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ABSTRACT

The purpose of this paper is to study the classification problem of discrete time and continuous
time Markov processes of matrix   M/G/1 type with a tree structure.  We begin this paper by
developing a computational method to find whether a Markov process of matrix   M/G/1 type with
a tree structure is positive recurrent, null recurrent, or transient.  The method is then used to study
the impact of the last-come-first-served general preemptive resume (LCFS-GPR) service
discipline on the stability of the   MAP/PH/1 queue.  The later portion of the paper identifies some
sufficient conditions for positive recurrence and transience of Markov processes of matrix   M/G/1
type with a tree structure.  The results are used to show that the discrete time or continuous time
MMAP[K]/G[K]/1 queue or the continuous time   MMAP[K]/PH[K]/S queue with a work
conserving service discipline is stable if and only if its traffic intensity is less than one, unstable
if its traffic intensity is larger than one.

Key words:  Markov process, tree structure, Lyapunov function, mean drift method, Matrix
analytic methods, discrete or continuous time queueing system.

1.  Introduction

Markov processes of matrix   M/G/1 type with a tree structure was introduced in Takine,
Sengupta, and Yeung [17] as a generalization of Markov processes of matrix   M/G/1 type (Neuts
[13, 15]).  Since the queueing processes of a number of queueing systems can be formulated into
such Markov processes, their study attracted considerable attention from researchers in recent
years (Gajrat, et al. [3], HE [5, 6], HE and Alfa [8], and Takine, Sengupta, and Yeung [17],
Yeung and Alfa [18], Yeung and Sengupta [19], etc.).  However, little has been done on the
classification of such Markov processes, except for some special cases (Gajrat, et al. [3], HE [7],
Neuts [15], and Takine, et al. [17]).  Thus, there is a need for more study of the classification
problem, especially for queueing applications.

 Previous studies on the classification problem of Markov processes with a tree structure
(or random string) can be found in Gajrat, et al. [3], HE [7], and Malyshev [10, 11].  The
differences between this work and that of Gajrat and Malyshev are 1) we consider an auxiliary
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random variable (or an underlying process) while they did not; 2) we exploit the special   M/G/1
type tree structure while they considered a more general structure.  Since the auxiliary random
variable is considered, it is difficult to generalize their results directly.  Because of the special
M/G/1 type tree structure, it is possible to obtain results that do not hold for the models
considered in Gajrat, et al. [3] and Malyshev [10, 11].  HE [7] gives a complete solution to the
classification problem of Markov processes of   M/G/1 type with a tree structure and a number of
queueing systems with multiple types of customers.  The objective of this paper is to generalize
the main results obtained in HE [7] to Markov processes with an auxiliary random variable.  As
shall be shown, such a generalization is not straightforward because the auxiliary random
variable is considered.

In the first part of this paper (Sections 3, 4, and 5), we develop a computational method
that can be used to classify Markov processes of matrix   M/G/1 type with a tree structure.  This
method is based on a set of stochastic matrices   G = {G(1),   L,   G(K)} that can be computed using
an iterative method.  Once the set   G is obtained, the classification of the Markov process of
interest is determined completely by the Perron-Frobenius eigenvalue of a non-negative matrix.   
The computational method is used to analyze the impact of the last-come-first-served general
preemptive resume (LCFS-GPR) service discipline on the stability of a discrete time   MAP/PH/1
queue (Takine, et al. [17] and Yeung and Alfa [18]).

The second part of this paper (Sections 6, 7, 8, and 9) identifies some sufficient
conditions for positive recurrence and transience of Markov processes of interest.  The usefulness
of these results is illustrated by using them to prove sufficient conditions for positive recurrence
and transience of the discrete time and continuous time   MMAP[K]/G[K]/1   queue and the
continuous time   MMAP[K]/PH[K]/S queue with a work conserving service discipline.  Note that
work conserving service disciplines include first-come-first-served (FCFS), LCFS
non-preemption, LCFS preemptive resume, priority without preemption, priority with preemptive
resume, processor sharing, etc.  For these queueing systems of interest, let   lk be the arrival rate
of type   k customers and   mk the service rate of type   k customers.  It will be shown that the
queueing systems are positive recurrent if and only if the traffic intensity   r   =
l1/m1+L+lK/mK<1, transient if   r>1.  The queueing systems considered in this paper were
studied in HE [5, 6], HE and Alfa [8], Yeung and Alfa [18] by assuming that the steady state can
be reached.  This paper shows that the steady state of these queueing systems can be reached if
r<1, a condition that was used without rigorous proof.

Matrix analytic methods and the mean drift method are the main mathematical tools used
in this paper (Neuts [14, 15], Fayolle, et al. [2], and Meyn and Tweedy [12]).  These methods
have been used in the past to study classification problems associated with some Markov
processes and queueing models.  However, the way they are being used in this paper is different
from others.  For instance, the Lyapunov functions used in this paper are constructed by taking
advantage of the   M/G/1 type tree structure (Sections 3 and 6).

This paper focuses primarily on discrete time Markov processes of matrix   M/G/1 type
with a tree structure.  Later in this paper, we shall use “Markov chain” for “discrete time Markov
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process”. But all the results can be extended to continuous time Markov processes of matrix
M/G/1 type with a tree structure.  While most of the Markov processes associated with queueing
systems studied in this paper are discrete time Markov processes, the one associated with the
continuous time   MMAP[K]/PH[K]/S queue is a continuous time Markov process.  We use this
one to illustrate how to solve the classification problem of continuous time Markov processes of
interest.

 The rest of the paper is organized as follows.  In Section 2, a discrete time Markov
process of matrix   M/G/1 type with a tree structure is defined.  In Section 3, a criterion for a
classification of the Markov process of interest is identified.  Section 4 develops a computational
method for classification purpose.  Section 5 uses the method developed in Section 4 to study the
MAP/PH/1 queue with an LCFS-GPR service discipline.  The impact of LCFS-GPR on the
stability of the queueing system is analyzed numerically.    In Section 6, simple sufficient
conditions for a classification of Markov processes of interest are found.  In Sections 7, 8, and 9,
the theory developed in Section 6 is utilized to study the classification problem of the discrete
time   MMAP[K]/G[K]/1   queue, the continuous time   MMAP[K]/G[K]/1   queue, and the continuous
time   MMAP[K]/PH[K]/S   queue, respectively.  Finally, Section 10 summarizes this paper.

2.  Markov Chain of Matrix   M/G/1 Type with a Tree Structure

The following discrete time Markov process of matrix   M/G/1 type with a tree structure was first
introduced in Takine, et al. [17].  Consider a discrete time two-dimensional Markov chain {(Xn,
hn),   n³0} in which the values of   Xn are represented by the nodes of a   K-ary tree, and   hn takes
integer values between 1 and   m, where   m is a positive integer.    Xn is referred to as the node and
hn is referred to as the auxiliary variable of the Markov chain at time   n.  Next, a full description
of the transitions of the Markov chain is given.

