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Abstract. This paper studies the matrix R, which is the minimal nonnegative solution to a
nonlinear matrix equation, raised in matrix analytic methods. Based on some partial orders defined
on the transition matrix of Markov chains of GI/M/1 type, the monotonicity of the corresponding
matrix R and its Perron–Frobenius eigenvalue is investigated. The results are useful in estimating
tail probabilities of stationary distributions of Markov chains of GI/M/1 type and constructing upper
bounds for the matrix R. Applications to the GI/MAP/1 queue are discussed as well.
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1. Introduction. Let {An, n ≥ 0} be a sequence of m×m nonnegative matrices
whose summation matrix A is substochastic or stochastic. {An, n ≥ 0} is called a
substochastic or stochastic sequence accordingly. Let R, an m × m matrix, be the
minimal nonnegative solution to the equation

X =

∞∑
n=0

XnAn.(1.1)

Based on some partial orders defined on the set of all substochastic and stochastic
sequences, this paper presents some characterizations of the matrix R. Applications
to Markov chain theory, matrix analytic methods, and the GI/MAP/1 queue are
explored.

The interest in the minimal nonnegative solution to (1.1) comes from the study
of Markov chains of GI/M/1 type (see (2.1)), which often arise in the modeling of
stochastic systems. A classical example is the GI/M/1 queue in which the embedded
Markov chain for the queue length at arrival epochs has the GI/M/1-type structure.
More complicated examples are Markov chains of GI/M/1 type with matrix transition
blocks ({An, n ≥ 0}) raised in the study of the GI/PH/1 and GI/MAP/1 queues
(Neuts [16]). The matrix R is important since the stationary distribution of a Markov
chain of GI/M/1 type, when it exists, has a matrix–geometric solution which can be
expressed in terms of R and another constant vector. Early papers (see Purdue [20])
studied (1.1) and its minimal nonnegative solution. It has been proved that, under
some conditions, the Perron–Frobenius eigenvalue (the eigenvalue with the largest
real part) of R is less than one so that the stationary distribution of the Markov chain
exists and is unique. More recently, Gail, Hantler, and Taylor [6] found all power
bounded solutions of (1.1). Their work greatly extended our understanding of the
solutions to (1.1). Although previous studies gained some insights into the minimal
nonnegative solution of (1.1), there are still some important issues that need to be
explored (see Neuts [19]). This paper addresses two of those issues.
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The first issue is related to the comparison of the stationary distributions of
Markov chains of GI/M/1 type. Similar to stochastic comparison of Markov chains
(see Daley [5] and Keilson and Kester [9]), some partial orders shall be defined on
the transition blocks ({An, n ≥ 0}) of Markov chains of GI/M/1 type. When the
transition blocks of two Markov chains of GI/M/1 type are partially ordered, the
relationship between their corresponding matrix R shall be investigated. Since the
stationary distributions of the two Markov chains of GI/M/1 type can be expressed
in terms of their matrix R, the relationship between the two stationary distributions
can be investigated accordingly. For example, by introducing the stochastically larger
order, a general inequality for the matrix R under this partial order shall be proved.
Implications of the results, especially to the stationary distribution, are then discussed
(see section 4).

The second issue is related to the computation of the matrix R. Some algorithms
have been developed for computing R (see Neuts [16], Latouche and Ramaswami [10],
Ramaswami [21], and Ramaswami and Taylor [22]). Essentially, these algorithms
generate a sequence of matrices which, usually nondecreasing, converges to R. That
is, the resulting sequence converges to R from “below.” An interesting problem is to
find an algorithm which generates a sequence converging to R from “above.” In this
paper, some upper bounds of R and some schemes for computing R are presented.
The proposed schemes generate sequences of matrices that have a Perron–Frobenius
eigenvalue larger than that of R, and the sequence converges to R under certain con-
ditions. The resulting sequence may not be decreasing, but its matrices are “above”
the limiting matrix R in the sense of the Perron–Frobenius eigenvalue.

In this paper, the focus is on the matrix R. It is worthwhile to mention that the
approach used in this paper can be used to study a dual problem of (1.1) raised from
the study of Markov chains of M/G/1 type, i.e., the minimal nonnegative solution G
to the equation

X =

∞∑
n=0

AnX
n.(1.2)

The reason is that there is a one-on-one mapping between the minimal nonnegative
solutions of (1.1) and (1.2) according to Asmussen and Ramaswami [2]. More studies
of the matrix G can be found in Akar and Sohraby [1], Bini and Meini [4], Latouche
and Stewart [11], and Lucantoni [13], where different algorithms for computing the
matrix G are proposed and analyzed.

The rest of this paper is organized as follows. In section 2, some definitions and
some classical results are presented. In section 3, a partial order defined on the set
of substochastic and stochastic sequences is introduced. Section 4 focuses on the
stochastically larger order and some applications to Markov chains of GI/M/1 type.
Section 5 presents some inequalities of R and suggests a scheme for computing R.
A few numerical examples are presented in section 5 as well. Section 6 discusses
the moment generating order, functional monotonicity, and functional dominance.
Section 7 is devoted to the GI/MAP/1 queue.

2. Preliminaries. In this section, a discrete Markov chain of GI/M/1 type, a
simple algorithm for computing R, and some classical results on nonnegative matrices
are introduced.
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Markov chains of GI/M/1 type. A Markov chain P is of GI/M/1 type if it
has a transition matrix

P =


A0 A0

A1 A1 A0

A2 A2 A1 A0

...
. . .

. . .
. . .

. . .

