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Abstract

This paper deals with single server queueing systems with two classes of customers and a correlated arrival process. The
focus is on the interdeparture times of each class of customer. A uniform approach is introduced to find the Laplace–Stieltjes
transforms of interdeparture times for queueing systems with equal priority and nonpreemptive priority, respectively. Algo-
rithms can be developed for computing the variances of interdeparture times. The methodology developed in this paper can
be used to analyze queueing systems with correlated input processes with special arrival patterns. ©1999 Elsevier Science
B.V. All rights reserved.
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1. Introduction

In open queueing network applications, it is frequently the case that the network must handle several
customer classes with possibly differing arrival patterns, service time characteristics and/or routing prob-
abilities among the nodes. In some cases, these differing customer classes will contend with each other
on an equal priority basis for the attention of the server. In others, there may be a priority arrangement
among them. As the departure process at a given node contributes to the arrival processes elsewhere, it
is important to consider how the interactions among the various classes of customers affect the output
process of each class. An important element in that study is the analysis of the stationary interdeparture
time distribution.

Except for a few very specialized queues such as theM/M/1, the output process of most queueing
systems is correlated. As a result, it has been practically impossible to analyze even tandem arrangements
of non-Markovian queues, because the input to the second stage is already correlated. Until now, no work
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we are aware of has addressed the issue of departure processes for queues with correlated arrivals or an
arrival process with certain pattern.

This paper deals with single server queueing systems with two classes of customers and a correlated
arrival process. The interdeparture time distributions are provided for each class of customers, for both
the case where the classes contend on an equal priority basis, and the case where a nonpreemptive priority
arrangement exists. Through a corollary, we also find the interdeparture time distribution of a FCFS queue
with only a single class of customer. The characterization of these distributions is done in terms of their
Laplace–Stieltjes transforms from which we obtain formulas for the variance of the interdeparture time
(as the mean is already known).

Interdeparture times of queueing systems and their associated departure processes have been studied
extensively. Daley [1], Nain [6], Saito [11], Whitt [17], and many others studied the departure process of
queueing systems with a single class of customer. However, the results are not easily extended to queueing
systems with several classes of customers. Thus, the interdeparture time, instead of the departure process,
became the main topic when several classes of customers are present. Stanford [12], Stanford and Fischer
[13,14] studied interdeparture times of queueing systems with several classes of customers. They focused
primarily on queueing systems with independent Poisson input processes. (In [14], the input process of
one class of customer was allowed to have hyperexponentially distributed interarrival times.) The current
paper extends the results of [12–14], by introducing a versatile tractable model of a correlated arrival
process with two classes of customers. This generalization makes it possible to analyze a variety of
queueing systems whose arrival process may have a special pattern such as cyclic arrivals (see Example
2.2).

The queueing systems we address in this paper have a Markov arrival process with marked transitions
(MMAP). The advantage of usingMMAP is that it allows the correlation between input processes of dif-
ferent classes of customers to be captured, while the queueing system is still analytically and numerically
tractable (see [3,15,16] and references therein). Compared to Poisson type input processes with multiple
classes of customers, theMMAP can be used to model bursty stochastic processes with special arrival
patterns. Thus, the results obtained in this paper can be useful in analyzing telecommunication systems
where the input processes are often bursty. Due to the use ofMMAP as an input process, an approach
which is different from that of [12,13] (and which is more suitable for the matrix environment) is utilized
in this paper to find distributions of interdeparture times.

The rest of the paper is organized as follows. Section 2 introduces the queueing systems of interest in
detail. In Section 3, the LST of the interdeparture time of each class of customer in a queueing system
with equal priority is derived. As a corollary, the LST of the interdeparture time of aMAP/G/1 queue is
obtained. Sections 4 and 5 give the LSTs of the interdeparture times of the highest priority class and the
lowest priority class in a queueing system with nonpreemptive priority respectively. The first and second
moments of the interdeparture time of queueing systems with equal priority are given in Section 6. A
numerical example is presented to show how the computation of the first two moments can be carried
out. Finally, in Section 7, some discussion is given to the results obtained in this paper.

2. TheMMAP [K]/G[K]/MMAP [K]/G[K]/MMAP [K]/G[K]/1 queue

The queueing system of interest in this paper is a single server queueing system with a Markov arrival
process with marked transitions (MMAP [K]). Customers are distinguished intoK classes. The service
times of each class of customer are independent and identically distributed random variables. The service
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times of different classes of customers are independent and may have different distribution functions. To
define the queueing systems of interest explicitly, the input processMMAP [K] is introduced first and
then the service disciplines are specified.

The following definition of theMMAP [K] was given by Marcel Neuts. (See [4] for more details. See
[7–10] for the original definition of the Markov arrival process.) First, consider anm-state Markov renewal
process with an irreducible embedded Markov chain with transition probability matrixP = (pi,j ) and
exponential distributions for the sojourn time in statei given byHi(x) = 1−exp{−σix}, for 1 ≤ i, j ≤ m.
This Markov renewal process is also a Markov process (Markov chain in continuous time). LetD be the
infinitesimal generator of this Markov process. The matrixD, matrixP, and parametersσi, 1 ≤ i ≤ m, of
the Markov process are related to each other asDi,i = −(1 − pi,i)σi , for 1 ≤ I ≤ m, andDi,j = pi,jσi ,
for 1 ≤ i, j ≤ m, i 6= j . Let J (t) denote the state of this Markov process at timet.

An MMAP [K] is obtained by marking the transitions (arrivals) of a Markov arrival process as follows.
Define a Markov renewal process{(Jn, Ln, τn), n ≥ 0} on the state space{[{1, . . . , m} × {1, . . . , K}] ×
[0, ∞)} with the transition probability matrix, for 1≤ i, j ≤ m, 1 ≤ k ≤ K, i 6= j, x ≥ 0,

P{Jn = j, Ln = k, τn ≤ x|Jn−1 = i} =
[∫ x

0
exp{D0u}duDk

]
i,j

, (2.1)

whereJn is the state of the Markov chain at thenth arrival epoch,Ln is the marking variable (or the
class of thenth arrival), andτn is the time between the(n − 1)st and thenth transitions. The matrices
Dk, 1 ≤ k ≤ K, are nonnegative. The matrixD0 has negative diagonal elements and nonnegative
off-diagonal elements.D0 is assumed to be nonsingular.{J (t), t ≥ 0} is called the underlying Markov
process with an infinitesimal generatorD. The relationship between the infinitesimal generatorD and
matrices{Dk, 0 ≤ k ≤ K} is

D = D0 +
K∑

k=1

Dk. (2.2)

