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Abstract:    In this paper, we study a discrete time queueing system with multiple
types of customers and a last-come-first-served general preemptive resume
(LCFS-GPR) service discipline (MMAP[K]/PH[K]/1/LCFS-GPR).  When the
waiting space is infinite, matrix analytic methods are used to find a system stability
condition, to derive the distributions of the busy periods and sojourn times, and to
obtain a matrix geometric solution of the queue string.  The results lead to efficient
algorithms for computing various performance measures at the level of individual
types of customers.  Using those algorithms, the impact of the LCFS-GPR service
discipline on the corresponding queueing system can be analyzed.  When the waiting
space is finite, the Gaussian elimination method is used to develop an efficient
algorithm for computing the stationary distribution of the queue string.  The
relationship between the loss probabilities of individual types of customers and the
size of the waiting space is explored.  This paper also serves as a brief survey of the
study of the   MMAP[K]/PH[K]/1 queue and its related queueing models.

1. Introduction

In this paper, we study a class of queues that involve a multiple class of customers,
with each class having different service time requirements.  These types of queues
have major applications in the design and analysis of many manufacturing,
telecommunications, and service systems. Our interest is in the
last-come-first-served (LCFS) case that is very common in telecommunication
systems.  We focus on the discrete time analysis of the queueing systems.  Such
queueing systems have received considerable attention from researchers and
practitioners recently.

The basic model under consideration in this paper can be described as
follows.  Customers  arrive  in  the  queueing  system  according  to  a  discrete  time



Markov arrival process with marked transitions (MMAP[K]).  Customers are
distinguished into   K types.  All customers join a single queue and are served on a
last-come-first-served (LCFS) basis, i.e., any new arrival pushes the customer in
service (if any) out of the server and starts its service immediately.  A general
preemptive resume (GPR) rule, which includes the well-known preemptive resume
and preemptive repeat service disciplines as its special cases, is applied to determine
the service time when a customer reenters the server.  The service times of different
classes of customers can be different and have phase type (PH) distributions.  We
distinguish queueing systems with an infinite waiting space (buffer) from that with a
finite waiting space.  When the waiting space is finite, we assume that a customer
who finds a full queue cannot enter the queueing system and is lost forever.  We
denote this queueing system as   MMAP[K]/PH[K]/1/LCFS-GPR.

Theoretically, the study of the queueing systems of interest was made
possible by the developments in the study of Markov chains with a tree structure
(Takine, Sengupta, and Yeung [20], Yeung and Alfa [21], and Yeung and Sengupta
[22]).  The approach has been proven to be a success in the study of such queueing
systems.  For instance, using the approach, HE [6] and HE and Alfa [9] studied the
MMAP[K]/PH[K]/1/LCFS non-preemption queue and preemptive resume or repeat
queue, respectively.
 In this paper, we shall use matrix analytic methods, based on the recent
developments in the study of   GI/M/1 type or   M/G/1 type Markov chains with a tree
structure, to study the queueing systems of interest.  First, an   M/G/1 type Markov
chain with a tree structure will be introduced to represent the queue string process in
such a queueing system.  Second, a method is introduced to analyze the stability of
the queueing system.  Third, distributions of the busy periods and sojourn times are
found.  Fourth, the queue string process is reformulated into a   GI/M/1 type Markov
chain with a tree structure and a matrix geometric solution of the queue string is
obtained.  These results lead to efficient algorithms for computing various
performance measures at the level of individual types of customers.  The impact of
the LCFS-GPR service discipline on the queueing process can then be analyzed.  For
queueing systems with a finite waiting space, a Gaussian elimination method is used
to develop an algorithm for computing the distribution of the queue string.  The
relationship between the loss probabilities of individual types of customers and the
size of the waiting space is investigated.  A numerical example is presented to gain
insights into the queueing systems of interest.

This paper serves as a survey of the study of the continuous and discrete time
MMAP[K]/PH[K]/1 queues.  For that purpose, a brief review of the recent
developments in the study of the   MMAP[K]/PH[K]/1 queue as well as its related
areas is given in Section 2 of this paper.

The rest of the paper is organized as follows.  In Section 2, a brief literature
review on the recent developments in the study of the   MMAP[K]/PH[K]/1 queue and
related areas is given.  Section 3 introduces the discrete time



MMAP[K]/PH[K]/1/LCFS-GPR queue and investigates various performance
measures.  The discrete time   MMAP[K]/PH[K]/1/c/LCFS-GPR queue with a finite
waiting space is studied in Section 4.  Finally, in Section 5, we briefly discuss a few
directions for future research.