 ,(2.1)

where all the blocks in P are m ×m matrices. The state space of P is {(n, j), n ≥
0, 1 ≤ j ≤ m}. The state set {(n, j), 1 ≤ j ≤ m} is called the level n. One of
the major features of the Markov chain P is that, for each transition, the first index
n can increase at most by one. This feature determines a special structure of the
stationary distribution of P . Let π = (π0,π1,π2, . . .) be the stationary distribution
of P , where πn is an m-dimensional vector for n ≥ 0. When P is irreducible and
positive recurrent, it has been found (see Neuts [16, Chapter 1]) that πn = π0R

n,
n ≥ 0, where the vector π0 is the unique nonnegative solution to the equations

x = x

∞∑
n=0

RnAn and x(I−R)−1e = 1,(2.2)

where e is the column vector with all components one, and I is the unit matrix. The
solution π is called the matrix–geometric solution. Such a solution exists for (irre-
ducible and positive recurrent) Markov chains of GI/M/1 type with more complicated
boundary statues. In the context of the Markov chain P , Rij (1 ≤ i, j ≤ m) is in-
terpreted as the mean total number of visits to state (n + 1, j) before returning to
level n, given that the Markov chain started in state (n, i). It is clear from the special
structure of P that Rij is the same for all positive n.

Continuous-time Markov chains of GI/M/1 type are defined similarly. The in-
finitesimal generator of a continuous-time Markov chain of GI/M/1 type has a similar
structure to that of the matrix P in (2.1). It is worth mentioning that the results
obtained in this paper also hold for Markov processes of GI/M/1 type with minor
changes.

An algorithm for computing R. A simple algorithm for computing the matrix
R is as follows. Let R[0] = 0 and

R[k + 1] =

∞∑
n=0

(R[k])nAn, k ≥ 0.(2.3)

It is easy to see that {R[k], k ≥ 0} is nondecreasing and converges to R from
below, when R is unique. Although there are other algorithms proposed for computing
R for some special cases (see Latouche and Ramaswami [10] and Ramaswami and
Taylor [22]), this algorithm is easy to use when {An, n ≥ 0} are known. In this paper,
(2.3) will be used repeatedly in proving properties about the matrix R.

Nonnegative matrices. In this paper, some results of nonnegative matrices
are used repeatedly. For convenience, those results are summarized here (see Gant-
macher [7]). Assume that X is an irreducible nonnegative matrix. Let sp(X) denote
the Perron–Frobenius eigenvalue of X. Then sp(X) is positive and its corresponding
eigenvector has positive elements as well. sp(X) is strictly increasing with respect to
each element of X. For any two constants c1 and c2, if uc1 ≤ uX ≤ uc2, where u is a
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nonzero nonnegative vector, then c1 ≤ sp(X) ≤ c2. For a stochastic or substochastic
sequence {An, n ≥ 0}, define

A∗(z) =
∞∑
n=0

znAn, z ∈ [0, 1).(2.4)

If A, the summation matrix of {An, n ≥ 0}, is irreducible, A∗(z) is irreducible for all
0 < z < 1. Denote by θ(z) the eigenvector corresponding to sp(A∗(z)) with θ(z)e = 1.
θ(z) is unique and positive. Also, log(sp(A∗(e−s))) is convex with respect to s(> 0)
(see Neuts [16, Chapter 1]). This last property implies that sp(A∗(z)), as a function
of z, has at most one intersection with the linear function z in [0, 1). This further
implies that the eigenvector of sp(R), denoted by θ(sp(R)) with θ(sp(R))e = 1, is
unique and positive.

3. A partial order and the matrix R. Partial ordering is an important tool
in characterizing stochastic systems in applied probability (see Marshall and Olkin
[14] as well as Shaked and Shanthikumar [24]). Various partial orders have been
introduced and studied. For example, the majorization of vectors and matrices is
discussed in Marshall and Olkin [14]. In Ridder [23], functional monotonicity and
functional dominance are introduced with applications to matrix analytic methods.

Let Mm be the set of all sequences {An, n ≥ 0} of dimension m whose summation
is an irreducible substochastic or stochastic matrix. In this section, a partial order is
defined on Mm in order to study the monotonicity of the matrix R. The partial order
is defined in such a way that the Perron–Frobenius eigenvalue of the matrix R can
play an important role. Relationships between the matrix R and its corresponding
eigenvalues of partially ordered sequences shall be derived.

Define a function φ (from [0, 1) to (0,∞)) as

φ(x) =

∞∑
n=0

φnx
n,(3.1)

where {φn, n ≥ 0} are nonnegative and finite, φ0 = 1, and the summation converges
for all x in [0, 1).

Definition 3.1. For {An, n ≥ 0} and {Bn, n ≥ 0} in Mm, if

n∑
i=0

φn−iAi ≥
n∑
i=0

φn−iBi for all n ≥ 0,(3.2)

then {An, n ≥ 0} is called smaller than {Bn, n ≥ 0} with respect to φ, denoted as
{An, n ≥ 0} ≤φ {Bn, n ≥ 0}. It can be verified that (3.2) indeed defines a partial
order on Mm with transitivity and reflective properties. The following result shows
why the partial order ≤φ is useful in the study of the matrix R.

Lemma 3.1. Consider {An, n ≥ 0} and {Bn, n ≥ 0} in Mm satisfying {An, n ≥
0} ≤φ {Bn, n ≥ 0}. Let Ra and Rb be the minimal nonnegative solutions to (1.1)
corresponding to {An, n ≥ 0} and {Bn, n ≥ 0}, respectively. (Indexes “a” and “b”
shall be used to distinguish variables corresponding to the two sequences.) Assuming
that sp(Ra) ≤ 1, φ(Ra), and φ(Rb) are well defined, then

φ(Ra)Rna ≥ φ(Ra)Rnb and φ(Rb)R
n
a ≥ φ(Rb)R

n
b , for n ≥ 1,(3.3)

and sp(Ra) ≥ sp(Rb). Furthermore, denote by θa = θ(sp(Ra)) and θb = θ(sp(Rb)),
for n ≥ 1,

θaR
n
a = (sp(Ra))nθa ≥ θaRnb and θbR

n
a ≥ θbRnb = (sp(Rb))

nθb.(3.4)
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Proof. To prove the first inequality in (3.3), the fact that the nondecreasing
sequence generated by (2.3) converges to Rb of {Bn, n ≥ 0} shall be used. First, it
has

