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Abstract

This paper studies the classi�cation problem of Markov processes of M=G=1 type with a tree structure. It is shown that
the classi�cation of positive recurrence, null recurrence, and transience of the Markov processes of interest is determined
completely by the Perron–Frobenius eigenvalue of a nonnegative matrix. The results are used to �nd classi�cation criteria for
a number of discrete time or continuous time queueing systems with multiple types of customers. c© 2000 Elsevier Science
B.V. All rights reserved.
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1. Introduction

For many queueing systems with multiple types
of customers, their associated queueing processes
can be formulated into Markov processes of matrix
M=G=1 type or matrix GI=M=1 type with a tree struc-
ture. Examples of this sort can be found in [6,16,17].
In [16,17], the M=G=1 paradigm and the GI=M=1
paradigm of Markov processes with a tree struc-
ture were studied, respectively. Analytic results were
obtained for stationary distributions of states and
fundamental periods. But the classi�cation of these
Markov processes is still unsolved, i.e., conditions
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for these Markov processes to be positive recurrent,
null recurrent, or transient are yet to be found. As
was pointed out in [16,17], the classi�cation prob-
lem of these Markov processes is interesting and
di�cult.
This paper studies the classi�cation problem of the

Markov process of M=G=1 type with a tree structure,
which is a special case of the Markov process of
matrix M=G=1 type with a tree structure introduced
in [16]. A simple criterion is found for a complete
classi�cation of the Markov process of M=G=1 type
with a tree structure. That is: the classi�cation of the
Markov process of interest is determined completely
by the Perron–Frobenius eigenvalue of a nonnegative
matrix. The result is obtained by using the mean-drift
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method or Foster’s criterion [1,12] and some results
from matrix analytic methods [13–16]. Using the re-
sults obtained, the classi�cation problem of a number
of discrete time or continuous time queueing systems
with batch arrivals and multiple types of customers
are solved. Generalizations to the Markov process of
matrix M=G=1 type with a tree structure are reported
in [5].
The work done by Gajrat et al. [2] is closely re-

lated to this paper. Gajrat et al. [2] studied a Markov
process of random strings which is a hybrid model of
the M=G=1 type and the GI=M=1 type Markov pro-
cesses with a tree structure. They obtained necessary
and su�cient conditions for the Markov process to
be positive recurrent, null recurrent, or transient, in
terms of positive solutions of a �nite system of poly-
nomial equations. For the birth-and-death case, they
obtained the same simple solution as we obtain in this
paper. Malyshey [10,11] studied random strings as
Markov processes with a network structure. General
classi�cation criteria were obtained and applications to
queueing networks were discussed. Di�ering from the
existing work, this paper exploits the special tree struc-
ture associated with the Markov process of M=G=1
type and obtains some explicit results.
Results obtained in this paper are used to �nd con-

ditions to classify some queueing systems with batch
arrivals and multiple types of customers in Section 5.
Why is it an interesting problem? Is it possible to solve
the classi�cation problem of these queueing systems
by considering queueing systems with one type of
customer? That is: to classify these queueing systems
without distinguishing customers of di�erent types.
A note after Example 5.2 shows that unless appropri-
ate parameters are chosen such an approach may fail.
It also shows how such an appropriate set of parame-
ters can be chosen.
The rest of the paper is organized as follows. In

Section 2, a discrete time Markov chain of M=G=1
type with a tree structure is de�ned. In Section 3, a
simple criterion for the classi�cation of the Markov
chain of interest is obtained. Section 4 develops
simpler criteria for some special cases. In Section
5, criteria for the classi�cation of several queueing
systems are developed using the results obtained in
Section 3. Finally, in Section 6, the continuous time
Markov process of M=G=1 type with a tree structure is
studied.

2. Markov chain of M=G=1 type with a tree
structure

In this section, a discrete time Markov chain of
M=G=1 type with a tree structure is de�ned. This
Markov chain is a special case of the Markov chain
of matrix M=G=1 type with a tree structure intro-
duced in [16]. Continuous time Markov processes of
M=G=1 type with a tree structure will be de�ned and
discussed briey in Section 6.
First, we de�ne a K-ary tree. A K-ary tree is a tree

in which each node has a parent andK children, except
the root node of the tree. The root node of the tree is
denoted as 0. Strings of integers between 1 and K are
used to represent nodes of the tree. For instance, the
kth child of the root node has a representation of k.
The jth child of node k has a representation of kj. Let
ℵ= {J : J = k1k2 · · · kn; 16ki6K; 16i6n; n¿ 0}∪
{0}. Any string J ∈ℵ is a node in the K-ary tree. The
length of a string J is de�ned as the number of integers
in the string and is denoted by |J |. When J=0; |J |=0.
The following two operations related to strings in ℵ
are used in this paper.

Addition operation: for J = k1 · · · kn ∈ℵ and H =
j1 · · · jt ∈ℵ; J + H = k1 · · · kn j1 · · · jt ∈ℵ.
Subtraction operation: for J = k1 · · · kn ∈ℵ and H =
kt · · · kn ∈ℵ; t ¿ 0; J − H = k1 · · · kt−1 ∈ℵ.
Without loss of generality, no boundary node linked

to the root node is considered. The results obtained in
this paper can be generalized to cases where boundary
nodes do exist.
Consider a discrete time Markov chain {Xn; n¿0}

for which Xn takes values in ℵ. Xn is referred to as
the node of the Markov chain at time n. To be called
a (homogenous) Markov chain of M=G=1 type with
a tree structure, Xn transits at each step to either the
parent node of the current node or a descendent of the
parent node. All possible transitions and their corre-
sponding probabilities are given as follows. Suppose
that J = k1 · · · k|J | and Xn = J + k. Then the one step
transition probabilities are given as:

1. Xn+1 = J + k + H with probability a(J + k; J +
k + H) = a0(k; H) when H ∈ℵ and H ¿ 0;

2. Xn+1=J+k with probability a(J+k; J+k)=a1(k);
3. Xn+1 = J +H with probability a(J + k; J +H)=
a1(k; H) when H = j1 · · · j|H | ∈ℵ and 0¡j1 6= k;
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4. Xn+1 = J with probability a(J + k; J ) = a2(k);
5. Xn+1=H with probability a(0; H)=a0(0; H) when
Xn = 0; H ∈ℵ and H ¿ 0; and

6. Xn+1 = 0 with probability a(0; 0) = a1(0) when
Xn = 0.

Note that transition probabilities depend only on the
last integer in the string of the current node. Also
note the di�erence between a0(k; H); a1(k; H); a1(k),
and a2(k). Transition probability a1(k; H) is in-
troduced since in discrete time queueing systems
(Examples 5.1–5.3), arrivals and service completions
can occur simultaneously. We set a1(k; H) = 0 when
H = j1 j2 · · · jn ∈ℵ and j1 = k because the transition
from J+k to J+H is described by a0(k; k+j2 · · · jn).
Transition probabilities satisfy the total law of proba-
bility:∑
J∈ℵ; J¿0

