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ANALYSIS OF THE VALUE OF INFORMATION USED IN INVENTORY  
CONTROL OF AN INVENTORY-PRODUCTION SYSTEM 

 
 

This paper studies the value of information in an inventory-production system 
consisting of a warehouse and a workshop.  The focal point is the use of information 
about the production status of the workshop in inventory control in the warehouse.  
Systems with various information levels are analyzed to determine what information 
is most valuable.  Examples are presented to demonstrate how to identify the most 
important information about production status. 

 
 
 
1. Introduction 
 

This paper investigates a simple supply chain in an attempt to gain a better understanding of 
the benefits of information in making inventory replenishment decisions. The supply chain consists of 
a supplier, a raw materials warehouse, and a manufacturer (see Figure 1.1).  The manufacturer makes 
products to order based on customer demand, and uses raw materials as inputs to the production 
process.  Raw materials are replenished by the supplier. 
 
 In making decisions about replenishing the warehouse inventory, it would be normal to use 
information about the current level of inventory in the warehouse.  However, it would be useful to 
have up-to-date information on the number of outstanding unfilled orders in the workshop.  But such 
information may not be readily available and it may be difficult and expensive to collect, particularly 
as the level of detail required increases.  To assess the value of obtaining such information, this paper 
looks at the extent to which information on the outstanding orders benefits inventory control at the 
warehouse. 
 
 The supply chain shown in Figure 1.1 is a special two-echelon model (Federgruen, 1993).  
Studies of the optimal or nearly optimal replenishment policies for two echelon models are extensive 
(Axsäter, 1993;  Federgruen, 1993; Veatch and Wein, 1994; and references therein).  In particular, for 
the inventory-production model studied in this paper, HE, Jewkes, and Buzacott (1997, 1999) 
developed algorithms for computing the optimal replenishment policies.  HE and Jewkes (1999) 
developed efficient algorithms for computing the average total cost per product and other performance 



 
measures.  The results obtained in the last three papers are used in this paper to study the value of 
information about the production status to replenishment decisions. 
 
 
 
 
 
                               Supplier                   Warehouse            Manufacturer                        Customers 
                                                                                              (Workshop)    
 

 
 

Figure 1.1  The supply chain of interest 
 
 
 The sutdy of information available to manufacturers and their suppliers for decision 
making has attracted attention from researchers and practitioners.  While the importance of 
information is well noted  (Davis, 1993; Federgruen, 1993), further work needs to be done on what 
information is useful (Lacity, Willcocks, and Feeny, 1996; Meyer and Zack, 1996) and the value of 
the information.  The wide use of computers and information technologies has made more 
information available for production management, but not all of the information is as useful as 
expected (Earl, 1996).  Thus, it is important to identify useful information so that it can be utilized 
properly. 
 
 The rest of the paper is organized as follows.  Section 2 defines the inventory-production 
model explicitly.  The concept of information level is introduced in terms of available information 
about the number of unfilled orders.  Section 3 briefly discusses the optimal replenishment policies for 
the inventory-production system with various levels of information.  Section 4 presents numerical 
examples to show which information levels are important, how to identify the important information 
levels, and the relationship between information levels and system parameters.  Section 5 summarizes 
our results and indicates future research directions. 
 
 
2.  The Inventory-Production System 
 

The inventory-production system of interest in this paper is defined as follows.  The 
workshop manufactures make-to-order products based on customer demands.  Customer demands 
arrive one at a time to the workshop according to a Poisson process with parameter l.  All demands 
are processed in the workshop by a single machine in batch sizes of one.  Production (or 
processing) times have a common exponential distribution with parameter m.  When the workshop is 
ready to process a customer order, a call for a unit of raw materials is sent to the warehouse.  A unit of 
raw materials is immediately sent to the workshop and production on that unit begins.  The 
transportation time between the warehouse and the workshop is assumed negligible.  Raw materials 
in the warehouse are replenished from a supplier according to a continuous review replenishment 
policy.  Replenishment leadtimes of raw materials are assumed to be zero so that production in the 
workshop can occur whenever there are demands.  The replenishment policy for raw materials is 
such that it does not allow raw material shortages, i.e., production will occur whenever there are 
demands in the workshop. 
 
