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Abstract: In this paper, we study a discrete time queueing system with multiple
types of customers and a last-come-first-served general preemptive resume
(LCFS-GPR) service discipline (MMAP[K]/PH[K]/L/LCFS-GPR). @ When the
waiting space is infinite, matrix analytic methods are used to find a system stability
condition, to derive the distributions of the busy periods and sojourn times, and to
obtain a matrix geometric solution of the queue string. The results lead to efficient
algorithms for computing various performance measures at the level of individual
types of customers. Using those agorithms, the impact of the LCFS-GPR service
discipline on the corresponding queueing system can be analyzed. When the waiting
gpace is finite, the Gaussian elimination method is used to develop an efficient
algorithm for computing the stationary distribution of the queue string. The
relationship between the loss probabilities of individual types of customers and the
size of the waiting space is explored. This paper also serves as a brief survey of the
study of the MMAP[K]/PH[K]/1 queue and its related queueing models.

1. Introduction

In this paper, we study a class of queues that involve a multiple class of customers,
with each class having different service time requirements. These types of queues
have major applications in the design and analysis of many manufacturing,
telecommunications, and service systems. Our interest is in the
last-come-first-served (LCFS) case that is very common in telecommunication
systems. We focus on the discrete time analysis of the queueing systems. Such
gueueing systems have received considerable attention from researchers and
practitioners recently.

The basic model under consideration in this paper can be described as
follows. Customers arrive in the queueing system according to a discrete time



Markov arrival process with marked transitions (MMAP[K]). Customers are
distinguished into K types. All customers join a single queue and are served on a
last-come-first-served (LCFS) basis, i.e., any new arrival pushes the customer in
service (if any) out of the server and starts its service immediately. A genera
preemptive resume (GPR) rule, which includes the well-known preemptive resume
and preemptive repeat service disciplines asits special cases, is applied to determine
the service time when a customer reenters the server. The service times of different
classes of customers can be different and have phase type (PH) distributions. We
distinguish queueing systems with an infinite waiting space (buffer) from that with a
finite waiting space. When the waiting space is finite, we assume that a customer
who finds a full queue cannot enter the queueing system and is lost forever. We
denote this queueing system as MMAP[K]/PH[K]/1/LCFS-GPR.

Theoretically, the study of the queueing systems of interest was made
possible by the developments in the study of Markov chains with a tree structure
(Takine, Sengupta, and Yeung [20], Yeung and Alfa[21], and Yeung and Sengupta
[22]). The approach has been proven to be a success in the study of such queueing
systems. For instance, using the approach, HE [6] and HE and Alfa [9] studied the
MMAP[K]/PH[K]/1/LCFS non-preemption queue and preemptive resume or repeat
gueue, respectively.

In this paper, weshall use matrix analytic methods, based on the recent
developments in the study of GI/M/1 type or M/G/1 type Markov chains with a tree
structure, to study the queueing systems of interest. First, an M/G/1 type Markov
chain with atree structure will be introduced to represent the queue string processin
such a queueing system. Second, a method is introduced to analyze the stability of
the queueing system. Third, distributions of the busy periods and sojourn times are
found. Fourth, the queue string process is reformulated into a GI/M/1 type Markov
chain with a tree structure and a matrix geometric solution of the queue string is
obtained. These results lead to efficient algorithms for computing various
performance measures at the level of individual types of customers. The impact of
the LCFS-GPR service discipline on the queueing process can then be analyzed. For
gueueing systems with a finite waiting space, a Gaussian elimination method is used
to develop an agorithm for computing the distribution of the queue string. The
relationship between the loss probabilities of individual types of customers and the
size of the waiting space is investigated. A numerical example is presented to gain
insights into the queueing systems of interest.

This paper serves as a survey of the study of the continuous and discrete time
MMAP[K]/PH[K]/1 queues. For that purpose, a brief review of the recent
developments in the study of the MMAP[K]/PH[K]/1 queue as well as its related
areasisgiven in Section 2 of this paper.

The rest of the paper is organized as follows. In Section 2, a brief literature
review on the recent developmentsin the study of the MMAP[K]/PH[K]/1 queue and
related areas is given. Section 3 introduces the discrete time



MMAP[K]/PH[K]/L/LCFS-GPR queue and investigates various performance
measures. The discrete time MMAP[K]/PH[K]/1/c/LCFS-GPR queue with a finite
waiting space is studied in Section 4. Finally, in Section 5, we briefly discuss a few
directions for future research.

2. Literaturereview

In this section, we briefly review recent developments in the study of queueing
systems with multiple types of customers. More specifically, we shall discuss the
study of Markov arrival processes (MAP), Markov arrival processes with marked
arrivals (MMAP[K]), Markov chains with a tree structure, the MMAP[K]/G[K]/1
gueue, the MMAP[K]/PH[K]/ULCFS queue, and a few variants of the
MMAP[K]/PH[K]/L/LCFS queue. To be brief, we focus on research works closely
related to matrix analytic methods.

Markov arrival process (MAP), also called Neuts process, was introduced in
Neuts [13] as a generalization of the Poisson processes. That formation of arrival
process has been widely accepted because of its capability in modelling input
processes and the tractability of its corresponding stochastic models, especialy in
gueueing theory (Ramaswami [16], Lucantoni, Hellerstern, Neuts [12], and Neuts
[15]). A generaization to multiple types of correlated arrivals - Markov arrival
processes with marked arrivals (MMAP[K]) - was introduced in Asmussen and
Koole [2], HE [5], and HE and Neuts [11]. Similar ideas can be found in the
extensive literature related to Markov modulated Poisson processes (MMPP).
MMAP[K] can capture not only the correlation between different types of arrivals,
but also the arrival pattern among all types of arrivals (see HE and Alfa [9] and
Example 3.2.1 in this paper). Primarily, we are interested in queueing systems with
aMarkov arrival process with marked arrivalsin this paper.