[a0(k; J ) + a1(k; J )]

+a1(k) + a2(k) = 1; 16k6K;∑
J∈ℵ; J¿0

a0(0; J ) + a1(0) = 1: (2.1)

Let N (J; k) be the number of occurrences of integer
k in string J; 16k6K . It is easy to see that |J | =
N (J; 1) + · · ·+ N (J; K). De�ne

�(k; j) =
∑

J∈ℵ; J¿0
[a0(k; J ) + a1(k; J )]N (J; j);

06k6K; 16j6K; (2.2)

�(k) = a2(k) +
∑

J∈ℵ; J¿0
a1(k; J ); 16k6K:

Let � be a K × K matrix with the (k; j)th ele-
ment �(k; j); 16k; j6K , andM a K×K matrix with
the (k; k)th diagonal element �(k) and all other ele-
ments zero. We assume that �(k)¿ 0; 16k6K . Let
P=M−1� and sp(P) be the Perron–Frobenius eigen-
value of the nonnegative matrix P (i.e., the eigenvalue
with the largest modulus). We call sp(P) the transi-
tion intensity.
Matrix � represents the transition rates that the

Markov chain will move from the current node to a
descendent of its parent. MatrixM represents the tran-
sition rates that the Markov chain will move from the
current node to its parent. Suppose that an integer k in

string J ∈ℵ represents a type k customer. Then each
element of matrix � is the average number of cus-
tomers who arrive in a unit period of time and each el-
ement of matrixM is the average number of customers
served in a unit period of time. Matrix P is the ratio of
arrival rates to service rates. Intuitively, the classi�-
cation of Markov chain {Xn; n¿0} is determined by
matrix P in a way similar to the classi�cation of ran-
dom walks on nonnegative integers [8]. The objective
of this paper is to show that this intuition is true and
the classi�cation of Markov chain {Xn; n¿0} is de-
termined completely by the Perron–Frobenius eigen-
value sp(P) of matrix P.
Throughout this paper, it is assumed that Markov

chain {Xn; n¿0} is irreducible, {�(k; j); 06k6K;
16j6K} are �nite, and matrix P is irreducible. Note
that when matrix P is reducible, the set {1; 2; : : : ; K}
can be decomposed into disconnected subsets each
with an irreducible subset. Results obtained in this pa-
per apply to these irreducible subsets. These assump-
tions are not restrictive since they are satis�ed in many
applications.

3. The main theorem

In this section, a complete classi�cation of the
Markov chain {Xn; n¿0} de�ned in Section 2 is
obtained by using the mean-drift method or Foster’s
criterion and matrix analytic methods.
Let R+ be the set of nonnegative real numbers and

RK+ = R+ × · · · × R+. For vector x = (x1; : : : ; xK), its
norm is de�ned as ‖ x ‖= |x1|+ · · ·+ |xK |. Note that
(x)i represents the ith element of vector x. Let

� ≡ min
{b∈RK+ ; ‖b‖=1}

{
max
16k6K

{((�−M)b)k}
}
: (3.1)

Note. The set of vector b in Eq. (3.1) can be chosen
di�erently. For instance, set {b: b∈RK+ and c16 ‖ b ‖
6c2} with 0¡c16c2¡∞ can be used for the same
purpose. Also the norm of vector x can be de�ned
di�erently. For instance, ‖ x ‖=(x21 + · · ·+x2K)0:5 can
be used.

We shall prove that the transition intensity sp(P),
or equivalently �, gives a complete classi�cation of
the Markov chain de�ned in Section 2. The following
lemma shows a relationship between � and sp(P).
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Lemma 3.1. For the Markov chain {Xn; n¿0} de-
�ned in Section 2; a relationship between � and sp(P)
is
(a) sp(P)¡ 1 if and only if �¡ 0;
(b) sp(P) = 1 if and only if �= 0;
(c) sp(P)¿ 1 if and only if �¿ 0.

Proof. Denote by u a right eigenvector of P associ-
ated with the Perron–Frobenius eigenvalue sp(P), i.e.,
Pu = sp(P)u and u 6= 0. Since P is nonnegative and
irreducible, every element of vector u is positive [3].
By the de�nition of matrix P, it has �u = sp(P)Mu.
This leads to (�−M)u = (sp(P)− 1)Mu. Note that
every element of vector Mu is positive.
Suppose that sp(P)¡ 1. Then (sp(P)−1)Mu¡ 0.

Then

�6max16k6K{((�−M)u)k}
=max16k6K {(sp(P)− 1)Mu)k}¡ 0:

Suppose that �¡ 0. Then there exists a vector b∗ =
(b∗1 ; : : : ; b

∗
K)
T with b∗k¿0 and ‖ b∗ ‖ =1 such that

(� −M)b∗6�e, where “T” represents the transpose
of matrix and e is the vector with all elements one,
which implies �b∗¡Mb∗ and Pb∗¡ b∗. Let y be
the positive left eigenvector corresponding to sp(P).
Then we have yPb∗ = sp(P)yb∗¡ yb∗. Since y is
positive and b∗ is nonnegative and nonzero, we must
have sp(P)¡ 1. This proves Part (a).
Next, we prove Part (c). Suppose that sp(P)¿1.

If �60, there exists a nonzero nonnegative vector b
such that (� − M)b60, which implies that Pb6b.
Let y be the positive left eigenvector corresponding to
sp(P). Then yPb6yb implies that sp(P)61, which is
a contradiction. Therefore, �¿ 0. Suppose that �¿ 0,
but sp(P)61. Then (�−M)u60, which implies that
�60. This is a contradiction. Therefore, sp(P)¿1.
This proves (c).
Part (b) is obtained from (a) and (c). This completes

the proof.

Now, we are ready to state and prove the main the-
orem of this paper.

Theorem 3.2. For the Markov chain of M=G=1 type
with a tree structure — {Xn; n¿0} — de�ned in
Section 2; it is

(1) positive recurrent if and only if sp(P)¡ 1 or
equivalently �¡ 0;

(2) null recurrent if and only if sp(P) = 1 or equiv-
alently �= 0;

(3) transient if and only if sp(P)¿ 1 or equivalently
�¿ 0.