φ(Ra)Ra = φ(Ra)
∞∑
n=0

RnaAn ≥ φ(Ra)A0 ≥ φ(Ra)B0 = φ(Ra)Rb[1],(3.5)

where A0 ≥ B0 = Rb[1] by definition (see (2.3) and (3.2)). The commutativity of
φ(Ra) and Ra yields, for n ≥ 1,

φ(Ra)Rna = Rn−1
a φ(Ra)Ra ≥ Rn−1

a φ(Ra)Rb[1] ≥ · · · ≥ φ(Ra)(Rb[1])n.(3.6)

Suppose that (3.6) is true for k. For k + 1, by induction, it has

φ(Ra)Ra = φ(Ra)
∞∑
n=0

RnaAn =
∞∑
n=0

( ∞∑
i=0

φiR
i
a

)
RnaAn =

∞∑
n=0

Rna

(
n∑
i=0

φiAn−i

)

≥
∞∑
n=0

Rna

(
n∑
i=0

φiBn−i

)
=
∞∑
n=0

φ(Ra)RnaBn ≥
∞∑
n=0

φ(Ra)(Rb[k])nBn(3.7)

= φ(Ra)
∞∑
n=0

(Rb[k])nBn = φ(Ra)Rb[k + 1].

The exchange of the summations in (3.7) is valid since the coefficients {φn, n ≥
0} and matrices involved are nonnegative. Similar to (3.6), it can be proved that
φ(Ra)Rna ≥ φ(Ra)(Rb[k + 1])n for n ≥ 1. Thus, φ(Ra)Rna ≥ φ(Ra)(Rb[k])n holds for
n ≥ 1 and k ≥ 1. Since Rb[k] converges to Rb monotonically, the first inequality in
(3.3) is obtained. Multiplying θa on both sides of the first inequality in (3.3) yields

θaφ(Ra)Rna = φ(sp(Ra))θa(sp(Ra))n ≥ φ(sp(Ra))θaR
n
b .(3.8)

Since φ(x) is positive, θasp(Ra) ≥ θaRb, which implies that sp(Ra) ≥ sp(Rb) and the
first inequality of (3.4) holds.

To prove the second inequalities in (3.3) and (3.4), define the following sequence:

Ra[1] =
∞∑
n=0

RnbAn and Ra[k + 1] =
∞∑
n=0

(Ra[k])nAn, k ≥ 1.(3.9)

It can be proved that, for n ≥ 1,

φ(Rb)R
n
b ≤ φ(Rb)(Ra[1])n and φ(Rb)R

n
b ≤ φ(Rb)(Ra[k])n, k ≥ 1.(3.10)

Then it is only needed to prove that the sequence {Ra[k], k ≥ 1} converges to Ra.
By definition and induction,

θaRa[1] =
∞∑
n=0

θaR
n
bAn ≤ θa

∞∑
n=0

(sp(Ra))nAn = sp(Ra)θa,

θa(Ra[1])n ≤ (sp(Ra))nθa,
(3.11)

θaRa[k + 1] =
∞∑
n=0

θa(Ra[k])nAn ≤ θa
∞∑
n=0

(sp(Ra))nAn = sp(Ra)θa,

θa(Ra[k + 1])n ≤ (sp(Ra))nθa, n ≥ 1.
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On the other hand, by (2.3) and (3.9), Ra[1] ≥ A0 = Ra[1]. By induction, it can be
proved that Ra[k] ≥ Ra[k] for k ≥ 1.

Since the sum of {An, n ≥ 0} is an irreducible matrix, θa is positive. By (3.11),
the sequence {Ra[k], k ≥ 1} is uniformly bounded. Denote by Ra the limit matrix
of a converging subsequence of {Ra[k], k ≥ 1}. Then Ra ≤ Ra and sp(Ra)θa ≤
θaRa ≤ sp(Ra)θa. Thus, sp(Ra)θa = θaRa, which implies that sp(Ra) = sp(Ra). If
Ra < Ra, Ra − Ra is nonzero and nonnegative. Then θa(Ra − Ra) is nonzero and
nonnegative since θa is positive. This is a contradiction. Thus, Ra = Ra. Since this is
true for any converging subsequence of {Ra[k], k ≥ 1}, it concludes that the sequence
{Ra[k], k ≥ 1} converges to Ra.

There is a variety of selections of the function φ(x). For applications to Markov
chains of GI/M/1 type and queueing theory, functions of the form (1− x)−k, k ≥ 0,
are of interest, especially when k = 0 and 1. When k = 0, φ(x) = 1. {An, n ≥
0} ≤φ {Bn, n ≥ 0} implies that An ≥ Bn for all n. Lemma 3.1 implies that Ra ≥
Rb. This result is useful, but the condition is too strong to be held by any two
different stochastic sequences. Therefore, the focus of the next two sections will be
on the case φ(x) = (1 − x)−1. The partial order ≤φ with φ(x) = (1 − x)−1, in some
sense, bears some analogy to the classical stochastically larger order (see Shaked and
Shanthikumar [24]) and it is relatively easy to check whether or not two sequences in
Mm are partially ordered.

4. Stochastically larger order and the matrix R. In this section, the focus
is on the “stochastically smaller (larger)” order defined by φ(x) = (1 − x)−1, and
denoted by ≤st (≥st). This partial order is important not only because it has a scale
case counterpart (see Shaked and Shanthikumar [24]) but also because it induces
some useful results for the stationary distribution of Markov chains of GI/M/1 type.
Furthermore, it suggests some schemes for computing R (see section 5).