 The   K-ary tree of interest is a tree for which each node has a parent and   K children,
except the root node of the tree.  The root node is denoted as 0.  Strings of integers between 1 and
K are used to represent nodes of the tree.  For instance, the   kth child of the root node has a
representation of   k, the   lth child of the node   k has a representation of   kl, and so on.

Let    À = {J:    J=k1k2Lkn, 1£ ki   £K, 1£   i   £K,   n>0}È{0}.  Any string   JÎÀ is a node in
the   K-ary tree.  The length of a string   J is defined as the number of integers in the string and is
denoted by |J|, the only exception is that |J| = 0 for   J = 0.  Let   N(J,   k) be the number of times that
the integer   k appears in the string   J.  The following two operations related to strings in   À are
used in this paper.

Addition operation: for   J = k1Lkn   ÎÀ and   H = h1Lhi   ÎÀ, then   J+H =   k1Lknh1Lhi
ÎÀ.     
   Subtraction operation: for   J = k1Lkn   ÎÀ,   H =   kiLkn   ÎÀ,   i>0, then   J–H = k1Lki-1
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ÎÀ.

 The Markov chain (Xn,   hn) takes values in   À´{1, 2,   L,   m}.  To be called a homogenous
Markov chain of matrix   M/G/1 type with a tree structure, (Xn,   hn) transits at each step only to its
parent node or a descendent of its parent node.  All possible transitions and their corresponding
probabilities are given as follows.  If (Xn,   hn) = (J+k,   i) for 1£k£K and 1£i,   i¢£m, then

1)  (Xn+1,   hn+1) = (J+H,   i') with probability   a(i,i¢)(k,   H) for   HÎÀ.

Note that transition probabilities depend only on the last integer in the string representing the
current node   J+k.  If (Xn,   hn) = (0,   i) for 1£i,   i¢£m,, then

2)  (Xn+1,   hn+1) = (H,   i¢) with probability   b(i,i¢)(H) for   HÎÀ.

In matrix form, transition probabilities are represented as:

1)’    A(k,   H) is an   m´m matrix with elements   a(i,i’)(k,   H), 1£ k   £K,  for   HÎÀ;    
2)’    B(H) is an   m´m matrix with elements   b(i,i’)(H) for   HÎÀ.

For convenience, we shall occasionally use   A(J,   H) to denote the transition probability
matrix from the node   J to the node   H for any   J,   HÎÀ.  Throughout this paper, we assume that
the Markov chain {(Xn,   hn),   n³0} is irreducible.  We now introduce some notation and
functions.
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components one.  We assume that       and      , 1£k, j£K, are finite.  Let   q(k) be the),()1*( jkA )()1*( kB

left eigenvector of the matrix   A(k) corresponding to the eigenvalue 1, i.e.,   q(k)A(k) =   q(k) with
q(k)e = 1, 1£k£K.  Define

       (2.2).,1,),()(),( )1*( KjkjkAkjkp ££= eq

Let   P be a   K´K matrix with elements   p(k,   j), 1£k,   j£K.  Intuitively,   p(k,1) +   p(k,2) +…+
p(k,   K) – 1 represents the average distance the Markov chain moved away from the root node in
one transition, provided that the conditional distribution in each state is given by   q(k).  Denote by
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sp(P) the Perron-Frobenius eigenvalue (i.e., the eigenvalue with the largest modulus) of the
matrix   P.  If   m=1 (i.e.,   hn = 1 for all   n³0), the following theorem has been proved in HE [7]
(Theorem 3.2, HE [7]).

Theorem 2.1  Assume that   m=1 and the matrix   P is irreducible.  Then the Markov chain of
interest is positive recurrent if   sp(P) < 1; null recurrent if   sp(P) = 1; and transient if   sp(P) > 1.

Theorem 2.1 shows that, when   P is irreducible, the classification of the Markov chain
{(Xn,   hn),   n³0} is determined completely by the Perron-Frobenius eigenvalue   sp(P) of the
matrix   P.  Note that the matrix   P defined here is different from the matrix   P in HE [7].  In fact,   P
=   L-M+I in this paper and   P=M-1L in HE [7], where   L   and   M are defined in HE [7] for the case
with   m=1 and   I is the identity matrix.  Both of them provide the same information for a complete
classification of the Markov chain of interest.

In light of Theorem 2.1, Dr. B. Sengupta and Qi-Ming HE conjectured that Theorem 2.1
holds for   m>1 and   K>1.  Unfortunately, this conjecture is untrue and a counterexample is
presented in Section 4.  The reason is that the transitions between nodes change the nature of the
auxiliary random variable (or the underlying Markov chain).  Thus, stationary distributions {q(k),
1£k£K} do not measure correctly the proportion of time the auxiliary random variable stays in
each state.  Thus, the estimate of the average distance moved away from the root node in each
transition is inaccurate.   

 Since Theorem 2.1 is untrue for   m>1 and   K>1, generalizations of the results obtained in
HE [7] are not straightforward.  Thus, we need to take two different approaches in Section 3 and
Section 6 to study the problem.

3. A General Criterion for Classification

In this section, we shall extend Theorem 2.1 to the case with   m³1 and   K³1.  For that purpose, a
set of stochastic matrices   G = {G(1),   L,   G(K)} are introduced to construct a matrix   P(G) to
replace the matrix   P in Theorem 2.1.  The necessity of using these matrices in   G is partially
justified by the counterexample (Example 4.4) to Theorem 2.1 when   m³1 and   K³1.

Let   G = {G(1),   L,   G(K)} where   G(1),   G(2),   L,   G(K) are   m´m sub-stochastic matrices,
i.e.,   G(k)³0 and   G(k)e£e, 1£k£K.  Let   Â be a set of elements   G for which {G(1),   L,   G(K)} are
stochastic matrices and satisfy the following equations, 1£k£K, (J = k1Lk|J|)

   
   

. (3.1))1()()(),()0,()( 1||||
0,

GkGkGJkAkAkG JJ
JJ
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 Let   G* = {G*(1),   L,   G*(K)} be the minimal nonnegative solution to equation (3.1).   
According to Takine, et al. [17], the (i,   i¢)th element of the matrix   G*(k) is the probability that the
Markov chain will eventually reach the node   J in the state (J,   i¢), given that the Markov chain is
in the state (J+k,   i) initially.  It has been proved in Takine, et al. [17] that the set   G* is unique and
all matrices in the set   G* are stochastic if the Markov chain is recurrent.  Define a sequence
{G(J)[n],   JÎÀ} as follows.  Let   G(0)[n] =   I, for   n³0,   G(J)[0] = 0 for   JÎÀ and   J¹0, and

   
   

 (3.2).])[(),(]1)[( å
ÀÎ

=+
H
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(Note that   I is the identity matrix.)  It is easy to show that {G(J)[n],   n³0} is a uniformly bounded
and nondecreasing sequence for   JÎÀ.  If we consider the root node as an absorption node,
G(J)[n] can be interpreted as the probability that the Markov chain reaches the root node within   n
transitions, given that the Markov chain is in the node   J initially.  Denote by {G*(J),   JÎÀ} the
limits of {G(J)[n],   JÎÀ}.  The limit   G*(J) is the conditional probability that the Markov chain
will eventually reach the root node 0, given that the Markov chain is initially in the node   J, for

JÎÀ.  Then we have   G*(J) =   G*(k|J|)LG*(k1) because of the special   M/G/1 type tree structure.