Proof. The following proof consists of two parts.
First, we prove that �¡ 0 is a necessary and su�cient
condition for positive recurrence of the Markov chain
of interest, i.e., Part (1). Then we prove Part (3). As
a result of Parts (1) and (3), Part (2) is obtained.
We begin with Part (1). To prove that �¡ 0 is suf-

�cient for positive recurrence of the Markov chain of
interest, the mean-drift method is applied. The idea
of the mean-drift method is to �nd a Lyapunov func-
tion (or test function) f(J ) de�ned on ℵ such that
f(J )→ ∞ when |J | → ∞ and

E[f(Xn+1)− f(Xn) |Xn = J ]
=
∑
H∈ℵ

a(J; H)f(H)− f(J )¡− � (3.2)

holds for all but a �nite number of states in ℵ for some
positive �. If so, the Markov chain is positive recurrent
[12]. Suppose that �¡ 0. Then there exists a vector
b∗=(b∗1 ; : : : ; b

∗
K)
T with b∗k¿0 and ‖ b∗ ‖ =1 such that

(�−M)b∗6�e. When real number � is small enough,
we have (�−M)(b∗+�e)6�e+�(�−M)e¡�e=2.
Choose b = (b1; : : : ; bK) = b∗ + �e with a small and
positive �. Then every element of vector b is positive
and every element of vector (�−M)b is less than �=2.
Choose �= �=2. Then (�−M)b¡− �e holds. Based
on the tree structure of the Markov chain of interest,
the following Lyapunov function is introduced. For
J ∈ℵ, de�ne

f(J ) =
K∑
k=1

N (J; k)bk : (3.3)

Since every element of vector b is positive, f(J )→
∞ when |J | → ∞. It is clear that function f(J ) is
additive, i.e., f(J +H) =f(J ) +f(H) for J; H ∈ℵ.
Applying the above Lyapunov function, the left-hand
side of inequality (3.2) becomes, for J = k1 · · · kn and
k ¿ 0,∑
H∈ℵ; H¿0

[a0(k; H)f(J + k + H)

+a1(k; H)f(J + H)]
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+a1(k)f(J + k) + a2(k)f(J )− f(J + k)
=

∑
H∈ℵ; H¿0

{a0(k; H)[f(J + k + H)− f(J + k)]

+a1(k; H)[f(J + H)− f(J + k)]}
+a2(k)[f(J )− f(J + k)]

=
∑

H∈ℵ; H¿0
{a0(k; H)f(H) + a1(k; H)[f(H)

−f(k)]} − a2(k)f(k)
=

∑
H∈ℵ; H¿0

[a0(k; H)f(H) + a1(k; H)f(H)]

−

a2(k)f(k) + ∑

H∈ℵ; H¿0
a1(k; H)f(k)




=
∑

H∈ℵ; H¿0
[a0(k; H) + a1(k; H)]

×

 K∑

j=1

N (H; j)bj


− �(k)bk

=
K∑
j=1

�(k; j)bj − �(k)bk

=((�−M)b)k ¡− �: (3.4)

In the above evaluation, equalities in Eqs. (2.1) and
(2.2) are used. Thus, inequality (3.2) holds for all
J ∈ℵ but J = 0. By assumptions made in Section 2,
{�(0; j); 16j6K} are �nite, which implies that the
left-hand side of inequality (3.2) is �nite when J =0.
Therefore, the Markov chain is positive recurrent.
To prove the necessity of �¡ 0 for positive re-

currence, denote by v(J ) the mean �rst passage time
from node J to root node 0 (v(0) = 0). According to
Foster’s criterion, when the Markov chain is positive
recurrent, {v(J ); J ∈ℵ} are �nite and satisfy

v(J ) = 1 +
∑
H∈ℵ

a(J; H)v(H): (3.5)

The above equality leads to 0 = 1 +
∑

H a(J;
H)[v(H)v(J )] by using the law of total probabil-
ity. Because of the tree structure and the transition
pattern of the Markov chain, function v(J ) is an ad-
ditive function, i.e., v(J + H) = v(J ) + v(H), which

implies that v(J ) =
∑K

k=1 N (J; k)v(k). This leads to,
for J = k1 · · · kn and k ¿ 0,

− 1 =
∑

H∈ℵ; H¿0
{a0(k; H)[v(J + k + H)− v(J + k)]

+a1(k; H)[v(J + H)− v(J + k)]}
+a2(k)[v(J )− v(J + k)]

=
∑

H∈ℵ; H¿0
{a0(k; H)v(H) + a1(k; H)

×[v(H)− v(k)]} − a2(k)v(k)

=
K∑
j=1

�(k; j)v(j)− �(k)v(k): (3.6)

Let C = (v(1); : : : ; v(K))T. Eq. (3.6) leads to
(�−M)C= e. Since v(k)¿1; 16k6K , i.e., C 6= 0,
we obtain �¡ 0. This completes the proof of Part (1).
We now prove Part (3), i.e., the Markov chain is

transient if and only if �¿ 0. The idea is to look at
the probability that the Markov chain will reach the
root node from any other node eventually. When the
Markov chain is transient, the probability should be
less than one. De�ne sequences {G(J )[n]; n¿0} for
all J ∈ℵ as follows. Let G(0)[n] = 1, for n¿0. Let
G(J )[0] = 0 for J ∈ℵ and J ¿ 0, and

G(J )[n+ 1] =
∑
H∈ℵ

a(J; H)G(H)[n]: (3.7)

It is easy to see that {G(J )[n]; n¿0} is a uniformly
bounded and nondecreasing sequence for each J ∈ℵ.
In addition,G(J )[n] is the probability that the Markov
chain reaches the root node within n transitions, given
that the Markov chain is in node J initially. Note that
the root node has become an absorption node. Denote
by G(J ) the limit of {G(J )[n]; n¿0} for J ∈ℵ. It
has been proven in [16] that G(J ) is the conditional
probability that theMarkov chain will eventually reach
the root node, given that the Markov chain is initially
in node J , for each J ∈ℵ.
When the Markov chain is transient, since ma-

trix P is irreducible, G(J )¡ 1 for all J ∈ℵ and
J ¿ 0. Denote by g(k) = 1−G(k) (¿ 0); 16k6K ,
and g(0) = 0. Because of the special tree struc-
ture, it is easy to see that G(J ) = G(j|J |) · · ·G(j1)
for J = j1 · · · j|J | ∈ℵ, which leads to G(J ) = (1 −
g(j|J |)) · · · (1− g(j1)) ¿1− [g(j1) + · · ·+ g(j|J |)].
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Use the inequality to obtain

1− g(k) = G(k) =
∑
J : J∈ℵ

a(k; J )G(J )

¿
∑
J : J∈ℵ

a(k; J ){1− [(g(j1) + · · ·+ g(j|J |)]}

⇒ 06
K∑
j=1

�(k; j)g(j)− �(k)g(k)

