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Abstract

This paper studies a multi-server queueing system with multiple types of customers and last-come-®rst-served

(LCFS) non-preemptive service discipline. First, a quasi-birth-and-death (QBD) Markov process with a tree structure is

de®ned and some classical results of QBD Markov processes are generalized. Second, the MMAP[K]/PH[K]/N/LCFS

non-preemptive queue is introduced. Using results of the QBD Markov process with a tree structure, explicit formulas

are derived and an e�cient algorithm is developed for computing the stationary distribution of queue strings. Nu-

merical examples are presented to show the impact of the correlation and the pattern of the arrival process on the

queueing process of each type of customer. Ó 2000 Elsevier Science B.V. All rights reserved.

Keywords: Queueing theory; Matrix analytic methods; Tree structure; Last-come-®rst-served; Quasi-birth-and-death

Markov process

1. Introduction

This paper studies a multi-server queueing
system with multiple types of customers and a last-
come-®rst-served (LCFS) non-preemptive service
discipline. The subject of this paper is interesting
since results obtained in this paper have potential
applications, especially in broadband communi-
cations systems using ATM as transfer mode. In
these systems, there are several classes of users
(customers) with di�erent service requirements.

There is a need to assess performance measures for
each class of user individually. Results obtained in
this paper can be used for such a purpose.

A quasi-birth-and-death (QBD) Markov pro-
cess with a tree structure is a generalization of
classical QBD processes (see Refs. [7,13,15,20]). It
is a special random walk on a set with a tree
structure (see Ref. [10] and references therein) and
a special case of the Markov process of matrix
GI/M/1 type with a tree structure introduced in
Ref. [22]. Yeung and Sengupta [22] obtained a
matrix product-form solution for the stationary
distribution of such a Markov process, which is a
generalization from the GI/M/1 paradigm to a
tree-like structure. They applied their results to
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®nd the stationary distribution of a multi-class
LCFS-GPR queue. A QBD Markov process with
a tree structure is also a special case of the Markov
process of matrix M/G/1 type with a tree structure
introduced in Takine et al. [19]. The ®rst part of
this paper de®nes a discrete time QBD Markov
process with a tree structure. Some classical results
of classical QBD Markov processes are general-
ized. It is worth mentioning that Yeung and Alfa
[21] also study QBD Markov processes with a tree
structure. While Ref. [21] focuses on QBD Markov
processes with a tree structure, this paper mainly
deals with the MMAP[K]/PH[K]/N/LCFS non-
preemptive queueing system.

When the arrival processes are independent
Poisson processes and priorities among di�erent
types of customers present, queueing systems with
multiple types of customers have been studied ex-
tensively (see Refs. [16,17] and references therein).
The study of queueing systems with more general
arrival processes and multiple types of customers is
limited. Some classical results can be found in
Ref. [14]. Takine et al. [19] and Yeung and Sen-
gupta [22] considered queueing systems with
Markov modulated Poisson processes and super-
position processes of Markov arrival processes. In
Refs. [4,18], a queueing system with dependent
arrival processes and a ®rst-come-®rst-served
(FCFS) service discipline is studied. Some results
are obtained for the fundamental periods, queue
length, and waiting times. He and Alfa [5] studied
the a single server queueing system with a Markov
arrival process with marked arrivals, PH-distri-
bution service times, and a LCFS preemptive re-
sume or repeat service discipline.

The second part of this paper studies a queue-
ing system with multiple types of customers, PH-
distribution service times, and no priority among
customers. Customers of all types are served on an
LCFS non-preemptive basis. This queueing model
is close to the one studied in Ref. [5], except that
customers are served on a non-preemptive basis.
The main contribution of this paper is the for-
mulation of the queueing system of interest as a
QBD Markov process with a tree structure. By
using the results obtained for the QBD Markov
process with a tree structure, an algorithm is de-
veloped for computing the queue string distribu-

tion, which is useful in ®nding out how often a
particular pattern of queue appears. With carefully
chosen parameters of the arrival process and ser-
vice times, it is possible to discuss the impact of the
correlation between arrival processes on the
queueing process. In addition, the impact of the
burstiness and the pattern of the arrival and ser-
vice processes on the queueing process is explored
as well. Since the formulation and solutions of the
queueing systems with multiple servers are similar
to that of the single server case, this paper shall
focus on the single server case which is a better
choice to present the ideas and the methodology
utilized in this paper.

To model an arrival process with multiple types
of customers, the superposition process of several
independent Poisson processes (Example 3.1) is
usually used [16,17]. But such a superposition
process is not suitable for bursty arrival processes
or arrival processes with a special arrival pattern.
The Markov arrival process with marked arrivals
(MMAP[K]) is a useful tool to model these com-
plicated arrival processes. For instance, Example
3.2 presents an arrival process with two types of
customers such that every type 2 customer is fol-
lowed by a type 1 customer. The use of MMAP[K],
plus the algorithm developed in this paper, enables
us to gain more insights into the queueing system
of interest.

The rest of the paper is organized as follows.
Section 2 de®nes a QBD Markov process with a
tree structure and develops an algorithm for
computing the stationary distribution of the
Markov process. Section 3 introduces the
MMAP[K]/PH[K]/1/LCFS non-preemptive queue.
An algorithm for computing the stationary distri-
bution of the queue string is developed. In Sec-
tion 4, several special cases are investigated.
Detailed results are obtained for those special
cases. Section 5 presents several numerical exam-
ples. Various issues of interest are discussed in
detail so as to gain insights into the queueing
processes of the queueing systems. In Section 6,
the MMAP[K]/PH[K]/N/LCFS non-preemptive
queue is introduced and formulated into a QBD
Markov process with a tree structure. Finally, in
Section 7, some discussion of the results obtained
in this paper, is given.
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2. The QBD Markov process with a tree structure

A QBD Markov process can be de®ned on a
discrete time space or a continuous time space.
Since the analyses of the two cases are analogue,
details are presented for the discrete case only. An
advantage of using discrete time QBD Markov
chains is that a clear probabilistic interpretation
can be given to matrices fR�k�; 16 k6Kg and
fG�k�; 16 k6Kg directly. Nonetheless, in Sec-
tions 3 and 4, the continuous time analogue is
applied.