 The cost components of the inventory-production system are as follows: there is a fixed 
ordering cost K associated with each order from the warehouse to the supplier, regardless of the 
order size, and the holding cost is Ch per unit of raw materials held in the system per unit time. 
 



 
 According to the above definition, leadtimes at both the supplier and the warehouse are 
zero.  No shortage of raw materials is allowed at the supplier, the warehouse, or the workshop, and 
all demands will be processed.  Thus, the inventory-production system can be decomposed into two 
subsystems: an M/M/1 queue (the workshop) and an inventory system (the warehouse) (Figure 2.1).  
The workshop is modeled as an M/M/1 queue (Cohen, 1982) since no shortage of raw materials is 
allowed and the queueing process is not influenced by raw material replenishment.  Without loss of 
generality, it is assumed that all demands are processed on a first-come-first-served basis.  The 
warehouse is modeled as an inventory system with zero replenishment leadtimes and demands that 
come from the workshop when the workshop begins to produce new products. 
 

The status of the M/M/1 queue at time t is represented by the number of customers (the 
number of unfilled demands or the queue length) in the workshop, denoted by q(t).  It is assumed 
that r = l/m < 1 so that the M/M/1 queue is ergodic.  Let I(t) be the total number of units of raw 
materials in the inventory-production system at time t, i.e., the number of units of raw materials in 
the warehouse plus the number of units of raw materials in the workshop, if the workshop is busy.  
Then the status of the inventory-production system can be represented by (q(t), I(t)) at time t. 
 
 
            The inventory system       The M/M/1 queue 
 
          Orders          Demand 
          L= 0      Warehouse            Workshop                       Poisson 
          (K, Ch )                          exp(m)           Demand 
           Replenishment       Raw materials            Process (l)
  
 

Figure 2.1   The inventory-production system with zero leadtimes 
 
 

Raw material replenishment in the warehouse is controlled according to a specific 
replenishment policy.  This replenishment policy determines when and how much raw material to 
order from the outside supplier.  In this paper, only replenishment policies based on system status 
(q(t), I(t)) are considered.  This implies that both the queue length q(t) and the inventory level I(t) 
are reviewed continuously.  Since leadtimes of raw materials are zero, it makes no sense to order raw 
materials when I(t) is positive.  Thus, a replenishment policy is a function of the number of customers 
q(t) only and can be represented as a vector p = (p(0), p(1), p(2), ...), where p(q) is the order size 
when the inventory level is zero and the number of customers is q.  At time t, if I(t) = 0 and p(q(t))>0, 
an order of size p(q(t)) is issued and filled; otherwise, no action takes place.  If an order of the size 
p(q(t)) is filled at time t, the inventory level becomes p(q(t)), i.e., I(t+) = p(q(t)). 
 
 The average total cost per product is considered as the fundamental performance 
measurement by which replenishment policies are evaluated.  The optimal replenishment policy 
considered in this paper is the one which minimizes the average total cost per product given the 
information available on the number of unfilled demands in the system when orders are placed. 
 
 While many other types of information regarding production status are useful in inventory 
control, we shall focus on the number of unfilled demands in the workshop, q(t), as the information of 
potential use in making replenishment decisions since it has a major impact on inventory control in 
the warehouse.  To quantify the benefits of information used in inventory replenishment, the 
concept of information level is introduced.  Level l (³0) information implies that when q(t) £ l , the 
exact queue length is available to the raw materials replenishment decision maker;  otherwise, only 
the fact that the q(t) > l is known.  For instance, level –1 means that no information about the queue 
length is available in making replenishment decisions.  Level 0 means that information about 



 
whether or not the workshop is busy is available, but the exact queue length is not available.  When 
information of level ¥ is available, the decision maker can find the exact queue length whenever a 
replenishment decision must be made. 
 