An extensive study has been carried out on queueing systems with multiple
types of arrivals when the arrival process is a Poisson process (Takagi [18]). Since
the Poisson process is not flexible enough to model various input processes in
practice, queueing models with MMAP[K] are introduced. HE [5] and Takine and
Hasegawa [19] studied the MMAP[K]/G[K]/1 queue. A number of results were
obtained for the fundamental periods, waiting times, and the queue length. HE [7, §]
identified conditions for ergodicity of such queueing models with a work conserving
or a non work conserving service discipline. In summary, significant progress has
been made on the study of the MMAP[K]/G[K]/L/FCFS queue.

Queueing systems with multiple types of customers are frequent occurrences
in telecommunication systems. The LCFS service discipline has been recognized in
the telecommunication systems as away of increasing throughput in a system where
some customers have a time threshold for waiting. This application motivated most
of the research in the multiclass LCFS queueing models. With the interest in



maximizing throughput in queues with customer waiting time threshold, Schreiber
[17] introduced a hybrid FCFS/LCFS queue discipline for the M/M/1 queue. Later
Doshi [3] considered the M/G/1 FCFS/LCFS queue. Using a much simpler analysis
technique Alfa and Fitzpatrick [1] developed a computationally efficient approach
for the Geo/D/1 FCFS/LCFS queue. All these systems are for a single class of
customers (K =1).

The study of LCFS queueing systems with multiple types of customers (K>1)
continues in HE [6, 7, 8], HE and Alfa[9, 10], and this paper. An important feature
of these studies is that the results alow us to look at the queueing behaviors of
individual types of customers. In HE [6], the MMAP[K]/PH[K]/Z/LCFS
non-preemptive queue was introduced and studied. In that queueing model, the
service times have PH-distributions for different types of customers. Results
obtained in HE [7, 8] can be used to identify ergodicity conditions for LCFS
gueueing systems. In HE and Alfa[9], the MMAP[K]/PH[K]/L/LCFS queue with a
preemptive resume or repeat service discipline was introduced and studied. In HE
and Alfa [10], the MMAP[K]/PH[K]/1 with a hybrid FCFS and LCFS service
discipline was introduced and studied in detail. In general, the queueing processes
of these queueing systems can be formulated into GI/M/1 or M/G/1 type Markov
chains with a tree structure and an analysis of the stationary distribution of queue
strings, busy periods, and sojourn times can be carried out. Thus, Markov chains
with a tree structure play an important role in our research, as was mentioned in
Section 1.

To end this section, we would like to point out that the analysis of the
continuous and discrete time MMAP[K]/PH[K]/L/LCFS queues is essentialy the
same. However, the discrete time queueing systems are usually more complicated in
formulation and sometimes the structure of the corresponding Markov chans
changes (see the Notes in Section 3.1). Thus, the results obtained in this paper are
not straightforward extensions of their continuous time counterparts.

3. Discretetime MMAP[K]/PH[K]/1/LCFS-GPR queue

We first introduce the discrete time MMAP[K]/PH[K]/L/LCFS-GPR gueue and an
M/G/1 type Markov chain with a tree structure for its queueing process in Section
3.1. In Section 3.2 we develop a method for analyzing the stability of the queueing
system and its relationship with the LCFS-GPR rule. The fundamental periods, busy
periods, busy cycles, and sojourn times are investigated in Section 3.3. In Section
3.4, a GI/M/1 type (or QBD type) Markov chain with a tree structure is introduced
for the queue string process. In steady state, a matrix geometric solution of the
gueue string is obtained.



3.1 Themodéd

The arrival process of the queueing system of interest is a discrete Markov arrival
process with marked transitions (MMAP[K]). Customers of the arrival process are

distinguished into K types. The MMAP[K] is defined by a set of m™m matrices { D,
OEkEK}, where miis a positive integer. The matrices Dy, OEKEK, are nonnegative.
The matrix |-Dg is assumed to be non-singular, where | isthe identity matrix. Let

K
D=4pDb,. (3.1.1)

k=0

Then the matrix D is the transition matrix of the underlying Markov chain of the
arrival process, which has m phases. Consequently, the matrix D is a stochastic
matrix. Let I(n) be the phase of the underlying Markov chain at time n, 1£1(n)Em.
An arriva is called atype k customer if it is marked by k. The (matrix) marking rate
of type k customer is Dg. Let g be the stationary probability vector of the matrix D.
The stationary arrival rate of type k arrival is given by 1 = qDge, 1£kEK, where eis

the column vector with all components one.

The service times havephase-type distributions. The service times of type k
customers have a common phase-type distribution (PH-distribution) function with a
matrix representation (mg, ak, Tk), where my is positive integer, ak is an
mk-dimension nonnegative vector with age = 1, and Tk is an mg~ mk substochastic
matrix. Let TOk =e—Tke. The mean servicetimeisgiven by 1/mg = ak(I—Tk)‘le.
Then my is the average service rate of type k customers. For more details about

PH-distribution, see Chapter 2 in Neuts [14]. We assume that the service process
and the arrival process are independent.