For the stochastically smaller order, φn = 1 for all n. If {An, n ≥ 0} ≤st
{Bn, n ≥ 0}, (3.2) becomes A0+A1+· · ·+An ≥ B0+B1+· · ·+Bn for all n ≥ 0. When
n goes to infinity, it leads to A ≥ B, where A and B are the sums of {An, n ≥ 0} and
{Bn, n ≥ 0}, respectively. Lemma 3.1 leads to the following results of the matrix R.

Theorem 4.1. For {An, n ≥ 0} and {Bn, n ≥ 0} in Mm, assume that
{An, n ≥ 0} ≤st {Bn, n ≥ 0}. Then sp(Ra)θa ≥ θaRb,θbRa ≥ sp(Rb)θb, sp(Ra) ≥
sp(Rb), and

(1) if sp(Ra) < 1, then (I − Ra)−1Ra ≥ (I − Ra)−1Rb and (I − Rb)
−1Ra ≥

(I−Rb)−1Rb;
(2) if sp(Rb) < 1, then (I−Rb)−1Ra ≥ (I−Rb)−1Rb.
Proof. Consider {tAn, n ≥ 0} and {tBn, n ≥ 0} for 0 < t < 1. Their minimal

nonnegative solutions to (1.1) are Ra(t) and Rb(t), respectively. It is clear that Ra(t),
Rb(t), sp(Rb(t)), and sp(Ra(t)) are nondecreasing in t and upper bounded by Ra,
Rb, sp(Rb), and sp(Ra), respectively. It can be proved that Ra(t), Rb(t), sp(Rb(t)),
and sp(Ra(t)) are continuous with respect to t when sp(Ra) < 1, sp(Rb) < 1, and
0 ≤ t ≤ 1 (see He [8]). Matrices (I−Ra(t))−1 and (I−Rb(t))−1 are well defined since
sp(Rb(t)) ≤ sp(Ra(t)) < 1. Therefore, all conclusions in Lemma 3.1 hold for t < 1.
Taking t to 1, the results are obtained.

Results given in Theorem 4.1 have many applications. Two examples are shown
next. First, recall that Ra(Rb) is the mean number (in matrix form) of visits of
the Markov chain Pa(Pb) (see (2.1) for definition) to level k + 1 before returning to
level k, given that the process started in level k. Intuitively, when {An, n ≥ 0} is
stochastically smaller than {Bn, n ≥ 0}, Markov chain Pa is more likely to stay in
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level k+ 1 and higher. Therefore, the mean number of visits to level k+ 1 and higher
should be larger. This intuition leads to the following corollary.

Corollary 4.2. Assume that {An, n ≥ 0} ≤st {Bn, n ≥ 0} and sp(Ra) < 1.
Then (I − Ra)−1Ra ≥ (I − Rb)−1Rb, where (I − Ra)−1Ra (or (I − Rb)−1Rb) is the
mean total number of visits to level k+ 1 and higher before returning to level k, given
that the Markov chain started in level k.

Proof. By Theorem 4.1, (I−Ra)−1Ra ≥ (I−Ra)−1Rb. Then, for all n ≥ 1,

(I−Ra)−1Rb = [I + (I−Ra)−1Ra]Rb ≥ Rb + (I−Ra)−1R2
b

≥ Rb +R2
b + · · ·+Rnb + (I−Ra)−1Rn+1

b .
(4.1)

Since sp(Rb) ≤ sp(Ra) < 1, Rnb converges to zero. This implies that (I − Ra)−1Rnb
converges to zero, which leads to the result.

The probabilistic interpretation for (I−Ra)−1Ra (and (I−Rb)−1Rb) comes from
the fact that Rn is the mean number of visits to level k + n before returning to level
k, given that the Markov chain started in level k (see Neuts [16, Chapter 1]).

Note. When sp(Ra) = 1, the Markov chain Pa is transient. The mean number of
visits to level k + 1 and higher before returning to level k is infinity, given that the
Markov chain started in level k.

Corollary 4.2 shows that the mean number of visits to all higher levels before the
Markov chain returns to its current level is monotone with respect to the stochastically
larger order. It is natural to ask if it is also true for a higher level ; i.e., when {An, n ≥
0} ≤st {Bn, n ≥ 0}, is it true that Ra ≥ Rb? The answer to this question is negative.
A counterexample is given as follows.

Example 4.1. Define {An, n ≥ 0} as follows: An = 0, n ≥ 3,

A0 =

 0 0.1 0.1

0.1 0 0.1

0 0 0.1

, A1 =

 0.1 0.05 0

0.1 0 0

0.1 0 0

, A2 =

 0.2 0.2 0.25

0 0.5 0.2

0.15 0.55 0.1

 .

(4.2)

{Bn, n ≥ 0} is the same as {An, n ≥ 0} except (B0)1,2 = 0 and (B1)1,2 = 0.15.
Apparently, {An, n ≥ 0} ≤st {Bn, n ≥ 0}. However, Ra ≥ Rb is not true since

Ra =

 0.0356 0.1269 0.1099

0.1347 0.0352 0.1097

0.0156 0.0106 0.1029

 and Rb =

 0.0155 0.0112 0.1025

0.1341 0.0399 0.1060

0.0155 0.0112 0.1025

 .

(4.3)
Another application of Theorem 4.1 is the comparison of tail probabilities of

stationary distributions of Markov chains Pa and Pb of GI/M/1 type. When sp(Ra) <
1, for instance, there is an approximation (see Neuts [17])

Rna = (sp(Ra))nvθa + o((sp(Ra))n) as n→∞,(4.4)

where v and θa are the right and left eigenvectors of Ra corresponding to sp(Ra) and
normalized by θae = θav = 1. Equation (4.4) implies that the stationary distribu-
tion π = (π0,π1,π2, . . .) of Markov chain Pa has the following approximation (see
section 2 for the definition):

πn = (sp(Ra))n(π0v)θa + o((sp(Ra))n) as n→∞.(4.5)
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Therefore, when {An, n ≥ 0} ≤st {Bn, n ≥ 0}, sp(Ra) ≥ sp(Rb) and the tail
probabilities of Pa are larger than that of Pb. Again, this implies that Pa is more
likely to be in higher levels than Pb, although the probabilities of such events are
small.