=((�−M)g)k ; (3.8)

where g = (g(1); : : : ; g(K))T. If (� −M)g = 0, then
it can be shown that the Markov chain is recurrent
by using the mean-drift method and the Lyapunov
function de�ned in Eq. (3.3) with the positive vector
g. However, the Markov chain is transient. Therefore,
we must have (�−M)g¿0 and (�−M)g 6= 0, which
implies sp(P)¿ 1 and �¿ 0.
Now suppose that �¿ 0. We shall show that at least

one sequence {G(J )[n]; n¿0}, for J ∈ℵ, does not
converge to one. First, let p(k)[n] be the probability
that the Markov chain reaches node J for the �rst time
at the nth transition, given that the Markov chain is in
node J + k initially. Then for J = j1 · · · j|J |,

G(J )[n] =
n−1∑
t=1

p(j|J |)[t]G(J − j|J |)[n− t]

6

(
n−1∑
t=1

p(j|J |)[t]

)
G(J − j|J |)[n− 1]

6G(j|J |)[n]G(J − j|J |)[n]6 · · ·

6
1∏

t=|J |
G(jt)[n]: (3.9)

In the above equation, the fact that {G(J )[n]; n¿0}
is nondecreasing with respect to n is used. Let
g(k)[n] = 1 − G(k)[n]; 16k6K . Since {G(k)[0] =
0; 16k6K}, it can be proved by induction that
G(k)[n]¡ 1, which implies {g(k)[n]¿ 0; n¿ 0},
for at least one k (16k6K). Then for at least one k,
Eq. (3.7) becomes

G(k)[n+ 1] =
∑
J∈ℵ

a(k; J )G(J )[n]

6
∑
J∈ℵ

a(k; J )
1∏

t=|J |
G(jt)[n]

=
∑
J∈ℵ

a(k; J )
1∏

t=|J |
(1− g(jt)[n])

=1−
∑
J∈ℵ

a(k; J )


 1∑
t=|J |

g(jt)[n]




+O

((
max
16k6K

{g(k)[n]}
)2)

=1− g(k)[n]

−

 K∑
j=1

�(k; j)g(j)[n]− �(k)g(k)[n]



+O

((
max
16k6K

{g(k)[n]}
)2)

¡G(k)[n]− 0:5� ‖ g[n] ‖ +O(K ‖ g[n] ‖2);
(3.10)

where g[n] = (g(1)[n]; : : : ; g(K)[n])T ∈RK+ and g[n]
6= 0. Since �¿ 0, there is at least one element of
vector (�−M)g[n] that is positive. The last inequality
in equality (3.10) holds for at least one k.
Suppose that all sequences {G(J )[n]; n¿0}, for

J ∈ℵ, converge to one. Then {g(k)[n]; n¿0} con-
verges to zero uniformly for 16k6K . When n is large
enough or equivalently {g(k)[n]; 16k6K} are small
enough, inequality (3.10) implies that, for at least one
k; G(k)[n+ 1]¡G(k)[n], which contradicts the fact
that the sequence {G(k)[n]} is nondecreasing. There-
fore, at least oneG(k) is less than one, i.e., the Markov
chain is transient. This completes the proof of Part (c).
Part (b) holds since Parts (a) and (c) are true. This

completes the proof of the theorem.

Note. When the one-step transition of the Markov
chain of interest is constrained to the parent of the
current node or children and grandchildren of the par-
ent node (the birth-and-death case), Theorem 3.2 has
been proved in [2]. The method used in Theorem 3.2
to prove that sp(P)¡ 1 is a necessary and su�cient
condition for positive recurrence of Markov chain
{Xn; n¿0} is similar to that of Theorem 2:1 in [2].
But the method used in Theorem 3.2 to prove that
sp(P)¿ 1 is a necessary and su�cient condition for
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transience of Markov chain {Xn; n¿0} is di�erent
from the one used in [2]. In fact, the method used in
[2] to prove the necessary and su�cient condition for
transience requires that a(J; H)=0 if ‖ H |−| J‖¿d
for some integer d. Thus, that method cannot be used
directly in the M=G=1 case. Besides, the condition
a(J; H) = 0 if ‖ H | − | J ‖ ¿d for some integer
d is restrictive when we study Markov processes
associated with queueing systems of M=G=1 type.

Theorem 3.2 shows that the classi�cation of the
Markov chain of interest is completely determined by
transition intensity sp(P) or the value of �. Therefore,
to �nd whether the Markov chain is positive recur-
rent, null recurrent, or transient, we only need to �nd
the eigenvalue sp(P) or the solution of Eq. (3.1) �.
There are many existing methods to �nd the Perron–
Frobenius eigenvalue of a nonnegative matrix, for in-
stance, Elsner’s algorithm (Chapter 1 of Neuts [14]).
The computation of � can be done by transforming
Eq. (3.1) into the following linear programming prob-
lem:

�= min {x}
s:t: (�−M)b6xe;

be = 1; b∈RK+; −∞¡x¡∞:
(3.11)

The solution of the above linear programming prob-
lem provides information for a complete classi�cation
of the Markov chain de�ned in Section 2. Similar re-
sults have been obtained in the theory of queueing net-
works. For instance, Kumar andMeyn [9] have proved
that the solution of a linear programming problem pro-
vides information for the stability of reentry network
queueing systems.
For Markov chains on a tree structure, the simple

rule used to determine whether or not a simple ran-
dom walk on nonnegative integers is positive recur-
rent is no longer useful. The reason is that there are
several dimensions and the transition rates on one di-
rection may fail to predict positive recurrence of the
Markov chain. Surprisingly, Lemma 3.1 and Theorem
3.2 show that the classi�cation of the Markov chain of
interest is determined completely by the projections of
arrival rates � and service rates M on a special direc-
tion in RK+. This special direction is the eigenvector b
corresponding to the Perron–Frobenius eigenvalue of
nonnegative matrix P. The Markov chain is positive

recurrent if and only if the projection of the arrival
rates � of every type of customer on direction b −
(�b)k — is smaller than the projection of service rates
M of that type of customer — (Mb)k . Similar inter-
pretations go to the null recurrent and transient cases.
In addition, Eq. (3.1) shows that when the Markov
chain is transient, for any direction in RK+, there exists
at least one type of customer whose projection of ar-
rival rates on that direction is larger than that of their
service rates.
For queueing applications, we introduce the follow-

ing decomposition technique. We decompose proba-
bilities a0(k; H) and a1(k) into

a0(k; H) = â0(k; H) + â1(k; k + H);

H ∈ℵ; H ¿ 0;

a1(k) = â1(k) + â1(k; k):