Consider a discrete time two-dimensional
Markov chain f�Xn; In�; n P 0g in which the values
of Xn are represented by the nodes of a K-ary tree,
and In takes integer values between 1 and m. Xn is
referred to as the node and In is referred to as the
auxiliary variable of the Markov chain at time n.
To give a full description of the transitions of the
Markov chain, the K-ary tree is de®ned ®rst.

The K-ary tree of interest is a tree for which
each node has K children, except the soil node that
is denoted as ÿ1. The soil node ÿ1 is connected to
the root that is denoted as 0. Strings of integers
between 1 and K are used to represent nodes of the
tree. For example, the kth child of the root has a
representation of k. The lth child of node k has a
representation of kl (see Fig. 1 for an example with
K� 2). Node kl is a child of node k and k is the
parent of node kl. Let À � fJ : J � k1k2 . . . kn;
16 ki6K; 16 i6 n; n P 0g [ f0g. Any string
J 2 À is a node in the K-ary tree. The length of
string J is de®ned as the number of integers in the
string and is denoted by |J|. When J� 0, |J|� 0.
The following two operations related to strings in
À are used in this paper:
1. Addition operation: for J � k1 . . . kn 2 À and

16 k6K; J � k � k1 . . . knk 2 À;

2. Subtraction operation: for J � k1 . . . kn 2 À;
J ÿ kn � k1 . . . knÿ1 2 À:
For example, as shown in Fig. 1,

21+2+2� 2122 and 22ÿ2� 2.
The Markov chain (Xn; In) takes values in

fÀ� f1; 2; . . . ;mgg [ ffÿ1g � f1; 2; . . . ;mÿ1gg.
To be called a (homogenous) QBD Markov chain
with a tree structure, �Xn; In� transits at each step
to either the current node itself, one of its children,
or its parent node. All possible transitions and
their corresponding probabilities are given as fol-
lows. When �Xn; In� � �J ; i�, the one step transition
probabilities (see Fig. 2) are given as:
1. �Xn�1; In�1� � �J � k; i0� with probability

a0;�i;i0��k� when J > ÿ1;
2. �Xn�1; In�1� � �J ; i0� with probability a1;�i;i0��kjJ j�

when J > 0;
3. �Xn�1; In�1� � �J ÿ kjJ j; i0� with probability

a2;�i;i0��kjJ j� when J > 0;
4. �Xn�1; In�1� � �J ; i0� with probability a1;�i;i0� when

J� 0;
5. �Xn�1; In�1� � �ÿ1; i0� with probability b2;�i;i0�

when J� 0;
6. �Xn�1; In�1� � �ÿ1; i0� with probability b1;�i;i0�

when J�ÿ1;
7. �Xn�1; In�1� � �0; i0� with probability b0;�i;i0� when

J�ÿ1.
In matrix form, transitions between nodes are

represented by matrix blocks: (1) A0�k� is an m� m
matrix with elements a0;�i;i0�(k); (2) A1�k� is an m�
m matrix with elements a1;�i;i0�(k); (3) A2�k� is an
m� m matrix with elements a2;�i;i0�(k); (4) A1 is an
m� m matrix with elements a1;�i;i0�; (5) B2 is an m�
mÿ1 matrix with elements b2;�i;i0�; (6) B1 is an mÿ1 �
mÿ1 matrix with elements b1;�i;i0�; (7) B0 is an mÿ1 �
m matrix with elements b0;�i;i0�.

Notice that for A0(k), k is the child the Markov
chain transits to; for A1(k) and A2(k), k is the last

Fig. 1. A 2-ary tree with a soil node.
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element of the string of the current node. Ac-
cording to the law of total probability, the matrix
blocks satisfy the following equalities:

XK

l�1

A0�l�
 

� A1�k� � A2�k�
!

e � e; 16 k6K;

XK

l�1

A0�l�
 

� A1

!
e� B2e � e; B0e� B1e � e;

�1�
where e is the vector with all components one.

Having de®ned the Markov chain of interest, the
next step is to ®nd the stationary distribution of the
Markov chain. In order to do so, two sets of ma-
trices, {R(k)} and {G(k)}, are introduced (for more
details, see Refs. [19,21,22]). A relationship between
the two sets of matrices is shown in this section.

Matrices fR�k�; 16 k6Kg: For J 2 À; J > ÿ1,
and 16 k6K, de®ne the taboo probability

J P �n��J ;i��J�k;i0� as the probability that the Markov
chain �Xn; In� is in state �J � k; i0� after n transitions
without visiting node J in between, given that the
Markov chain started in (J, i). Because of the
particular transition structure, J P �n��J ;i��J�k;i0� is inde-
pendent of J. Let

ri;i0 �k� �
X1
n�0

J P �n��J ;i��J�k;i0�; 16 i; i06m; �2�

and R(k) be an m� m matrix with elements ri;i0 (k).
It can be proved that fR�k�; 16 k6Kg are the
minimal non-negative solutions to the equations

R�k� � A0�k� � R�k�A1�k� �
XK

l�1

R�k�R�l�A2�l�;

16 k6K: �3�

When the Markov chain is irreducible and positive
recurrent, the spectrum (the eigenvalue with the
largest real part) of matrix R � R�1� � � � � � R�K�
is less than one, i.e., sp(R) < 1.

Matrices fG�k�; 16 k6Kg: For J 2 À, J > 0,
and 16 k6K, de®ne the taboo probability gi;i0 (k)
as the probability that the Markov chain �Xn; In�
reaches node J for the ®rst time in state �J ; i0�,
given that the Markov chain started in (J + k, i).
Let G(k) be an m ´ m matrix with elements gi;i0 �k�.
It can be proven that fG�k�; 16 k6Kg are the
minimal non-negative solutions to the equations

G�k� � A2�k� � A1�k�G�k�

�
XK

l�1

A0�l�G�l�G�k�; 16 k6K: �4�

When the Markov chain is irreducible and positive
recurrent, matrix G(k) is a stochastic matrix, i.e.,
sp�G�k�� � 1; 16 k6K.