For any set   G = {G(1),   L,   G(K)}ÎÂ, define   G(J) =   G(k|J|)LG(k1) for all   J=k1Lk|J|ÎÀ.
 It is clear   G(J)³G(J)[0] = 0, i.e., the (i,   j)th element of   G(J) is larger than or equal to the (i,   j)th
element of   G(J)[0] for 1£i,   j£m.  Using equation (3.2), it can be proved inductively that
G(J)³G(J)[n], which leads to   G(J)³G*(J).  This leads to the following relationship between the
set   G* and the set   Â.

Lemma 3.1  The set   Â is always nonempty.  If the Markov chain {(Xn,   hn),   n³0} is recurrent,   Â

= {G*}.  If the Markov chain is transient,   Â has at least one element, but the set   G* is not in   Â.   
For any set   G   in   Â,   G(k)³G*(k).

Proof.  First, we prove that the set   Â is nonempty.  Let R+ be the set of nonnegative real

numbers.  Denote by R+Kmm = R+´R+´L´R+, i.e., the cross product of   kmm number of the
set R+.  Let
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Let   EK =   E´E´L´E, i.e., the cross product of   K number of the set   E.  It is easy to see
that each element in   EK corresponds to a unique set   G with   K stochastic matrices.  The right
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hand side of equation (3.1) defines a mapping from   EK to   EK.  It can be proved that this mapping
is continuous.  Since   EK is a bounded closed convex set in R+Kmm, the mapping has at least one

fixed point on   EK by the well known Brouwer’s fixed point theorem.  Thus, there is at least one
set of stochastic matrices that satisfy equation (3.1).  Therefore, the set   Â is nonempty.

If the Markov chain {(Xn,   hn),   n³0} is recurrent, all matrices in the set   G* are stochastic.   

Therefore, the set   G* is in   Â.  For each   G(k)   Î   G   Î   Â, since   G(k)³G*(k) and   G(k) and   G*(k) are
stochastic, we must have   G(k)=G*(k).  Thus, the set   G* is the only element in   Â.  If the Markov
chain {(Xn,   hn),   n³0} is transient, at least one matrix in the set   G* is not stochastic.  Thus, the

set   G* is not in   Â.  This completes the proof of Lemma 3.1.

For any set   G = {G(1),   L,   G(K)}   Î   Â, define the following   m´m matrices:
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where   d(k,   j) = 1, if   k=j; 0, otherwise.  Define an   mK´mK matrix   P(G) by
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 Intuitively, the matrix   P(G) represents the average distance (less one) the Markov chain
moved away from the root node in one transition, given that the set   G is used to represent the
change of state of the auxiliary variable.  For any set   G in   Â, we now prove that the
Perron-Frobenius eigenvalue of the matrix   P(G),   sp(P(G)), provides information for a complete
classification of the Markov chain of interest.  For the vector   x = (x1,   L,   xmK), note that (x)i
represents the   ith element of the vector   x.

Theorem 3.2  For any set   GÎÂ, if the matrix   P(G) is irreducible, then the Markov chain of
matrix   M/G/1 type with a tree structure - {(Xn,   hn),   n³0} - defined in Section 2 is

1) positive recurrent if and only if   sp(P(G)) < 1;
2) null recurrent if and only if sp(P(G)) = 1;
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3) transient if and only if sp(P(G)) > 1.

Proof.  We first prove that   sp(P(G))<1 is a necessary and sufficient condition for positive
recurrence of the Markov chain of interest, i.e., part 1). Then we prove part 3).  As a result of Part
1) and Part 3), Part 2) is obtained.  This proof is parallel to the proof of Theorem 3.2 in HE [7],
but some technical details are different.

 To prove that   sp(P(G))<1 is sufficient for ergodicity of the Markov chain, the mean-drift
method is applied.  The idea of mean-drift method is to find a Lyapunov function (or a test
function)   f(J), a positive column vector of the size   m, defined on   À such that every element of
f(J) is positive,   f(J)   ®   ¥ when |J|   ®   ¥,  and   

E[f(Xn+1) –   f(Xn) |   Xn =   J]   
   

<   -ee (3.5))()(),( JHHJA
H

ff -= å
ÀÎ

holds for all but a finite number of   J in   À for some positive   e.  If so, the Markov process is
positive recurrent Foster's criterion (see Theorem 2.2.3 in Fayolle, et al. [2]).  Suppose that
sp(P(G))<1.  Denote by   b the right eigenvector corresponding to   sp(P(G)).  Since   P(G) is

irreducible, the vector   b = (b1,   L,   bmK)T (where “T” represents the transpose of matrix) is a

positive vector, i.e., every element of   b is positive.  Let   bk = (bm(k-1)+1,   L,   bmk)T.  Based on
the tree structure of the Markov chain of interest, the following Lyapunov function is introduced.   
For any   JÎÀ and   J   ¹ 0, define
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Since we can use   f(J)+f(0) as the Lyapunov function used in equation (3.5), without loss of
generality, we choose   f(0) = 0.  Since   bk is positive and   G(k)e=e for all   k,   f(J)   ®   ¥ when |J|   ®
¥, 1£k£K.  It is clear that the function   f(J) is quasi-additive, i.e.,   f(J+H) =   f(H) +
G(h|H|)LG(h1)f(J) for   JÎÀ and   H =   h1Lh|H|   ÎÀ.  Applying the above Lyapunov function, the

left hand side of inequality (3.5) becomes, for   Xn =   J+k with   J=k1Lkn and 1£k£K,
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where   e = 0.5(1–sp(P(G))mini{(b)i}>0.  In the above evaluation, equalities in equations (3.1)
and (3.3) are used.  Thus, inequality (3.5) holds for all   JÎÀ but   J=0.  Since      , 1£k£K, are)()1*( kB
finite, the left hand side of inequality (3.5) is finite for   J=0.  Therefore, the Markov chain is
positive recurrent.