An arrival is called classk if the arrival is marked byk. The (matrix) marking rate of classk arrivals is
Dk. Denote byu the stationary probability vector of the matrixD. The stationary arrival rate of classk
arrivals is given by

λk = uDke, 1 ≤ k ≤ K, (2.3)

wheree is the column vector with all components one. LetNk(t) be the total number of classk arrivals
in (0, t). The vector(N1(t), . . . , NK(t)) represents theMMAP [K]. Denote by, for 1≤ i, j ≤ m,

pi,j (n1, . . . , nK, t) = P{N1(t) = n1, . . . , NK(t) = nK, J (t) = j |J (0) = i} (2.4)

andP(n1, . . . , nK, t) anm × m matrix with elementspi,j (n1, . . . , nK, t). It can be proved that

P ∗(z1, . . . , zK, t) ≡ Ez
N1(t)
1 . . . z

NK(t)
K ≡

∑
(n1,... ,nK)

P (n1, . . . , nK, t)z
n1
1 · · · znK

K

= exp{(D0 + z1D1 + · · · + zKDK)t}. (2.5)

Remark 2.1. Notice thatN(t) = N1(t)+· · ·+NK(t), which counts all the arrivals in(0, t), is a Markov
arrival process(MAP) with a matrix representation{D0, D1 + · · · + DK}.
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Example 2.1. The superposition process ofK independent Poisson processes is the simplest example
of anMMAP [K]. Suppose that the arrival rates of theK Poisson processes are{λ1, λ2, . . . , λK}. Then
the matrix representation of their superposition process isD0 = −λ = −(λ1 + · · · + λK), D1 =
λ1, . . . , DK = λK . We will refer to this example frequently to help visualize our results. For instance,
for this special case, Eq. (2.5) becomes

P ∗(z1, . . . , zK, t) = exp{(−λ + z1λ1 + · · · + zKλK)t}. (2.6)

Example 2.2. Consider anMMAP [2] with m = 2 and

D0 =
(−10 0

0 −1

)
, D1 =

(
0 10
0 0

)
, D2 =

(
0 0
1 0

)
(2.7)

In this example, the two classes of customers arrive cyclically. More complicatedMMAPs can be
constructed to model arrival processes with other arrival patterns. Because of the special arrival pattern,
it is difficult to analyze the corresponding queueing systems. In Example 6.1, we shall show how to use
the methodology developed in this paper to analyze queueing systems with such arrival processes.

Back to theMMAP [K]/G[K]/1 queue. The arrivals of theMMAP [K] correspond to customers in
queueing systems of interest. The service times of classk customers have a common distribution function
Fk(x) with LST f ∗

k (s) and finite mean 1/µk, 1 ≤ k ≤ K. The traffic intensity of the queueing system
is defined asρ = λ1/µ1 + · · · + λK/µK . Assume thatρ < 1 so that the queueing system can reach its
steady state. The service times are independent of each other and are independent of the input process.
The service disciplines of queueing systems under consideration are specified as follows.

TheMMAP [K]/G[K]/1queue with equal priority. In this queueing system, all customers, regardless
of their classes, are served on a “first-come-first-served” basis. Such queueing systems were considered
in [3,16] for performance measures such as the queue lengths, waiting times, fundamental periods, etc.
Stanford and Fischer [13] considered the interdeparture times in such a queueing system with Poisson
arrival processes.

The MMAP [K]/G[K]/1 queue with nonpreemptive priority. In this queueing system, class 1
customers have the highest priority, then class 2, . . . , and finally classK the lowest priority. A higher
priority customer enters the server when the server becomes free. For customers of the same class, the
“first-come-first-served” service discipline is applied. It is assumed that no service will be interrupted
until it is completed. This queueing system was studied in [15]. Stanford [12] considered such a queueing
system with Poisson arrival processes.

This paper focuses on the cases where two classes of customers are present, i.e.,K = 2. The LSTs of
the interdeparture times for all classes of customers of interest are obtained. Algorithms are developed
for computing the means and variances of interdeparture times.

3. TheMMAP [2]/G[2]/1MMAP [2]/G[2]/1MMAP [2]/G[2]/1 queue without priority

This section considers the case where there are two classes of customers and all customers are being
served on a “first-come-first-served” basis. Since there are equal priorities, the two classes of customers
are equivalent. Thus, we only need to consider the interdeparture times of class 1 customers. To find the
LST of the interdeparture time between two consecutive class 1 customers, the following measures and
notations are introduced and discussed first.
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Counting process of class2 customers. Using the definition given in Section 2, matrixP(0, n, t) gives
the probability that no class 1 customer andnclass 2 customers arrived in(0, t). Similarly,P(0, n, t)D1dt

is the (matrix) probability that no class 1 customer andn class 2 customers arrived in(0, t) and a class 1
customer arrives in(t, t + dt). Let

A∗(0, n, s) =
∫ ∞

0
exp{−sx}F2(dx)P (0, n, x), n ≥ 0. (3.1)

The waiting time of an arbitrary class1customer. LetW1(j, x) be the distribution of the waiting time of
an arbitrary class 1 customer, given that the underlying Markov chainJ (t) is in statej when the customer
arrives, for 1≤ j ≤ m. Let W1(x) = (W1(1, x), . . . , W1(m, x)). The LST ofW1(x) is obtained in [3]
as

w∗
1(s) = s

λ1
y0[sI + D0 + D1f

∗
1 (s) + D2f

∗
2 (s)]−1D1, (3.2)

wherey0 is the (vector) probability that the queueing system is empty at an arbitrary time. MatrixI is the
identity matrix. Readers are referred to Section 6 in [3] for more details about Eq. (3.2) andy0. For the
Poisson-arrival case (Example 2.1), Eq. (3.2) reduces to the standard Pollaczek–Khinchine formula for
theM/G/1 queue for which the service times have an LST(λ1f

∗
1 (s) + λ2f

∗
2 (s))/(λ1 + λ2).

The busy period involving only class2 customers. Denote by(G∗
2(s))i,j the LST of the length of the

busy period in which there are only class 2 customers (no class 1 customers arrive during the busy period)
and the underlying Markov chain is in statej when the busy period ends, given that the underlying Markov
process is in statei at the beginning of the busy period.G∗

2(s) is anm × m matrix which is the minimal
nonnegative solution to the matrix equation:

G∗
2(s) =

∞∑
n=0

A∗(0, n, s)(G∗
2(s))

n =
∫ ∞

0
exp{(−sI + D0 + D2G

∗
2(s))x}dF2(x). (3.3)

Eq. (3.3) can be proved by following the approach used in [10] by conditioning that no class 1 customer
arrives during such a busy period (abusing notation a little, we say that the input process is aMAP with
matrix representation(D0, D2)). Eq. (3.3) can also be obtained by settingz1 = 0 andz2 = 1 in Eq. (3.2)
in [3]. In the Poisson-arrival case (Example 2.1),G∗

2(s) is identical to the functionη2(s + λ1) in [13].
The interdeparture timeV + X1,1 (see Fig. 1). Consider two consecutive class 1 customersc0 andc1.