When K� 1, i.e., the classical QBD Markov
chain case, a simple relationship between the ma-
trices R and G was shown in Ref. [8]. A similar
relationship holds when K P 1. De®ne Ui;i0 �k�, for
16 k6K and 16 i; i06m, the probability that the
Markov chain will eventually come back to node
J � k in state �J � k; i0�, given that it started in
(J + k, i) and never visited its parent node J in
between. Let U(k) be an m� m matrix with ele-
ments Ui;i0(k). When the Markov chain �Xn; In� is
irreducible and positive recurrent, the following
relationships hold for R�k�;G�k�;U�k�; 16 k6K:

R�k� � A0�k��Iÿ U�k��ÿ1;

G�k� � �Iÿ U�k��ÿ1A2�k�;

R�k� � A0�k� I

 
ÿ A1�k� ÿ

XK

l�1

A0�l�G�l�
!ÿ1

;

G�k� � I

 
ÿ A1�k� ÿ

XK

l�1

R�l�A2�l�
!ÿ1

A2�k�;

�5�
where I is the identity matrix. In addition,
R�k�A2�k� � A0�k�G�k�; 16 k6K.

The stationary distribution: Let

p�J ; i� � lim
n!1

Pf�Xn; In� � �J ; i�g;

Fig. 2. Possible one step transitions when J > ÿ1.
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p�J� � �p�J ; 1�; . . . ; p�J ;m��; J > ÿ1;

and

p�ÿ1� � �p�ÿ1; 1�; . . . ; p�ÿ1;mÿ1��:
The stationary distribution vectors fp�J�: J 2 Àg
satisfy the following equation, for J > 0:

p�J � k� � p�J�A0�k� � p�J � k�A1�k�

�
XK

l�1

p�J � k � l�A2�l�; �6�

which is useful in helping understand the following
solution intuitively. According to Theorem 1 in
Ref. [22], when the QBD Markov chain is irre-
ducible and positive recurrent,

p�J � k� � p�J�R�k�; J 2 À; 16 k6K;

�p�ÿ1�; p�0��

� �p�ÿ1�; p�0��
B1 B0

B2 A1 �
PK
k�1

R�k�A2�k�

0B@
1CA;

p�ÿ1�e� p�0��Iÿ R�ÿ1
e � 1: �7�

Notice that matrix R is the sum of
fR�k�; 16 k6Kg. Matrices fR�k�; 16 k6Kg can
be calculated using the following simple algorithm.
Let R�k��0� � 0; 16 k6K, and

R�k��n� 1�

� A0�k� � R�k��n�A1�k� �
XK

l�1

R�k��n�R�l��n�A2�l�:

�8�
It can be proven that fR�k��n�; n P 0g is a

monotone sequence which converges to R(k) from
below, for 16 k6K. This algorithm is simple and
easy to implement. A more complicated algorithm
can be developed similar to that in Ref. [9] ([21]).
Matrices fG�k�; 16 k6Kg can be computed in a
similar way.

In summary, the stationary distribution of the
Markov chain �Xn; In� can be found using the
following algorithm.

Algorithm I

Step 1: Data input: mÿ1;m;K; B1;B0;B2;A1;
and fA0�k�;A1�k�;A2�k�; 16 k6Kg.

Step 2: Computing matrices

fR�k�;G�k�; 16 k6Kg:
Step 3: Computing vectors

fp�ÿ1�; p�0�g:
Step 4: Computing string distribution

fp�J�; J 2 Àg:

3. The MMAP[K]/PH[K]/1/LCFS queue

This section considers a single server queueing
system with a Markov arrival process with marked
transitions (MMAP[K]) and phase-type service
times. Customers are distinguished into K types.
The service times of di�erent types of customers
may have di�erent distribution functions. All types
of customers are served on an LCFS non-pre-
emptive basis. To de®ne the queueing systems of
interest explicitly, the arrival process MMAP[K] is
introduced ®rst and then the service time distri-
butions are speci®ed.

The following de®nition of the MMAP[K] was
given by Marcel Neuts (see Ref. [6]). The
MMAP[K] was also introduced in Ref. [1]. A
Markov arrival process with marked transitions
is de®ned by a set of m ´ m matrices
fDk; 06 k6Kg, where m is a positive integer. The
matrices fDk; 16 k6Kg, are non-negative. The
matrix D0 has negative diagonal elements and non-
negative o�-diagonal elements. D0 is assumed to be
non-singular. Let

D � D0 �
XK

k�1

Dk: �9�

Then matrix D is the in®nitesimal generator of
the underlying Markov process. Let I(t) be the
phase of the underlying Markov process at time t,
16 I�t�6m. An arrival is called a type k arrival if
the arrival is marked by k. The (matrix) marking
rate of type k arrivals is Dk. Let h be the stationary
probability vector of the matrix D. The stationary
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arrival rate of type k arrivals is given by
kk � hDke; 16 k6K. When K� 1, the MMAP[K]
reduces to an MAP [11,12].

Example 3.1. The superposition process of K
independent Poisson processes is an MMAP[K].
Suppose that the arrival rates of the K Poisson
processes are fk1; k2; . . . ; kKg. Then the matrix
representation of their superposition process is
D0 � ÿ�k1 � � � � � kK�;D1 � k1; . . . ;DK � kK .

Example 3.2. Consider an MMAP[K] with K� 2,
m� 2, and

D0 �
ÿ1 0

0 ÿ 1

� �
; D1 �

0:5 0:5

0 0

� �
;

D2 �
0 0

1 0

� �
: �10�

In this point process, every type 2 customer is
followed by a type 1 customer. Similar to this ex-
ample, MMAP[K]s can be used to model a variety
of arrival processes with special arrival patterns
such as cyclic arrivals.