 To prove the necessity of   sp(P(G))<1 for ergodicity, denote by   vi(J) the first passage time
from the node   J to the root node 0, given that the initial state of the auxiliary random variable is   i.
 Let   v(J) = (v1(J), …,   vm(J))T.  Note that   v(0) = 0.  According to Foster’s criterion, when the
Markov chain is ergodic, {v(J),   JÎÀ} are finite and satisfy
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Because of the tree structure and the transition pattern of the Markov chain, the function   v(J) is

quasi-additive, i.e.,   v(J+H)=v(H)+G*(H)v(J) which implies that   
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where   G*   = {G*(1),   L,   G*(K)} are the minimal nonnegative solution of equation (3.1).  If the
Markov chain is positive recurrent, these matrices are stochastic.  Equation (3.8) leads to, for   J =
k>0,
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Let   v = ((v(1))T, …, (v(K))T)T.  Equation (3.9) leads to   P(G*)v =   v-e <   v.  Since   v(k)³e,
1£k£K,   v is positive.  That implies that   sp(P(G*))<1.  By Lemma 3.1,   G* is the only element in
Â if the Markov chain is positive recurrent.  Then   sp(P(G))<1 for any set   GÎÂ.  This completes
the proof of Part 1).

 We now prove Part 3), i.e., the Markov chain is transient if and only if sp(P(G))>1.  The
idea is to look at the probabilities that the Markov chain will ever reach the root node from any
other node.  If the Markov process is transient, these probabilities should be less than one.

 If the Markov chain is transient, the matrix   G*(k) is not stochastic for at least one   k.   
Denote by   g(k) =   e-G*(k)e (³0), 1£k£K.  Because of the special tree structure,   G*(J) =

G*(k|J|)LG*(k1) leads to
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where the fact that   G[k]³G*[k], 1£k£K, is used.  Note that in equations (3.10), (3.11), and (3.13),
when   t+1 is larger than |J|, the product of matrices is defined as   I.  Use the above inequality to
obtain
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where   g = ((g(1))T, (g(2))T,  …, (g(K))T)T and (P(G)g)k is   kth block of the vector   P(G)g.  If
(P(G)g)k =   g(k) for all   k,  then   P(G)g =   g.  Since   P(G) is irreducible and   g is nonzero and
nonnegative,   sp(P(G)) = 1 and the vector   g is positive (uniqueness).  Then it can be proved that
the Markov chain of interest is null recurrent by Theorem 2.2.1 in Fayolle, et al. [2] (similar to
the proof of Part 1)).  This is a contradiction.  Therefore,   P(G)g   ³   g and   P(G)g   ¹   g, which
implies   sp(P(G))>1.

 Now suppose that   sp(P(G))>1.  We shall show that at least one sequence {G(J)[n],   n³0},
for any   JÎÀ, does not converge to a stochastic matrix.  Suppose that the Markov chain is
recurrent or the sequence {G(J)[n],   n³0}, for   JÎÀ, does converge to a stochastic matrix.  Then
sequence {G(k)[n],   n³0} converges to   G*(k) and,   G*(k) is stochastic, 1£k£K.  Then the set   G =
G*.  First, let   p(k)[n] be the (matrix) probability that the Markov chain reaches the node   J for the
first time at the   nth transition, given that the Markov chain is in the node   J+k initially.  Then
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In the above equation, the fact that {G(J)[n]} is nondecreasing with respect to   n is used.  Let    
g(k)[n] =   e-G(k)[n]e, 1£k£K.  Since   sp(P(G))>1, there is   A(k,   J)¹0 for at least one   J>0.  Since
G(k)[0] = 0, it can be proved inductively that   g(k)[n]   ³ 0,   g(k)[n]   ¹ 0 for all   n>0 and at least one
k, 1£k£K.  Then we have
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where   g[n] = (g(1)[n]T,   L,   g(K)[n]T)T.  Since   P(G) is irreducible,   P(G*)x   £   cx does not hold
for any 0 <   c   <   sp(P(G)) and any nonnegative vector   x.  Take   c   = 1+0.5(sp(P(G*))-1).  Then for
the nonzero and nonnegative vector   g[n], there exists (k,   i) such that (P(G*)g[n])(k-1)m+i >
c(g(k)[n])i   .   Then

   
   

 (3.14))}]])[{(max([]))[(](1)(([5.0)])[(())1]([( 2

1

*
iKmiiii nOnkPspnkGnkG ggGee

££
+--<+

holds for at least one pair of (k,   i), 1£k£K and 1£i£m, when   n goes to infinity.  When   n is large
enough or equivalently {g(k)[n], 1£k£K} are small enough, inequality (3.14) implies that, for at
least one pair of (k,   i), (G(k)[n+1]e)i<(G(k)[n]e)i, which contradicts the fact that the sequence

{G(k)[n],   n³0} is nondecreasing.  Therefore, at least one   G*(k) is not stochastic, i.e., the Markov
chain is transient.  This completes the proof of part c).

Part b) holds since part a) and part c) are true.  This completes the proof of the theorem.

Note:  For Part 1) of Theorem 3.2, the irreducibility condition on the matrix   P(G) can be changed
to that   P(G) has a positive right eigenvector corresponding to its Perron-Frobenius eigenvalue,
which is a weaker condition.  However, in the proof of Part 3), we do need the irreducibility of
P(G).  In Theorem 3.4, the irreducibility condition on   P(G) is replaced by the weaker condition
when additional conditions are imposed on the structure of the Markov chain of interest.

Theorem 3.2 shows that if we can find a set   GÎÂ, then the classification problem
becomes easy.  But such a set   G cannot be found explicitly except for   m=1.  Nonetheless,
Theorem 3.2 is useful for developing a computation method to solve the classification problem.   
The following corollary shows a useful relationship between the set G* and the classification of
the Markov chain of interest.
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Corollary 3.3  Suppose that   G* = {G*(1), …,   G*(K)} are the minimal nonnegative solution to
equation (3.1).  Define   P(G) for any set   G of   K substochastic or stochastic matrices satisfying
equation (3.1).  If the matrix   P(G*) is irreducible, then the Markov chain of interest is 1) positive
recurrent if and only if   sp(P(G*)) < 1; 2) null recurrent or transient if and only if   sp(P(G*)) = 1.

Proof.  If the Markov chain of interest is positive recurrent and null recurrent, the results are
obtained by Lemma 3.1 and Theorem 3.2.  If the Markov chain is transient, by equation (3.10)
and (3.11), it can be proved that   P(G*)g =   g with   g³0 and   g¹0 (the vector   g   is defined after
equation (11)), which implies   sp(P(G*)) = 1.  This completes the proof.

 Finally in this section, we consider Markov chains which can only travel a bounded
distance in one transition, i.e.,   A(k,   J)=0 when |J|>d, where   d (³2) is a fixed positive number.   
This case is interesting since it includes the quasi-birth-and-death (QBD) Markov chain of matrix
M/G/1 type with a tree structure as a special case.  In addition, the condition on   P(G) is weaker,
i.e., instead of irreducibility,   P(G) is only required to have a positive right eigenvector
corresponding to its Perron-Frobenius eigenvalue.   