The waiting time and service time ofc0 areW1,0 andX1,0, respectively. The LST ofW1,0 is given by Eq.
(3.2). LetV denote the time between the departure epoch ofc0 and the epoch whenc1 enters service. The
service time ofc1 is X1,1, which is independent ofV. The distribution function ofX1,0 andX1,1 is F1(x)

with LST f ∗
1 (s).

The interdeparture time isV + X1,1. To find the LST ofV + X1,1, there are two cases to be considered
(see Fig. 1): (1)c1 arrives beforec0’s departure, and (2)c1 arrives afterc0’s departure. For case (1),
we must consider the number of class 2 customers who arrived beforec1, as their service times are
components of the interdeparture time. For case (2), we require the number of class 2 customers who
arrived duringc0’s flow time —W1,0 + X1,0 —as recursions are developed based on this number that
facilitate the analysis. The analysis in this section (and Sections 4 and 5) is based on this decomposition.

Denote byΦ∗
j (s) the LST of the interdeparture time betweenc0 and c1, given that the underlying

Markov processJ (t) is in statej when customerc0 arrives.888∗(s) is a column vector of sizem with
elementsΦ∗

j (s). Conditioning on whether or notc1 arrives beforec0’s departure, the number of class 2
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Fig. 1. The departure process.

customers who arrived beforec1, and the number of class 2 customers who arrived beforec0’s departure,
the following important expression can be derived:

888∗(s) =
∫ ∞

0
diag(W1 ∗ F1(dx))

[∫ x

0

∞∑
n=0

P(0, n, u)D1exp{D(x − u)}edu(f ∗
2 (s))n

+
∞∑

n=0

P(0, n, x)999∗
n(s)

]
f ∗

1 (s), (3.4)

whereW1 ∗ F1(x) is the convolution ofW1(x) andF1(x) and,999∗
n(s) is the (column vector) LST ofV,

given the state of the underlying Markov process at the departure epoch ofc0 andn class 2 customers
arrived beforec0’s departure. The matrix diag (u) has all the elements of the vectoru on its diagonal and
other elements zero.

The first part in Eq. (3.4) assumes thatc1 arrives beforec0 departs. Therefore, the interdeparture time
is the sum of the service times of class 2 customers who arrived beforec1 plus the service time ofc1

itself. The LST of the conditional interdeparture time in this case is(f ∗
2 (s))nf ∗

1 (s) if n class 2 customers
arrived beforec1. The second part in Eq. (3.4) assumes thatc1 arrives afterc0 departs. The period ofV
starts withn class 2 customers. One needs to find{999∗

n(s), n ≥ 0} for the conditional distribution of the
interdeparture time.

Similar to Eq. (3.4), the following equations can be established for vectors{999∗
n(s), n ≥ 0}: (Notice

that exp{Dt}e = e, for t ≥ 0, sinceDe = 0.)

999∗
0(s) = (sI − D0)

−1D1e+ (sI − D0)
−1D2999

∗
1(s);

999∗
n(s) =

∫ ∞

0
exp{−sx}F2(dx)

[∫ x

0

∞∑
k=0

P(0, k, u)D1edu(f ∗
2 (s))n−1+k

+
∞∑

k=0

P(0, k, x)999∗
n−1+k(s)

]
, n ≥ 1. (3.5)
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Essentially, Eq. (3.5) is derived by conditioning on what occurred during the service time of the first class
2 customer afterc0’s departure (whenn ≥ 1). Now, we are ready to state and prove the main result of
this section.

Theorem 3.1. For anMMAP [2]/G[2]/1 queue with equal priority, the LST of the interdeparture time
between two consecutive class1 customers is given by

888∗(s) =
[
s

∫ ∞

0
diag(W1 ∗ F1(dx))exp{(D0 + D2G

∗
2(s))x}(sI − D0 − D2G

∗
2(s))

−1 − I
]

×(D0 + D2f
∗
2 (s))−1D1ef ∗

1 (s). (3.6)

The LST of the interdeparture time in steady state is obtained byuD1888
∗(s)/λ1, since the stationary

distribution of the underlying Markov processJ (t) at the arrival epochs of class1 customers is given by
uD1/λ1.

Proof. Equalities in Eq. (3.5) are used to find{999∗
n(s), n ≥ 0} first. Solutions are then substituted into

Eq. (3.4) to obtain Eq. (3.6). Equalities in Eq. (3.5) can be rewritten as follows, forn ≥ 1,

999∗
n(s) =

∫ ∞

0
exp{−sx}F2(dx)

[∫ x

0
exp{(D0 + D2f

∗
2 (s))u}D1edu(f ∗

2 (s))n−1

]

+
∞∑

k=0

∫ ∞

0
exp{−sx}F2(dx)P (0, k, x)999∗

n−1+k(s)

=
∫ ∞

0
F2(dx)[exp{(−sI + D0 + D2f

∗
2 (s))x} − e−sx I ](D0 + D2f

∗
2 (s))−1

×D1e[f ∗
2 (s)]n−1 +

∞∑
k=1

∫ ∞

0
exp{−sx}F2(dx)P (0, k, x)999∗

n−1+k(s)

≡2220(s)[f
∗
2 (s)]n−1 +

∞∑
k=0

A∗(0, k, s)999∗
n−1+k(s). (3.7)

In the derivation of Eq. (3.7), equality
∑∞

k=0P(0, k, u)(f ∗
2 (S))k = exp{(D0 + D2f

∗
2 (s))u} is used.