2.  Literature review

In this section, we briefly review recent developments in the study of queueing
systems with multiple types of customers.  More specifically, we shall discuss the
study of Markov arrival processes (MAP), Markov arrival processes with marked
arrivals (MMAP[K]), Markov chains with a tree structure, the   MMAP[K]/G[K]/1
queue, the   MMAP[K]/PH[K]/1/LCFS queue, and a few variants of the
MMAP[K]/PH[K]/1/LCFS queue.  To be brief, we focus on research works closely
related to matrix analytic methods.
 Markov arrival process (MAP), also called Neuts process, was introduced in
Neuts [13] as a generalization of the Poisson processes.  That formation of arrival
process has been widely accepted because of its capability in modelling input
processes and the tractability of its corresponding stochastic models, especially in
queueing theory (Ramaswami [16], Lucantoni, Hellerstern, Neuts [12], and Neuts
[15]).  A generalization to multiple types of correlated arrivals - Markov arrival
processes with marked arrivals (MMAP[K]) - was introduced in Asmussen and
Koole [2], HE [5], and HE and Neuts [11].  Similar ideas can be found in the
extensive literature related to Markov modulated Poisson processes (MMPP).   
MMAP[K] can capture not only the correlation between different types of arrivals,
but also the arrival pattern among all types of arrivals (see HE and Alfa  [9] and
Example 3.2.1 in this paper).  Primarily, we are interested in queueing systems with
a Markov arrival process with marked arrivals in this paper.
 An extensive study has been carried out on queueing systems with multiple
types of arrivals when the arrival process is a Poisson process (Takagi [18]).  Since
the Poisson process is not flexible enough to model various input processes in
practice, queueing models with   MMAP[K] are introduced.  HE [5] and Takine and
Hasegawa [19] studied the   MMAP[K]/G[K]/1 queue.  A number of results were
obtained for the fundamental periods, waiting times, and the queue length.  HE [7, 8]
identified conditions for ergodicity of such queueing models with a work conserving
or a non work conserving service discipline.  In summary, significant progress has
been made on the study of the   MMAP[K]/G[K]/1/FCFS queue.
 Queueing systems with multiple types of customers are frequent occurrences
in telecommunication systems.  The LCFS service discipline has been recognized in
the telecommunication systems as a way of increasing throughput in a system where
some customers have a time threshold for waiting.  This application motivated most
of the research in the multiclass LCFS queueing models.  With the interest in



maximizing throughput in queues with customer waiting time threshold, Schreiber
[17] introduced a hybrid FCFS/LCFS queue discipline for the   M/M/1 queue.  Later
Doshi [3] considered the   M/G/1 FCFS/LCFS queue.  Using a much simpler analysis
technique Alfa and Fitzpatrick [1] developed a computationally efficient approach
for the   Geo/D/1 FCFS/LCFS queue.  All these systems are for a single class of
customers (K = 1).

The study of LCFS queueing systems with multiple types of customers (K>1)
continues in HE [6, 7, 8], HE and Alfa [9, 10], and this paper.  An important feature
of these studies is that the results allow us to look at the queueing behaviors of
individual types of customers.  In HE [6], the   MMAP[K]/PH[K]/1/LCFS
non-preemptive queue was introduced and studied.  In that queueing model, the
service times have   PH-distributions for different types of customers.  Results
obtained in HE [7, 8] can be used to identify ergodicity conditions for LCFS
queueing systems.  In HE and Alfa [9], the   MMAP[K]/PH[K]/1/LCFS queue with a
preemptive resume or repeat service discipline was introduced and studied.  In HE
and Alfa [10], the   MMAP[K]/PH[K]/1 with a hybrid FCFS and LCFS service
discipline was introduced and studied in detail.  In general, the queueing processes
of these queueing systems can be formulated into   GI/M/1 or   M/G/1 type Markov
chains with a tree structure and an analysis of the stationary distribution of queue
strings, busy periods, and sojourn times can be carried out.  Thus, Markov chains
with a tree structure play an important role in our research, as was mentioned in
Section 1.
 To end this section, we would like to point out that the analysis of the
continuous and discrete time   MMAP[K]/PH[K]/1/LCFS queues is essentially the
same.  However, the discrete time queueing systems are usually more complicated in
formulation and sometimes the structure of the corresponding Markov chains
changes (see the Notes in Section 3.1).  Thus, the results obtained in this paper are
not straightforward extensions of their continuous time counterparts.

3.  Discrete time   MMAP[K]/PH[K]/1/LCFS-GPR queue

We first introduce the discrete time   MMAP[K]/PH[K]/1/LCFS-GPR queue and an
M/G/1 type Markov chain with a tree structure for its queueing process in Section
3.1.  In Section 3.2 we develop a method for analyzing the stability of the queueing
system and its relationship with the LCFS-GPR rule.  The fundamental periods, busy
periods, busy cycles, and sojourn times are investigated in Section 3.3.  In Section
3.4, a   GI/M/1 type (or QBD type) Markov chain with a tree structure is introduced
for the queue string process.  In steady state, a matrix geometric solution of the
queue string is obtained.