The service times of type k customers have a
common phase-type distribution (PH-distribution)
function with a matrix representation �ak; Tk�,
where ak is an mk-dimension vector and Tk is an
mk � mk matrix. Let T0

k � ÿTke. The mean service
time is given by 1=lk � ÿakTÿ1

k e. Then lk is the
average service rate of type k customers. For more
details about PH-distribution, see Ch. 2 in Ref.
[13].

The tra�c intensity of the system is de®ned as
q � k1=l1 � � � � � kK=lK . Throughout this paper,
it is assumed that q < 1. Since it has been proved
that the MAPs can be used to approximate any
point process and PH-distributions can be used to
approximate any non-negative distribution, the
queueing system under consideration is a rather
general queueing model.

The queueing system is represented by the fol-
lowing four-dimensional stochastic process:

q(t): the string of customers in queue (exclude
the one in server, if any), q�t� 2 À [ fÿ1g;
I(t): the state of the underlying Markov process
D; 16 I�t�6m;

I1;1(t): the type of the customer in service (if any)
16 I1;1�t�6m;
I1;2�t�: the phase of the PH-distribution of the
current service (if any), 16 I1;2�t�6mI1;1�t�.

When there is no customer in the system at time t,
denote by q(t)�ÿ1. When there is one customer in
the system at time t, q(t)� 0. When there are
customers waiting at time t, q(t) is a string in À.
For example (for K� 2), q(t)� 122 implies that
there are 3 customers waiting in the system at time
t: the customer who arrived ®rst is of type 1; the
customer who arrived second is of type 2; and the
customer who arrived last is of type 2. When a new
customer of type k arrives, q(t) becomes 122k.
When the current service is completed, q(t) be-
comes 122 since the customer (of type k) who ar-
rived last enters service ®rst.

It is easy to see that (q(t), I(t), I1;1 (t), I1;2 (t)) is a
Markov process with a state space:
À� f1; 2; . . . ;mg �SK

k�1f1; 2; . . . ;mkg. This is a
QBD Markov process with a tree structure when
(I(t), I1;1�t�, I1;2�t�) is de®ned as the auxiliary ran-
dom variable with m �m states (where �m �
m1 � � � � � mK), except that when q(t)�ÿ1, the
auxiliary variable takes values f1; 2; . . . ;mg. Fur-
thermore, the in®nitesimal generator of the QBD
Markov process is de®ned by the following tran-
sition blocks.

For J � k1; . . . ; knÿ1k 2 À and 16 k6K,

A0�k� � Dk 
 I �m� �m

�a type k customer arrives�;

A1�k� � D0 
 I �m� �m � Im�m 

T1

. .
.

TK

0BB@
1CCA

�no service completed and no arrival�;
A2�k� � Im�m



T0

1ak

..

.

T0
Kak

0BBB@
1CCCA�0; . . . ; 0; Imk�mk ; 0; . . . ; 0�

26664
37775;

�a service is completed and the next �last in queue�
is of type k�; �11�
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where 
 represents the Kronecker product of
matrices (see Ref. [2]).

For J� 0,

A1 � A1�1� �no service completed and no arrival�;

B2 � Im�m 


T0
1

..

.

T0
K

0BBB@
1CCCA �a service is completed�:

�12�
For J�ÿ1,

B0 � �D1 
 a1 � � �DK 
 aK�
�a customer arrives�;

B1 � D0 �no arrival and no service�: �13�
The QBD Markov process which describes the

queueing system of interest is de®ned explicitly.
The stationary distribution of this QBD Markov
process is presented next. Let

p�J ; i; k; j� � lim
t!1

Pfq�t�; I�t�; I1;1�t�; I1;2�t��
� �J ; i; k; j�g; �14�

p�ÿ1; i� � lim
t!1

Pf�q�t�; I�t�� � �ÿ1; i�g;

and

p�J ; i; k� � �p�J ; i; k; 1�; . . . ; p�J ; i; k;mk��;
p�J ; i� � �p�J ; i; 1�; . . . ; p�J ; i;K��;
p�J� � �p�J ; 1�; . . . ; p�J ;m��;
J � ÿ1; p�ÿ1� � �p�ÿ1; 1�; ; . . . ; p�ÿ1;m��:

�15�
When the underlying Markov chain D of

the arrival process and all the PH-distributions
are irreducible, (q(t), I(t), I1;1�t�, I1;2�t�) is irreduc-
ible. Furthermore, a condition for positive recur-
rence of the Markov process (or the queueing
system) and some elementary results about the
stationary distribution are given in the following
theorem.

Theorem 3.1. For the queueing system of interest,
when it is in steady state, for 16 k6K,

(a) the rate of starting to serve a type k customer
is given by

Xm

t�1

Xm

i�1

p�ÿ1; t��Dk�t;i

�
X
J P 0

XK

l�1

Xm

i�1

p�J � k; i; l�T0
l � kk;

(b) the probability that a type k customer is in
service is

X
J P 0

Xm

i�1

p�J ; i; k�e � kk=lk;

(c) the probability that the queueing system is
busy is

q �
X
J P 0

p�J�e �
XK

k�1

kk=lk;

(d) the probability that the queueing system is
empty is p�ÿ1�e � 1ÿ q.

Furthermore, the queueing system of interest is
positive recurrent if and only if q < 1.

Proof. In the queueing system of interest
with LCFS, the server starts to serve a type k
customer when it completes a service and
the customer who arrived last is of type k, or at
the beginning of a busy period, the customer who
just arrived is of type k. Then Part (a) of Theorem
3.1 is obtained since the arrival rate of type k
customer equals the start-to-service rate of type k
customer at an arbitrary time. Part (a) can be
rewritten into

p�ÿ1�Dke�
X
J P 0

XK

l�1

Xm

i�1

p�J � k; i; l�T0
l � kk:

To prove part (b), ®rst notice that the
stationary distribution of the Markov process
(q(t), I(t), I1;1�t�, I1;2�t�) satis®es the following
equation:
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for J > 0,

0 � p�J�Dk 
 I� p�J � k� D0

2664 
 I

� I

T1

. .
.