Function2220(s) is a column vector. At this point, we hypothesize a form to the solution of Eq. (3.7).
Regardless of later events, it initially entails(f ∗

2 (s))n, the service times of then class 2 customers present
at c0’s departure epoch. Depending on later events, it may entail the busy period distribution initiated
by thesen customers. Finally, recalling the form of similar quantities in [13], we propose the solution
form:

999∗
n(s) = (f ∗

2 (s))n3330(s) + (G∗
2(s))

n���0(s), n ≥ 0, (3.8)

where column vectors3330(s) and���0(s) need to be determined. First, substituting Eq. (3.8) into Eq. (3.7),
it follows that3330(s) satisfies the following equation:

3330(s)f
∗
2 (s) = 2220(s) +

∞∑
k=0

A∗(0, k, s)(f ∗
2 (s))k3330(s). (3.9)
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Solving Eq. (3.9) yields (after we have again made use of Eq. (2.4))

3330(s) =
[
f ∗

2 (s)I −
∞∑

k=0

A∗(0, k, s)(f ∗
2 (s))k

]−1

2220(s) = −[D0 + D2f
∗
2 (s)]−1D1e. (3.10)

For vector���0(s), the boundary conditions are considered, i.e.,

999∗
0(s) = 3330(s) + ���0(s); 999∗

1(s) = f ∗
2 (s)3330(s) + G∗

2(s)���0(s). (3.11)

Using the first equality in Eq. (3.5), (3.10) and (3.11), we obtain

���0(s) = [sI − D0 − D2G
∗
2(s)]

−1[D1e+ [D2f
∗
1 (s) + D0 − sI ]3330(s)]

= −s[−sI + D0 + D2G
∗
2(s)]

−1(D0 + D2f
∗
2 (s))−1D1e. (3.12)

Substituting Eqs. (3.8), (3.10) and (3.12) into Eq. (3.4), one obtains Eq. (3.6). The last step consists of
several substitutions using Eq. (2.4) and the fact that exp{D(x − u)}e = e. Notice that the invertibility of
the matrices involved can be verified routinely.

Finally, we prove that the solution to Eq. (3.5) is unique. In fact, Eq. (3.5) is a linear system which
can be rewritten as999∗(s) = 555∗(s) + 444∗(s)999∗(s), where999∗(s) is a column vector obtained by putting
vectors{999∗

n(s), n ≥ 0} into one column lexicographically,555∗(s) is a nonnegative vector, and444∗(s) is a
nonnegative matrix:

444∗(s) =




0 (sI − D0)
−1D2 0 · · ·

A∗(0, 0, s) A∗(0, 1, s) A∗(0, 2, s) · · ·
A∗(0, 0, s) A∗(0, 1, s) · · ·

. . .
. . .


 . (3.13)

It is easy to see that444∗(s)e < 555∗(s) + 444∗(s)e < e. Thus,(444∗(s))n → 0 asn → ∞. Therefore,
999∗(s) = 555∗(s)[I −444∗(s)]−1. This implies that the solution to Eq. (3.5) is unique. Hence, Eq. (3.8) gives
the unique solution to Eq. (3.5). This completes the proof. �

Remark 3.1. Expression (3.8) can be interpreted as follows. The first part of Eq. (3.8) is the LST ofV

whenc1 arrives during the busy period with initiallyn class 2 customers. Further decompose this part
into two subparts:
• Function(f ∗

2 (s))n is the LST of the sum of the service times of then class 2 customers initially in the
system, and

• Vector−(D0 + D2f
∗
2 (s))−1D1e is the LST of the sum of the service times of the class 2 customers

who arrived beforec1.
The second part of Eq. (3.8) gives the LST ofV whenc1 does not arrive during the busy period withn

class 2 customers initially.
• (G∗

2(s))
n is the LST of the length of the busy period withn class 2 customers initially and no class 1

customer arrives during this period of time.
• (−sI + D0 + D2G

∗
2(s))

−1 is the LST of the length of the idle periods and busy periods without class
1 arrivals following the initial busy period withn class 2 customers and no class 1 arrival.

• Finally, c1 arrives during a busy period in which the total service time of all the class 2 customers who
arrived beforec1 has LST:−(D0 + D2f

∗
2 (s))−1D1e.
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Remark 3.2. In the case of Poisson-arrival (Example 2.1), Eq. (3.6) reduces to

8∗(s) =
[
1 − sw∗

1(λ − λ2G
∗
2(s))f

∗
1 (λ − λ2G

∗
2(s))

s + λ − λ2G
∗
2(s)

]
λ1f

∗
1 (s)

λ − λ2f
∗
2 (s)

, (3.14)

whereλ = λ1 + λ2. Eq. (3.14) is consistent with Eq. (13) in [13].

Remark 3.3. In this paper, the analysis is based on distinguishing system status at the departure epoch of
customerc0. In [13], the analysis is based on distinguishing system status at the arrival epoch of customer
c1. Both approaches produce the same results. In fact, expression (3.6) can be obtained by using the
previous approach, but the proof is much longer. The approach used in this paper is more suitable for the
matrix environment.

The LST of the interdeparture time of queueing systems with only one class of customer can be obtained
from Theorem 3.1 by settingD2 = 0, i.e., no class 2 arrival at all. Results are given in the following
corollary.

Corollary 3.2. For a MAP/G/1 queue with a Markov arrival process(D0, D1) and a “first-come-first-
served” service discipline, the LST of the interdeparture time between two consecutive customers is given
by

888∗(s) =
[
I − s

∫ ∞

0
diag(W1 ∗ F1(dx))exp{D0x}(sI − D0)

−1

]
ef ∗

1 (s). (3.15)

The LST of the interdeparture time in steady state is obtained byuD1888
∗(s)/λ1. For theM/M/1 queue,

Eq.(3.15)reduces to the LST of an exponential distribution with parameterλ1—a well-known result for
the interdeparture time of this queueing system.

4. TheMMAP [2]/G[2]/1MMAP [2]/G[2]/1MMAP [2]/G[2]/1 queue with nonpreemptive priority: the higher priority class

In this case, class 1 customers have higher priorities over class 2 customers. Thus, when the server
becomes available, a class 1 customer, if any, will enter the server. If there is no class 1 customer in the
system, then the first class 2 customer to arrive enters the server. Since class 1 customers have higher
priority, the queueing processes of the two classes of customers are not equivalent. Therefore, their
interdeparture times shall be treated separately.

In general, the approach introduced in Section 3 is followed in this section and the next. Also notations
used in Section 3 are used in this section and the next, possibly having a different value or expression.

It is important to see that the waiting time distributions of the two classes of customers in the non-
preemptive priority queue are different from that of the equal priority queue. Thus, expression (3.2) is
no longer useful. The distributions of the waiting times in the nonpreemptive queueing systems can be
found in [15]. Readers are referred to Takine [15] for more details about the waiting time process in the
queueing system with two classs of customers and nonpreemptive priority. In this section and Section 5,
the actual waiting time distributions of the two classes of customers are assumed to be known without
being written down explicitly.