All customers are served on an LCFS-GPR service discipline. When a
customer of type k arrives, it pushes the customer in service (if any) out of the server
and starts its service with service time (my, ak, Tk). For the outgoing custome, its

current service phase is recorded (say i) and its future service phase is chosen
according to the probability distribution qy j = (dk;j,1, L, d; ) a the epoch it is
pushed out. If the future service phaseisj, then the distribution of its servicetimeis
(my, €(), Tk) when the customer reenters the server, where €(j) is the row vector for
which the jth element is one and all others zero. Let Qg be an my” my matrix with
elements qyjj. Then matrix Q is a stochastic matrix and it specifies the service

phases for interrupted services. It is worth to point out that some well-known
service disciplines are special cases of the LCFS-GPR. For instance, when Qg = I,



customers are served on an LCFS preemptive resume basis. When Qi = eay,
customers are served on an LCFS preemptive repeat basis. It is easy to see that the
service disciplines for different types of customers can be made different through the
matrices { Qk, 1EKEK}. Finally, when the server becomes available to customers in

queue, the customer who arrived last gets the server.
Note 3.1.1: The LCFS-GPR introduced here is dightly different from that in
previous papers. For instance, in Yeung and Alfa [21], the phase of service is

determined according to gk j = (dk,j,1, L, 0, ) @ the epoch a customer reenters

the server, if the customer was pushed out of the server in phasei. Nonetheless, that
definition and our definition both imply that if a customer was pushed out of the
server when its service phase is i, its service time has the PH-distribution (m, gk j,

Tk) when it reenters the server. Therefore, with regard to the queueing process, the

two definitions are equivalent. But their corresponding Markov chains of the queue
strings can be different. Our definition is suitable for analyzing the fundamental
periods, busy periods, busy cycles, and sojourn times.

For each customer in the queueing system, apair (K, j) is used to represent its
status, where K is the type of the customer and j is the phase of the service time of
the customer. The phase | is either the phase of the service time when the customer
resumes its service if the customer is in the queue or the current service phase if the
customer isin service. Let g(n) be the queue string consisting of the status of all the
customers in the queueing system at the beginning of time n - a string of the pair
(k, j) wherek is between 1 and K and j is between 1 and mi. For instance, when g(n)

=(k1,J1)---(kt, Jp), there are t customersin the queueing system at this moment. The
service phase of the customer currently in service is jt, the (future) service phase of
the first customer in queue is ji-1, i.e.,, when the customer reenters the server, its
service starts in phase jt-1, ..., and the last (oldest) customer in the queue is of type
k1 and its future service phase isj1. We assume that the change of the phase of the

arrival process or the service process occurs at the end of each unit time.

It is easy to see that (q(n), 1(n)) is an irreducible and aperiodic Markov chain.
The state space of the Markov chainisW™ {1, 2, ..., m}, where W = {O} E{J: J =
(k1, jD(k2, j2)---(kn, In), 1EKEK, 1EjtEm, , 1£tEn, n31}. Let |J| be defined as the

number of pairs of integersin J. Hence |J| is the length of the string J. The level n
of queue strings consists of all the stringswith [J] = n. Itiseasy to seethat after each
transition, the level of the Markov chain (q(n), 1(n)) (with respect to q(n)) can
increase or decrease at most by one. Define the addition operation “+” in W as

follows: for J = (kq, j1)(k2, [2)..(kn, i) INW, J+(k, ]) = (k1, jD (k2 }2)-.(kn, i)k
j). Assume that the Markov chain isin node J+(k, j) TW at time unit n, i.e., q(n) = J
+ (k, J). Thetransition blocks of the Markov chain are given asfollows.



a) When anew customer arrives and there is no service completion,

A((K, 1), (k, )y J2))
°(Plan+D =J +(k, j' )k, [, I(n+ ) =i"[g(n) = I + (K, j), I (n) =i})
=(TQ), ;@) D, 1Ekk £K,1E ], j'Em,1£ |, £m,, (3.1.2)

where “©” means definition. Note that in equation (3.1.2) and equations (3.1.3) to
(3.1.5), 1£i, itEm. Also note that (Tka)j j represents the (j, jO)th element of the

matrix TkQk and (a, ); thejjth element of the vector a, .

b) When a service is completed and a new customer arrives, or when there is no
service completion and no new arrival, 1£k, kq£K,

INCHXCHD)

o (Plgn+1) = 3+ (ky, j,), 1N+ D) =i'lg(m) = I+ (k, ), 1 (M =i})  (3.1.3)
-‘I(TI?)j(akl)lekl+(Tk)j,j1D0’ k:k1’1£j’j1£mk;

THT) (), Dy kKTk,1£ jEm,1£€ j, £m,.

¢) When aserviceis completed and there is no new arrival,

Ak, j)e(Plgin+)=J,I(n+1) =i"lq(n) = I +(k, j), 1 (n) =i}) 314
=(T{),D,, 1£jE£m,1E£KEK. L

d) When no customer isin the queueing system, i.e., q(n)=J=0,

A (0, (ky, j1)) © (PLa(n +1) = (k;, j,), 1 (n+1) =i"|q(n) = 0,1 (n) =i})
=(a,), Dy, 1EkEK,1Ej Em; (3.15)

A(00) °(P{g(n+1)=0,1(n+1) =i"|q(n) = 0,1(n) =i}) = D,

The matrices { Ag((k, ). (k. j)(k1, J1)), Aa((k. ]). (k1. j1). Ag(k. ), A1(0,0),
A0, (k1, j1))} determine the one step transition of the Markov chain and thus play

an important role in the analysis. A tree structure can be introduced in W in a way
similar to that in HE and Alfa[9]. Wecall Jin W anodeinatreeand J = 0isthe



root of the tree. Itisclear that every node J in the tree has mq+ mo+ ...+ mg children

and (except node 0) one parent. In any node, the Markov chain (q(n), 1(n)) can only
transit to its children, itself, its parent (except node 0), its parent’s children, and its
parent’s grandchildren in one transition. Therefore, (q(n), 1(n)) is an M/G/1 type
Markov chain with a tree structure (Takine, Sengupta, and Y eung [20]), where I(n)
is the auxiliary variable. In the next two sections, the theory about the M/G/1 type
Markov chains with atree structure will be utilized to study (q(n), I(n)).

Note 3.1.2: The LCFS-resume case and the LCFS-repeat case were dealt with
differently in HE and Alfa[9]. Since the LCFS-resume and LCFS-repeat are two
gpecial cases of LCFS-GPR, this section shows that the two cases can be treated
uniformly.