(3.12)

Note that there is no restriction on this decomposi-
tion except that all the numbers must be nonnegative.
An interpretation of such a decomposition is that
the event {transition from J + k to J + k + H} can
be decomposed into two disjoint events with proba-
bilities â0(k; H) and â1(k; k + H), respectively. Let
â2(k) = a2(k) and â1(k; H) = a1(k; H) when H =
j1 · · · j|H | ∈ℵ and 0¡j1 6= k. Transition probabilities
{â0(k; H); â1(k; H); â1(k); â2(k); H ∈ℵ; H ¿ 0} de-
�ne the same Markov chain in understanding that the
transition probabilities from J+k to J+k+H (H ∈ℵ)
are given by Eq. (3.12). De�ne

�̂(k; j) =
∑

J∈ℵ; J¿0
[â0(k; J ) + â1(k; J )]N (J; j);

16k6K; 16j6K;

�̂(k) = â2(k) +
∑

J∈ℵ; J¿0
â1(k; J ); 16k6K:

(3.13)

Let �̂ be a K × K matrix with the (k; j)th ele-
ment �̂(k; j); 16k; j6K; M̂ a K×K matrix with the
(k; k)th diagonal element �̂(k) and all other elements
zero, P̂ = M̂

−1
�̂. Then the following relationships

hold:

�̂(k; j) = �(k; j) for k 6= j;
�̂(k; k) = �(k; k) +

∑
J∈ℵ

â1(k; k + J );

�̂(k) = �(k) +
∑
J∈ℵ

â1(k; k + J ); (3.14)
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�̂= �+ �; M̂ =M + �; where

�=




∑
J∈ℵ

â1(1; 1 + J )

. . . ∑
J∈ℵ

â1(K; K + J )



:

De�ne �̂ by Eq. (3.1) with matrices M̂ and �̂.
Since M̂ − �̂ = M − �, we obtain �̂ = � (of M and
�). It is easy to prove that sp(P)6sp(P̂)¡ 1 when
sp(P)¡ 1; sp(P) = sp(P̂) = 1 when sp(P) = 1; and
sp(P)¿sp(P̂)¿ 1 when sp(P)¿ 1. Thus, we have
proved the following result.

Theorem 3.3. For �̂ and sp(P̂) associated with
matrices M̂ and �̂; conclusions in Lemma 3:1 and
Theorem 3:2 hold.

By Theorem 3.3, instead of looking for � or sp(P),
we can try to �nd �̂ or sp(P̂) to determine whether the
Markov chain of interest is positive recurrent, null re-
current, or transient. This technique proves useful in
solving the classi�cation problem of some queueing
systems where a way of decomposition arises naturally
(Examples 5.1–5.4). For these cases, {�̂(k; j)}(�̂(k)),
not {�(k; j)}(�(k)), truly represents the arrival (ser-
vice) rates of customers; sp(P̂), not sp(P), is equal to
the tra�c intensity. To avoid heavy notation, we shall
only use notation without “∧” when the de�nition of
the Markov chain is clear.

4. Some interesting cases

In this section, we use some examples to show when
the classi�cation of Markov chain {Xn; n¿0} can be
easier. Basically, we want to know when sp(P) is less
than, equal to, or larger than one without calculating
the Perron–Frobenius eigenvalue of P or solving linear
programming problem (3.11). Let

�(k) =
K∑
j=1

�(k; j)
�(j)

; 16k6K: (4.1)

Intuitively, {�(k); 16k6K} have much to do with
the positive recurrence of Markov chain {Xn; n¿0}.
In fact, the following conclusion holds.

Corollary 4.1. The Markov chain de�ned in Section
2 is positive recurrent if �(k)¡ 1; 16k6K .

Proof. By Theorem 3.2, we only have to prove that
there exists a positive vector b such that (�−M)b¡ 0.
Let bj = 1=�(j), 16j6K . It is easy to show that
max16k6K {((� − M)b)k} = max16k6K {�(k) −
1}¡ 0. Therefore, �¡ 0. Notice that vector b should
be normalized to have ‖ b ‖ =1, but it is not essential.
Thus, the Markov chain is positive recurrent. This
completes the proof.

Corollary 4.1 shows that sp(P)6max16k6K {�(k)}.
But condition �(k)¡ 1, 16k6K , is unnecessary for
positive recurrence of the Markov chain. The vector
b introduced in the proof of Corollary 4.1 is a special
direction, which may or may not be the eigenvector
corresponding to the Perron–Frobenius eigenvalue of
matrix P. Failure of (� −M)b¡ 0 in this particular
direction does not imply that the Markov chain is not
positive recurrent. Here is an example.

Example 4.1. Consider a Markov chain of M/G/1
type with a tree structure and K = 2. Transition prob-
abilities (only nonzero ones) of this Markov chain
are given as

a0(1; 1) = 0:1; a0(1; 2) = 0:2;

a0(2; 1) = 0:1; a0(2; 2) = 0:1;

a1(2) = 0:3; a1(1; 2) = 0:3;

a2(1) = 0:4; a2(2) = 0:5:

By de�nition, �(1; 1)=0:1, �(1; 2)=0:2+0:3=0:5,
�(2; 1) = 0:1, �(2; 2) = 0:1, �(1) = 0:7, and �(2) =
0:5. Then �(1) = 0:1=0:7 + 0:5=0:5¿ 1 and �(2) =
0:1=0:7 + 0:1=0:5¡ 1. On the other hand, for b =
(1; 1)T, max16k62{((�−M)b)k}=−0:1. Thus, this
Markov chain is positive recurrent.
In Example 4.1, the Markov chain can go from node

J = 1 to node J = 2 in one transition. This type of
jump, from one branch of a tree to another without
passing their parent node, makes the Markov chain
more complicated. One would think that this is the
reason whymax16k6K{�(k)}¡ 1 is not necessary for
positive recurrence. The following example shows that
max16k6K{�(k)}¡ 1 is not necessary for positive
recurrence when such transitions do not exist.
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Example 4.2. Consider a Markov chain of M/G/1
type with a tree structure and K = 2. Transition
probabilities of this Markov chain are given as

a0(1; 1) = 0:1; a0(1; 2) = 0:1;

a0(2; 1) = 0:3; a0(2; 2) = 0:3;

a2(1) = 0:8; a2(2) = 0:4:

Then �(1; 1) = 0:1, �(1; 2) = 0:1, �(2; 1) = 0:3,
�(2; 2) = 0:3, �(1) = 0:8, and �(2) = 0:4. For
this example, �(1) = 0:1=0:8 + 0:1=0:4¡ 1 and
�(2)=0:3=0:8+0:3=0:4=9=8¿ 1. On the other hand,
for b = (1; 3:1)T, max16k62{((� − M)b)k} = −0:1.
Thus, the Markov chain is positive recurrent.