3.1  The model   

The arrival process of the queueing system of interest is a discrete Markov arrival
process with marked transitions (MMAP[K]).  Customers of the arrival process are
distinguished into   K types.  The   MMAP[K] is defined by a set of   m´m matrices {Dk,
0£k£K}, where   m is a positive integer.  The matrices   Dk, 0£k£K, are nonnegative.   
The matrix   I–D0 is assumed to be non-singular, where   I is the identity matrix.  Let
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Then the matrix   D is the transition matrix of the underlying Markov chain of the
arrival process, which has   m phases.  Consequently, the matrix   D is a stochastic
matrix.  Let   I(n) be the phase of the underlying Markov chain at time   n, 1£I(n)£m.   
An arrival is called a type   k customer if it is marked by   k.  The (matrix) marking rate
of type   k customer is   Dk.  Let   q be the stationary probability vector of the matrix   D.   
The stationary arrival rate of type   k arrival is given by   lk =   qDke, 1£k£K, where   e is
the column vector with all components one.
 The service times have phase-type distributions.  The service times of type   k
customers have a common phase-type distribution (PH-distribution) function with a
matrix representation (mk,   ak,   Tk), where   mk is positive integer,   ak is an
mk-dimension nonnegative vector with   ake = 1, and   Tk is an   mk´mk substochastic

matrix.  Let   T0k =   e –   Tke.  The mean service time is given by 1/mk =   ak(I–Tk)-1e.   
Then   mk is the average service rate of type   k customers.  For more details about
PH-distribution, see Chapter 2 in Neuts [14].  We assume that the service process
and the arrival process are independent.
 All customers are served on an LCFS-GPR service discipline.  When a
customer of type   k arrives, it pushes the customer in service (if any) out of the server
and starts its service with service time (mk,   ak,   Tk).  For the outgoing customer, its
current service phase is recorded (say   i) and its future service phase is chosen
according to the probability distribution   qk,i   = (qk,i,1,   L,      ) at the epoch it is
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pushed out.  If the future service phase is   j, then the distribution of its service time is
(mk,   e(j),   Tk) when the customer reenters the server, where   e(j) is the row vector for
which the   jth element is one and all others zero.  Let   Qk be an   mk´mk matrix with
elements   qk,i,j.  Then matrix   Qk is a stochastic matrix and it specifies the service
phases for interrupted services.  It is worth to point out that some well-known
service disciplines are special cases of the LCFS-GPR.  For instance, when   Qk =   I,



customers are served on an LCFS preemptive resume basis.  When   Qk =   eak,
customers are served on an LCFS preemptive repeat basis.  It is easy to see that the
service disciplines for different types of customers can be made different through the
matrices {Qk, 1£k£K}.  Finally, when the server becomes available to customers in
queue, the customer who arrived last gets the server.
Note 3.1.1: The LCFS-GPR introduced here is slightly different from that in
previous papers.  For instance, in Yeung and Alfa [21], the phase of service is
determined according to   qk,i   = (qk,i,1,   L,      ) at the epoch a customer reenters
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the server, if the customer was pushed out of the server in phase   i.  Nonetheless, that
definition and our definition both imply that if a customer was pushed out of the
server when its service phase is   i, its service time has the   PH-distribution (mk,   qk,i,
Tk) when it reenters the server.  Therefore, with regard to the queueing process, the
two definitions are equivalent.  But their corresponding Markov chains of the queue
strings can be different.  Our definition is suitable for analyzing the fundamental
periods, busy periods, busy cycles, and sojourn times.
 For each customer in the queueing system, a pair (k,   j) is used to represent its
status, where   k is the type of the customer and   j is the phase of the service time of
the customer.  The phase   j is either the phase of the service time when the customer
resumes its service if the customer is in the queue or the current service phase if the
customer is in service.  Let   q(n) be the   queue string consisting of the status of all the
customers in the queueing system at the beginning of time   n - a string of the pair      
(k,   j) where   k is between 1 and   K and   j is between 1 and   mk.  For instance, when   q(n)
= (k1,   j1)…(kt,   jt), there are   t customers in the queueing system at this moment.  The
service phase of the customer currently in service is   jt, the (future) service phase of
the first customer in queue is   jt-1, i.e., when the customer reenters the server, its
service starts in phase   jt-1, …, and the last (oldest) customer in the queue is of type
k1 and its future service phase is   j1.  We assume that the change of the phase of the
arrival process or the service process occurs at the end of each unit time.

It is easy to see that (q(n),   I(n)) is an irreducible and aperiodic Markov chain.
 The state space of the Markov chain is   W´{1, 2, …,   m}, where   W = {0}È{J:   J   =    
(k1, j1)(k2, j2)…(kn, jn),   1£kt£K, 1£jt£   , 1£t£n,   n³1}.  Let |J| be defined as the
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number of pairs of integers in   J.  Hence |J| is the length of the string   J.  The level   n
of queue strings consists of all the strings with |J| =   n.  It is easy to see that after each
transition, the level of the Markov chain (q(n),   I(n)) (with respect to   q(n)) can
increase or decrease at most by one.  Define the addition operation “+” in   W as
follows: for   J   = (k1, j1)(k2, j2)…(kn, jn) in   W,   J+(k,   j) = (k1, j1)(k2, j2)…(kn, jn)(k,
j).  Assume that the Markov chain is in node   J+(k,   j)   ÎW at time unit   n, i.e.,   q(n) =   J
+ (k,   j).  The transition blocks of the Markov chain are given as follows.