Note 3.1.3: If the service phase of a reentering customer is determined when the
customer reenters the server, (q(n), I(n)) is no longer a Markov chain. In that case,
the technique that was developed in HE and Alfa[9] in dealing with the preemptive
repeat case can be used, if the objective is to analyze the busy periods and sojourn
times. If the objective is to anayze the stationary distribution, the formulation
approach introduced in Section 3.4 can be used.

2 Stability issues

Let r = I9/mq + ...+1/mk. It has been proved in HE [8] that the queueing system
of interest is stable if r < 1 when a work conserving service discipline is applied.
However, for some {Qg, 1£kEK}, the service discipline may not be work
conserving. This brings up two interesting issues: 1) for agiven set of {Qk, 1EKEK},
is the queueing system stable? 2) how do the matrices { Qk, 1EkEK} influence the

stability of the queueing system? This section shows that the results obtained in HE
[8] can be used to answer the two questions.

First, the following set of matrices is introduced. Denote by { G(k, j),

1£KEK, 1£jEmy} aset of stochastic matrices that satisfy the following equations,
K Mgy

Gk, j)= Ak D+ AaaAlk i)k, )Gk, i)

k=1 j;=1
B 5y : N = =
raaaMk i)k, )k, )Gk, j)GK, ).
j'=1k=1j;=1
It has been proved (see HE [8]) that the matrix set { G (K, j), 1£jE£my,
1£kEK} exists, but may not be unique. It has also been proved that the matrix set

(3.2.1)



{G(K,j), 1£jEmy, 1EKEK} is unique and al these matrices are stochastic when the
Markov chain (g(n), I(n)) is positive recurrent. Infact, { G(k, j), 1£jEmy, 1EKEK} is

the minimal nonnegative solution to equation (3.2.1) when the Markov chain is
positive recurrent. From the matrix set { G(K, ), 1£j£my, 1£kEK}, we introduce the

following m™m matrices, 1£jEmy, 1£j1£ m, 1£k, k1£K,

p((k, 1), (ky, 1))
FAK ). (ke 1) + g'%((k, DA CON DD (PN ) M LI Gl F
: o

Ak, 1), (k) + %A)((k, DACHDICN),

1
i
: + A (K, §), (K, j)(k, )G (K, ) (322
[

+§ gﬁn((k,J'),(k,J'l)(k',j'))@(k',i'), it k=k,

k=1 j'=1 (K", j)*(k,]1)

—~

and

p((11), (1) p((11),(12) L  p(2D,(K,m))

p((12),(1D) p((12),(12) L  p((22),(K,m))
] I ] I

p(K.m).@D) p((K.m ) (12) L p(K.m).(K.m);

p= . (32.3)

R R B N

MDEO O vO O

Denote by sp(P) the Perron-Frobenius eigenvalue (the eigenvalue with the
largest modulus) of the matrix P. The stability results of the queueing system are
summarized in the following theorem. See Theorem 3.2 in HE [8] for a proof.

Theorem 3.1 The queueing system introduced in Section 3.1 is stable if and only if
sp(P) < 1. More specifically, the Markov chain (q(n), 1(n)) is

a) positiverecurrent if and only if sp(P) < 1;
b) null recurrent if and only if sp(P) = 1,
c) transientif and only if sp(P) > 1.

When Qg = |, 1£kEK, i.e., the service discipline is preemptive resume (and hence

work-conserving), sp(P) is equivalent to r in classifying the corresponding Markov
chain. >



Next, we use Theorem 3.1 to study the impact of the matrices { Qk, 1EKEK}
on the stability of the queueing system through a numerical example.

Example 3.2.1 Consider an MMAP[2]/PH[2]/1/LCFS-GPR queue. For the arrival
process. K=2,m=2,

_204 0155 _ 2015 03 _ _20 0y
0 §0.3 03, ' go 0, ° §o.4 05

It is interesting to see that each type 2 customer is likely to be followed immediately
by a type 1 customer. Numerical results show that the arrival pattern has much
influence on the queueing process. The service times are given as follows:

0.7 0.2 20 1
M2 0509 Ty 0z %o 4
02 025 _ gl O

m =2, a,=(0406), T, = I, = I
, :=0408), T=( " o %7E o3

It can be obtained that sp(P) = 0.909421. Thus, the queueing system is
stable. However, if we switch the two GPRs {Q1, Q2} between the two types of

customers, sp(P) becomes 1.013271, i.e., the queueing system becomes unstable.
This example shows that, when multiple types of customers are present, the impact
of the service discipline on the queueing process is significant.

To learn more about the impact of the GPR on the stability of the queueing
system, we look at the preemptive resume and repeat cases. First, the classica
traffic intensity of this queueing system is given as r = 11/mp +lo/mp =
0.2739/0.369276 + 0.156532/0.541666 = 1.030811. Thus, the queueing system with
any work conserving service discipline is unstable. Therefore, the preemptive
resume queueing system (Q1 = Q2 =I) isunstable. It can be obtained that sp(P) =
1.011458 for that case. On the other hand, sp(P) = 0.980069 for the preemptive
repeat case (Q1 = eap, Q2 = eay), i.e, the queueing system is stable.

For the rest of Section 3, we assume that sp(P) < 1, i.e., the queueing system
is stable. We shal study the busy periods, sojourn times, and the stationary

distribution of the queue string. The impact of the LCFS-GPR on these performance
measures is discussed numericaly.

3 Thefundamental periods, busy periods, and sojourn times



In general, afundamental period is defined as the first passage time during which the
(total) queue length decreases by one. Define N ={n =(nq, ..., NK): Nk30, 1EKEK} .

Similar to the classica QBD case (see Neuts [14]) and the LCFS repeat case (HE
and Alfa [9]), we define, for J = (k1, j1)(K2, j2)...(kt, jt) TW, 1EKEK, 1£jEmy, 1£i,

itEm, andn=(n1, ..., nk) TN,

gi, it (k, ], X, n): the taboo probability that the Markov chain (q(n), I(n)) reaches node

J for the first time in state (J, it) in no more than x units of time and
there are nq type 1, np type 2, ..., and nk type K customers served

during thistime, given that the Markov chain started in (J+(k, j), 1).