The following example is presented to show that,
sometimes, sp(P) can be found without solving any
equation.

Corollary 4.2. For the Markov chain de�ned in
Section 2; assume that �(k; j) = �(j); 16k; j6K .
That is; the arrival rates are independent of the cur-
rent node. Then sp(P) = �(1) = · · · = �(K) and the
classi�cation of the Markov chain is determined by
�(1).

Proof. In this case, it is clear that �(1)= · · ·= �(K).
By Theorem 3.2, we only have to prove that �(1)
is the Perron–Frobenius eigenvalue of matrix P. Let
bk = 1=�(k); 16k6K . It is easy to see that (� −
M)b = �(1)e − Mb. Therefore, sp(P) = �(1). This
completes the proof.

Finally in this section, we look at the measure �∗=
�(1; 1)=�(1) + · · · + �(K; K)=�(K). This is usually
the tra�c intensity in queueing theory when multiple
types of customers are present. In general, it is clear
that �∗ is not enough to classify the Markov chain, but
it is enough for some special cases. As in the special
case de�ned in Corollary 4.2, sp(P) = �∗.
Another special case of interest is when all the ser-

vice rates are the same, i.e., �(1) = · · ·= �(K). Then
�∗ = [�(1; 1) + · · · + �(K; K)]=�(1). One question is
whether or not sp(P)=�∗. This is not true in general.
Here is a counterexample.

Example 4.3. Consider a Markov chain of M/G/1
type with a tree structure and K = 2. Transition

probabilities of this Markov chain are given as

a0(1; 1) = 0:3; a0(1; 2) = 0:1;

a0(2; 1) = 0:1; a0(2; 2) = 0:3;

a2(1) = 0:6; a2(2) = 0:6:

Then �(1; 1) = 0:3, �(1; 2) = 0:1, �(2; 1) = 0:1,
�(2; 2) = 0:3, �(1) = �(2) = 0:6. In this example,
�∗ = 0:3=0:6 + 0:3=0:6 = 1. On the other hand, for
b= (1; 1)T, max16k62{((�−M)b)k}=−0:2, which
implies sp(P)¡ 1. Thus, the Markov chain is positive
recurrent.

5. Queueing examples

In this section, the classi�cation problem of a num-
ber of queueing systems is studied by using the re-
sults obtained in Sections 3 and 4. The key is to �nd
the Perron–Frobenius eigenvalue of matrix P for the
queueing systems. We begin with a simple discrete
time queueing model.

Example 5.1. (The GEO[K]=GEO[K]=1=LCFS pre-
emptive resume queue). Consider a discrete time
single-server queueing system with a marked geo-
metric arrival process (the discrete time counterpart
of the marked Poisson process He and Neuts [7] and
Neuts [13]) and geometric service times. All cus-
tomers are served on a last-come-�rst-served (LCFS)
preemptive resume basis. When a customer arrives (at
the end of a period), if the current service is not com-
pleted, it pushes the current customer in the server
out and starts its own service. When a customer in
queue reenters the server, its service time resumes at
the point it was pushed out.

Let pk be the probability that a customer of type k
arrives by the end of a period, 16k6K , and p0 is the
probability there is no customer arriving in a period.
Then {p0; p1; : : : ; pK} describes the arrival process
with 1=p0 +p1 + · · ·+pK . If a type k customer is in
service at the beginning of a period, its service will be
completed by the end of the period with probability qk .
Thus, the service times have geometric distributions
and {q1; : : : ; qK} describes the service processes.
Let Xn be the queue string at the beginning of

period n, including the customer in service. Clearly
{Xn; n¿0} is a Markov chain of M/G/1 type with
a tree structure. The transition probabilities of this
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Markov chain are given as (after the decomposition
de�ned by Eq. (3.12)): a0(k; j)=(1−qk)pj; a1(k; j)=
qkpj; a1(k) = (1 − qk)p0, and a2(k) = qkp0. Then
the arrival rates and service rates are given as
�(k; j) = pj and �(k) = qk . It is easy to see that
sp(P)= �=p1=q1 + · · ·+pK=qK . Therefore, Markov
chain {Xn; n¿0} of the queueing system is positive
recurrent if �¡ 1, null recurrent if �=1, or transient
if �¿ 1.

Note. It is easy to see that �=p1=q1+· · ·+pK=qK pro-
vides information for a complete classi�cation of the
GEO[K]/GEO[K]/1 queue with a FCFS, LCFS non-
preemptive, LCFS preemptive resume, or LCFS pre-
emptive repeat service discipline.

Example 5.2 (The BGEO[K]=G[K]=1=LCFS nonpre-
emptive queue). Consider a discrete time single-server
queueing system with a marked batch geometric ar-
rival process and general service times. All customers
are served on a LCFS nonpreemptive basis. That is:
the service of any customer will not be interrupted
until it is completed.

Let pJ be the probability that a batch of type J
arrives by the end of a period for J ∈ℵ and J ¿ 0, and
p0 the probability that there is no customer arriving
in a period. Customers join the queue according to
their order in the batch. Then {pJ ; J ∈ℵ} describes
the arrival process. The distribution of service time
S(k) of a type k customer is given by {qk(n); n¿1},
i.e., P{S(k) = n} = qk(n). The mean number EJ (k)
of type k customers who arrive during a unit period
of time and the mean service time ES(k) of a type k
customer are given as

EJ (k) =
∑

H∈ℵ; H¿0
pHN (H; k) and

ES(k) =
∞∑
n=1

nqk(n): (5.1)

We observe the queueing system at customer de-
parture epochs and the epochs when arriving cus-
tomers �nd an empty queue. Let Xn be the queue string
right after the nth departure or empty queue epoch.
{Xn; n¿0} is an embedded Markov chain of M=G=1
type with a tree structure. Let N (k) be the number
of batches that arrived during the service period of a

type k customer. Let �(k) be the string consisting of
all customers who arrived during the service period of
a type k customer, i.e., �(k) = J1 + · · ·+ JN (k), where
Ji is the string of customers who arrived in the ith pe-
riod. The distribution of �(k) is given as, for H ∈ℵ,
P{�(k) = H}

=
∞∑
n=1

qk(n)


 ∑

{J1 ;:::; Jn} : J1+···+Jn=H
pJ1 · · ·pJn


 :
(5.2)

The transition of Markov chain {Xn} is given by
Xn+1 = (J + k) − k + �(k) = J + �(k), given that
Xn=J+k, and Xn+1 is an arbitrary batch when Xn=0.
By de�nition, it is clear that �(k) = 1 and the arrival
rates are obtained as (after the decomposition de�ned
by Eq. (3.12))