a) When a new customer arrives and there is no service completion,
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where “º” means definition.  Note that in equation (3.1.2) and equations (3.1.3) to
(3.1.5), 1£i,   i¢£m.  Also note that (TkQk)j,j’   represents the (j,   j¢)th element of the
matrix   TkQk and         the   j1th element of the vector      .11
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b)  When a service is completed and a new customer arrives, or when there is no
service completion and no new arrival, 1£k,   k1£K,
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c)  When a service is completed and there is no new arrival,
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d) When no customer is in the queueing system,  i.e.,    q(n) =   J = 0,
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 The matrices {A0((k,   j), (k,   j¢)(k1,   j1)),    A1((k,   j), (k1,   j1)),    A2(k,   j),    A1(0, 0),
A0(0, (k1,   j1))} determine the one step transition of the Markov chain and thus play
an important role in the analysis.  A tree structure can be introduced in   W in a way
similar to that in HE and Alfa [9].  We call   J in   W a node in a tree and   J = 0 is the



root of the tree.  It is clear that every node   J in the tree has   m1+ m2+ ...+mK children
and (except node 0) one parent.  In any node, the Markov chain (q(n),   I(n)) can only
transit to its children, itself, its parent (except node 0), its parent’s children, and its
parent’s grandchildren in one transition.  Therefore, (q(n),   I(n)) is an   M/G/1 type
Markov chain with a tree structure (Takine, Sengupta, and Yeung [20]), where   I(n)
is the auxiliary variable.  In the next two sections, the theory about the   M/G/1 type
Markov chains with a tree structure will be utilized to study (q(n),   I(n)).
Note 3.1.2:  The LCFS-resume case and the LCFS-repeat case were dealt with
differently in HE and Alfa [9].  Since the LCFS-resume and LCFS-repeat are two
special cases of LCFS-GPR, this section shows that the two cases can be treated
uniformly.
Note 3.1.3:  If the service phase of a reentering customer is determined when the
customer reenters the server, (q(n),   I(n)) is no longer a Markov chain.  In that case,
the technique that was developed in HE and Alfa [9] in dealing with the preemptive
repeat case can be used, if the objective is to analyze the busy periods and sojourn
times.  If the objective is to analyze the stationary distribution, the formulation
approach introduced in Section 3.4 can be used.

2  Stability issues

Let   r =   l1/m1 + …+lK/mK.  It has been proved in HE [8] that the queueing system
of interest is stable if   r < 1 when a work conserving service discipline is applied.   
However, for some {Qk, 1£k£K}, the service discipline may not be work
conserving.  This brings up two interesting issues: 1) for a given set of {Qk, 1£k£K},
is the queueing system stable?  2) how do the matrices {Qk, 1£k£K} influence the
stability of the queueing system?  This section shows that the results obtained in HE
[8] can be used to answer the two questions.

First, the following set of matrices is introduced.  Denote by {   ,),( jkG

1£k£K, 1£j£mk} a set of stochastic matrices that satisfy the following equations,
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It has been proved (see HE [8]) that the matrix set {   , 1£j£mk,),( jkG

1£k£K} exists, but may not be unique.  It has also been proved that the matrix set



{   , 1£j£mk, 1£k£K} is unique and all these matrices are stochastic when the),( jkG

Markov chain (q(n),   I(n)) is positive recurrent.  In fact, {   , 1£j£mk, 1£k£K} is),( jkG
the minimal nonnegative solution to equation (3.2.1) when the Markov chain is
positive recurrent.  From the matrix set {   , 1£j£mk, 1£k£K}, we introduce the),( jkG

following   m´m matrices, 1£j£mk, 1£j1£   , 1£k, k1£K,
1km
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Denote by   sp(P) the Perron-Frobenius eigenvalue (the eigenvalue with the
largest modulus) of the matrix   P.  The stability results of the queueing system are
summarized in the following theorem.  See Theorem 3.2 in HE [8] for a proof.

Theorem 3.1  The queueing system introduced in Section 3.1 is stable if and only if
sp(P) < 1.  More specifically, the Markov chain (q(n),   I(n)) is

a) positive recurrent if and only if   sp(P) < 1;
b) null recurrent if and only if   sp(P) = 1;
c) transient if and only if   sp(P) > 1.

When   Qk =   I, 1£k£K, i.e., the service discipline is preemptive resume (and hence
work-conserving),   sp(P) is equivalent to   r in classifying the corresponding Markov
chain.    z



Next, we use Theorem 3.1 to study the impact of the matrices {Qk, 1£k£K}
on the stability of the queueing system through a numerical example.    

Example 3.2.1   Consider an   MMAP[2]/PH[2]/1/LCFS-GPR queue.  For the arrival
process:    K   = 2,   m   = 2,   
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It is interesting to see that each type 2 customer is likely to be followed immediately
by a type 1 customer.  Numerical results show that the arrival pattern has much
influence on the queueing process.  The service times are given as follows:
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It can be obtained that   sp(P) = 0.909421.  Thus, the queueing system is
stable.  However, if we switch the two GPRs {Q1,   Q2} between the two types of
customers,   sp(P) becomes 1.013271, i.e., the queueing system becomes unstable.   
This example shows that, when multiple types of customers are present, the impact
of the service discipline on the queueing process is significant.