By finding the optimal replenishment policy for level l information and its associated 
average total cost per product for l = –1, 0, 1, …, we can determine the value of increasing levels of 
information.  The value of level l information is the reduction in average total cost per product 
which comes about by having level l information as opposed to level l-1 information.  The rest of 
the paper finds the value of information and the relationship between the optimal replenishment 
policy, the value of information, and system parameters. 
 
 
3.  The Inventory-Production System with Different Information Levels 
 

In this section, we briefly discuss the optimal replenishment policy and its computation.  
The discussion is divided into four parts according to the level of information available: 1) no 
information; 2) busy/idle status information;  3) partial information;  4) full information. 
 
3.1  Systems with no information (l = –1)  When no information about the queue length is 
available, the order size is independent of the queue length (i.e., the order size is the same for all 
queue lengths).  Since the penalty cost of raw materials shortage is infinite, an order must be issued 
whenever the inventory level becomes zero.  Assume that n units of raw materials are ordered 
whenever the inventory level hits zero.  The replenishment policy  p = (n, n, ...),  is an “order up to” 
policy.  Due to its simple structure, explicit results can be obtained for the average total cost per 
product.  It has been proved in HE and Jewkes (1999) that the average total cost per product, g-1(n),  
when the order size is n, is given by: 
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Then the average total cost per product g-1(n) is minimized at EOQ(l) (Bartmann and Beckmann, 
1992): 
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Therefore, the optimal replenishment policy with no information is given by p*

-1 = (EOQ(l), 
EOQ(l), ...). 
 
3.2  Workshop busy/idle status information (l=0)  In this situation, information about whether the 
workshop is busy or idle is available, but the exact queue length is not.  Since leadtimes are zero, 
no order is placed when q=0.  When q>0, a replenishment decision has to be made without further 
details about the queue length.  Thus, the order size for q>0 is independent of the exact queue 
length if the queue length is positive.  Therefore, the replenishment policies with level 0 
information will have the form p = (0, n, n, ...), for some positive integer n.  It can be proved (HE 
and Jewkes, 1999) that the average total cost per product is given by 
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 The average total cost per product is again minimized at EOQ(l).  Compared to the no 
information situation, the total average cost per product has decreased by (1-r)Ch /l.  The reason is 



 
that no order is placed when the queue length is zero, so that the holding costs during such idle 
periods are eliminated.  It will be shown that this cost savings is the most significant cost savings 
achievable. 
 
3.3  Partial information (0<l<¥)  No explicit results exist for the optimal replenishment policy with 
partial information.  What can be said, though, is that for level l information, the order size may 
vary according to the queue length up to q = l, and that order sizes for queue lengths larger than l 
will be the same.  The common order size will be referred to as the tail order size.  The reason for 
this special form is that the exact queue length is not available when q(t)>l so that a common order 
size must be chosen.  Thus, the policies under consideration when information of the level l is 
available are 
 
 Õ[l] º {p = (p(0), p(1), …, p(l), p(¥), p(¥), …):  p(q)³0, 0£q£l, p(¥)>0}. (3.4) 
 

No explicit formula has been found for the minimal total cost per product g*
l.  

Computationally, however, g*
l can be found - the first step is to find the optimal policy in Õ[l], and 

then to use an algorithm to calculate the average total cost per product.  The methodology is 
explained below. 
  

The optimal replenishment policy for a system with level l information can be found using 
a two stage approach.  In the first stage, the order size for a queue length larger than l is fixed.  A 
Markov decision process approach (Puterman, 1994; Tijms, 1990) is applied to find the optimal 
replenishment policy among all the policies with the same fixed tail order size.  In the second stage, 
the tail order size is enumerated over all its possible values to find the optimal replenishment level l 
policy.  The procedure is as follows.  First, the tail order size p(¥) is fixed.  Define, for 0£i, q£n 
and n³1:  
 
 V*(i, q, n) = The minimal average total cost to produce n products, given that there are q 

demands and i units of raw materials in the system initially. 
 V*(q, n) = The minimal average total cost to produce n products, given that there are q 

demands and zero units of raw materials in the system initially. 
 