TK

0BB@
1CCA
3775

�
XK

l�1

p�J � k � l�

I

T0

1ak

..

.

T0
Kak

0BBB@
1CCCA�0; . . . ; 0; I; 0; . . . ; 0�

26664
37775; �16�

for J� 0,

0 � p�ÿ1��Dk 
 a1 � � �Dk 
 aK� � p�0� D0

2664 
 I

� I

T1

. .
.

TK

0BB@
1CCA
3775

�
XK

l�1

p�l�I

T0

1ak

..

.

T0
Kak

0BBB@
1CCCA�0; . . . ; 0; I; 0; . . . ; 0�

26664
37775:
�17�

Expanding Eq. (16) in terms of vectors fp�J ;w; k�g
for ®xed k, l, i �16 k; l6K; 16 i6m� yields

0 �
Xm

w�1

p�J ;w; k��Dl�w;i �
Xm

w�1

p�J � l;w; k��D0�w;i

� p�J � l; i; k�Tk �
XK

t�1

p�J � k � l; i; t�T0
t ak:

�18�

Expanding Eq. (17) for ®xed k and i
�16 k6K; 16 i6m� yields

0 �
Xm

w�1

p�ÿ1;w��Dk�w;iak �
Xm

w�1

p�0;w; k��D0�w;i

� p�0; i; k�Tk �
XK

t�1

p�k; i; t�T0
t ak: �19�

For ®xed k �16 k6K�, adding Eq. (18) together
for all J P 0; 16 l6K; 16 i6m, yields

0 �
Xm

w�1

X
J P 0

Xm

i�
p�J ;w; k�

XK

l�1

�D1�w;i

�
Xm

w�1

X
J P 0

Xm

i�1

XK

l�1

p�J � l;w; k��D0�w;i

�
X
J P 0

Xm

i�1

XK

l�1

p�J � l; i; k�Tk

�
XK

t�1

X
J P 0

Xm

i�1

XK

l�1

p�J � k � l; i; t�T0
l ak: �20�

This leads to

0 �
Xm

w�1

X
J P 0

Xm

i�
p�J ;w; k�

XK

l�0

�D`�w;i

ÿ
Xm

w�1

Xm

i�1

p�0;w; k��D0�w;i

�
X
J P 0

Xm

i�1

p�J ; i; k�Tk ÿ
Xm

i�1

p�0; i; k�Tk

�
XK

t�1

X
J P 0

Xm

i�1

p�J � k; i; t�T0
t ak

ÿ
XK

t�1

Xm

i�1

p�k; i; t�T0
t ak: �21�

For ®xed k �16 k6K�, adding Eq. (19) together
for 16 i6m, yields
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0 �
Xm

w�1

Xm

i�1

p�ÿ1;w��Dk�w;iak

�
Xm

w�1

Xm

i�1

p�0;w; k��D0�w;i

�
Xm

i�1

p�0; i; k�Tk

�
XK

t�1

Xm

i�1

p�k; i; t�T0
t ak: �22�

Eqs. (21) and (22), part (a), and �D0 � D1 � � � � �
DK�e � 0 lead to, for ®xed k (16 k6K):

0 �
X
J P 0

Xm

i�1

p�J ; i; k�
 !

Tk

�
XK

t�1

X
J P 0

Xm

i�1

p�J
 

� k; i; t�T0
t

�
Xm

w�1

Xm

i�1

p� ÿ 1;w��Dk�w;i
!

ak

�
X
J P 0

Xm

i�1

p�J ; i; k�
 !

Tk � kkak: �23�

Part (b) is obtained since 1/lk � ÿakTÿ1
k e.

Part (c) is obtained by taking summation of the
results obtained in part (b) with respect to k. Part
(d) is obtained from part (c).

Clearly, p�ÿ1�e � 1ÿ q > 0 when the queueing
system is positive recurrent, i.e., q < 1. The su�-
ciency of q < 1 for positive recurrence is proved in
Ref. [3]. This completes the proof.

Note. Intuitively, q < 1 implies that the system has
enough capacity to serve all customers. Consider
the interval (0, t). On an average, k1t type 1
customers, . . ., and kKt type K customers arrive in
(0, t). On an average, l1t1 type 1 customers, . . .,
and lKtK type K customers are served in (0, t) if t1

units of time, . . ., and tK units of time are used to
serve type 1 customers, . . ., and type K customers
in (0, t), respectively. It has t1 � � � � � tK 6 t. If the
system is positive recurrent, there must be a set
ft; t1; . . . ; tKg such that k1t6 l1t1; . . . ; and
kKt6lKtK . This leads to q6 �t1 � t2 � � � � �
tK�=t < 1.

When the queueing system (or the Markov
process) is positive recurrent, using formulas pre-
sented in Section 2, the following theorem is ob-
tained.

Theorem 3.2. When the queueing system of interest
is positive recurrent, the stationary distribution of
(q(t), I(t), I1;1�t�, I1;2�t�) is given by

p�J � k� � p�J�R�k�; J 2 À; 16 k6K;

�p�ÿ1�; p�0��

D0 �D1 
 a; . . . ;DK 
 aK�

I

T0

1

..

.

T0
K

0BB@
1CCA A1 �

PK
k�1

R�k�A2�k�

0BBBB@
1CCCCA � 0;

p�ÿ1�e� p�0��Iÿ R�ÿ1
e � 1; �24�

where

A1 �
XK

k�1

R�k�A2�k�

� D0 
 I� I

T1

. .
.

TK

0BB@
1CCA

�
XK

k�1

R�k�I

T0

1ak

..

.

T0
Kak

0BB@
1CCA�0; . . . ; 0; I; 0; . . . ; 0�

2664
3775;

R � R�1� � � � � � R�K�, and R�k�; 16 k6K are the
minimal non-negative solutions to

0 � Dk 
 I� R�k� D0

2664 
 I� I

T1

. .
.

TK

0BB@
1CCA
3775

� R�k�
XK

l�1

R�l�

I

T0

1ak

..

.