Note. For any partial order ≤φ defined by (3.1) and (3.2), sp(Ra) ≥ sp(Rb)
if {An, n ≥ 0} ≤φ {Bn, n ≥ 0}. This implies that the same conclusion for tail
probabilities holds for the partial order φ. Cases of interest include φ(x) = (1− x)−k

for k ≥ 0. It is clear that the condition in (3.2) is weaker for large k than for small
k, but they all imply the monotonicity of the Perron–Frobenius eigenvalue of the
minimal nonnegative solution to (1.1).

5. Upper bounds of the matrix R and related issues. As was mentioned
in section 1, upper bounds for the matrix R are useful, and it is even more interesting
to develop algorithms generating sequences which converge to R from above. To
address these issues, the stochastically larger order is explored further in this section.
Although algorithms generating sequences which converge to R from above are not
developed in this paper, some upper bounds are found and a scheme is developed.
The scheme generates a sequence, whose matrices have Perron–Frobenius eigenvalues
larger than sp(R), converging to R under some conditions.

Consider {An, n ≥ 0} and {Bn, n ≥ 0} in Mm. Define the following sequence
for Rb:

R̂b[1] =
∞∑
n=0

RnaBn, R̂b[k + 1] =
∞∑
n=0

(R̂b[k])nBn for k ≥ 1.(5.1)

When {An, n ≥ 0} ≤st {Bn, n ≥ 0}, the sequence generated by using (5.1) is
expected to converge to Rb monotonically. The sequence indeed converges to Rb
under some conditions but, unfortunately, it is not always a monotone sequence.

Property 5.1. Assume that {An, n ≥ 0} ≤st {Bn, n ≥ 0} and sp(Ra) < 1. Then

R̂b[k] ≥ Rb[k] and sp(Rb) ≤ sp(R̂b[k]) ≤ sp(Ra), k ≥ 1.(5.2)

If the sequence generated by using (5.1) converges, it converges to Rb.
Proof. The first inequality in (5.2) is proved as follows:

R̂b[1] ≥ B0 = Rb[1], by induction, R̂b[k] ≥ Rb[k].(5.3)

To prove the second part, the following inequalities are proved first, for n, k ≥ 1,

(I−Rb)−1Rnb ≤ (I−Rb)−1(R̂b[k])n and (I−Ra)−1(R̂b[k])n ≤ (I−Ra)−1Rna .(5.4)

By Theorem 4.1, it has

(I−Rb)−1Rb =
∞∑
n=0

(I−Rb)−1RnbBn ≤
∞∑
n=0

(I−Rb)−1RnaBn ≤ (I−Rb)−1R̂b[1],

(I−Rb)−1Rnb = Rn−1
b (I−Rb)−1Rb

≤ Rn−1
b (I−Rb)−1R̂b[1] ≤ · · · ≤ (I−Rb)−1(R̂b[1])n.

(5.5)
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By induction, the first part of (5.4) is proved. To prove the second part, first notice

(I−Ra)−1Ra =
∞∑
n=0

Rna

(
n∑
i=0

Ai

)
≥
∞∑
n=0

Rna

(
n∑
i=0

Bi

)

= (I−Ra)−1
∞∑
n=0

RnaBn = (I−Ra)−1R̂b[1],

(I−Ra)−1Rna ≥ (I−Ra)−1(R̂b[1])n, n ≥ 0.

(5.6)

Using (5.1), the second part of (5.4) can be proved by induction. By (5.4), it is
easy to see that the Perron–Frobenius eigenvalues of the matrices in the sequence
generated by (5.1) are between sp(Ra) and sp(Rb). When the sequence generated
by (5.1) converges, it converges to a nonnegative solution of (1.1) associated with
the sequence {Bn, n ≥ 0}. Since the minimal nonnegative solution of (1.1) with the
largest eigenvalue less than one is unique (see Neuts [16, Theorem 1.3.3]), the sequence
generated by (5.1) converges to the matrix Rb.

The above result shows that the Perron–Frobenius eigenvalue plays an important
role in generating new sequences which converge to R from “above,” since the most
important feature of the initial matrix for (5.1) is that its Perron–Frobenius eigenvalue
is larger than that of the matrix Rb. Following this idea, another sequence can be
constructed as follows, for 0 < s < 1:

R̂b[1] =
∞∑
n=0

snBn = B∗(s), R̂b[k + 1] =
∞∑
n=0

(R̂b[k])nBn, k ≥ 1.(5.7)

Property 5.2. Assume that 1 > s > sp(Rb). For the sequence generated by (5.7),

R̂b[k] ≥ Rb[k], sp(Rb) ≤ sp(R̂b[k]) ≤ sp(B∗(s)) ≤ s.(5.8)

If the sequence converges, it converges to Rb.
Proof. By definition, it has

R̂b[1] = B∗(s) ≥ Rb[1] = B0 and R̂b[k] ≥ Rb[k], k ≥ 1.(5.9)

Recall that θ(s) is the eigenvector of B∗(s) corresponding to its Perron–Frobenius
eigenvalue and s ≥ sp(B∗(s)). Then

θ(s)R̂[1] = θ(s)B∗(s) = θ(s)sp(B∗(s)) ≤ θ(s)s,

θ(s)(R̂[1])n ≤ θ(s)sn, n ≥ 0.
(5.10)

By induction, it can be proved that

θ(s)(R̂[k])n ≤ θ(s)(sp(B∗(s)))n ≤ θ(s)sn, k, n ≥ 1,

sp(R̂[k]) ≤ sp(B∗(s)) ≤ s.(5.11)

Replacing θ(s) by θb and s by sp(Rb) and changing the direction of inequalities in
(5.10) and (5.11), the other inequality in (5.8) can be proved.