�(k; j) =
∞∑
n=1

n


 ∑
H : N (H;j)=n

P{�(k) = H}



=
∞∑
n=1

n


 ∑
N (H;j)=n

∞∑
t=1

qk(t)

×

 ∑

{J1 ;:::; Jt} : J1+···+Jt=H
pJ1 · · ·pJt






=
∞∑
t=1

qk(t)


 ∞∑
n=1

∑
H : N (H;j)=n

× n


 ∑

{J1 ;:::; Jt} : J1+···+Jt=H
pJ1 · · ·pJt






=
∞∑
t=1

qk(t)


 ∞∑
n=1

∑
H : N (H;j)=n

×

 ∑

{J1 ;:::; Jt} : J1+···+Jt=H

× [N (J1; j) + · · ·+ N (Jt ; j)]pJ1 · · ·pJt
)

=
∞∑
t=1

qk(t)tEJ (j) = ES(k)EJ (j): (5.3)
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Eq. (5.3) is intuitive since the average total num-
ber of type j customers who arrived during the service
time of a type k customer is the average number of
type j customers who arrive in a unit period of time
multiplying the mean service time of the type k cus-
tomer. Then matrix P of the corresponding Markov
chain is given as

P =M−1�

=



ES(1)
...
ES(K)


 (EJ (1) · · · EJ (K)): (5.4)

Because of the special structure, the Perron–
Frobenius eigenvalue of matrix P is given as
sp(P) = � =

∑K
k=1 ES(k)EJ (k) (the classical tra�c

intensity of the queueing system), which determines
the classi�cation of the queueing system.

Note. It is easy to see that the classi�cation of the
BGEO[K]/G[K]/1 queue with a FCFS He [4], LCFS
preemptive resume, or other work conserving service
discipline is the same as that of Example 5.2.

Note. Let us consider a BGEO[K]/G[K]/1 queue
with K =3, arrival rates EJ (1) = 1=12, EJ (3) = 1=6,
EJ (3) = 1=4, and mean service times ES(1) = 4,
ES(2) = 2, and ES(3) = 1. Then �=ES(1)EJ (1) +
ES(2)EJ (2) +ES(3)EJ (3) = 11=12¡ 1, which im-
plies that the queueing system is positive recurrent.
Consider a BGEO[1]/G[1]/1 queue with arrival rate
�= EJ (1) + EJ (2) + EJ (3) = 0:5 and mean service
time 1=�=w1ES(1)+w2ES(2)+w3ES(1), where w1;
w2; w3¿0 and w1 + w2 + w3 = 1. If we choose
w1 =w2 =w3 =1=3, �=�=7=6¿ 1. If we choose w1 =
0, w2 = 0, and w3 = 1, �=� = 0:5. If we choose
w1 = 1=6, w2 = 1=3, w3 = 1=2, �=� = 11=12 = �.
Thus, the tra�c intensity of the queueing system
with a single type of customer depends on the set
of weights used in estimating the service time of an
arbitrary customer. In general, �=� can be far away
from � of the original queueing system. The two
are equal (i.e., �=� = �) when weights are chosen as
wk = EJ (k)[EJ (1) + · · ·+ EJ (K)]−1, 16k6K .
So far in this section, we have shown that the classi-

�cation of some queueing systems is determined com-
pletely by the classical tra�c intensity �. The reason
is that these queueing systems are work conserving.

In the next example, the classi�cation problem of a
queueing system which is not work conserving is dis-
cussed.

Example 5.3 (The BGEO[K]=G[K]=1=LCFS pre-
emptive repeat queue). Consider a discrete time
queueing system with a marked batch geometric ar-
rival process, general service times, and a LCFS pre-
emptive repeat service discipline. When a customer
reenters the server, its service time has the same
distribution as that of a new customer. Parameters
de�ned in Example 5.2 are used.

Let Xn be the queue string at the nth service comple-
tion or arrival epoch. {Xn; n¿0} is a Markov chain
because of the preemptive repeat service discipline.
The transition probabilities of this Markov chain are
given as, for J ¿ 0, (after the decomposition de�ned
by Eq. (3.12))

a0(k; J ) =
∞∑
n=1

pn−10 pJ

( ∞∑
t=n+1

qk(t)

)
;

a1(k; J ) =
∞∑
n=1

pn−10 pJqk(n);

a2(k) =
∞∑
n=1

pn0qk(n):

(5.5)

Denote by q∗k (z) =
∑∞

n=1 z
nqk(n). Then we obtain

�(k) =
∑
J

a1(k; J ) + a2(k)

=
∑
J

∞∑
n=1

pn−10 pJqk(n) +
∞∑
n=1

pn0qk(n)

=
∞∑
n=1

pn−10 qk(n) = q∗k (p0)=p0; (5.6)

�(k; j) =
∞∑
n=1

pn−10 qk(n)EJ (j)

+
∞∑
t=2

qk(t)

(
t−1∑
n=1

pn−10 EJ (j)

)

=
(1− q∗k (p0))
(1− p0) EJ (j); (5.7)
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then

P =M−1�=
p0

1− p0




1− q∗1 (p0)
q∗1 (p0)

...
1− q∗K (p0)
q∗K (p0)




×(EJ (1) · · · EJ (K)): (5.8)

Therefore, the Perron–Frobenius eigenvalue of matrix
P is given as

sp(P)

=




p0
(1− p0)

K∑
k=1

(1− q∗k (p0))
q∗k (p0)

EJ (k);

0¡p0¡ 1;
K∑
k=1

EJ (k)
qk(1)

; p0 = 0:

(5.9)

According to Theorem 3.2, expression (5.9) pro-
vides complete information for the classi�cation of the
queueing system of interest.
Next, we consider continuous time counterparts of

the two queueing systems considered in Examples 5.2
and 5.3.

Example 5.4 (The BM[K]=G[K]=1=LCFS non-
preemptive queue). Consider a queueing system with
a marked batch Poisson arrival process and general
service times. Let pJ be the arrival rate of a batch of
type J for J ∈ℵ and J ¿ 0. Then {pJ ; J ∈ℵ; J ¿ 0}
describes the Poisson arrival process. Note that pJ
can be any nonnegative real number in this and the
next examples. Let p0=

∑
J¿0 pJ . Then p0 is the pa-

rameter of the exponential distribution of interarrival
times. The service time of a type k customer is given
by Fk(t) with Laplace Stieltjes transform f∗

k (s). Cus-
tomers are served on a LCFS and nonpreemptive ba-
sis. The mean arrival rate of type k customers and the
mean service time of a type k customer are given as

EJ (k) =
∞∑
n=1

n


 ∑
H : N (H;k)=n

pH


 ;

ES(k) =
∫ ∞

0
tFk(dt);

(5.10)

respectively. Let Xn be the queue string right after the
nth departure epoch. Then {Xn; n¿0} is a Markov

chain of M/G/1 type with a tree structure. The distri-
bution of �(k) is given as, for H ∈ℵ,

P{�(k) = H}=
∫ ∞

0
Fk(dt)

∞∑
n=0

exp{−p0t}(p0t)n
n!