T0
Kak

0BB@
1CCA�0; . . . ; 0; I; 0; . . . ; 0�

2664
3775:

�25�
The computation of fR�k�; 16 k6Kg can be
carried out using the algorithm given in Section 2.
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Later in Section 4, for some special cases, the
computation of fR�k�; 16 k6Kg shall be simpli-
®ed.

Proof. It is obvious from Eqs. (3) and (7). This
completes the proof.

Let L� |q(t)|, i.e., the length of the queue string
at an arbitrary time t, then

PfL � ng �
X

J :jJ j�n

p�J�e � p�0�Rne; n P 0: �26�

Clearly, Eq. (26) shows the exponential decay of
the queue length in the queueing system of interest.
Then EL � p�0�R�Iÿ R�ÿ2

e. The mean number of
customers in the system (mean queue length) can
be computed by using the formula

L � p�0�R�Iÿ R�ÿ2
e� p�0��Iÿ R�ÿ1

e

� p�0��Iÿ R�ÿ2
e: �27�

Algorithm II

Step 1: Input data: m;K; �D0;D1 . . . ;DK�;
�mk; ak; Tk�; 16 k6K;

Step 2: Construct the transition blocks of the
corresponding QBD;

Steps 3, 4, and 5 are the same as Steps 2, 3, and
4 of Algorithm I.

4. Some special cases of the MMAP[K]/PH[K]/1

queue

In this section, two groups of special
MMAP[K]/PH[K]/1/LCFS non-preemptive queues
are discussed. Queueing systems with a common
service time distribution for all types of customers
are discussed ®rst. Queueing systems with a Mar-
kov arrival process marked by a multiple Bernoulli
distribution are then studied. More explicit solu-
tions are obtained for these special cases. Special
computation approaches are developed for com-
puting matrices fR�k�; 16 k6Kg.

Example 4.1. The simplest special case of the
queueing system of interest is the M[K]/M/1 case,
where the arrival process consists of K indepen-

dent Poisson processes with parameter
fk1; . . . ; kKg and the service times have the same
exponential distribution with a parameter l for all
types of customers. The arrival process is equiv-
alent to marking customers of a Poisson process
with parameter k � k1 � � � � � kK with probabili-
ties fp1; � � � ; pKg, where pk � kk=�k1 � � � � � kK�;
16 k6K. Let qk � kk=l; 16 k6K. It is assumed
that q � q1 � � � � � qK < 1 to ensure a positive
recurrent queueing system. The queueing system is
represented by q(t) (see Section 3 for de®nition),
while I(t), I1;1�t�, and I1;2�t� are unnecessary in this
case. However, when it is necessary to trace the
type of the customer in service, (q(t), I1;1�t�) should
be considered.

When the service discipline is LCFS, using
Eq. (25), it can be veri®ed that fR�k� � qk; 16
k6Kg; p�ÿ1� � 1ÿ q; p�0� � �1ÿ q�q, and
p�J� � �1ÿ q�qqk1

. . . qkn
, where J � k1 . . . kn 2 À

represents the types of waiting customers. (Notice
that k_i represents ki.) Thus, there is a product
form solution for the stationary distribution in this
case. Let xn be the probability that there are n
customers in the system. Then it is easy to see that
xn � �1ÿ q�qn; n P 0. Since

qk � qpk � qkk=�k1 � � � � � kK�; 16 k6K;

it is intuitive that the product solution can be
obtained by marking customers in queue by
pk; 16 k6K in an M/M/1 queue.

Example 4.2. The MMAP[K]/PH/1 case. For this
case, since the service time distributions are the
same for all types of customers, I1;1�t� can be
removed. Thus, (q(t), I(t), I1;2�t�) will be used to
represent the queueing system.

For the LCFS non-preemptive case, the tran-
sition blocks are given by

B0 � �D1 � � � � � DK� 
 a; B1 � D0;

B2 � I
 T0;

A0�k� � Dk 
 I;

A1 � A1�k� � D0 
 I� I
 T ;

A2�k� � I
 �T0a�: �28�
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Matrices fR�k�; 16 k6Kg satis®es

0 � Dk 
 I� R�k��D0 
 I� I
 T �

� R�k�
XK

l�1

R�l�I
 �T0a�; 16 k6K: �29�

Summing up all K equalities in Eq. (29) yields the
equation

0 �
XK

k�1

Dk

 !

 I� R�D0 
 I� I
 T �

� R2I
 �T0a�; �30�
for matrix R with �D0 
 I� R
 �T0a��e � 0.
Eq. (29) leads to

R�k� � ÿ�Dk 
 I��D0 
 I� I
 T

� R�I
 �T0a���ÿ1; 16 k6K: �31�
Thus, the computation of matrices fR�k�;
16 k6Kg is signi®cantly simpli®ed. It can be
proven that sp(R) < 1 when q < 1.

Example 4.3. The M[K]/M[K]/1 case. In this case,
assume that the service times of type k customers
have a common exponential distribution with
parameter lk; 16 k6K. The system is represented
by (q(t), I1;1�t�) which has an in®nitesimal gener-
ator Q with transition blocks:

B0 � ÿ�k1 � � � � � kK�; B1 � �k1; . . . ; kk�;
A0�k� � kkI;

A1 � A1�k� �
XK

l�0

kl

 !
Iÿ

l1

. .
.

lK

0BB@
1CCA;

B2 �
l1

..

.

lK

0BB@
1CCA;

A2�k� �
l1

..

.

lK

0BB@
1CCA�0; . . . ; 0; 1; 0; . . . ; 0�;

16 k6K:

�32�

From the equation

0 � kkI� R�k�

264ÿ XK

l�1

kl

 !
Iÿ

l1

..

.

lK

0B@
1CA
375

� R�k�
XK

l�1

R�l�
l1

..

.

lK

0B@
1CA�0; . . . ; 0; 1; 0; . . . ; 0�;

�33�
it is easy to see that R�k�; 16 k6K are invertible,
klR�k� � kkR�l�, and R�k� � kkR=�k1 � � � � � kK�;
16 k; l6K. This leads to the following equation
for matrix R:

0 � kI� R

2664ÿ XK

l�1

kl

 !
Iÿ

l1

. .
.

lK

0BB@
1CCA
3775

� R2

l1

..