To learn more about the impact of the GPR on the stability of the queueing
system, we look at the preemptive resume and repeat cases.  First, the classical
traffic intensity of this queueing system is given as   r =   l1/m1 +l2/m2 =
0.2739/0.369276 + 0.156532/0.541666 = 1.030811.  Thus, the queueing system with
any work conserving service discipline is unstable.  Therefore, the preemptive
resume queueing system (Q1   =   Q2 =   I) is unstable.  It can be obtained that   sp(P) =
1.011458 for that case.  On the other hand,   sp(P) = 0.980069 for the preemptive
repeat case (Q1 =   ea1,   Q2   =   ea2), i.e., the queueing system is stable.

For the rest of Section 3, we assume that   sp(P) < 1, i.e., the queueing system
is stable.  We shall study the busy periods, sojourn times, and the stationary
distribution of the queue string.  The impact of the LCFS-GPR on these performance
measures is discussed numerically.

3 The fundamental periods, busy periods, and sojourn times



In general, a fundamental period is defined as the first passage time during which the
(total) queue length decreases by one.  Define   N = {n   = (n1, ..., nK):   nk³0, 1£k£K}.   
Similar to the classical QBD case (see Neuts [14]) and the LCFS repeat case (HE
and Alfa [9]), we define, for   J   = (k1,   j1)(k2, j2)…(kt, jt)ÎW, 1£k£K, 1£j£mk, 1£i,
i¢£m, and   n = (n1, ..., nK)   Î   N,

gi,   i¢   (k,   j,   x,   n): the taboo probability that the Markov chain (q(n),   I(n)) reaches node
J for the first time in state (J,   i¢) in no more than   x units of time and
there are   n1 type 1,   n2 type 2, …, and   nK type   K customers served
during this time, given that the Markov chain started in (J+(k,   j),   i).

Let   G(k,   j,   x,   n) be an   m´m matrix with elements   gi,i’(k,   j,   x,   n), 1£i, i¢£m.  Because
of the special structure of the   M/G/1 type Markov chain,   G(k,   j,   x,   n) does not
depend on the node   J.    G(k,   j,   x,   n) is defined for a busy period with a customer (k,   j)
initially, for 0£j£mk, 1£k£K.  In a similar way, define   G(0,   x,   n) for a busy cycle
(from the beginning of an idle period to the beginning of the next idle period).  Let
G*(k, j,   w,   z) be the joint probability generating function of   G(k,   j, x,   n) with respect
to   x and   n, i.e.,
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where   z = (z1, ...,   zK) and      .  Then it),1,,(),,,(),,,( nnn --= xjkGxjkGxjkGxD

can be proved that {G*(k,   j,   w,   z), 1£j£mk, 1£k£K} are the minimal nonnegative
solutions to the equations:
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where
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Denote by   G(k,   j) =   G*(k,   j, 1-,   1-), 0£j£mk, 1£k£K, and   G(0) =   G*(0, 1-,   1-),
where   1- = (1-, …, 1-).  When the   M/G/1 type Markov chain is positive recurrent,
matrices   G(k,   j) and   G(0) are stochastic matrices.  Matrices {G(k,   j), 1£j£mk,
1£k£K} are the minimal nonnegative solutions to equation (3.2.1).  When the
Markov chain is positive recurrent,   G(k,   j) =      , 1£j£mk, 1£k£K.  By equation),( jkG
(3.3.2), the matrix   G(0) is obtained as
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 The moments of the number of customers served in a busy period (busy
cycle) and the moments of the length of a busy period (busy cycle) can be derived
using equations (3.3.2) and (3.3.3).  For instance, let
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for 1£k£K and 1£j£mk.  The term (u(k,   j))i is the mean length of a busy period
started with a type   k customer with initial service phase   j, and the initial phase of the
underlying Markov process   D is   i, 1£i£m.    Similar interpretations go to   u(0).   
Simple but lengthy calculations lead to the following expressions, for 1£k£K,
1£j£mk,
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 Performance measures of interest can be obtained by solving equations
(3.3.2), (3.3.3), (3.3.5), (3.3.7), and (3.3.8).  Although the formulas look formidable,
the actual programming is not difficult to implement.  In fact, equations (3.3.7) and
(3.3.8) can be solved as linear equations or using an iteration method.  The space
complexity of the algorithm is   O(m2(m1+…+mK)2).
 The probability that the queueing system is idle at an arbitrary time can be
obtained as follows.  Let   g be the left invariant vector of the matrix   G(0).  Then   g is
the stationary distribution of the underlying Markov chain   D at the beginning of an
arbitrary idle period (busy cycle).  The mean length of an arbitrary busy cycle is thus
given by   gu(0) and the mean length of an arbitrary idle period is given by
g[I-A1(0,0)]-1e.  Then it has

   
   

, (3.3.9)
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where   p(-1)e represents the probability that the queueing system is idle at an
arbitrary time (see Section 3.4 for the definition of the vector   p(-1)).

