(q), Fp(q), Gp(q), up, Fp, Gp} using formulas presented 
in Section 4; 

Step 1.3)  Calculate {hp(q), 1£q£l} using Theorem 5.1; 
Step 1.4)  Determine a new policy  p’ using equation (6.4); 
Step 1.5)  If p = p’, stop;  otherwise, repeat steps 1.2) to 1.5) with p’. 

 
While steps 1.1), 1.2), 1.4), and 1.5) are clear, more details about Step 1.3) are 

needed.  The problem is that one of {hp(q), 1£q£l} must be determined first so that 



 

equations (5.1), (5.2), and (5.3) can then be used to determine the rest of the vectors in the 
set.  From equation (5.3), it can be proved that 
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where q is the left invariant vector of the matrix Gp(1)(-A00)-1A01.  Thus, it is possible to 
determine hp(1) first, which is equivalent to determine the product hp(1)e.  This can be 
done by using the original definition of {hp(q), 1£q£l}.  Since the state (q=1, i=1) was 
chosen as the base state to determine the relative cost functions, then hp(1, 1) = 0 (see 
equation (3.3)).  The product hp(1)e is determined by setting hp(1, 1) = 0 in equation 
(6.5), which yields 
 
 hp(1)e = - (c)1/(q)1. (6.6) 
 
This completes Step 1.3) and so does the whole algorithm. 
 
 Now, the original problem of finding the optimal replenishment policy has 
transformed into a finite state semi-Markov decision problem for which the optimal 
solution can be found in finite steps.  This algorithm is used in Section 7 to analyze an 
inventory-production system. 
 
 It is clear that the optimal replenishment policy with information of the level l 
exists.  However, it does not mean that the algorithm developed in this section will 
always find the optimal policy.  The usual problems associated with dynamic 
programming may show up.  For example, cyclic iterations may generate a diverging 
sequence of replenishment policies.  Another problem with this algorithm is that it may 
take a lot of time to complete each iteration.  Unfortunately, these issues are beyond the 
scope of this paper and are left as future research.  Nonetheless, according to numerical 
experimentation, the algorithm finds the optimal replenishment policy most of the time. 
 
7.  A Numerical Example 
 
This section presents a numerical example.  The optimal policies of different information 
levels are obtained by using the algorithm developed in Section 6.  Some insights into the 
inventory control process of the inventory-production system are gained. 
 



 

Example 7.1 Consider inventory-production systems with Ch=0.2, K=10, and m=1.  The 
demand rate takes values l=0.1, 0.618, and 0.95. 
 
l=0.1.  The optimal replenishment policies with information levels 0, 1, 5, 10, and full 

are given in Figure 7.1 respectively. 
 
 Figure 7.1 shows that the optimal replenishment policies for different information 
levels are dramatically different.  When the information level increases, the optimal 
replenishment policy converges to the optimal replenishment policy with full information. 
 The computation of the optimal replenishment policy requires more efforts as the level of 
information increases. 
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 Figure 7.1 also shows that the optimal order size fluctuates when the queue length 
changes (e.g., the optimal replenishment policy with full information).  The reason is that 
the order size is adjusted to reduce the holding cost during possible idle periods.  It can be 
shown that if no holding cost is incurred during any idle period, the optimal order size is 
the same for all queue length.  For more discussions on this and related issues, see 
Chapters 4 and 5 in HE [5]. 
 



 

l=0.618.  The optimal replenishment policies with information levels -1, 0, 2, 3, and 4 
are given in Table 7.2 respectively.  In Table 7.2, each row represents an 
optimal replenishment policy with certain level of information.  The last 
column in Table 7.2 gives that average total cost per unit time corresponding to 
each policy. 

 
In this case, the optimal replenishment policies with information level 4 and 

higher are the same.  This implies that only information of level 4, not full information, is 
required to achieve the overall optimal inventory control.  This also implies that 
information about the queue length larger than 4 has no value in terms of inventory 
control.  In fact, it can be proved that the overall optimal inventory control is always 
achieved at a finite information level. 