.

lK

0BB@
1CCA �k1 � � � kK�

k1 � � � � � kK

� kI� RA1 � R2D: �34�
This provides a simpler algorithm for computing
fR�k�; 16 k6Kg in this case. Let A� kI+A1+D.
Matrix A is an in®nitesimal generator with a sta-
tionary distribution n with

nk �
kk=lkPK
l�1 kl=ll

; 16 k6K: �35�

According to Neuts [13], the matrix R has a
spectrum less than one if and only if nkIe < nDe,
which is equivalent to q � k1=l1 � � � � �
kK=lK < 1.

Example 4.4. The MAP�p1; . . . ; pK�/PH[K]/1 case.
In this case, the arrival process is a Markov arrival
process with matrix representation

D0; p1

XK

k�1

Dk; . . . ; pK

XK

k�1

Dk

 !
;

where p1 � � � � � pK � 1, and the service times of
type k customers have a common PH-distribution
with parameter �Tk; ak�, and the mean service time
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ÿakTÿ1
k e � 1=lk; 16 k6K. The system is repre-

sented by (q(t), I(t), I1;1�t�, I1;2�t�).

It can be proved that plR�k� � pkR�l�, and
R�k� � pkR; 16 k; l6K. This leads to the fol-
lowing equation for matrix R:

0 �
XK

k�1

Dk 
 I� R D0

2664 
 I� I

T1

. .
.

TK

0BB@
1CCA
3775

� R2
XK

k�1

pkI

T0

1ak

..

.

T0
Kak

0BBB@
1CCCA�0; . . . ; 0; I; 0; . . . ; 0�:

�36�
This provides a simpler algorithm for computing
fR�k�; 16 k6Kg in this case.

5. Numerical results

This section presents a few numerical examples
so as to gain insights into queueing systems with
multiple types of customers. The issues of interest
are, not limited to, how the dependence between
arrival processes of di�erent types of customers
in¯uences the queueing processes, how the arrival
pattern of di�erent types of customers (such as
cyclic and one type after the other) in¯uences the
queueing process.

Example 5.1. Consider a queueing system with
arrival process K� 2, m� 1, D0�ÿ1.2, D1� 0.8,
D2� 0.4, and service times: m1�m2� 1,
a1� a2� 1, T1�ÿ2, T2�ÿ1. For this queueing

system, k1� 0.8, k2� 0.4, l1� 2, l2� 1, and
q� 0.8. The string probabilities are given in Fig. 3.

First, the probability distribution decreases ex-
ponentially with the queue length since it is es-
sentially an M/M/1 queueing system. Since the
arrival rate of type 1 customers is twice as much of
type 1 customers, the probabilities of strings J� 1,
J� 121, J� 12 121, are twice of that of J� 2,
J� 212, J� 21 212. This shows that the product
form solution obtained in Example 5.1 for com-
mon service time distribution cases does not exist
when the service time distributions of di�erent
types of customers are di�erent. Further, because
of the di�erence in service times, the queue be-
comes longer when compared to an M/M/1 queue
with k� 1.2, l� 1.5, and q� 0.8.

Example 5.2. Consider a queueing system with an
arrival process K� 2, m� 2,

D0 �
ÿ1 0

0 ÿ 2

� �
; D1 �

0:5 0:5

0 0

� �
;

D2 �
0 0

2 0

� �
and service times: m1�m2� 1, a1� a2� 1,
T1�ÿ2, T2�ÿ1.

For this queueing system, k1� 0.8, k2� 0.4,
l1� 2, l2� 1, and q� 0.8. Thus, this queueing
system has the same arrival rates, service rates, and
tra�c intensity as that of Example 5.1. However,
the arrivals of the two types of customers show a
special pattern. That is, any type 2 customer is
followed by a type 1 customer. It is interesting to
see how the special arrival pattern in¯uences the
queueing process.

Fig. 3. The queue string distribution.
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The string probabilities are given in Fig. 4. It is
shown that the probabilities of strings with sub-
string 21 are still small, even when a type 2 arrival
is followed by a type 1 arrival. It is also shown that
the probabilities of strings ``2 � � � 2'' are positive
but small. The reason is that the type 1 customer
following a type 2 customer may be in service
when the next type 2 customer arrives.

Example 5.3. Consider a queueing system with an
arrival process K� 2, m� 2,

D0 �
ÿ0:8 0

0 ÿ 1:6

 !
; D1 �

0 0:8

0 0

 !
;

D2 �
0 0

1:6 0

 !
;

and service times: m1�m2� 1, a1� a2� 1,
T1�ÿ2, T2�ÿ1.

For this queueing system, k1� 0.533,
k2� 0.533, l1� 2, l2� 1, and q� 0.8. The string
probabilities are given in Fig. 5.

The two types of customers arrive cyclically. It
is expected that strings with substring 21 or 12
have larger probabilities. Thus, this example does
show that the arrival pattern in¯uences the queue
in a particular way. Therefore, when analyzing
queueing systems with multiple types of customers,
one should take into consideration the arrival
pattern of customers. Notice that the probabilities
of strings such as 11 and 22 are positive. This is

di�erent from the cases where all customers are
served on a ®rst-come-®rst-served (FCFS) basis.
For the FCFS case, the probability that the queue
string is 11, 111, 22, 222, or 2222 is zero since the
two types of customers arrive cyclically.

6. Modelling of the MMAP[K]/PH[K]/N/LCFS
non-preemptive queue

This section formulates the MMAP[K]/PH[K]/
N queue with an LCFS non-preemptive service
discipline into a QBD Markov process with a tree
structure. In this queueing system, there are N
identical servers. Service times of each type of
customer at all N servers have the same PH-dis-
tributions de®ned in Section 3.