×

 ∑

{J1 ;:::; Jn} : J1+···+Jn=H

pJ1
p0

· · · pJn
p0


:

(5.11)

Then the transition of Markov chain {Xn; n¿0} is
given by Xn+1 = (J + k)− k + �(k) = J + �(k) when
Xn=J+k. By de�nition, it is clear that �(k)=1 and the
arrival rates are obtained as (after the decomposition
de�ne by Eq. (3.12))

�(k; j) =
∞∑
n=1

n


 ∑
H : N (H;j)=n

P{�(k) = H}



=
∞∑
n=1

n
∑

H : N (H;j)=n

∫ ∞

0
Fk(dt)

×
∞∑
m=0

exp{−p0t}(p0t)m
m!

×

 ∑

{J1 ;:::; Jm} :J1+···+Jm=H

pJ1
p0

· · · pJm
p0




=
∫ ∞

0
Fk(dt)

∞∑
m=1

exp{−p0t}(p0t)m
m!

∞∑
n=1

n

×
∑

H :N (H;j)=n


 ∑
{J1 ;:::; Jm} :J1+···+Jm=H

pJ1
p0

· · · pJm
p0




=
∫ ∞

0
Fk(dt)

∞∑
m=1

exp{−p0t}(p0t)m
m!

∞∑
n=1

n

×
∑

H :N (H;j)=n


 ∑

{J1 ;:::; Jm} :J1+···+Jm+H
[N (J1; j)+ · · ·

+ N (Jm; j)]
pJ1
p0

· · · pJm
p0

)
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=
∫ ∞

0
Fk(dt)

∞∑
m=1

exp{−p0t}(p0t)m
m!

×
(
mEJ (j)
p0

)
= ES(k)EJ (j): (5.12)

It is clear that sp(P)=�=
∑K

k=1 ES(k)EJ (k) deter-
mines the classi�cation of the queueing system of in-
terest. Again, this result applies to any BM[K]/G[K]/1
queue with a work-conserving service discipline.

Example 5.5 (The BM[K]=G[K]=1=LCFS preemp-
tive repeat queue). Consider the queueing system
de�ned in Example 5.4 when customers are served on
a LCFS preemptive repeat basis. Let Xn be the queue
string at the nth service completion or arrival epoch.
Then {Xn; n¿0} is a Markov chain because of the
preemptive repeat service discipline. The transition
probabilities of this Markov chain are given as

a0(k; J ) =
∫ ∞

0
(1− exp{−p0t})Fk(dt)pJp0 ;

a1(k) = 0; a2(k) =
∫ ∞

0
exp{−p0t}Fk(dt):

(5.13)

Then we obtain

�(k) = a2(k) = f∗
k (p0); (5.14)

�(k; j) =
∫ ∞

0
(1− exp{−p0t})Fk(dt)EJ (j)p0

=
(1− f∗

k (p0))
p0

EJ (j): (5.15)

Therefore, the Perron–Frobenius eigenvalue of matrix
P is given as

sp(P) =
K∑
k=1

(1− f∗
k (p0))

f∗
k (p0)

EJ (k)
p0

; 0¡p0¡∞:

(5.16)

According to Theorem 3.2, the classi�cation of the
Markov chain or the queueing system is determined
completely by the expression in Eq. (5.16).

6. Continuous time Markov chain of M=G=1 type
with a tree structure

In this section, the continuous time Markov chains
(Markov processes) of M/G/1 type with a tree

structure are discussed briey. Results obtained in
Sections 3–5 hold for the continuous time case. Some
of them are restated for the continuous time case in
this section.
A Markov process {X (t); t¿0} is of M/G/1 type

with a tree structure if it is de�ned on a K-ary tree
and its transition rates are described as follows: the
transition from node J + k to
(1) J + k + H with rate a0(k; H) when H ∈ℵ and

H ¿ 0;
(2) J+H with rate a1(k; H) when H=j1 · · · j|H | ∈ℵ

and 0¡j1 6= k;
(3) J with rate a(J + k; J ) = a2(k);
(4) H with rate a0(0; H) when J = 0, H ∈ℵ and

H ¿ 0.
The sojourn time in node J + k has an exponen-
tial distribution with parameter −[∑H (a0(k; H) +
a1(k; H)) + a2(k)] and −∑H a0(0; H) for the root
node.

{�(k; j); �(k); �;M; P; sp(P)} are the same as those
de�ned in Section 2. We assume that Markov pro-
cess X (t) is irreducible, {�(k; j), �(k), 06k6K ,
16j6K} are �nite, and matrix P is irreducible.

Theorem 6.1. For the Markov process of M=G=1
type with a tree structure {X (t); t¿0} de�ned above;
it is
(1) positive recurrent if and only if sp(P)¡ 1;
(2) null recurrent if and only if sp(P) = 1;
(3) transient if and only sp(P)¿ 1.

Proof. The proof is similar to that of Theorem 3.2.
Details are omitted.

Example 6.1 (The M[K]=M[K]=1 queue). Consider
a queueing system with a marked Poisson arrival
process and exponential service times. Let pk be
the arrival rate of type k customers, 16k6K . Then
{p0; p1; : : : ; pK} describes the arrival process with
p0 =p1 + · · ·+pK . If a type k customer is in service,
its service time has an exponential distribution with
parameter qk . Suppose that the LCFS preemptive
resume service discipline is applied.
Let X (t) be the queue string at time t. Then the in-

�nitesimal generator of Markov process {X (t); t¿0}
are given as: a0(k; j) = pj, a1(k) = −qk − p0, and
a2(k)=qk . The total arrival rates and service rates are
given as �(k; j) = pj and �(k) = qk . It is easy to see
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that sp(P) = �=p1=q1 + · · ·+pK=qK determines the
classi�cation of the Markov process or the queueing
system.

Note. It is clear that the result can be generalized to
a batch arrival case. It is also easy to see that the
result can be extended to the multiple server case,
i.e., the BM[K]/M[K]/s queue with a FCFS, LCFS
nonpreemptive, or LCFS preemptive resume service
discipline is classi�ed by �.

Note. It is easy to see that the decomposition tech-
nique can be used in the continuous time case.
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