Let G(k, J, X, n) be an m”m matrix with elements gi'i’(k, J, X, n), 1£i, itEm. Because
of the specia structure of the M/G/1 type Markov chain, G(k, j, X, n) does not
depend on the node J. G(k, j, x, n) isdefined for a busy period with a customer (K, j)
initialy, for OEjEmy, 1EKEK. In a similar way, define G(0, x, n) for a busy cycle
(from the beginning of an idle period to the beginning of the next idle period). Let
G”"(k, j, w, Z) be the joint probability generating function of G(k, j, x, n) with respect
toxandn,i.e,
X J e
G'(k jw,2)=Q Qw DGk j,x,nQOz", 0<w,z <1 (3.3.1)

x=1nTN 1=1

where z = (71, ..., zx) and D,G(k, j,x,n) =G(k, j,x,n) - G(k, j,x-1,n). Then it

can be proved that {G"(k, j, w, 2), 1£jEmy, 1£kEK} are the minimal nonnegative
solutions to the equations:

G’ (Ow,z) =[wl - A(00)] '15 g A0, (k, NG (k, j.w,2); (332

k=1 j=1

G (k, j,w,2)

=t - A (k. ). (k. ), zk)]‘lg 2, A (K, })

S n’él * . . * .
ta aAlk ik, i) z2)G (k, j.w,2)
k=1 =L (ki) (K, 1) b v (333

K Mg
o O

+ BAA A D, ( 1)k, )G (ky 1w, G (k. | w, 2)

J=1k=1 =1 u



where
Ak ). (K0 2)
12T (@) Dy + (1), Doy k=K, 1E |, J'Em,; (33.4)
3270 .(@,), D, kiK,1EJEM,1E EmM,.

Denote by G(k, j) = G"(k, j, 1-, 1-), OfjEmy, 1£kEK, and G(0) = G*(0, 1-, 1),
where 1- = (1-, ..., 1-). When the M/G/1 type Markov chain is positive recurrent,
matrices G(k, j) and G(0) are stochastic matrices. Matrices {G(k, J), 1EJEmy,
1£kEK} are the minimal nonnegative solutions to equation (3.2.1). When the
Markov chain is positive recurrent, G(k, j) = G(k, j), 1£j£my, 1£kEK. By equation
(3.3.2), the matrix G(0O) is obtained as

G(0) =[I - A(0,0)] '155'%(0, (k, NGk, ). (335

k=1 j=1

The momentsof thenumber of customers servedin abusy period (busy
cycle) and the moments of the length of a busy period (busy cycle) can be derived
using equations (3.3.2) and (3.3.3). For instance, let

1G" (K, j,w,2)e]
Tw

1G" (O,w,2z)e

u(k, j) = W

, u(0) = . (336

|w =1-, z=1- w=1-, z=1-

for 1EkEK and 1E£jEm. The term (u(k, j))j is the mean length of a busy period
started with a type k customer with initial service phase j, and the initial phase of the
underlying Markov process D is i, 1EiEm. Similar interpretations go to u(0).

Simple but lengthy calculations lead to the following expressions, for 1£kEK,
1£jEmy,

U =[1 - A0 se+ A A AO.( DUk, i) (337
a k=1 j=1 u
5y
ulk,j)=e+ aaﬁ((k, 1), (ky, j))udky, jy)
s (3.3.8)

3 5 : . : : : .
traaahk ik, )k, iDlulky, j,) +Gk,, j)ulk, j)1.

j'=1k=1jy=1



Performance measures of interest can be obtained by solving equations
(3.3.2), (3.3.3), (3.3.5), (3.3.7), and (3.3.8). Although the formulas ook formidable,
the actual programming is not difficult to implement. In fact, equations (3.3.7) and
(3.3.8) can be solved as linear equations or using an iteration method. The space
complexity of the algorithm is O(m2(mq +...+mk)?).

The probability that thequeueing systemis idleat anarbitrary time canbe
obtained as follows. Let g be the left invariant vector of the matrix G(0). Then gis
the stationary distribution of the underlying Markov chain D at the beginning of an
arbitrary idle period (busy cycle). The mean length of an arbitrary busy cycleis thus
given by gu(0) and the mean length of an arbitrary idle period is given by
o[1-A1(0,0)]"le. Thenit has

_pe=dl A0 e 3.39
p(-De 2u(0) (33.9)

where p(-1)e represents the probability that the queueing system is idle at an
arbitrary time (see Section 3.4 for the definition of the vector p(-1)).

Finally, in this section, we study the sojourn time. The sojourn time of a
customer is defined as the total time that the customer stays in the queueing system.
Since all customers are served on alast-come-first-served basis, the sojourn time can
be obtained directly from the fundamental periods. In steady state, let wy be the

sojourn time of a type k customer. Let (W*(w))j be the probability generating
function of wy when the phase of the Markov arrival process at the departure epoch
of the customer of interest isi, 1EiEm. It iseasy to obtain, for 1£kEK,

* 1 2 . o
w, (W) =—qu§a(ak),—G (k, j,w, 1)3;
" - ’ (3.3.10)
1 2 0
w = g-abga @), uk )%
j=1 [}

The sojourn time of an arbitrary customer has a probability generating
function given as w*(w) = [Iqw" 1(W) + ... + Ixkw kW)]/(11+ ... +1k) and its
mean can be obtained easily from equation (3.3.10).