The queueing system of interest can be repre-
sented by the following stochastic process
fq�t�; I�t�; �In;1�t�; In;2�t��; 16 n6Ng, where

q(t): the string of waiting customers in the
queueing system, q�t� 2 À [ fÿ1; . . . ;ÿNg;
I(t): the state of the underlying Markov process
D, 1 6 I(t) 6 m;
In;1�t�: the type of the customer in server n (if
any) 16 In;1�t�6K and 16 n6N ;
In;2�t�: the phase of the PH-distribution of server
n (if working), 16 In;2�t�6mIn;1�t� and 16 n6N .

When there is no customer in the system at time t,
q(t)�ÿN; when there is one customer in the
system at time t, q�t� � ÿN � 1; . . .; when there
are N customers in the system, q(t)� 0. When

Fig. 4. The queue string distribution.
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there are customers waiting at time t, q(t) is a
string in À. It is easy to see that fq�t�; I�t�;
�In;1�t�; In;2�t��; 16 n6Ng, is a Markov process
with a state space:

[N
q�1

ffÿqg � f1; 2; . . . ;mg

2Nÿq
n�1
f1; 2; . . . ;mkgg and

À� f1; 2; . . . ;mg2N
n�1

[K
k�1

f1; 2; . . . ;mkg
( )

:

This is a QBD process with a tree structure
when fI�t�; �In;1�t�; In;2�t��; 16 n6Ng is de®ned
as the auxiliary random variable with m �mN states
(where �m � �m1 � � � � � mK�), except that when
q�t� � ÿN ; . . . ; ÿq; . . . ; ÿ1, the auxiliary vari-
able takes values

f1; 2; . . . ;mg2Nÿq
n�1

[K
k�1

f1; 2; . . . ; ;mkg
( )

:

For instance, when K� 2, the QBD Markov pro-
cess {q(t), I(t), (In;1�t�, In;2�t�), 1 6 n 6 N} is
shown in Fig. 6 as follows.

Compared to the single server case, this QBD
Markov process of the multiple server case has
more soil nodes (boundary states) and the auxil-
iary variable has more states. The in®nitesimal
generator of this QBD Markov process with a tree
structure is de®ned by the following transition
blocks.

For J � k1 � � � knÿ1k 2 À and 16 k6K, {A0(l),
16 l6K, A1(k), A2(k)} are m� �m�N � m� �m�N ma-
trices and

A0�l� � Dl 
 I� �m�N�� �m�N ; 16 l6K;

A1�k� � D0 
 I� �m�N�� �m�N

�
XNÿ1

n�0

Im�m 
 I� �m�n�� �m�n 


T1

. .
.

TK

0BBBB@
1CCCCA


 I� �m�Nÿ1ÿn�� �m�Nÿ1ÿn ; �37�

A2�k� �
XNÿ1

n�0

Im�m 
 I� �m�n�� �m�n



0 � � � 0 T0

1ak 0 � � � 0

..

. � � � ..
. ..

. ..
. � � � ..

.

0 � � � 0 T0
Kak 0 � � � 0

0BBB@
1CCCA


 I� �m�Nÿ1ÿn�� �m�Nÿ1ÿn :

For J� 0, the transition to J� k is A0(k),
16 k6K; the transition to itself is A1(0)�A1(1),
and the transition to node ÿ1 is

B2�0� �
XNÿ1

n�0

Im�m 
 I� �m�n�� �m�n 

T 0

1

..

.

T 0
K

0BB@
1CCA


 I� �m�Nÿ1ÿn�� �m�Nÿ1ÿn : �38�

For ÿN � 16 J � q6 ÿ 1,

Fig. 5. The queue string distribution.
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B0�q� � �D1 
 I� �m�N�q�� �m�N�q 
 a1 � � �DK


 I� �m�N�q�� �m�N�q 
 aK�;

B1�q� � D0 
 I� �m�N�q�� �m�N�q

�
XNÿ1�q

n�0

Im�m 
 I� �m�n�� �m�n 


T1

. .
.

TK

0BBB@
1CCCA


 I� �m�Nÿ1�qÿn�� �m�Nÿ1�qÿn ; �39�

B2�q� �
XNÿ1�q

n�0

Im�m 
 I� �m�n�� �m�n 

T 0

1

..

.

T 0
K

0B@
1CA


 I� �m�Nÿ1�qÿn�� �m�Nÿ1�qÿn :

For J�ÿN,

B0�ÿN� � �D1 
 a1 � � �DK 
 aK�;
B1�ÿN� � D0:

�40�

Once the transition blocks are determined,
performance measures can be obtained similar to
the single server case. De®ne the tra�c intensity as
q � �k1=l1 � � � � � kK=lK�=N . Similar to Theorem
3.1, it can be proven that when the queueing system
is positive recurrent, q < 1. All details are omitted.

7. Summary

This paper gives a detailed analysis of the
MMAP[K]/PH[K]/N queue with an LCFS non-

preemptive service discipline, especially the single
server case. Using results of the QBD Markov
process with a tree structure, an e�cient algorithm
is developed for computing the stationary distri-
bution of queue string. All the matrices, variables,
parameters involved are explicitly given. While a
general algorithm is given, several special algo-
rithms are presented for some special cases, which
are much more e�cient computationally.

Taking advantages of the problem formulation
and e�cient algorithms developed, this paper pre-
sents some numerical results to show how the in-
teractions among the arrival processes and/or the
uncertainty in service times in¯uence the queueing
process. The impact of the pattern of the arrival
process (cyclic, one type follows the other type,
etc.) on the queueing process is discussed as well.

Several issues are pertinent to future research.
First, it will be interesting to look at queueing sys-
tems with multiple types of customers and an FCFS
service discipline. The development of e�cient al-
gorithms for computing the distributions of queue
strings of such queueing systems is an interesting
but di�cult problem. Second, there are many dif-
ferences between the discrete time and continuous
time MMAP[K]/PH[K]/N/LCFS queues. A detailed
study of the discrete time MMAP[K]/PH[K]/N/
LCFS queue can be interesting as well.
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Fig. 6. A 2-ary tree with N soil nodes.
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