In steady state (r=l/m<1), the average total cost per product is defined as .),,(lim
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Note that g*
l is independent of the initial state, is finite, and it is not the average total cost between 

decision (or transition) epochs but the average total cost between product completion epochs (i.e., 
average total cost per product).  Define the relative cost function as: 
 
 h(i, q, n) = V*(i, q, n) - V*(1, 1, n),   i³0, q³0, n³1.  (3.5) 
 
By Theorem 3.1 in Tijms (1990), the limit of {h(i, q, n), n³1} exists and is finite for each state     (i, 
q).  Define, for i³0 and q³0,  
 
 h(i, q) = lim

n®¥
h(i, q, n) = lim

n®¥
 [V*(i, q, n) -  V*(1, 1, n)]  (3.6) 
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The optimal replenishment policy p*

l   is given by 
 



 

 
ïî

ï
í
ì

<¥

££
= ³

.),(

;1)},,({minarg
)( 1*

ql

lqqih
q i

l
                          

   

p
p  (3.8) 

 
It is easy to see that when l<m, the stationary optimal replenishment policy pl

* exists.  This is 
intuitive since l<m ensures a stable M/M/1 queue.  The functions h(i, q) and h*(q) are computed 
using functional equations given in the Appendix. 
 
 It can be proved that the optimal order size never exceeds 2 K Chm / +2 (HE, Jewkes, 

and Buzacott, 1997).  Thus, let the tail order size p(¥) vary from 1 to 2 K Chm / +2 to find the 
optimal replenishment policy. 
 
3.4  Full information case (l=¥)  When full information is available, the order size varies according 
to the queue length.  When l = ¥, the optimal replenishment policy p¥

* has been obtained (HE, 
Jewkes, and Buzacott, 1997).  The optimal replenishment policy with full information has the 
structure p¥

* = (0, p*(1), p*(2), ..., p*(q*-1), EOQ(m), EOQ(m), ...), where q* is an integer and 
EOQ(m) is defined by equation (3.2).  Thus, only level q* (an integer) information is needed for 
implementing the optimal replenishment policy with full information. 
 
 
4.  The Value of Information: A Numerical Example 
 

This section compares the optimal replenishment policies for various information levels 
and their corresponding average total costs per product so as to analyze the value of information.  
The base cases for comparison purposes are the no information case (i.e. level -1 information) and 
the busy/idle workshop information case (i.e. level 0 information).  The comparisons take several 
forms: 1) comparison of the optimal average total cost per product for level l information;  2) the 
relative cost savings obtainable, e.g., (g*

-1 - g*
¥)/ g*

-1;  and  3) a comparison of the optimal 
replenishment policies for level l information. 
 
Example 4.1 Consider an inventory-production system with Ch=0.2, K=10, and m=1 and demand 
rates of l=0.1, 0.4, 0.618, and 0.95.  Columns 2 to 4 in Table 4.1 present the average total costs per 
product for information levels from -1 to 8 for each demand rate. 
 
 

Table 4.1   The average total cost per product for various information levels 

Level      l=0.1      l=0.4    l=0.618     l=0.95 
-1 7.333333 3.416667 2.706311 2.157895 
0 5.533333 3.116667 2.582686 2.147368 
1 5.528434 3.103620 2.571827 2.144377 
2 5.527970 3.100114 2.569436 2.144112 
3 5.527926 3.099178 2.568092 2.143818 
4 (»)5.527922 3.099035 2.568029 2.143818 
5 (»)5.527922 3.099035 2.568029 2.143818 
6 (»)5.527922 3.099028 2.568029 2.143818 
7 (»)5.527922 3.099028 2.568029 2.143818 
8 (»)5.527922 3.099026 2.568029 2.143818 

 
 



 
 Naturally, the average total cost per product decreases when more information is available, 
but the reductions diminish with higher information levels.  For l=0.10 and l=0.95, the average 
total costs per product decline to a limiting value for low information levels. For moderate demand 
rates, l=0.40 and l=0.618, the decline is evident, but continues for higher information levels.  To 
gain more insights, we look at the relative cost savings and the optimal replenishment policies. 
 