This section considers interdeparture times of class 1 customers (the higher priority class). Since the
priority class is nonpreemptive, the presence of class 2 customers has influence on the queueing process of
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class 1 customers. Thus, the interdeparture times of class 1 customers are different from that in Corollary
3.2 for theMAP/G/1 queue (see [5] for more details about theMAP/G/1 queue).

Consider the interdeparture time between two consecutive class 1 customersc0 andc1. Conditioning
on whether or notc1 arrives beforec0 departs and the number of class 2 customers who arrived before
c0’s departure, the following equation can be obtained for the LST of the interdeparture time betweenc0

andc1:

888∗(s) =
∫ ∞

0
diag(W1 ∗ F1(dx))

[∫ x

0
exp{(D0+D2)u}D1edu+

∞∑
n=0

P(0, n, x)999∗
n(s)

]
f ∗

1 (s).

(4.1)

The column vector999∗
n(s) is, again, the LST ofV (the time between the departure epoch ofc0 and the

epoch whenc1 enters service), given the state of the underlying Markov process at the departure epoch
of c0 andn class 2 customers arrived beforec0’s departure. Expression (4.1) is different from expression
(3.4) since, whenc1 arrives beforec0 departs,c1 enters the server afterc0’s departure regardless of the
presence of class 2 customers in the priority case.

Similar to Eq. (3.5), the following equations can be established for vectors{999∗
n(s), n ≥ 0}:

999∗
0(s) = (sI − D0)

−1D1e+ (sI − D0)
−1D2999

∗
1(s);

999∗
n(s) =

∫ ∞

0
e−sxF2(dx)

[∫ x

0
exp{(D0 + D2)u}D1edu +

∞∑
k=0

P(0, k, x)999∗
n−1+k(s)

]

≡2220(s) +
∞∑

k=0

A∗(0, k, s)999∗
n−1+k(s), n ≥ 1. (4.2)

Theorem 4.1. For anMMAP [2]/G[2]/1 queue with nonpreemptive priority, the LST of the interdepar-
ture time between two consecutive class1 customers (the higher priority class) is given by

888∗(s) =
{

I + s

∫ ∞

0
diag(W1 ∗ F1(dx))exp{(D0 + D2G

∗
2(s))x}(−sI + D0 + D2G

∗
2(s))

−1

−
∫ ∞

0
diag(W1 ∗ F1(dx))[exp{(D0 + D2)x} − exp{(D0 + D2G

∗
2(s))x}

×(−sI + D0 + D2G
∗
2(s))

−1(−sI + D0 + D2)]

×(1 − f ∗
2 (s))

[
I −

∫ ∞

0
F2(dx)exp{(−sI + D0 + D2)x}

]−1
}

ef ∗
1 (s). (4.3)

Similar to Theorem3.1,the distribution of the interdeparture time in steady state is obtained byuD1888
∗(s)/

λ1.Notice that vectorW1(x) is the distribution function of the waiting time of an arbitrary class1customer.
Details aboutW1(x) can be found in[15].

Proof. Similar to Theorem 3.1, the key is to solve Eq. (4.2). Suppose that the solution to Eq. (4.2) has
the following structure:

999∗
n(s) = 3330(s) + (G∗

2(s))
n���0(s), n ≥ 0. (4.4)
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First,3330(s) satisfies the following equation:

3330(s) = 2220(s) +
∞∑

k=0

A∗(0, k, s)3330(s). (4.5)

By definition Eq. (3.1), we have
∑∞

k=0A
∗(0, k, s) = ∫∞

0 F2(dx)exp{(−sI +D0+D2)x}. Also by definition
(Eq. (4.2)), we have2220(s) = [f ∗

2 (s)I − ∫∞
0 F2(dx)exp{−sI + D0 + D2)x}]e. Solving Eq. (4.5) yields,

3330(s) =
{

I − (1 − f ∗
2 (s))

[
I −

∫ ∞

0
F2(dx)exp{(−sI + D0 + D2)x}

]−1
}

e. (4.6)

For vector���0(s), the boundary conditions are considered, i.e.,

999∗
0(s) = 3330(s) + ���0(s), 999∗

1(s) = 3330(s) + G∗
2(s)���0(s). (4.7)

Using Eqs. (4.2), (4.6) and (4.7), yields

���0(s) = [−sI + D0 + D2G
∗
2(s)]

−1{
sI + (−sI + D0 + D2)(1 − f ∗

2 (s)) ×
[
I −

∫ ∞

0
F2(dx)exp{(−sI + D0 + D2)x}

]−1
}

e.

(4.8)

Finally, substituting Eqs. (4.2),(4.6) and (4.8) into Eq. (4.1) and after some simplifications, expression
(4.3) is obtained. The same argument used in Theorem 3.1 can be applied to show that the solution to Eq.
(4.2) is unique. This completes the proof. �
Remark 4.1. Expression (4.4) can be interpreted as follows. The first part of Eq. (4.4) is the LST of the
service times of all class 2 customers served before or at the arrival ofc1. The second part of Eq. (4.4)
consists of three parts: the busy period (of class 2 customers) withn class 2 customers initially; the idle
and busy period beforec1 arrives; plus the total service time of class 2 customers served before and at
the arrival epoch ofc1.

Remark 4.2. For the Poisson-arrival case (Example 2.1), Eq. (4.3) reduces to

888∗(s) = f ∗
1 (s)

{
1 − sw∗

1(λ − λ2G
∗
2(s))f

∗
1 (λ − λ2G

∗
2(s))

s + λ − λ2G
∗
2(s)

−
[
w∗

1(λ1)f
∗
1 (λ1) − w∗

1(λ − λ2G
∗
2(s))f

∗
1 (λ − λ2G

∗
2(s))(s + λ1)

s + λ − λ2G
∗
2(s)

]
(1 − f ∗

2 (s))

1 − f ∗
2 (s + λ1)

}
.

(4.9)

This expression was obtained in [12].

5. TheMMAP [2]/G[2]/1MMAP [2]/G[2]/1MMAP [2]/G[2]/1 queue with nonpreemptive priority: the lower priority class

Section 4 finds the LST of the interdeparture times of class 1 customers (the higher priority class). This
section considers interdeparture times of class 2 customers (the lower priority class). The interdeparture
times of class 2 customers are apparently influenced by the presence of class 1 customers. Two consecutive
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class 2 customers,c0 andc1, are considered. The waiting time ofc0 is W2,0 and the service time ofc0 is
X2,0. The service time ofc1 is X2,1. The distribution function ofX2,0 andX2,1 is F2(x) with LST f ∗

2 (s).
The (vector) distribution function of the waiting time ofc0 is denoted byW2(x).