Using the same argument as in Property 5.1, when the sequence generated by
(5.7) converges, it converges to Rb.

Properties 5.1 and 5.2 show that all the matrices in the sequence generated by
(5.1) or (5.7) have their largest eigenvalues in [sp(Rb), sp(Ra)] or [sp(Rb), s) with
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sp(Ra) < 1 and s < 1. This suggests that the generated sequence should converge to
Rb so that the convergence condition in Properties 5.1 and 5.2 can be dropped out.
This conjecture is supported by numerical examples as well. However, the generated
sequence may not be monotone, and a rigorous proof of its convergence is difficult to
obtain. In fact, such a proof may involve the theory of multiple dimension contraction
mappings and is beyond the scope of this paper. This is why it is assumed in Prop-
erties 5.1 and 5.2 that the generated sequence converges. The issue of convergence is
left as an open problem.

The following property shows that an extra condition guarantees the monotonicity
and convergence of a generated sequence.

Property 5.3. For a nonnegative matrix X with 0 < sp(X) < 1, define X[0] =
X, X[k + 1] = B0 + X[k]B1 + · · · for k ≥ 0. If X[0] ≥ X[1], then X[k] ≥ X[k + 1],
k ≥ 0, and {X[k], k ≥ 0} converges to Rb.

Proof. If X[0] ≥ X[1], then (X[0])n ≥ (X[1])n. Therefore, X[1] ≥ X[2] by
definition. The rest of the proof is completed by induction and by using Theorem 1.3.3
in Neuts [16].

Usually, to calculate the matrix R associated with a sequence {An, n ≥ 0} in
Mm, a sequence {Bn, n ≥ 0} in Mm is not given to facilitate the computation of
R. One has to construct new sequences in Mm from {An, n ≥ 0} for such purposes.
Thus, let us focus on a single sequence {An, n ≥ 0} in Mm. The issues of interest are
(1) to find some upper bounds of Ra and (2) to find some initial matrices or values
for the algorithms defined by (5.1) and (5.7), respectively. The idea is to consider a
truncated sequence {A0, A1, . . . , AN−1, AN +AN+1 + · · ·} for a given N(> 0). Denote
the minimal nonnegative solution to (1.1) corresponding to the truncated sequence
by R(N). It is easy to verify that the truncated sequence is stochastically smaller
than {An, n ≥ 0}. The computation of R(N) could be much easier than that of
Ra, especially when N is small. For instance, when N = 2, an efficient algorithm was
proposed in Latouche and Ramaswami [10] for computing R(2). Also, R(N) is expected
to be an upper bound of Ra. Unfortunately, this is not true in general. A simple
counterexample is obtained when sp(Ra) = 1 (which implies that sp(R(N)) = 1). In
fact, numerical results show that no upper bound can be easily found for Ra. However,
if sp(R(N)) < 1 for a small N(≥ 2), a sequence converging to Ra from “above” in
terms of the Perron–Frobenius eigenvalue can usually be generated.

Upper bounds. Consider N = 2; a simple upper bound for Ra is suggested.
Let θ(2) be the eigenvector of sp(R(2)), and θA = θ and θe = 1. By Theorem 4.1,
sp(R(2))θ(2) ≥ θ(2)Ra. It is easy to prove that θRa ≤ θ. Combining the two inequal-
ities yields

(Ra)i,j ≤ min

{
sp(R(2))

(θ(2))j

(θ(2))i
,

(θ)j
(θ)i

}
.(5.12)

Notice that when sp(R(2)) = 1, θ(2) = θ. The upper bounds provided by (5.12) are
useful for some state i where (θ)i (or (θ(2))i) is small compared with other compo-
nents. Another immediate result is that sp(R(2)) ≥ sp(Ra).

A computational scheme. Using the idea of truncation, first find the smallest
N for which sp(R(N)) < 1. This is equivalent to finding the minimal number Nmin
such that

θ

[
N−1∑
n=0

nAn +N

( ∞∑
n=N

An

)]
e > 1.(5.13)

This condition is given in Neuts [16, Chapter 1].
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When Nmin is small, RNmin can be computed efficiently using some existing al-
gorithms. With RNmin, (5.1) can be used to generate a sequence which may converge
to R from “above.” Although the generated sequence is not always monotone, numer-
ical results show that it is a decreasing sequence in most of the cases. The sequence
generated by using (5.1) can be compared with the nondecreasing sequence generated
by using (2.3) to determine when the iteration process for R should be stopped.

It is interesting to know whether or not R(N) is an upper bound of Ra when
sp(R(N)) < 1 or sp(Ra) < 1. The following two examples show that R(N) ≥ Ra is
generally untrue.

Example 5.1. Define the following stochastic sequence:

A0 =


0 0.2 0 0

0.1 0 0.1 0

0 0 0.5 0.1

0.1 0 0.1 0.5

 , A1 =


0.1 0 0.2 0

0 0.2 0.1 0

0 0 0 0

0 0 0.1 0

 ,

A2 =


0 0 0 0

0 0 0 0

0 0 0 0

0.1 0 0 0

 , A3 =


0.2 0 0.3 0

0 0.2 0.3 0

0 0 0 0.4

0.1 0 0 0

 .

(5.14)

The matrix R for {A0, A1, A2 + A3} is denoted as R(2), and R(3) for {A0, A1,
A2, A3}. It is found that sp(R(2)) = 1 > sp(R(3)) = 0.8988, but R(2) > R(3) is not
true. This example shows that even when the transition matrix sequence is truncated
to N = 2, the elements of the matrix R do not necessarily become larger. Therefore,
R(2) may not be an upper bound of Ra in general.