Theorem 3.4  For the Markov chain of matrix   M/G/1 type with a tree structure - {(Xn,   hn),   n³0}
- defined in Section 2, assume that   A(k,   J)=0 when |J|>d, where   d (³2) is a fixed positive number.
  For any set   GÎÂ, if the matrix   P(G) has a positive right eigenvector corresponding to its
Perron-Frobenius eigenvalue, then the Markov chain is   

1)'  positive recurrent if and only if   sp(P(G)) < 1;
2)'  null recurrent if and only if sp(P(G)) = 1;
3)'  transient if and only if sp(P(G)) > 1.

Proof.  The proof of Part 1)' is the same as that of Part 1) of Theorem 3.2.  If   sp(P(G)) > 1, there
exists a positive vector   b such that P(G)b >   b, i.e., every element of   P(G)b is larger that the
corresponding element of   b.  Using the Lyapunov function defined in equation (3.6), it can be
proved that   E[f(Xn+1) –   f(Xn) |   Xn =   J]   

   
>   ee for all   J¹0 for some)()(),( JHHJA

H
ff -= å

ÀÎ

positive   e.  Since   A(k,   J)=0 when |J|>d, the Markov chain is transient by Theorem 2.2.7 in
Fayolle, et al. [2].  If   sp(P(G)) = 1, there exists a positive vector   b such that only P(G)b =   b.   
Using the Lyapunov function defined in equation (3.6), it can be proved that   E[f(Xn+1)-f(Xn) |
Xn =   J]   

   
£0 for all   J¹0.  According to Theorem 2.2.1 in Fayolle, et al.)()(),( JHHJA

H
ff -= å

ÀÎ

[2], the Markov chain is recurrent.  Combining all these results, we obtain Theorem 3.4.  This
completes the proof.

Note: When   m=1, the set   G = {1,   L, 1} is a set of solution to equation (3.1).  As a result, a
simple and explicit solution to the classification problem is obtained (Theorem 2.1 or Theorem
3.2 in HE [7]).
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Note: When   K=1 and   m³1,   p(1,1) defined by equation (2.2) has been used widely for a
classification of the Markov chain of interest.  Condition   p(1,1)<1 for positive recurrence is
called Neuts condition in matrix analytic methods.  Now, we prove that   sp(P(G)) and   p(1,1) are
equivalent when   K=1.  For this case,   P(G) =   p(1,1,G), where   G = {G(1)}.  It can be proved that   

   
   

, (3.15)å
¹ÀÎ

- ++--=
0,

1 )],1(||[))1())(1()1((),1,1(
JJ

JAJGIGAp egegG

where vector   g is the left invariant vector of the matrix   G(1).  Note that   J (>0) is a string of ones
when   K=1.  Further, it can be proved that   q(1)P(G) =   q(1) + [p(1,1)-1]g.  When   P(G) is
irreducible,   sp(P(G))<1 if and only if   p(1,1)<1,   sp(P(G))=1 if and only if   p(1,1)=1, and
sp(P(G))>1 if and only if   p(1,1)>1.  Thus,   sp(p(1,1,G)) and   p(1,1) are equivalent.

Note: The proofs of Theorems 3.2 and 3.4 suggest that the main results obtained in this section
can be extended to some cases for which the matrix   P(G) is reducible.  But the problem can be
quite complicated and we leave it for future research.

4. A Computational Approach

Theorem 3.2 shows that the classification of the Markov chain is completely determined by
sp(P(G)) for any   GÎÂ, under some conditions on the matrix   P(G).  Therefore, to find whether
the Markov chain is positive recurrent, null recurrent, or transient, we only need to find   sp(P(G))
for a set   GÎÂ.  However, there are no explicit expressions for matrices in the set   GÎÂ.  Thus,
we develop a computational approach to solve the classification problem.  The idea is to use the
minimal nonnegative solution   G* and another set   GÎÂ which will be specified later.

Define a sequence {G*[n],   n³0} as follows.  Let   G*(k)[0] = 0, 1£k£K, and   

   
   

 (4.1).1,])[(),()0,(]1)[(
0,

1

||

** KknkGJkAkAnkG
JJ Ji

i ££+=+ å Õ
¹ÀÎ =

 We first prove the following result.

Lemma 4.1  For the sequence   G*[n] = {G*(1)[n],   L,   G*(K)[n]} generated by using equation
(4.1), {P(G*[n]),   n³0} is a nondecreasing sequence and so is {sp(P(G*[n])),   n³0}.  The
sequence {sp(P(G*[n])),   n³0} converges to   sp(P(G*)) monotonically.   

Proof.  The results are obtained by the fact that the sequence {G*(k)[n],   n³0} converges to   G*(k)
monotonically for 1£k£K.  This completes the proof.
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 Now we generate a sequence       by using equation (4.1) with       as the}0],[ˆ{ ³nnG ]0[Ĝ

initial set of matrices, where       is a given set of   K stochastic matrices.  It is easy to see that]0[Ĝ

    is a set of stochastic matrices for all   n.][ˆ nG

Lemma 4.2  For  sequences {G*[n],   n³0} and      , we have   G*(k)[n]£   ,}0],[ˆ{ ³nnG ])[(ˆ nkG

1£k£K,   P(G*[n])£P(   ), and   sp(P(G*[n]))£sp(P(   )), for   n³0.  Suppose that][ˆ nG ][ˆ nG

    converges to      .  Then      ÎÂ.  If the Markov chain of interest is positive recurrent}0],[ˆ{ ³nnG Ĝ Ĝ

or null recurrent,   G*   =       and   sp(P(G*)) =   sp(P(   )); otherwise, 1 =   sp(P(G*)) <   sp(P(   )).Ĝ Ĝ Ĝ

Proof.  Note that      ³   G*(k)[0] = 0, 1£k£K.  It can be proved inductively that]0)[(ˆ kG

   ³G*(k)[n], 1£k£K, for all   n³0.  Then the results are obtained by using Corollary 3.3 and])[(ˆ nkG
Lemma 4.1.  This completes the proof.

 Based on Lemmas 4.1 and 4.2, the following algorithm is developed for classifying the
Markov chain defined in Section 2.  Let   e and   e' be small positive numbers (e.g.,   e=e'=10-10).

Algorithm 4.3

1) Start with   G*[0] = {0,   L, 0} and       = {I,   L,   I} (Note that these stochastic]0[Ĝ

matrices in       can be chosen differently).]0[Ĝ

2) Compute   G*[n] and       using equation (4.1) respectively.][ˆ nG

3) If maxk,i,j{(G*(k)[n+1]–G*(k)[n])i,j}<e, stop; Otherwise, go to Step 2.