The interdeparture time betweenc0 andc1 has to consider all the class 1 customers who arrived before
c0’s departure and all class 1 customers who arrived during the subsequent busy period. This makes a
difference in the analysis. Another useful fact is that whenc0 enters the server, there is no class 1 customer
in the system since class 1 customers have higher priorities. Thus, the waiting time periodW2,0 and its
corresponding service periodX2,0 are considered separately.

Conditioning on whether or notc1 arrives duringc0’s waiting period, the number of class 1 customers
who arrived beforec0’s departure andc1’s arrival, and the number of class 1 customers who arrived before
c0’s departure and afterc1’s arrival, the following equation is obtained:

888∗(s) =
∫ ∞

0
diag(W2(dx))[e{Dx} − e{(D0+D1)x}]

∫ ∞

0
F2(du)

∑
n,k≥0

P(n, k, u)[G∗
1(s)]

nef ∗
2 (s)

+
∫ ∞

0
diag(W2(dx))e{(D0+D1)x}

[∫ ∞

0
F2(du)

∑
n≥0,k≥1

P(n, k, u)[G∗
1(s)]

ne

+
∫ ∞

0
F2(du)

∞∑
n=0

P(n, 0, u)999∗
n(s)

]
f ∗

2 (s), (5.1)

in which
• the vector999∗

n(s) is the LST of V, given the state of the underlying Markov process at the departure
epoch ofc0, n class 1 customers arrive duringc0’s service period, and no class 2 customer arrives
duringc0’s service period;

• exp{Dx} − exp{(D0 + D1)x} is the (matrix) probability that at least one class 2 customer arrives in
(0, x);

• exp{(D0 + D1)x} is the (matrix) probability that no class 2 customer arrives in(0, x);
• the matrixG∗

1(s) is the LST of the busy period of class 1 customers (the highest priority class) in which
class 2 customers may or may not arrive. The matrixG∗

1(s) is the minimal nonnegative solution to the
matrix equation

G∗
1(s) =

∫ ∞

0
F1(dx)exp{(−sI + D0 + D2 + D1G

∗
1(s))x}

=
∞∑

n=0

[∫ ∞

0
e−sxF1(dx)

∞∑
k=0

P(n, k, x)

]
[G∗

1(s)]
n. (5.2)

• Function
∫∞

0 F2(dx)exp{(D0 + D2 + D1G
∗
1(s))x} is the LST ofV considering class 1 customers who

arrived during the service time ofc0 and their corresponding busy period, given thatc1 already arrived
during the waiting period ofc0.

• W2(x) is the waiting time distribution of an arbitrary class 2 customer, given the state of the underlying
Markov chain at the arrival epoch. See [15] for details aboutW2(x).

• The expression of888∗(s) can be simplified using the following equality:
∞∑

k=0

∞∑
l=0

P(k, l, x)(G∗
1(s))

k = exp{(D0 + D2 + D1G
∗
1(s))x}. (5.3)
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The following equations can be established for vectors{999∗
n(s), n ≥ 0}:

999∗
0(s) = (sI − D0)

−1D2e+ (sI − D0)
−1D1999

∗
1(s);

999∗
n(s) =

∫ ∞

0
e−sxF1(dx)

[ ∞∑
k=0

∞∑
l=1

P(k, l, x)(G∗
1(s))

n−1+ke+
∞∑

k=0

P(k, 0, x)999∗
n−1+k(s)

]

≡2220(s)(G
∗
1(s))

n−1e+
∞∑

k=0

A∗(k, 0, s)999∗
n−1+k(s), n ≥ 0. (5.4)

Notice thatA∗(n, 0, s) is defined similar toA∗(0, n, s) but with functionF1(x) andP(n, 0, x).

Theorem 5.1. For anMMAP [2]/G[2]/1 queue with nonpreemptive priority, the LST of the interdepar-
ture time between two consecutive class2 customers (the lower priority class) is given by

888∗(s) = P1,w

∫ ∞

0
F2(dx)exp{(D0 + D2 + D1G

∗
1(s))x}ef ∗

2 (s)

+P0,w

{∫ ∞

0
F2(dx)exp{(D0 + D2 + D1G

∗
1(s))x}

−
∫ ∞

0
F2(dx)exp{(D0 + D1Ĝ

∗
1(s))x}[−sI + D0 + D1Ĝ

∗
1(s)]

−1

×[−sI − D1 + D1G
∗
1(s)]

}
ef ∗

2 (s). (5.5)

whereP1,w andP0,w are the (matrix) probabilities thatc1 arrives beforec0 enters service or afterc0

enters service, respectively. MatricesP1,w andP0,w are given by

P1,w =
∫ ∞

0
diag(W2(dx))[e{Dx} − e{(D0+D1)x}], P0,w =

∫ ∞

0
diag(W2(dx))e{(D0+D1)x}. (5.6)

Matrix Ĝ∗
1(s) is the LST of the busy period of class1 customers in which no class2 customer is present.

Matrix Ĝ∗
1(s) is the minimal nonnegative solution to the matrix equation

Ĝ∗
1(s) =

∞∑
n=0

A∗(n, 0, s)(Ĝ∗
1(s))

n =
∫ ∞

0
F1(dx)exp{(−sI + D0 + D1Ĝ

∗
1(s))x}. (5.7)

Similar to Theorem3.1,the distribution of the interdeparture time in steady state is obtained byuD2888
∗s)/λ2.

Proof. Similar to Theorems 3.1 and 4.1, the key is to solve Eq. (5.4). Suppose that the solution to Eq.
(5.4) has the following structure:

999∗
n(s) = 3330(s)(G

∗
1(s))

ne+ (Ĝ∗
1(s))

n���0(s), n ≥ 0. (5.8)

Notice that3330(s) is now a matrix. Since
∑∞

k=1P(n, k, x) = ∑∞
k=0P(n, k, x) − P(n, 0, x), it can be

verified that (see Eq. (5.2))

2220(s) = G∗
1(s) −

∞∑
n=0

A∗(n, 0, s)(G∗
1(s))

n. (5.9)
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Then it is easy to prove that3330(s) = I and

���0(s) = −[−sI + D0 + D1Ĝ
∗
1(s)]

−1(−sI − D1 + D1G
∗
1(s))e. (5.10)

Finally, substituting Eqs. (5.8) and (5.10), and3330(s) = I into Eq. (5.4), after some simplifications,
expression (5.5) is obtained. The same argument used in Theorem 3.1 can be applied to show that the
solution to Eq. (5.4) is unique. This completes the proof. �

Remark 5.1. A probabilistic interpretation of expression (5.8) can be given similar to Remark 3.1 for
expression (3.8). The first part of expression (5.8) represents the busy period of class 1 customers with
initially n class 1 customers. During this busy period,c1 (a lower priority customer) may have arrived.
The second part of expression (5.8) consists of two parts: a busy period without class 2 customers with
initially n class 1 customers, plus the time until the end of a busy period of class 1 customers wherec1

has arrived.