Example 5.2. Define a stochastic sequence:

A0 =


0 0.1 0 0.2

0.1 0.1 0.1 0

0 0 0 0.1

0.1 0 0.1 0

 , A1 =


0.05 0 0.05 0

0 0.2 0.05 0

0 0 0 0

0 0 0.05 0

 ,

A2 =


0 0.05 0.05 0

0 0.1 0.05 0

0 0 0 0

0 0 0.05 0

 , A3 =


0 0.2 0.3 0

0 0.1 0.2 0

0 0 0 0.4

0.1 0 0 0

 ,

(5.15)

A4 =


0 0 0 0

0 0 0 0

0 0 0.5 0

0.1 0 0 0.5

 .

The matrix R for {A0, A1, A2, A3 + A4} is denoted as R(3), and R(4) for
{A0, A1, A2, A3, A4}. sp(R(3)) = 0.258442 > sp(R(4)) = 0.25555, but R(3) > R(4)

is not true.
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6. Discussions of other partial orders. In sections 4 and 5, the focus was on
the stochastically larger order. It has been shown that the Perron–Frobenius eigen-
value of the minimal nonnegative solution to (1.1) is monotone with the stochastically
larger order but the matrix R itself is generally not. It is interesting to find out (1) are
there weaker conditions which guarantee the monotonicity of the Perron–Frobenius
eigenvalue and (2) what conditions guarantee the monotonicity of R with respect to
some partial order? A thorough discussion of these two issues is beyond the scope of
this paper. Only two examples are shown below.

Example 6.1. The moment generating order.
Definition 6.1. {An, n ≥ 0} is smaller than {Bn, n ≥ 0} with respect to the

moment generating order if A∗(z) ≥ B∗(z) for z ∈ [0, 1). Denote this order as
{An, n ≥ 0} ≤m {Bn, n ≥ 0}. The moment generating order is weaker than the “≤φ”
order introduced in section 3 since φ(x)A∗(x) ≥ φ(x)B∗(x) implies A∗(x) ≥ B∗(x)
for x ∈ [0, 1) as φ(x) > 0. If {An, n ≥ 0} ≤m {Bn, n ≥ 0},

θasp(Ra) = θaRa = θaA
∗(sp(Ra)) ≥ θaB∗(sp(Ra)).(6.1)

This implies that sp(Ra) ≥ sp(B∗(sp(Ra))). By the convexity of function
log(sp(B∗(e−s))), sp(Ra) ≥ sp(Rb). Therefore, the moment generating order implies
the monotonicity of the Perron–Frobenius eigenvalue of the matrix R.

Example 6.2. Functional monotone and functional dominance.
Let J be the matrix with all diagonal and underdiagonal elements 1 and all

others zero. For vectors u and v, if uJ ≤ vJ , then u is J-dominated by v, denoted by
u ≤J v. A matrix X is J-dominated by Y is XJ ≤ Y J , denoted by X ≤J Y . For a
matrix X with m row vectors {xi}, if x1 ≤J x2 ≤J · · · ≤J xm, then X is J-monotone
(see Ridder [23] for more details about monotone and dominance orders).

Definition 6.2. A sequence {An, n ≥ 0} is J-dominated by {Bn, n ≥ 0} if
An ≤J Bn, for all n, denoted by {An, n ≥ 0} ≤J {Bn, n ≥ 0}.

Property 6.1. For {An, n ≥ 0} and {Bn, n ≥ 0} in Mm, if An and Bn and
J-monotone for all n ≥ 0, then Ra and Rb are J-monotone. Furthermore, if
{An, n ≥ 0} ≤J {Bn, n ≥ 0}, then Ra ≤J Rb.

Proof. In Ridder [23], it has been proved that the J-monotone and J-dominance
are closed under matrix multiplication and summation. The results are true for the
sequences generated by using (2.3). Since Ra and Rb are limits of those sequences,
the results follow.

Note. The condition for J-domination is very strong since it imposes J-monotone
on every pair of matrices {An, Bn} of the two sequences. Nonetheless, J-domination
is a partial order which guarantees the monotonicity of the matrix R. In addition,
Property 6.1 finds a nice application in the GI/MAP/1 queue which shall be shown
in the next section.

7. Applications to the GI/MAP/1 queue. This section considers a sin-
gle server queueing system with a Markov arrival process (MAP) as its service pro-
cess, general independent interarrival times, and a “first-come-first-served” service
discipline. The MAP was first introduced in Neuts [15] (also see Lucantoni, Meier-
Hellstern, and Neuts [12], and Neuts [18]) as a generalization of the phase-type renewal
process. The MAP is defined on a finite irreducible Markov process (called the under-
lying Markov process) with m states and an irreducible infinitesimal generator D. In
the MAP, the sojourn time in state i is exponentially distributed with parameter Dii.
At the end of the sojourn time in state i, a transition occurs to state j, 1 ≤ j ≤ m,
where the transition may or may not represent an arrival. Let D0 be the (matrix) rate
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of transitions without an arrival and D1 be the rate of transitions with an arrival. D0

and D1 are m×m matrices where D0 has negative diagonal elements and nonnegative
off-diagonal elements, and D1 is a nonnegative matrix. Then D = D0 +D1. Using θ
to denote the stationary probability vector of the Markov process with the generator
D, θ satisfies θD = 0 and θe = 1. The stationary service rate of the Markov arrival
process is then λ = θD1e. The interarrival time between two consecutive customers
is random with finite mean and variance. Let F (t) be the distribution function of the
interarrival time and denote the Laplace–Stieltjes transform (LST) of F (t) by f∗(s).

Consider the embedded Markov chain (qn, Jn) at the nth arrival epoch, where qn
is the queue length just before the arrival and Jn is the phase of the service process
at the arrival epoch. This embedded Markov chain (qn, Jn) is of GI/M/1 type, since
the increase of the queue length is at most one at a time. The one-step transition
matrix of (qn, Jn) is similar to P given in (2.1). Transition blocks {An, n ≥ 0} are
defined in terms of D0, D1, and F (t). The matrix R is then defined as the minimal
nonnegative solution to (1.1) (see Neuts [19]). It can be proved that the matrix R is
also the minimal nonnegative solution to the following exponential-form equation:

X =

∫ ∞
0

exp{t(D0 +XD1)}dF (t).(7.1)

Next, the results obtained in previous sections are applied to obtain some inter-
esting results about the matrix R and the GI/MAP/1 queue. For convenience, the
following analysis of R begins with (7.1) instead of (1.1). The discussion consists of
two parts. The first part includes the results obtained by assuming the stochastically
larger order on the interarrival times, and the second part consists of results obtained
by imposing a special structure on the matrix representation (D0, D1) of the service
process.