Example 3.3.1 For the queueing system introduced in Example 3.2.1, it can be
obtained that the mean busy cycle is 13.765331 and the mean idle period is



2.315323. Thus, the probability that the queue system isidle at an arbitrary time is
p(-1)e = 0.1682. That is. approximately 17% of the time the queueing system is
idle. The mean sojourn time of type 1 customers is Ewq = 12.53449 and Ews =
23.946754 for type 2 customers. Since each type 2 customer is likely to be followed
by atype 1 customer who has a longer service time, the mean sojourn time of atype
2 customer is much longer than that of a type 1 customer. As was shown in
Example 3.2.1, a simple switch of the GPRs { Q1, Q2} can prolong service so much

so that, in the long term, the system will always be busy and the sojourn time
increases to infinity.
4  Matrix geometric solution of the queue string

According to Yeung and Sengupta [22], a matrix geometric solution exists for a
positive recurrent GI/M/1 type Markov chain with a tree structure. Unfortunately,
the Markov chain (q(n), I(n)) can go from a node to one of its parent’ s grandchildren

in one transition (e.g., from J+(k, j) to J+(k, j¢)(kq, j1) where j¢ ). Thus, (q(n),

I(n)) is not a GI/M/1 type Markov chain with atree structure. However, the special
structure possessed by (qg(n), 1(n)) leads to a method to formulate the queueing
process into a GI/M/1 type Markov chain with a tree structure. The idea is to
consider the status of the customer in service as a part of the auxiliary variable,
rather than a part of the queue string. The same idea was used in HE [6] for the
LCFS non-preemption case. Specifically, we consider the Markov chain (gy/(n),

I(n), k(n), J(n)) defined as follows:

aw(n): the string consisting of the states of customers waiting in the queue at timen;

I(n): the phase of the MMAP[K] at time n (introduced in Section 3.1);
k(n): thetype of the customer in service (if any) at timen;
J(n): the phase of the servicetime (if any) at timen.

Random variable qy(n) takes value —1 when there is no customer in the queueing
system, O when there is one customer in the queueing system. Thus, gy(n) takes

values in {1} EW, where W was defined in Section 3.1. Consider (I(n), k(n), J(n))
as an auxiliary variable. The one step transitions of (qy(n), 1(n), k(n), J(n)) are

determined by its transition blocks given as follows.

a) qy(n) goes (in one step) from —1 to —1 and from -1 to O:
A(-10)=(D,Aa, L D,Aa,)  A(-1-)=D, (34.1)

where A represents the Kronecker product of matrices (see Gantmacher [4]).



b) aw(n) goesfrom O to-1:

A(0,-1) =D, Ac Il = (3.4.2)

Matrices fortransitions from0 to0 andfrom Oto (, j) are givenin c).

c) qw(n) goesfromJ+ (k, j)toJ+ (K, j)(kq,]j1), I+ (K j), or I (JinW):

ez 0 0 U

A, i) = éDt A Sé(Tlekl),-l 8,:(0L.01 -, OL O} (343)
B 0 i
Ak, )= A)
. aéTl 0 gﬂloatg ﬂ (3.4.4)
=D,A{ O i+ADAZ I 0L0], . 0L 0
g s T &Tea, 0
€2 T e(j)0 U
Ak, j)=D, Agt Il #0001, OL,0), (34.5)
g Tee()); f

where (T, Q, ), representsthejith column of the matrix T, Q, . Notethat A (K, )

is independent of (k, j). Matrices Aj(k, j), A, and A (k, j) are of the dimension
m(mq+...+mMK).

Note 3.4.1: This formulation approach can be used to handle the case when the
service phase of a customer reentering the server is chosen at the epoch it reenters.

The transition matrices are obtained by simply moving { Qk, 1EkEK} from equation

(3.4.3) to equation (3.4.5) and putting them in the appropriate positions. Details are
omitted.

Clearly, (gpn(n), 1(n), k(n), J(n)) is a Markov chain with a tree structure.
Since (qy(n), I(n), k(n), J(n)) does not transit in one step from any node to its

parent’s children (its siblings) nor to its parent’s grandchildren, it is a GI/M/1 type
Markov chain with atree structure. Infact, it isasimple QBD Markov chain with a



tree structure. According to Yeung and Sengupta [22], a matrix geometric solution
can be found for the stationary distribution of the Markov chain. Define, for JTW,

p(J,1,k, ) =limP{(q,(n), 1 (n),k(n), I(n) = (J,i,k, ))};

o . (3.4.6)
p(=1i) =limP{(q,(n), 1 (n) = (-Li)}.

Note that the initial condition is not shown explicitly in equation (3.4.6) since the
limits are independent of it when the Markov chain is positive recurrent. Denote by

pP(Jd,i,k) =P (J,i,k1),L,p(J,i,k,m)); p(J,i) = (p(J,i,)),L,p(J,i, K)); (34.7)
p(J) = (p(J,),L,p(J,m), J1-L p(-1)=(p(-11),L,p(-1m)). -

Theorem 3.2 When the queueing system of interest is stable, the stationary
distribution of (qy,(n), [(n), k(n), J(n)) is given by

p(J +(k })) = p(I)Rk, j), for ITW, L1EKEK,1E jEm;
P(0) = p(-DA(-10) + p(OA(00) + & APORK HA K, j); (348

p(-1) = p(-1) A(-1-1) + p(0) A,(0,-1);
p(-De+p(O)(l - R)"e=1,

where R= § &Rk, j) and the matrices { R, j), 1£j£my, 1EKEK} are defined

1EKEK 1£jEM,

as the minimal nonnegative solutions to the matrix equations:

Rk, j) = Ak, )+ Rk, DA +Rk, ) & ARK, i)A K, j).  (349)

1EKEK £ Emy

The computation of {R(k, j), 1£jEmy, 1EKEK} can be carried out using an algorithm
givenin Yeung and Alfa[21] and an algorithm given in Y eung and Sengupta [22].
Note 3.4.2: For the continuous time MMAP[K]/PH[K]/1/LCFS-GPR queue, the
Markov chain introduced in Section 3.1 does not transit from a node to its parent’s
grandchildren. Therefore, that is a QBD Markov chain with a tree structure and a
matrix geometric solution exists. Thisimplies that there is truly a uniform approach
for the continuous time queue. This reveds one of the differences between
continuous and discrete time stochastic models.