Remark 5.2. For the Poisson-arrival case (Example 2.1), Eq. (5.5) reduces to

888∗(s) = P1,wf ∗
2 (λ1 − λ1G

∗
1(s))f

∗
2 (s)

+P0,w

{
f ∗

2 (λ1 − λ1G
∗
1(s)) − f ∗

2 (λ − λ1Ĝ
∗
1(s))

s + λ − λ1Ĝ
∗
1(s)

[s + λ1 − λ1G
∗
1(s)]

}
f ∗

2 (s). (5.11)

with P1,w = 1 − w∗
2(λ2) andP0,w = w∗

2(λ2). Eq. (5.11) was obtained in [12].

6. Moments of interdeparture times

The LSTs obtained in Sections 3–5 can be used for computing the mean and variance of the interdepar-
ture time. Focusing on the equal priority case (Section 3), this section shows how the computation can be
done. First, expressions of the first and second moments of the interdeparture time are derived. Second,
a numerical example is presented.

First moment.Differentiating both sides of Eq. (3.6) with respect tosand settings = 0, it yields (notice
thatf ∗

2 (0) = 1, G2 = G∗
2(0), and−(D0 + D2)

−1D1e = e)

888(1) = d888∗(s)
ds

∣∣∣∣
s=0

= P̂0(D0 + D2G2)
−1e+ (D0 + D2)

−1D2e
1

µ2
− 1

µ1
e, (6.1)

whereP̂0 = ∫∞
0 diag(W1 ∗ F1(dx))exp{(D0 + D2G2)x}. The matrixG2 is the minimal nonnegative

solution to Eq. (3.3) withs = 0. An efficient algorithm for computing the matrixG2 is given in [5]. The
matrix P̂0 can be rewritten as
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P̂0 =
∫ ∞

0
diag(W1 ∗ F1(dx))e−γ xexp

{[
I + (D0 + D2G2)

1

γ

]
γ x

}

=
∞∑

n=0

∫ ∞

0
diag(W1 ∗ F1(dx))

e−γ x(γ x)n

n!

[
I + (D0 + D2G2)

1

γ

]n

=
∞∑

n=0

(−γ )n

n!

dn

dsn
[diag(w∗

1(s)f
∗
1 (s))]

∣∣∣∣∣
s=γ

[
I + (D0 + D2G2)

1

γ

]n

(6.2)

whereγ can be chosen asγ = max{1≤i≤m}{|(D0+D2G2)i,i |}+1. When the derivatives off ∗
1 (s) andw∗

1(s)

can be obtained, calculation ofP̂0 can be carried out. Then we can calculate vector888(1) using Eq. (6.1). By
Theorem 3.1, the mean interdeparture time of class 1 customer can be obtained as−uD1888

(1)/λ1. Since the
mean interarrival time must equal the mean interdeparture time in a stable queue,−uD1888

(1)/λ1 = 1/λ1.
Second moment.Differentiating both sides of Eq. (3.6) twice with respect tos and settings = 0, an

expression of the second moment of the interdeparture time is obtained as

888(2) = 2
∞∑

n=1

∫∞
0 xndiag(w1 ∗ F1)(dx)

n!

[
n−1∑
k=0

(D0 + D2G2)
kD2G

(1)
2 (D0 + D2G2)

n−1−k

]

×(D0 + D2G2)
−1e+ 2P̂0(D0 + D2G2)

−1(I − D2G
(1)
2 )(D0 + D2G2)

−1e

+2P̂0(D0 + D2G2)
−1(D0 + D2)

−1D2e
1

µ2
− 2P̂0(D0 + D2G2)

−1e
1

µ1

+2(D0 + D2)
−1D2(D0 + D2)

−1D2e
(

1

µ2

)2

− (D0 + D2)
−1D2ef (2)

2 (0)

−2(D0 + D2)
−1D2e

1

µ1µ2
+ f

(2)
1 (0)e, (6.3)

wheref (2)
k (0) = (∂2/∂s2)f ∗

k (s)|s=0, k = 1, 2, and the integration can be computed in the following way:

∫ ∞

0
xndiag(w1 ∗ F1)(dx) = (−1)n

dn

dsn
[diag(w1(s)f1(s))]

∣∣∣∣
s=0

, n ≥ 0. (6.4)

By definition, the nonnegative matrixG∗
2(s) is decreasing and differentiable with respect tos ≥ 0 (see

Eq. (3.3)). The matrixG(1)
2 can be obtained by solving the following equation:

G
(1)
2 = dG∗

2(s)

ds

∣∣∣∣
s=0

=
∞∑

n=1

∫∞
0 xnF2(dx)

n!

[
n−1∑
k=0

(D0 + D2G2)
k[−I + D2G

(1)
2 ](D0 + D2G2)

n−1−k

]
.

(6.5)

Introduce the direct sum of matrixY as a vector obtained by putting together all the rows of the matrix
φ : Y → φ(Y ) (Gantmacher [2]). Then it is easy to obtain the following explicit formula for matrixG

(1)
2 :
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φ(G
(1)
2 ) =

{
I −

∞∑
n=1

∫∞
0 xnF2(dx)

n!

[
n−1∑
k=0

[(D0 + D2G2)
k]T ⊗ (D0 + D2G2)

n−1−k

]}−1

×φ

(
−

∞∑
n=1

∫∞
0 xnF2(dx)

(n − 1)!
(D0 + D2G2)

n−1

)
, (6.6)

where “⊗” denotes Kronecker product and superscript “T” means matrix transpose [2]. The second
moment of the interdeparture time can be calculated by using expressionuD1888

(2)/λ1. Consequently, the
variance of the interdeparture time can be calculated.

As a byproduct, the first and second moments of the interdeparture time of theMAP/G/1 queue with
one class of customer(D2 = 0) are given as follows:

888(1) = P̂0D
−1
0 e− 1

µ1
e, 888(2) = 2P̂0D

−2
0 e− 2

µ1
P̂0D

−1
0 e+

∫ ∞

0
x2F1(dx)e. (6.7)

The proof of Eq. (6.7) involves only routine calculations.