Finally, in this section, we study the   sojourn time.  The sojourn time of a
customer is defined as the total time that the customer stays in the queueing system.   
Since all customers are served on a last-come-first-served basis, the sojourn time can
be obtained directly from the fundamental periods.  In steady state, let   wk be the

sojourn time of a type   k customer.  Let (w*k(w))i be the probability generating
function of   wk when the phase of the Markov arrival process at the departure epoch
of the customer of interest is   i, 1£i£m.  It is easy to obtain, for 1£k£K,   

   

   

 (3.3.10)

.),()(1

;),,,()(1)(

1

1

**

÷÷
ø

ö
çç
è

æ
=

÷÷
ø

ö
çç
è

æ
=

å

å

=

=

k

k

m

j
jkk

k
k

m

j
jkk

k
k

jkDw

-jkGD

uE

1w

aq

aq

l

w
l

w

 The sojourn time of an arbitrary customer has a probability generating
function given as   w*(w) = [l1w*1(w) + … +   lKw*K(w)]/(l1+ … +lK) and its
mean can be obtained easily from equation (3.3.10).

Example 3.3.1  For the queueing system introduced in Example 3.2.1, it can be
obtained that the mean busy cycle is 13.765331 and the mean idle period is



2.315323.  Thus, the probability that the queue system is idle at an arbitrary time is
p(-1)e = 0.1682.  That is: approximately 17% of the time the queueing system is
idle.  The mean sojourn time of type 1 customers is   Ew1 = 12.53449 and   Ew2 =
23.946754 for type 2 customers.  Since each type 2 customer is likely to be followed
by a type 1 customer who has a longer service time, the mean sojourn time of a type
2 customer is much longer than that of a type 1 customer.  As was shown in
Example 3.2.1, a simple switch of the GPRs {Q1,   Q2} can prolong service so much
so that, in the long term, the system will always be busy and the sojourn time
increases to infinity.
4   Matrix geometric solution of the queue string    

According to Yeung and Sengupta [22], a matrix geometric solution exists for a
positive recurrent   GI/M/1 type Markov chain with a tree structure.  Unfortunately,
the Markov chain (q(n),   I(n)) can go from a node to one of its parent’s grandchildren
in one transition (e.g., from   J+(k,   j) to   J+(k,   j¢)(k1,   j1) where   j¢   ¹   j).  Thus, (q(n),
I(n)) is not a   GI/M/1 type Markov chain with a tree structure.  However, the special
structure possessed by (q(n),   I(n)) leads to a method to formulate the queueing
process into a   GI/M/1 type Markov chain with a tree structure.  The idea is to
consider the status of the customer in service as a part of the auxiliary variable,
rather than a part of the queue string.  The same idea was used in HE [6] for the
LCFS non-preemption case.  Specifically, we consider the Markov chain (qw(n),
I(n),   k(n),   J(n)) defined as follows:

qw(n):  the string consisting of the states of customers waiting in the queue at time   n;
I(n):    the phase of the   MMAP[K] at time   n (introduced in Section 3.1);
k(n):    the type of the customer in service (if any) at time   n;
J(n):    the phase of the service time (if any) at time   n.

Random variable   qw(n) takes value –1 when there is no customer in the queueing
system, 0 when there is one customer in the queueing system.  Thus,   qw(n) takes
values in {–1}ÈW, where   W was defined in Section 3.1.  Consider (I(n),   k(n),   J(n))
as an auxiliary variable.  The one step transitions of (qw(n),   I(n),   k(n),   J(n)) are
determined by its transition blocks given as follows.

a) qw(n) goes (in one step) from –1 to –1 and from –1 to 0:

       (3.4.1)( ) ,)1,1(ˆ;)0,1(ˆ
01110 DADDA KK =--ÄÄ=- aa L

 where   Ä represents the Kronecker product of matrices (see Gantmacher [4]).



b) qw(n) goes from 0 to –1:
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 Matrices for transitions from 0 to 0 and from 0 to (k,   j) are given in c).

c) qw(n) goes from   J + (k,   j) to   J + (k,   j)(k1,   j1),   J + (k,   j), or   J (J in   W):
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where       represents the   j1th column of the matrix      .  Note that      111
)( jkk QT

11 kk QT ),(ˆ
1 jkA

is independent of (k,   j).  Matrices       are of the dimension),(ˆand,ˆ),,(ˆ
210 jkAAjkA

m(m1+…+mK).
Note 3.4.1:  This formulation approach can be used to handle the case when the
service phase of a customer reentering the server is chosen at the epoch it reenters.   
The transition matrices are obtained by simply moving {Qk, 1£k£K} from equation
(3.4.3) to equation (3.4.5) and putting them in the appropriate positions.  Details are
omitted.
 Clearly, (qw(n),   I(n),   k(n),   J(n)) is a Markov chain with a tree structure.   
Since (qw(n),   I(n),   k(n),   J(n)) does not transit in one step from any node to its
parent’s children (its siblings) nor to its parent’s grandchildren, it is a   GI/M/1 type
Markov chain with a tree structure.  In fact, it is a simple QBD Markov chain with a