 
Table 7.2  The optimal replenishment policies when l=0.618 

 
Level q=0 q=1 Q=2 q=3 q=4 q³5 g(p) 

-1 8 8 8 8 8 8 2.706 
0 0 8 8 8 8 8 2.582 
1 0 7 9 9 9 9 2.571 
2 0 7 8 9 9 9 2.569 
3 0 7 8 9 10 10 2.568 

(³)4 0 7 8 9 9 10 2.568 
 
 In Table 7.2, the bolded cell means that the corresponding order size can be 
adjusted individually.  For example, when the information level is -1, i.e., the warehouse 
places an order of size 8 whenever the inventory level becomes zero, regardless of the 
queue length (since there is absolutely no information about the queue length available to 
the decision maker).  When the information level is zero, the order size at q³1 must be 
the same but the order size at q=0 can be different from others.  As shown in Table 7.2, 
the order size at q=0 is adjusted to 0 when l=0.  Compared to the l=0.1 case, the 
fluctuation of the optimal replenishment policies is reduced, and information levels up to 
4 are valuable in inventory control.  The adjustment of the order size at the queue length 
from 0 to 4 is useful.  Since the traffic intensity is neither large nor small, such 
adjustments in order sizes may decrease the holding cost during idle periods, even when 
the queue length is around 4. 
 



 

 The last column of Table 7.2 shows that the major cost savings is achieved at 
lower information levels, especially the level zero.  This conclusion is supported by all 
numerical examples. 
 

l=0.95.  For this case, the optimal replenishment policies with information levels -1, 0, 2, 
and 3 are given in Table 7.3 with their corresponding average total costs per unit 
time, respectively. 

 
Table 7.3  The optimal replenishment policies when l=0.95 

 
level q=0 q=1 q=2 q=3 q³4 g(p) 

-1 10 10 10 10 10 2.1578 
0 0 10 10 10 10 2.1473 
1 0 8 10 10 10 2.1443 
2 0 9 9 10 10 2.1441 

(³)3 0 8 9 9 10 2.1438 
 
 Compared to l=0.1 and l=0.618, the optimal inventory control becomes much 
simpler.  Thus, it concludes that information about the queue length becomes less 
valuable when production load is high.  Nevertheless, numerical results show that 
information of level zero is important in terms of cost savings, even for high production 
load inventory-production system (see HE [5]). 
 
 In summary, numerical results show that lower level information is important in 
inventory control of the inventory-production system.  It is useful for the workshop to 
inform the warehouse its number of products waiting to be produced in the near future, 
when such a number is small.  It is particularly important to know when the number of 
products to be produced is zero. 
 
Remark:  Production-inventory systems with information of the level -1, 0, or ¥ are of 
particular interest.  While the analysis of systems with full information is complicated, the 
analysis of systems with information of the level -1 or 0 is simple and explicit.  More 
details about these special cases can be found in HE [5]. 
 
 
8.  Summary and Future Research Directions 
 



 

This paper formulated the inventory control process of an inventory-production system 
into a Markov decision process and developed an algorithm for the computing optimal 
replenishment policy.  It also formulated the inventory process into a QBD Markov 
process.  An interesting relationship between {g(p) hp(q, i), q³0, i³0} associated with the 
Markov decision processes and {Gp, Fp, Gp(q), Fp(q), 0£q£l} associated with matrix 
analytic methods is established.  The established relationship is utilized in developing an 
algorithm for computing the optimal replenishment policy when the information level is 
given. 
 
 This paper studied a stochastic model based on the specific context of an 
inventory-production system.  The advantage of doing so is that more insights into the 
inventory control process can be gained and the usefulness of the methodology developed 
is shown.  There are some drawbacks with such an approach as well.  Nonetheless, the 
methodology developed and the main results obtained in this paper can be generalized to 
much more complicated stochastic models with similar features as that of (q(t), I(t)).  For 
examples, using the same methodology, it is possible to study inventory-production 
systems which have exponential leadtimes of raw materials.  It is also possible to study 
inventory-production models with general service time models.  But the analysis becomes 
much more complicated.  Interested readers are referred to HE [5] for more details. 
 