Example 6.1. We consider a queueing system with anMMAP [2] input process and exponential service
times. System parameters are given as

D0 =
(−t1 0

0 −t2

)
, D1 =

(
0 t1
0 0

)
, D2 =

(
0 0
t2 0

)
, t1 > 0, t2 > 0, (6.8)

f ∗
1 (s) = µ1/(s + µ1), andf ∗

2 (s) = µ2/(s + µ2). The two classes of customers arrive in the queueing
system cyclically. Because of the special arrival pattern, it is difficult to analyze the departure process
using existing methods. The computational method developed in this section, however, can be applied to
calculate the moments of the interdeparture time. In what follows, we show how the computations can
be done.

1. For this special case,u = (t2/(t1 + t2), t1/(t1 + t2)), λ1 = λ2 = t1t2/(t1 + t2), uD1/λ1 = (0, 1),∫∞
0 xnF1(dx) = n!/µn

1, and
∫∞

0 xnF2(dx) = n!/µn
2, for n ≥ 0.

2. Matrix G2 can be found explicitly as

G2 = µ2I + D0G2 + D2G
2
2 ⇒ G2 =




µ2

(t1 + µ2)
0

t2µ
2
2

(t2 + µ2)(t1 + µ2)2

µ2

(t2 + µ2)


 . (6.9)

3. Eq. (6.5) for matrixG(1)
2 can be simplified to

G
(1)
2 =

(
I − D0 + D2G2

µ2

)−1
(

D2G
(1)
2 − I
µ2

)(
I − D0 + D2G2

µ2

)−1

. (6.10)

4. Vectory0 satisfiesy0Q = 0 andy0e = 1 − µ1/λ1 − λ2/µ2, where matrixQ is an infinitesimal
generator satisfying equation:

Q = D0 + D1(I − Q/µ1)
−1 + D2(I − Q/µ2)

−1. (6.11)

Matrix Q can be calculated iteratively using the above equation [16].
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Table 1
Mean and variance of interdeparture time(µ1 = 3, µ2 = 5, andρ = 0.353)

(t1, t2) (3, 6/7) (2, 1) (4/3, 4/3) (1, 2) (6/7, 3)

Mean 1.5 1.5 1.5 1.5 1.5
Variance (interdeparture) 1.499 1.29 1.170 1.27 1.47
Variance (interarrival) 1.37 1.25 1.125 1.25 1.37

Table 2
Mean and variance of interdeparture time(µ1 = 2, µ2 = 4, andρ = 0.5)

(t1, t2) (3, 6/7) (2, 1) (4/3, 4/3) (1, 2) (6/7, 3)

Mean 1.5 1.5 1.5 1.5 1.5
Variance (interdeparture) 1.503 1.326 1.215 1.303 1.465
Variance (interarrival) 1.37 1.25 1.125 1.25 1.37

Table 3
Mean and variance of interdeparture time(µ1 = 2, µ2 = 5, andρ = 0.47)

(t1, t2) (3, 6/7) (2, 1) (4/3, 4/3) (1, 2) (6/7, 3)

Mean 1.5 1.5 1.5 1.5 1.5
Variance (interdeparture) 1.531 1.35 1.243 1.337 1.507
Variance (interarrival) 1.37 1.25 1.125 1.25 1.37

5. With routine calculations, an explicit expression ofw∗
1(s) can be obtained and

w∗
1(s)f

∗
1 (s) =

(
0,

[y01(s + µ2)(s − t2) − y02t2µ2](s + µ1)s(t1 + t2)

[(s + µ1)(s + µ2)(s − t1)(s − t2) − t1t2µ1µ2]t2

)
f ∗

1 (s)

≡ (0, u∗(s)). (6.12)

6. Matrix P̂0 can be obtained as

P̂0 =
(

0 0
t2µ2

(t1 + µ2)
(u∗(t1) − u∗(t2))

(t2 − t1)
u∗(t2)

)
. (6.13)

The above expression can be easily modified to include cases witht1 = t2.
7. Finally, the following simplification is useful in the computation:

∞∑
n=1

∫∞
0 xndiag(w1 ∗ F1)(dx)

n!

[
n−1∑
k=0

(D0 + D2G2)
kD2G

(1)
2 (D0 + D2G2)

n−1−k

]

=
(

0 0

t2(G
(1)
2 )1,1

(u∗(t1) − u∗(t2))
(t2 − t1)

0

)
(6.14)

Now, we are ready to compute the mean and variance of the interdeparture time of class 1 customers.
The results are presented in Tables 1–3. Note that the interarrival times of class 1 customers are the sum
of two exponentially distributed random variables with parametert1 andt2, respectively. For all the cases,
the mean interarrival times (interdeparture times) are 1/λ1 = 1.5.
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As shown in Table 1, the variances of the interdeparture times of class 1 customers are different for
different sets of(t1, t2). When the difference betweent1 and t2 increases, the interdepartures times of
class 1 customers become more variable (more unpredictable). Also notice that all the queueing systems
have the same traffic intensityρ = λ1/µ1+λ2/µ2 = 0.353, which is not large. But the departure process
becomes more bursty than the input process. Since class 1 and class 2 customers arrive cyclically, the
variance of the interarrival time of class 2 customers is the same as that of class 1 customers. Thus, our
discussion applies to class 2 customers.

Table 2 shows again that the interdeparture process is more variable than the input process. Since the
system becomes busier, we expected that the variance of interdeparture time would be larger. However,
the case (6/7, 3) shows this may not be true. Nonetheless, Tables 1 and 2 show that when the difference
betweent1 and t2 is larger, the variance of the interdeparture time is larger. We further conjecture that
the difference between the service rates of the two classes of customers will increase the variance of
interdeparture time. This conjecture is supported by Tables 1 and 2, and Table 3. This conjecture is also
supported by numerous other examples we have tested.

Notice that the traffic intensity is nowρ = 0.47, which is larger than that of Table 1 and smaller than
that of Table 2. But the variances of interdeparture times are larger than their counterparts in Tables 1
and 2. This implies that the difference in service times have a stronger impact on the burstiness of the
departure process than that of the traffic intensity.

Example 6.1 shows the impact of the difference of the arrival processes on the departure process. It is
clear that the influence is strong, especially when the service times of the two classes of customers are
dramatically different, and needs to be dealt with in the study of such queueing systems.

7. Discussion

In this paper, the LSTs of the interdeparture times of queueing systems with two classes of customers
are obtained, when equal priority and nonpreemptive priority are assumed, respectively. The results are
useful in analyzing the departure process of queueing systems of interest, especially when the input
process is bursty or nonbursty. Many existing results are special cases of the results obtained in this paper.
Numerical examples are presented to show the impact of burstiness and arrival pattern of the input process
on the interdeparture times.
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