tree structure.  According to Yeung and Sengupta [22], a matrix geometric solution
can be found for the stationary distribution of the Markov chain.  Define, for   JÎW,
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Note that the initial condition is not shown explicitly in equation (3.4.6) since the
limits are independent of it when the Markov chain is positive recurrent.  Denote by
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Theorem 3.2  When the queueing system of interest is stable, the stationary
distribution of  (qw(n),   I(n),   k(n),   J(n)) is given by
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as the minimal nonnegative solutions to the matrix equations:
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The computation of {R(k,   j), 1£j£mk, 1£k£K} can be carried out using an algorithm
given in Yeung and Alfa [21] and an algorithm given in Yeung and Sengupta [22].
Note 3.4.2:  For the continuous time   MMAP[K]/PH[K]/1/LCFS-GPR queue, the
Markov chain introduced in Section 3.1 does not transit from a node to its parent’s
grandchildren.  Therefore, that is a QBD Markov chain with a tree structure and a
matrix geometric solution exists.  This implies that there is truly a uniform approach
for the continuous time queue.  This reveals one of the differences between
continuous and discrete time stochastic models.
 With the matrix geometric solution of (qw(n),   I(n),   k(n),   J(n)), an efficient



algorithm can be developed for computing the queue string distribution and the
mean queue length.  For brevity, all the details are omitted.

Example 3.4.1  Consider the queueing system introduced in Example 3.2.1.  First,
the mean number of customers in the queueing system is 2.7927.  The mean number
of waiting customers is 1.9645.  The average queue length is surprisingly small.  We
can also have a look at the composition of the queue.  For instance, when there are
five customers in the queue, the probabilities of some combinations of customers
and their corresponding service phases are shown in Table 3.4.1.

Table 3.4.1  Stationary distribution of the queue string
Queue string   J   = (k1, j1)…(k5, j5) Probability of   J
   (1, 2)(1, 2)(1, 2)(1, 2)(1, 2) 0.00320
   (2, 2)(2, 2)(2, 2)(2, 2)(2, 2) 0.00003
   (1, 2)(2, 2)(1, 2)(2, 2)(1, 2) 0.00085
   (2, 2)(1, 2)(2, 2)(1, 2)(2, 2) 0.00029

Note that the service phases of all the waiting customers are 2.  It is so
chosen since type 1 customer’s phase is always 2 when waiting in the queue.  Table
3.4.1 demonstrates clearly that the occurrences of these combinations are
dramatically different.    J = (2, 2)(2, 2)(2, 2)(2, 2)(2, 2) has the smallest probability
since every type 2 customer is likely to be followed by a type 1 customer.  Thus, the
probability of five type 2 customers in a row is small.

4. Discrete time   MMAP[K]/PH[K]/1/c/LCFS-GPR queue

In this section, we consider the discrete time   MMAP[K]/PH[K]/1/c/LCFS-GPR
queue.  This queueing system is the same as the queueing system introduced in
Section 3.1 except that there are only total   c waiting space.  Thus, there can be at
most 1+ c customers in the queueing system at any time.  When a customer arrives
and there are already 1+ c customers in the system, the customer does not enter the
system and is lost forever.
 In Section 4.1, we introduce a Markov chain to represent the queueing
process in this queueing system.  In Section 4.2, the Gaussian elimination method is
used to develop an efficient algorithm for computing the stationary distribution of
the queue string.  Finally, in Section 4.3, the loss probabilities are given.

4.1  The Markov chain



In order to analyze the queue length, we use the same notation introduced in Section
3.4.  It is easy to see that (qw(n),   I(n),   k(n),   J(n)) is still an irreducible and aperiodic
Markov chain.  The state space of   qw(n) of the Markov chain is   Wc´{1, 2, …,   m},
where   Wc = {J:   JÎWÈ{-1} and |J|£c}.  Furthermore, {(qw(n),   I(n),   k(n),   J(n)),   n³0}
can be coupled with the QBD Markov chain with a tree structure introduced in
Section 3.4 until the total number of customers in the queueing system reaches 1 +   c.
 The transition matrices of the Markov chain are the same as those given in Section
3.4 except for the nodes with   c customers waiting in the queue.  When there are   c
customer waiting in the queue, no new arrival can enter the queueing system.   
Therefore, the transition matrices of {(qw(n),   I(n),   k(n),   J(n)),   n³0} are given by
equations (3.4.1) – (3.4.5) and,

d) for |J+(k,   j)| =   c, when the service is completed and a new customer arrives, there
is no service completion and no new arrival, or a new customer arrives and there
is no service completion, i.e., from   J+(k,   j) to   J+(k,   j):
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 It is worth to point out that if the objective is to analyze the busy periods or
the sojourn times, it might be better to use the formulation introduced in Section 3.1.

4.2 Distribution of the queue string: a Gaussian elimination method

Since the Markov chain {(qw(n),   I(n),   k(n),   J(n)),   n³0} now has finite states, there is
no simple matrix geometric solution for its stationary distribution.  Nonetheless, the
special tree structure can be used again for developing algorithms for computing the
stationary distribution of the queue string.  In this section, the Gaussian elimination
method is utilized.  Similar to Section 3.4, we use {p(J),   JÎWc} to denote the
stationary distribution of the Markov chain.  By definition, {p(J),   JÎWc} satisfy the
following equations:
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 The stationary distribution right after an arbitrary customer is given by
{p(J)(D-D0)/l,   JÎW c}.  The stationary distribution right after an arbitrary type   k
customer is given by {p(J)Dk/lk,   JÎW c}, 1£k£K.
 Since no matrix geometric solution exists, we shall develop a computational
method for computing the stationary distribution using the Gaussian elimination
method.  The idea is to eliminate all   p(J+(j,   k)) with |J+(j,   k)| =   c by expressing them
in terms of   p(J).  Then inductively eliminate other subsets of nodes with |J| =   n for
1£n<c.  Eventually, we solve an equation for   p(-1).  Then we calculate all   p(J)
backwards.  Details are given as follows.  For |J+(k,   j)| =   c, the fourth expression in
equation (4.2.1) leads to
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    holds for all   n = |J+(k,   j)| <   c+1.  With equations),,(ˆ)()),(( jknRJjkJ cpp =+