First, define a new matrix Q from R. Let ξ > max{1, |(D0)i,j |}. By (7.1), it has

R =

∫ ∞
0

exp{t(−ξI + ξI +D0 +RD1)}dF (t)

=
∞∑
n=0

∫ ∞
0

e−ξt(ξt)n

n!
dF (t)

[
I +

D0 +RD1

ξ

]n
≡ a∗(Q),

(7.2)

where Q = I + (D0 +RD1)/ξ and

a∗(z) =
∞∑
n=0

znan, where an =

∫ ∞
0

e−ξt(ξt)n

n!
dF (t) and

∞∑
n=0

an = 1.(7.3)

For the matrix Q, it has

Q = K0 + a∗(Q)K1, where K0 = I +
D0

ξ
and K1 =

D1

ξ
.(7.4)

Thus, the matrix Q is the minimal nonnegative solution to (7.4), or, equivalently,
Q is the minimal nonnegative solution to (1.1) with a sequence {K0 + a0K1, a1K1,
a2K1, . . .}, which has a special structure in the sense that only two matrices K0 and
K1 are involved. Let K = K0 + K1. K is an irreducible stochastic matrix. It is
sometimes more convenient to deal with (7.4) than (7.1). The following relationship
between R and Q ensures the equivalence of the studies of (7.1) and (7.4).
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Lemma 7.1. The minimal nonnegative solutions to (7.1) and (7.4) are R and Q,
respectively. Let η(s) be the largest eigenvalue of K(s) = K0 + sK1. Then η(s) is
increasing in s and

sp(R) =

∫ ∞
0

exp{−tsp(Q)}dF (t) = f∗(sp(Q)) and sp(Q) = η(sp(R)).(7.5)

Proof. The one-on-one relationship between R and Q is clear from (7.1), (7.2),
and (7.3). The results of the Perron–Frobenius eigenvalues are then obtained easily
from (7.2) and (7.4). sp(R) < 1 if and only if sp(Q) < 1 since f∗(s) and η(s) are
strictly increasing.

Now, the focus shifts from R and (7.1) to Q, (7.4), a∗(s), and K(s). The problem
becomes simpler since only a function a∗(s) and a linear matrix function K(s) are
involved. It is now easy to apply results obtained in sections 4, 5, and 6 to (7.4).

Theorem 7.2. Consider two GI/MAP/1 queueing systems, labeled “a” and “b,”
respectively, with the same service process. If the interarrival times satisfy Fa(x) ≤st
Fb(x) (the usual stochastic order, i.e., Fa(x) ≥ Fb(x) for all x ≥ 0; see Shaked and
Shanthikumar [24]), then

sp(Ra) ≥ sp(Rb) and − (D0 +RaD1)−1 ≥ −(D0 +RbD1)−1.(7.6)

Proof. If Fa(x) ≤st Fb(x), then {an} ≤st {bn}. By Definition 3.1, {K0 +
a0K1, a1K1, . . .} ≤st {K0 + b0K1, b1K1, . . .}. By Theorem 4.1, sp(Qa) ≥ sp(Qb).
Since η(s) is increasing, sp(Ra) ≥ sp(Rb). By Corollary 4.2, (I−Qa)−1 ≥ (I−Qb)−1,
which implies (7.6).

Intuitively, Theorem 7.2 shows that systems with stochastically smaller interar-
rival times (shorter interarrival times), are more likely to have a long queue since
sp(Ra) ≥ sp(Rb) (recall the discussion in section 4). The matrix D0 + RaD1 is the
infinitesimal generator of the waiting time process in the queueing system (see As-
mussen and Perry [3]). Theorem 7.2 shows that the mean waiting time is longer for
the system with a stochastically smaller interarrival time.

The following theorem shows the monotonicity of the matrix R under the J-
monotone order. It further implies the monotonicity of the corresponding stationary
distribution of the queue length in the queueing system of interest.

Theorem 7.3. Consider two GI/MAP/1 queues, labeled “a” and “b,” respec-
tively, with the same interarrival times. Their service processes have matrix represen-
tations (D0, D1) and (C0, C1), respectively. If D0, D1, C0, and C1 are J-monotone,
D0 ≤J C0 and D1 ≤J C1, then Ra and Rb are J-monotone, and Ra ≤J Rb.

Proof. The theorem is proved by Property 6.1.
Finally, a scheme for computing Q and R is proposed. The idea is to find an

upper bound for sp(Q) so that a sequence whose matrices have a Perron–Frobenius
eigenvalue larger than sp(Q) can be generated (see (5.7) and (7.4)). Another non-
decreasing sequence can be generated by using (2.3). Compare the two sequences to
determine when the iteration process for Q should be stopped. An upper bound for
sp(Q) can be found as follows: Let t0 = 0.5.

(i) sn = a∗(tn) = f∗(ξ(1− tn)).
(ii) If sp(K(sn)) ≥ tn, STOP; if sp(K(sn)) < tn, go to (iii).

(iii) tn+1 = (1 + tn)/2, go to (i).
Then tn gives an upper bound of sp(Q). The matrix R can be obtained accordingly.

This scheme is feasible when f∗(t) can be evaluated numerically. The Perron–
Frobenius eigenvalue of the matrix K(s) can be found without much difficulty since
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it is a linear function of s. This scheme might be useful in improving the accuracy for
computing Q and R.
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