 
 

Table 4.2   Relative cost savings obtainable for Example 4.1 

  l=0.1 l=0.4   l=0.618 l=0.95 
   (g*

-1- g*
¥)/ g*

-1 24.62% 9.30% 5.11% 0.65% 
 
 

First, the relative cost savings obtainable, (g*
-1- g*

¥)/ g*
-1 can be generated from Table 4.1.  

Table 4.2 and other computational experience indicate that the relative cost savings obtainable with 
full information decreases with respect to the traffic intensity.  There is a straightforward 
explanation for this behavior: if the workshop is empty (q = 0), an order can be delayed until the 
next demand arrives.  This will have the long term effect of reducing inventory holding costs 
during idle periods.  If the workshop has few outstanding orders, a small replenishment order will 
be placed, thus avoiding holding costs.  Without any information about the queue length, these cost 
savings cannot be taken advantage of and the impact will be large when the utilization rate of the 
system is small.  As the traffic intensity is increased, the impact on the potential cost savings is 
reduced as the idle periods are shorter and less frequent. Computational experience has shown that 
as the ordering cost or holding cost increases, the benefits of the lower levels of information 
(especially 0 and 1) are sustained at higher utilization rates, as one might expect.  Next, we look at 
the structure of the optimal replenishment policies. 
 
 l = 0.1.  For a demand rate of 0.1, the optimal replenishment policies with information 
levels 0, 1, 5, 10, and full are given in Figure 4.1. 
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Figure 4.1  The optimal replenishment policies when l =0.1
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Figure 4.1 shows that the optimal replenishment policies for different information levels 

are dramatically different, though as the information level increases, the policy converges to that of 
full information.  Reference to Table 4.1 indicates that despite these differences in policies, the 
corresponding average total costs per product converges to the minimum average total cost per 
product quickly.  This is due to the low traffic intensity  - the likelihood of having a queue longer 
than three is very small.  It is worth to point out that for the optimal replenishment policy pl

*, its 
order size pl

*(q) does not have to be a monotone function of the queue length q (e.g., the full 
information case in Figure 4.1). 
 
 l=0.4.  The optimal replenishment policy with full information is reached when the 
information level is 8. The optimal replenishment policies with various information levels are 
shown in Table 4.3.  Each row represents an optimal replenishment policy with a given level of 
information. 
 
 For cells with bold numbers in Table 4.3, the corresponding order size can be adjusted 
individually in order to minimize the average total cost per product.  Compared to l=0.1, the 
fluctuations in the optimal replenishment policies are reduced, and information levels up to 8 
produce cost savings. Since the traffic intensity is moderate, being able to adjust the order sizes for 
low queue lengths decreases the holding costs, even when the queue length is as large as 8. 
 
 

Table 4.3  The optimal replenishment policies when l=0.4 

Level q=0 q=1 q=2 q=3 q=4 q=5 q=6 q=7 q³8 
-1 6 6 6 6 6 6 6 6 6 
0 0 6 6 6 6 6 6 6 6 
1 0 6 8 8 8 8 8 8 8 
2 0 6 7 8 8 8 8 8 8 
3 0 6 7 8 9 9 9 9 9 
4 0 6 7 8 9 10 10 10 10 
5 0 6 7 8 9 10 10 10 10 
6 0 6 7 8 9 10 10 11 11 
7 0 6 7 8 9 10 10 11 11 

(³)8 0 6 7 8 9 10 10 11 11 
 
 
 l=0.618.   For this arrival rate, the busy periods are longer as are queue lengths. Thus, the 
impact of avoiding holding inventory during idle and low demand periods is reduced. The optimal 
policy with full information takes effect for smaller queue lengths (see also Table 4.1).  Table 4.5 
shows that the optimal order size is 10 for a queue length larger than 4 and hence only the 
information levels from 0 to 4 produce cost reductions.  
 