(4.2.1), we obtain
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Then the relationship among {   } are given as follows, for 1£n <   c,),,(ˆ jknRc
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Finally, the vector   p(-1) satisfies the equation
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We summarize the results in the following theorem.

Theorem 4.1  For the discrete time   MMAP[K]/PH[K]/1/c/LCFS-GPR queue, we
have, for   J = (k1,   j1)…(kn,   jn) and 1£n£c,
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string can be obtained by 1) calculating {   , 1£n£c, 1£k£K, 1£j£mk} and),,(ˆ jknRc

   ;  2) solving equation (4.2.6) for   p(-1);  3) normalizing   p(-1) using the last)0(ˆ
cR

expression in equation (4.2.7);  4) calculating string probabilities using equation
(4.2.7).  The space complexity of the algorithm is   O(cm2(m1+…+mK)3), which
increases linearly in   c.   z

Equation (4.2.7) shows that the stationary distribution has a product form and
is close to a matrix geometric solution.  In fact, numerical results show that

    converges to   R(k,   j) when   c goes to infinity for any fixed   n,   k, and   j.   ),,(ˆ jknRc

Thus, when   c goes to infinity, equation (4.2.7) reduces to the matrix geometric



solution given in Theorem 3.2.

4.3  The loss probabilities

In this section, we focus on the loss probability of an arbitrary customer and the loss
probability of an arbitrary type   k customer.  This makes it possible to investigate the
relationship between the loss probability and the size of the waiting space   c.  Denote
by   Ploss the probability that an arriving customer is lost and   Ploss(k) the probability
that an arriving type   k customer is lost.  It is easy to see that,
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 Apparently, the relationship   Ploss = [l1Ploss(1)+…+lKPloss(K)]/l holds.   
We use the following example to illustrate the impact of   c on the loss probabilities.

Example 4.3.1    Consider the queueing system introduced in Example 3.2.1.  The
loss probabilities (as a function of   c) are given in Table 4.3.1.

Table 4.3.1  The loss probabilities
c = 1 c = 2 c = 5 c = 10 c =   20 c = 30

Ploss 0.266679 0.160926 0.037527 0.005462 0.000159 0.000005
Ploss(1

)
0.268417 0.171606 0.039895 0.005787 0.000168 0.000005

Ploss(2
)

0.263636 0.145797 0.034157 0.005003 0.000145 0.000004

 Table 4.3.1 shows that when the size of the waiting space is moderate, the
loss probabilities of the two types of customers can be significantly different.  For
other cases, these probabilities are close to each other.  Another observation is that
the loss probabilities decrease exponentially with respect to   c.  The reason is that the
stationary distribution has a product form and       converges to   R(k,   j) when   c),,(ˆ jknRc

goes to infinity for any fixed   n,   k, and   j.



5. Extensions

We now briefly discuss a few directions for future research.
Multiple server queues  Generalization to the multiple server case is not

simple.  Since the service discipline is LCFS, the system has to determine which
customer in service should be pushed out when a new customer arrives and all
servers are occupied at the moment.  Naturally, the oldest customer in service can be
chosen and be pushed to the queue.  In this case, one has to record the sequence of
all customers in service in order to construct a Markov chain for an analysis.  Certain
mechanism must be proposed for a mathematical formulation, which can be quite
complicated, especially for the discrete time case.

For the finite waiting space case, the queueing system also has to determine
which customer to be lost when a new customer finds that the system is full.  In
Section 4.1, it was assumed that the new arrival is lost.  But it is possible that the
new arrival is accepted and the oldest in the queue is pushed out of the queue and
lost.  The mathematical formulation becomes much involved for the case.

Batch arrival cases  When customers may arrive in batches of any kind, the
queueing process can be formulated into an   M/G/1 type Markov chain with a tree
structure.  The stability of the queueing system can be determined using the results
in HE [8].  An analysis of the busy period can also be carried out.  An interesting
special case is that when each batch consists of at most one customer from each
type.  An arrival process of this kind has wide application in modelling
telecommunication networks (see Alfa and Fitzpatrick [1]).

A hybrid FCFS&LCFS-GPR service discipline  Suppose that the service
discipline is FCFS when there are   N or less than   N customers in the queueing
system; otherwise, the LCFS-GRP service discipline is applied.  We call this service
discipline the hybrid FCFS&LCFS-GPR.  For queueing systems with such service
disciplines, a Markov chain with a network structure can be constructed.  Algorithms
can be developed for computing performance measures.  But those algorithms may
not be efficient (HE and Alfa [10]).  The development of more efficient algorithms
for such queueing system is a challenging problem.
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