4) Find Perron-Frobenius eigenvalues   sp(P(G*[n])) and   sp(P(   )).][ˆ nG

If the matrix   P(   ) is irreducible, we have the following conclusions.  If][ˆ nG

sp(P(G*[n]))£ sp(P(   ))<1–e', the Markov chain of interest is positive recurrent; if 1–e' <][ˆ nG

sp(P(G*[n]))   £ 1 < 1+e' <   sp(P(   )), the Markov chain is transient; if 1–e' < sp(P(G*[n]))   £ 1][ˆ nG

£   sp(P(   ))<1+e', the Markov chain can be considered to be null recurrent.  If   A(k,   J)=0 when][ˆ nG

|J|>d, where   d (³2) is a fixed positive number, and the matrix   P(   ) has a positive right][ˆ nG
eigenvector associated with its Perron-Frobenius eigenvalue, we have similar conclusions.

Theoretically,   sp(P(   )) provides information for a complete classification of the][ˆ nG

Markov chain of interest, when   n is large enough.  We bring the set   G*[n] into the algorithm
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since its computation is stable.  The eigenvalue   sp(P(G*[n])) can also be used for accuracy
check.    In using Algorithm 4.3, we have to be cautious about cases such that the sequence

    does not converge.  In that case, the algorithm fails to provide reliable information}0],[ˆ{ ³nnG
for a classification.  We should also be cautious about the null recurrent case.

We are now able to show that Theorem 2.1 does not hold when   m>1 and   K>1.  There are
counterexamples for which   sp(P(G))<1 but   sp(P)>1 (sp(P) is defined in Section 2) and
counterexamples for which   sp(P(G))>1 but   sp(P)<1.  One of them is presented as follows.

Example 4.4  Consider a Markov chain of matrix   M/G/1 type with a tree structure with   m=3,
K=2, and transition matrices (only those nonzero matrices):
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 For this Markov chain, matrices {G*(1),   G*(2)} are stochastic and   sp(P(G)) = 0.991859.   
Thus, the Markov chain is positive recurrent, but   sp(P)=1.011921 > 1.  Therefore,   sp(P) fails to
provide correct information for a classification of the Markov chain.

5.  The Discrete Time   MAP/PH/1 Queue

In this section, we consider a discrete time   MAP/PH/1 queue with a last-come-first-served
general preemptive resume service discipline (LCFS-GPR).  This type of queueing system was
introduced in Yeung and Alfa [18] (also see Yeung and Sengupta [19]).  But the stability
conditions of such queueing systems are difficult to find due to the complexity of the LCFS-GPR
service discipline.  With the computational method developed in Section 4, we are able to
analyze the impact of the LCFS-GPR on the stability of the queueing system.  Note that the
continuous time   MMAP[K]/PH[K]/1 queue that has multiple types of customers and a
LCFS-GPR service discipline can be analyzed in the same way.

The following definition of Markov arrival process (MAP) is a discrete time version of
the continuous time   MAP introduced by Neuts ([13]).  A discrete time   MAP is defined by two
nonnegative   m´m matrices {D0,   D1}, where   m is a positive integer.  Matrices   D0 and   D1 are
nonzero.  Let   D =   D0+D1.  Then the matrix   D is called the transition matrix of the underlying
Markov chain and it is stochastic.  We assume that   D is irreducible.  Let   h(n) be the phase of the
Markov arrival process at time   n, 1£h(n)£m.
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 The service time of a new customer has a discrete time phase-type distribution
(PH-distribution) with a matrix representation (a,   T), where   a = (a1,   a2,   L,aK),   ae =1, and   T is

a   K´K matrix.  Let   T0 =   e-Te.  More details about   PH-distribution can find in Chapter 2 of
Neuts [14].

 All customers are served on an LCFS-GPR service discipline.  When a customer arrives,
it pushes the customer in service (if any) out of the server and starts its own service with a
service time  (a,   T).  For the outgoing customer, its current service state is recorded.  When the
server becomes available to customers in queue, the one who arrived last gets the server.  When a
customer reenters the server, the distribution of its service time is ((qi,1,   L,   qi,K),   T) if it was
pushed out of the server in state   i, 1£i£K.  Let   Q be a   K´K matrix with elements   qi,j.  Then the
matrix   Q is a stochastic matrix and it specifies the service discipline.  If   Q =   I, customers are
served on a LCFS preemptive resume basis.  If   Q =   ea, customers are served on a LCFS
preemptive repeat basis.  We shall compare these service disciplines and a few others.

 Let   X(n) be the string consisting of the states of customers in queue at the beginning of
period   n (string of integers between 1 and   K).  For instance, when   X(n) =   J =   k1Lk|J|, the service
state of the current customer is   k|J|, the service state of the last customer in queue will be   k|J|-1,
i.e., when this customer reenters the server, its service starts in state   k|J|-1, and so on.  Then it is
easy to see that (X(n),   h(n)) is a Markov chain of matrix   M/G/1 type with a tree structure.  The
transition blocks of that Markov chain are given by

   

   

 (5.1)
.,,1,),(

,)(),(,)()0,(

1
1

,,

0,1
0

0
0

KljkDqTjlkA

DTDjkADkA
K

i
ljiik

jkjkk

££÷
ø

ö
ç
è

æ
=

+==

å
=

a

aTT

 Then we can use the algorithm developed in Section 4 to study the impact of the matrix   Q
on the stability of the queueing system.  A numerical example is presented next.

Example 5.1  Consider a   MAP/PH/1 queue with a LCFS-GPR service discipline with the
following arrival process and service time distribution:
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We consider the following three LCFS-GPR service disciplines:
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 The Perron-Frobenius eigenvalues   sp(P(G)) corresponding to the above matrix   Qs, as a
function of the arrival rate   l, are shown in Table 5.1.  Rows 2, 3, and 4 in Table 5.1 show
sp(P(G)) for different   Q and   l.

Table 5.1  Perron-Frobenius eigenvalues   sp(P(G)) for Example 5.1

l = 0 .
1

  0.2    0.3    0.4    0.5    0.6    0.7    0.8    0.9   0.95

Q (1
)

0.792 0.856 0.907 0.949 0 . 9 8
3

1 . 0 1
0

1.031 1.047 1.059 1.065

Q (2
)

0.768 0.819 0.863 0.904 0.933 0.960 0.982 0 . 9 9
9

1 . 0 1
3

1.020

Q (3
)

0.758 0.805 0.846 0.882 0.914 0.941 0.963 0.981 0 . 9 9
5

1 . 0 0
2

 According to Table 5.1, the difference between   Q(1) and   Q(3) is clear.  For   Q(1),
sp(P(G)) becomes larger than 1 when   l is between 0.5 and 0.6.  For   Q(3),   sp(P(G)) becomes
larger than 1 when   l is between 0.9 and 0.95.  Although   sp(P(G)) is not the traffic intensity of
the corresponding queueing system, its closeness to 1 does show the instability of the queueing
system.  Thus, Table 5.1 shows that the queueing system goes from stable to unstable when   l
goes from 0.5 to 0.6 for   Q(1).  But the queueing system is still stable for   Q(3) until   l is close to
0.95.  This implies that the LCFS preemptive repeat service discipline allows a larger utilization
than the resume one, in terms of the stability of the queueing system.  Partially, the reason is that
the service process has a larger probability to complete in state 1 than in that 2 (see the definition
of the matrix   T), i.e., the decreasing failure rate property (DFR).