With the matrix geometric solution of (gy(n), 1(n), k(n), J(n)), an efficient



algorithm can be developed for computing the queue string distribution and the
mean queue length. For brevity, all the details are omitted.

Example 3.4.1 Consider the queueing system introduced in Example 3.2.1. First,
the mean number of customers in the queueing system is 2.7927. The mean number
of waiting customersis 1.9645. The average queue length is surprisingly small. We
can aso have alook at the composition of the queue. For instance, when there are
five customers in the queue, the probabilities of some combinations of customers
and their corresponding service phases are shown in Table 3.4.1.

Table3.4.1 Stationary distribution of the queue string

Queuestring J=(kq,j1)...(ks, j5) Probability of J
(1, 2)(1, 2)(1, 2)(1, 2)(1, 2 0.00320
(2,2)(2, 2)(2, 2)(2, 2)(2, 2) 0.00003
(1, 2)(2,2)(1, 2)(2, 2)(1, 2) 0.00085
(2,2)(1, 2)(2, 2)(1, 2)(2, 2) 0.00029

Note that the service phases of all the waiting customers are 2. It is so
chosen since type 1 customer’s phase is aways 2 when waiting in the queue. Table
3.4.1 demonstrates clearly that the occurrences of these combinations are
dramaticaly different. J = (2, 2)(2, 2)(2, 2)(2, 2)(2, 2) has the smallest probability
since every type 2 customer is likely to be followed by atype 1 customer. Thus, the
probability of fivetype 2 customersin arow issmall.

4. Discretetime MMAP[K]/PH[K]/1/c/LCFS-GPR queue

In this section, we consider the discrete time MMAP[K]/PH[K]/1/c/LCFS-GPR
gueue. This queueing system is the same as the queueing system introduced in
Section 3.1 except that there are only total ¢ waiting space. Thus, there can be at
most 1+ ¢ customers in the queueing system at any time. When a customer arrives
and there are already 1+ c customers in the system, the customer does not enter the
system and is lost forever.

In Section 4.1, we introduce a Markov chainto represent the queueing
process in this queueing system. In Section 4.2, the Gaussian elimination method is
used to develop an efficient algorithm for computing the stationary distribution of
the queue string. Finaly, in Section 4.3, the loss probabilities are given.

4.1 TheMarkov chain



In order to analyze the queue length, we use the same notation introduced in Section
3.4. Itiseasy to seethat (qy(n), I(n), k(n), I(n)) is still an irreducible and aperiodic
Markov chain. The state space of gy (n) of the Markov chain isW¢"{1, 2, ..., m},
where W = {J: JIWE{-1} and [JlEc}. Furthermore, {(qy,(n), I(n), k(n), J(n)), N30}
can be coupled with the QBD Markov chain with a tree structure introduced in
Section 3.4 until the total number of customers in the queueing system reaches 1 + c.
The transition matrices of the Markov chain are the same as those given in Section
3.4 except for the nodes with ¢ customers waiting in the queue. When there are ¢
customer waiting in the queue, no new arrival can enter the queueing system.
Therefore, the transition matrices of {(qu(n), I(n), k(n), J(n)), n30} are given by
equations (3.4.1) — (3.4.5) and,

d) for [J+(k, j)| = c, when the service is completed and a new customer arrives, there

is no service completion and no new arrival, or anew customer arrives and there
IS no service completion, i.e., from J+(k, j) to J+(k, j):

Ak DEAL)

. 62 T04 § 0
Rk 0  Ehal 0 (4.1.1)

=DA{ O :+ADAg I +0LO0I, 0L

St a + 1

8 TKﬂ gg-ﬂgatg H

It isworth topoint outthat ifthe objectiveis toanalyze thebusy periodsor
the sojourn times, it might be better to use the formulation introduced in Section 3.1.

4.2 Distribution of the queue string: a Gaussian elimination method

Since the Markov chain {(g/(n), 1(n), k(n), I(n)), n20} now has finite states, thereis
no simple matrix geometric solution for its stationary distribution. Nonetheless, the
special tree structure can be used again for devel oping algorithms for computing the
stationary distribution of the queue string. In this section, the Gaussian elimination
method is utilized. Similar to Section 3.4, we use {p(J), JTWg} to denote the
stationary distribution of the Markov chain. By definition, {p(J), JTW} satisfy the

following equations:



p(-1) = p(-DA(-1-1) + p(0) A,(0,-2);
P(0) = (-DA-10) + pOA + & Ap(k. DAK i)
p(I+ (K, i) =pA) Ak, j)+p(3 + (K, |)A

+ & Ar@+K )k, i)A K, i),

1£k EK 1£ ;Em,

1EKEK,IEJEm,[I+(k ) KC

(4.2.1)

P +(k 1)) = (D) A K, )+ P + (K DA, I+ ) Ec
ape=1

JTw,

The stationary distribution right after an arbitrary customer is given by
{p()(D-Dg)/1, JTW }. The stationary distribution right after an arbitrary type k

customer is given by {p(J)Dy/ 1k, JTW ¢}, 1EKEK.

Since no matrix geometric solution exists, we shall develop a computational
method for computing the stationary distribution using the Gaussian elimination
method. Theideaisto eliminate all p(J+(j, k)) with |3+(j, k)| = c by expressing them
in terms of p(J). Then inductively eliminate other subsets of nodes with |J| = n for
1£n<c. Eventually, we solve an equation for p(-1). Then we caculate al p(J)
backwards. Details are given as follows. For |J+(k, j)| = c, the fourth expression in
equation (4.2.1) leads to

P + (K ) = pD)A K, DI - Al™ @ p)R.(ck, j). (4.2.2)

Notice that ﬁc(c,k,j) is independent of the string J. Suppose that

p(Jd +(k,})) = p(J)Ific(n,k, J) holds for al n = |3+(k, j)| < c+1. With equations
(4.2.1), weobtain

P+ (k, ) = p(DA K, ) +p(I +(k, ) A
+ a arQ+& RAII+2k, i)A K, Jy).