 
Appendix  The Infinitesimal Generator  of (q(t), I(t)) 
 
For the Markov process (q(t), I(t)), the states in Sq are related to each other.  The 
transitions become more complicated.  In fact, the transitions between states are 
categorized into the following three types: 
 

1) A transition from state (q, i) to (q+1, i) occurs when a demand arrives before 
the completion of the product in service, if any; 

2) A transition from (q, i) to (q-1, i-1) occurs when a product is completed before 
the next arrival; 

3) A transition from (q, 1) to (q-1, p(q-1)) takes place when a product is 
completed before the next arrival and an order is issued and fulfilled. 

 
The case q=0 is slightly different and has only transitions of types 1) and 3).  A 
replenishment of raw materials may occur when the queue length goes from zero to one 
as well.  Thus, the Markov process is a quasi-birth-and-death process with an 
infinitesimal generator given in equation (4.3).   The transition blocks are specified as 
follows. 



 

 
 First, the dimensions of those matrices are given.  {Aq,q-1} are pe(q)´pe(q-1) 
matrices since the level q (i.e., Sq) has pe(q) states and the level q-1 (Sq-1) has pe(q-1) 
states;  Similarly, {Aq,q} are pe(q)´pe(q) matrices;  {Aq,q+1} are pe(q)´pe(q+1) matrices;  
A0, A1 and A2 are pmax´pmax matrices.  Notice that the envelope function pe(q) represents 
the number of states in level q. 
 
 A0,0 = -lI:  no transitions among the states of the level zero;  the next transition 
epoch is the arrival epoch of a demand.  I is the identity matrix. 
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When p(0)>0, no order is issued at the next arrival epoch when the queue length becomes 
one.  This case is included for more general applications.  For example, when no 
information about the queue length is available, an order with a positive order size must 
be issued at q=0 and i=0.  When p(0)=0, an order of the size p(1) is issued and filled 
when the Markov process moves from (0, 0) to (1, 0), which brings the inventory level to 
p(1).  For the matrix A0,1 defined for the p(0)=0 case, the right hand side column (the zero 
column) is removed when pe(0)= pe(1). 
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When pe(q)= pe(q-1), the last row is removed from Aq,q-1.  When p(0)=0, the first row in 
A1,0 becomes zeros.  When (q(t), I(t)) makes the transition from (q, 1) to level q-1, an 
order of the size p(q-1) is issued and filled. 
 
 Aq,q = -(l+m)I.  There is no transition among the states in the same level. 
 
 Aq,q+1 = (lI, 0), when p(q)>p(q+1), q³1, and  Aq,q+1 = lI, when p(q)=p(q+1). 
 

 A0 = lI,  A1 = -(l+m)I,  and  A2
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In A2, when the Markov process goes down one level from the state (q, 1), an order of the 
size p¥ is issued and filled. 
 
 
References 

 
[1] Bartmann, D. and Beckmann, M.J. (1992), Inventory Control: Models and Methods, 

Springer-Verlag. 
[2] Chakravarthy, S. and Alfa, A.S. (1996), First International Conference on Matrix 

Analytic Methods in Stochastic Models, Flint, USA. 
[3] Cohen,  J.W. (1982), The Single Server Queue, North-Holland Series in Applied 

Mathematics and Mechanics, North-Holland. 
[4] Federgruen, A. (1993), Centralized planning models for multi-echelon inventory 

systems under uncertainty, Logistics of Production and Inventory, Handbooks in 
Operations Research and Management Science, North-Holland, Vol 4, 133-174. 

[5] HE, Qi-Ming (1996), The value of information used in inventory replenishment, 
Ph.D. Thesis, Department of Management Sciences, University of Waterloo. 

[6] Kulkarni, V.G. and Serin, Y. (1995), Optimal implementable policies: discounted 
cost case, Computations with Markov Chains, Edited by W. Stewart, Kluwer 
Academic Publications, 283-307. 

[7] Neuts, M.F. (1981), Matrix-Geometric Solutions in Stochastic Models: an 
Algorithmic Approach, The Johns Hopkins University Press. 



 

[8] Neuts, M.F. (1989), Structured Stochastic Matrices of M/G/1 Type and Their 
Applications, New York: Marcel Dekker. 

[9] Puterman, M.L. (1994), Markov Decision Processes,  John Wiley & Sons, Inc. 
[10] Tijms, H. (1990), Stochastic Modelling and Analysis: A Computational Approach, 

John Wiley & Sons, Inc. 
 