The matrix   Q(1) represents the LCFS preemptive resume service discipline and   Q(3)
represents the LCFS preemptive repeat service discipline.  The matrix   Q(2) represents some
service discipline “between”   Q(1) and   Q(3).  Table 5.1 shows that the matrix   Q has a huge
impact on the stability of the queueing system.  The implications of the numerical results need
further study.

6.  Sufficient Conditions for Positive Recurrence and Transience

The computational method developed in Sections 3 and 4 can be used to classify a Markov chain
of matrix   M/G/1 type with a tree structure computationally.  But it does not lead to simple
conditions needed for queueing applications.  This section shows that Theorem 2.1 holds for   m>1
and   K>1 if additional conditions are imposed on matrices {A(k),   A*(1)(k,   j), 1£k,   j£K} (defined
in Section 2).  The results can be used to solve the classification problem of some queueing
systems with multiple types of customers.

First, we prove a simple sufficient condition for positive recurrence and a simple
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sufficient condition for transience.  Let   z = (z1,   L,   zK)   ÎR+K and define, for 1£k£K,

   
   

 (6.1),)()(,),(),( ** åå
ÀÎÀÎ

==
J

J

J

J JBBJkAkA zzzz

where   
   

 for   JÎÀ and   J¹0, and   zJ = 1 if   J=0.
||1 Jjj

J zz L=z

Lemma 6.1  If there exists an   m´1 positive vector   u* such that   A*(k,   z)u*   <   zku*, i.e., every

element of   A*(k,   z)u* is strictly smaller than its counterpart in   zku*, and   B*(z)u*   <   ¥ for some   z
satisfying 1 <   zk   <   ¥, 1£k£K, then the Markov chain defined in Section 2 is positive recurrent.   

Proof.  The proof of this lemma is based on the mean drift method.  Let   
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By the assumption,   e is positive.  Define a Lyapunov function       for   JÎÀ.  Since*)( uzf JJ =

1<zk<¥ for 1£k£K,   f(J)®¥ when |J|®¥.  Also it has   f(J+H) =   zJzHu*. Then we have, for all
JÎÀ and 1£k£K,
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For   J=0, it can be proved that   E[f(Xn+1)-f(Xn)|Xn=0] =   B*(z)u*-I.  Since   B*(z)u*   <   ¥, the
Markov chain of interest is positive recurrent by Theorem 2.2.3 in Fayolle, et al. [2] or Foster’s
criterion.  This completes the proof of Lemma 6.1.

Lemma 6.2  If there exists an   m´1 positive vector   u* such that   A*(k,   z)u*   £   zku* for some   z
satisfying 0<zk<1 for at least one   k,1£k£K, then the Markov chain defined in Section 2 is
transient.

Proof.  The proof of this lemma is based on the mean drift method.  The Lyapunov function is
defined as       for   JÎÀ.  We have, for all JÎÀ and 1£k£K,*)( uzf JJ =

       (6.4).0]),([]|)()([ **
1 £-=+=-+ uzzffE IzkAkJXXX k
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nnn
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Suppose that       for   k0.  Then   f(J)®0 <   f(0) =   u*, when |J|   ®¥ for   J =   k0…k0.  Thus,10 0 <<
k

z

the Markov chain of interest is transient by Theorem 2.2.2 in Fayolle, et al. [2].  This completes
the proof of Lemma 6.2.

 To use Lemmas 6.1 and 6.2, we need to find the vector   u*.  The difficulty in finding such
a vector   u* is that all   K inequalities -   A*(k,   z)u*   <zku* or   A*(k,   z)u*   £   zku* - must be satisfied

simultaneously.  In the rest of this section, such a vector   u* is found under certain conditions on
P and {A(k),   A*(1)(k,   j), 1£k,   j£K}.

To find the vector   u*, we start with the right eigenvector of   sp(P).  Let   b = (b1,   L,   bK)

ÎR+K be an right eigenvector corresponding to the Perron-Frobenius eigenvalue of the matrix   P
defined by equation (2.2), i.e.,   Pb   =   sp(P)b.  Assume that   P is irreducible.  Then   b is unique and
positive.  According to HE [7], for   m=1, the vector   b shows a direction in which we can compare
the movement of the Markov chain towards or away from the root node.  For   m=1, if the Markov
chain moves towards the root node (strictly) faster than moving away from the root node in the
direction   b, the Markov chain is positive recurrent.  If the Markov chain moves away from the
root node (strictly) faster than moving towards the root node in the direction   b, the Markov chain
is transient.  It is natural to conjecture that this is true for the case with   m>1.  But Example 4.4
gives a counterexample.  Nonetheless, we still believe that the direction   b is an important
direction.  In fact, we shall find the vector   u* based on the vector   b.

If   m=1, choose   u* = 1.  It is immediate to see that the Perron-Frobenius eigenvalue of the
matrix   P alone determines the classification of the Markov chain.  For   m>1, the solution of the
vector   u* is not clear.  In the rest of this section, we construct such a vector   u* associated with
the vector   b of the matrix   P.

We assume that functions defined in equation (6.1) are analytic in an open ball that
includes point   eT   in R+K, or equivalently these functions are analytic at   z =   eT.  Let   zk(t)   = 1 +

bkt, for 1£k£K.  Then   z(t)   º (z1(t),   L,   zK(t)) =   eT   +   tbT.  To choose the vector   u*, we shall only
consider the vector   z(t) for small   t.  Let   x(k,   t) be the Perron-Frobenius eigenvalue of the matrix
A*(k,   z(t)),   q(k,   t) the corresponding left eigenvector, and   u(k,   t) the corresponding right
eigenvector.  It can be proved that   x(k,   t) is an analytic function with respect to   t and   q(k,   t) and
u(k,   t) can be chosen as analytic functions with respect to   t.  Vectors   q(k,   t) and   u(k,   t) are
normalized by   q(k,   t)e =   e and   q(k,   t)u(k,   t) = 1.  Then   q(k, 0) =   q(k) and   u(k, 0) =   e.  Then we
have
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Similar to Lemma 1.3.3 in Neuts [14], it can be proved that, for 1£k£K,   
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 Now, we are ready to state and prove a weaker version of Theorem 2.1 for   m>1.