 

Table 4.5  The optimal replenishment policies when l=0.618 

level q=0 q=1 q=2 q=3 q=4 q³5 
-1 8 8 8 8 8 8 
0 0 8 8 8 8 8 
1 0 7 9 9 9 9 
2 0 7 8 9 9 9 
3 0 7 8 9 10 10 

(³)4 0 7 8 9 9 10 



 
 
 
 l=0.95. Compared to l=0.1, the optimal inventory policy is much simpler.  As are shown 
in Tables 4.1 and 4.6, only information up to level 3 is valuable.  Once again this is due to the 
combined effect of shorter idle periods and a faster convergence to the optimal replenishment 
policy with full information. 

 
 

Table 4.6  The optimal replenishment policies when l=0.95 

level q=0 q=1 q=2 q=3 q³4 
-1 10 10 10 10 10 
0 0 10 10 10 10 
1 0 8 10 10 10 
2 0 9 9 10 10 

(³)3 0 8 9 9 10 
  
 

From Figure 4.1 and Tables 4.4 to 4.6, it is clear that once the optimal replenishment policy 
with full information is known, one can determine which information levels are valuable, i.e., 
information up to the level q* = min{q: p¥

*(n)=EOQ(m), for n>q}.  However, the structure of the 
optimal replenishment policy does not show the magnitude of the cost savings at each level.  The 
relative cost savings percentage function can be used to determine the cost savings. 
 
 
5.  Conclusions  
 

In this paper, we introduced the concept of information level in an integrated inventory-
production system.  The value of information about the queue length present at the workshop when 
a replenishment order is made was analyzed and discussed.  The main conclusions are given as 
follows. 
 
1. In general, queue length information is useful in reducing the average total cost per product, 

especially when the traffic intensity of the system is low or moderate. 
2. Lower level information, especially level 0 information, is more important than higher level 

information.  This is particularly true when the holding cost is high, as level 0 information will 
allow the decision maker to postpone an order during idle periods until the next demand 
arrives.  Higher level information is useful when the traffic intensity is moderate and the ratio 
of the ordering cost per order and the holding cost per unit per unit time is moderate as well.  

3. The value of information on workshop status is closely related to the system parameters. In 
general, as the utilization rate increases, holding costs or ordering cost decreases, the value of 
information decreases. 

 
 The implications of these results for the decision maker are: (1) information on workshop 
status should be made available; (2) the most valuable information is whether the workshop is busy 
or idle at the decision epoch.  While more information on the queue length is useful, its marginal 
value is less.  Higher levels of information can result in substantial savings but these savings need 
to be traded off against the cost of maintaining and supplying the information.  The methodology in 
this paper enables the benefits of more information to be evaluated.   
 
 A generalization of this paper would be to consider models with non-zero leadtimes.  For 
instance, in HE, Jewkes, and Buzacott (1999), an inventory-production model with exponential 
leadtimes was investigated.  In principle, the main conclusions (1 to 3) obtained for the zero 



 
leadtime case hold for cases with an exponential leadtime, but the analysis for the later is much 
more complicated. 
 
 

Appendix.  Functional Equations for the Optimal Replenishment Policy 
 
For brevity, the derivation is given for the full information case.  The basis for the functional 
equation is the principle of optimality (Puterman, 1994). 
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   (A.1) 

 
 The above method is used to compute the best replenishment policy with a fixed tail order 
size p(¥).  To find the optimal replenishment policy for inventory-production systems with 
information of the level l, one needs to search through all possible values of p(¥).  The search 
range of p(¥) is bounded and is from 1 to 2 K Chm /  +2. 
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