£k £K 1£ jEm,

(4.2.3)

Then the relationship among { Ific(n, K, j)} aregiven asfollows, for 1£En<c,



1
M
P

R(n,k,j):ﬁb(k,j)gl—A—éafec(nﬂkl,jl)i\z(kl,h)é . (424)

ki =1j;=1

For 3= 0, p(0) = p(-DA (-10) + p(O)A (0.0) + & ALP(OR (LK, })Ay (k. ]). Then

k=1 j=1

we have p(0) = p(-1)R_(0) , where

1
K

RO = A(-108! - A - AAR LK DAK D] - (425)
e u

Finally, the vector p(-1) satisfies the equation
p(-1) = p(-J[A(-1-1) + R (0)A,(0-1)]. (4.2.6)

We summarize the results in the following theorem.

Theorem 4.1 For the discrete time MMAP[K]/PH[K]/1/c/LCFS-GPR queue, we
have, for 3= (kq,j1)...(Kn, ) @d 1En£c,

p(0) = p(-HR. (0);
p(3) = p(-DR.(OR, Lk, j) LR (K, j,); (4.2.7)
p(-D[1 +R.(0) + R.(OR.() + L+ R (OR. DL R.(c)le=1

~ 5 g ~ . . o
where R (n) = ach(n,k, j) for 1Enfc. The stationary distribution of the queue

k=1 j=1
string can be obtained by 1) calculating { Ific(n,k, 1), 1EnEc, 1EKEK, 1£j£my} and

ﬁC(O); 2) solving equation (4.2.6) for p(-1); 3) normalizing p(-1) using the last
expression in equation (4.2.7); 4) calculating string probabilities using equation
(4.2.7). The space complexity of the algorithm is O(cm&(mq+...+mK)3), which

increases linearly in c. z
Equation (4.2.7) shows that the stationary distribution has a product form and
is close to a matrix geometric solution. In fact, numerical results show that

fic(n,k, ]) converges to R(k, j) when ¢ goes to infinity for any fixed n, k, and j.
Thus, when ¢ goes to infinity, equation (4.2.7) reduces to the matrix geometric



solution given in Theorem 3.2.

4.3 Theloss probabilities

In this section, we focus on the loss probability of an arbitrary customer and the loss
probability of an arbitrary type k customer. This makes it possible to investigate the
relationship between the loss probability and the size of the waiting space c. Denote
by Pjoss the probability that an arriving customer is lost and P)gss(K) the probability

that an arriving type k customer islost. It iseasy to seethat,

1% ae §T 99
Poss T§ ar(): (;(D D,)Ag O  ::e (4.3.1)
e ¢ e
& el 00
1@ ¢ -
Ioss(k =_§ ap(J) QD A(; O ==€. (432)
! o PIFe s
g Txag

Apparently, the relationship Pjgss = [11P]oss(1)+- .. +1 K Pjoss(K)]/1 holds.
We use the following example to illustrate the impact of ¢ on the loss probabilities.

Example 4.3.1 Consider the queueing system introduced in Example 3.2.1. The
loss probabilities (as afunction of c) are givenin Table 4.3.1.

Table4.3.1 Theloss probabilities

c=1

c=2

c=5

c=10

c=20

c=30

Ploss

0.266679

0.160926

0.037527

0.005462

0.000159

0.000005

Ploss(1
)

0.268417

0.171606

0.039895

0.005787

0.000168

0.000005

Ploss(2
)

0.263636

0.145797

0.034157

0.005003

0.000145

0.000004

Table 4.3.1shows thatwhen thesize of the waitingspace ismoderate, the
loss probabilities of the two types of customers can be significantly different. For
other cases, these probabilities are close to each other. Another observation is that
the loss probabilities decrease exponentially with respect to c. The reason is that the

stationary distribution has a product form and Ific(n, k, j) convergesto R(k, j) when c

goesto infinity for any fixed n, k, and j.



5. Extensions

We now briefly discuss afew directions for future research.

Multiple server queues Generalization to the multiple server case is not
simple. Since the service discipline is LCFS, the system has to determine which
customer in service should be pushed out when a new customer arrives and all
servers are occupied at the moment. Naturally, the oldest customer in service can be
chosen and be pushed to the queue. In this case, one has to record the sequence of
all customersin service in order to construct aMarkov chain for an analysis. Certain
mechanism must be proposed for a mathematical formulation, which can be quite
complicated, especially for the discrete time case.

For the finite waiting space case, the queueing system also has to determine
which customer to be lost when a new customer finds that the system is full. In
Section 4.1, it was assumed that the new arrival islost. But it is possible that the
new arrival is accepted and the oldest in the queue is pushed out of the queue and
lost. The mathematical formulation becomes much involved for the case.

Batch arrival cases When customers may arrive in batches of any kind, the
gueueing process can be formulated into an M/G/1 type Markov chain with a tree
structure. The stability of the queueing system can be determined using the results
in HE [8]. An analysis of the busy period can also be carried out. An interesting
special case is that when each batch consists of at most one customer from each
type. An arrival process of this kind has wide application in modelling
telecommunication networks (see Alfa and Fitzpatrick [1]).

A hybrid FCFS& LCFS-GPR service discipline Suppose that the service
discipline is FCFS when there are N or less than N customers in the queueing
system; otherwise, the LCFS-GRP service disciplineis applied. We call this service
discipline the hybrid FCFS&LCFS-GPR. For queueing systems with such service
disciplines, a Markov chain with a network structure can be constructed. Algorithms
can be developed for computing performance measures. But those algorithms may
not be efficient (HE and Alfa[10]). The development of more efficient algorithms
for such queueing system is a challenging problem.
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