Theorem 6.3 Suppose that the Markov chain defined in Section 2 satisfies the following
additional conditions:

Condition A:  the matrix   P is irreducible;
Condition B: {A(k), 1£k£K} are irreducible;
Condition C:      , where   w is an   m´1 vector and finite, foreweb kbPspkAIkA )())((),()1*( +-=

1£k£K.

Then 1) the Markov chain is positive recurrent if   sp(P) < 1; 2) the Markov chain is
transient if   sp(P) > 1.

Proof.  According to Lemmas 6.1 and 6.2, to prove the results, we only have to find the vector
u*.  For that purpose, expand functions   x(k,   t),   u(k,   t), and   A*(k,   t) at   t=0 as   x(k,   t) = 1 + tbksp(P)

+ O(t2),   u(k,   t) =   e   +   t   u(1)(k) +   O(t2), and   A*(k,   z(t)) =   A(k) +   tA*(1)(k,   b) +   O(t2), respectively.   
The vector   u(1)(k) can be found as follows: 1£k£K,
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Note that   A(k)e =   e and Condition C is used in the last equality.  The invertibility of the matrix       
   I-A(k)+eq(k) can be proved routinely since   A(k) is stochastic and irreducible.  Now we introduce

a vector   u(t) as   
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We choose   
   

.  If   sp(P) < 1, choose   t to be positive and small enough so that the1
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absolute value of the sum of all terms associated with   t2   is smaller than   t(1-sp(P))/2.  Then
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Choose   t>0 and small enough.  Then   zk(t)   = 1 + bkt > 1 and   u(t) is positive. Let   u* =

u(t). Since   B*(z) is analytic at   z =   eT,   B*(z(t))u(t) is finite.  By Lemma 6.1, the Markov chain is
positive recurrent.

If   sp(P) > 1, choose   t to be   negative and small enough so that the absolute value of all
terms associated with   t2   is smaller than   -t(sp(P)-1)/2.  Similar to equation (6.9),   A*(k,z(t)) <
zku(t), for 1£k£K.  Since   t<0 and small enough in absolute value, 0<zk(t)=1 + bkt<1, 1£k£K.   

Let   u* =   u(t).  By Lemma 6.2, the Markov chain is transient.  Note that the selection of {wj}

implies that the vector   u* can be chosen differently.  This completes the proof of Theorem 6.3.

 The additional conditions in Theorem 6.3, especially Condition C, are restrictive.  But
Theorem 6.3 is still useful for some queueing applications in Section 7 and 8.  The Taylor
expansion idea used in the proof of Theorem 6.3 shall be used again in Section 9.
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7.  The Discrete Time   MMAP[K]/G[K]/1 Queues

The queueing model considered in this section is the discrete time version of the continuous time
MMAP[K]/G[K]/1 queue introduced in HE [5] whose classification problem will be studied in
Section 8.  First, we give a detailed description of the discrete time Markov arrival process with
marked transitions (MMAP[K]).

The following definition of   MMAP[K] is a discrete time version of the continuous time
MMAP[K] introduced by Marcel Neuts (see HE and Neuts [9]). The   MMAP[K] was also
introduced in Asmussen and Koole [1].  A discrete time Markov arrival process with marked
transitions is defined by a set of nonnegative   m´m matrices {DJ,   JÎÀ}, where   m is a positive
integer.  The matrix   DJ is the (matrix) arrival rate of a batch   J, =   k1k2…k|J|,  i.e., the arrival rate
of a batch with a type   k1 customer, a type   k2 customer, …, and a type   k|J| customer.  The matrix
D0 is not stochastic.  Let
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Then the matrix   D is called the transition matrix of the underlying Markov chain and it is
stochastic.  We assume that   D is irreducible.  We also assume that matrix   D*(z) is analytic at   z   =
eT.  Let   h(n) be the phase of the underlying Markov process at time   n, 1£h(n)£m.  Let   q be the
left invariant vector of the matrix   D, i.e.,   qD =   q and   qe = 1.  The average number of type   k
customers who arrived in a period is given by
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When a batch of customers arrive in the queueing system, they join the queue according
to their order in the batch.  The   nth customer in   J is a type   kn customer, 1£n£|J|.  Thus, the queue
of such a queueing system is represented by a string of integers that are the types of the
customers in these positions.  For example (for   K=2), let   q(t) be the queue string at time   t.  Then
q(t) = 122 implies that there are 3 customers waiting in the system at time   t: the customer who
arrived first is of type 1;  the customer who arrived second is of type 2; and the customer who
arrived last is of type 2.

The service time of a type   k customer has a discrete density function   fk(n) with

z-transform   f*k(z) and mean 1/mk =   ån   nfk(n), 1£k£K.  We assume that   f*k(z) is analytic at   z=1.

We consider the discrete time   MMAP[K]/G[K]/1 queue with a work conserving service
discipline (including FCFS, LCFS non-preemptive, LCFS preemptive resume, priority with
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non-preemption, priority with preemptive resume, processor sharing, etc.).  Since the
classification problem of these queueing systems is the same, we shall focus on the queue with a
LCFS non-preemptive service discipline.  That is: once a customer enters the server, its service
will not be interrupted.  Upon the completion of its service, a customer leaves the queueing
system immediately.  The customer in queue who arrived last enters the server.  Denote by

    the traffic intensity of the queueing system.,// 11 KK mlmlr ++= L

We observe the queueing system at departure epochs.  Let   q(n) be the queue string right
after the   nth departure;   h(n) the state of the underlying chain of the arrival process right after the
nth departure.  It is easy to see that (q(n),   h(n)) is a Markov chain of matrix   M/G/1 type with a
tree structure.

Theorem 7.1  The Markov chain {(q(n),   h(n)),   n³0} of a discrete time   MMAP[K]/G[K]/1 queue
with a work conserving service discipline is positive recurrent if and only if   r<1; transient if   r>1.

Proof. Let   N(k) be the number of batches that arrived during the service period of a type   k
customer.  Let   J(k) be the string consisting of all customers who arrived during the service period
of a type   k customer.  Then   J(k) =   J1+L+JN(k), where   Ji is the string of customers who arrived
in the   ith period of the service time.  The (matrix) distribution of   J(k) is given as, for   HÎÀ,
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The transition of {q(n),   n³0} is given by   q(n) = (J+k) –   k +   J(k) =   J +   J(k), given that   q(n)
=   J+k, and   q(n+1) is an arbitrary batch if   q(n) = 0.  Transition matrices {A(k,   J), 1£k£K,   JÎÀ} of
the Markov chain {(q(n),   h(n)),   n³0} are given by equation (7.3).  The transition matrices {B(J),
JÎÀ} can be written but omitted since they are not used directly.  By equation (7.3), we obtain
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By equation (7.4), it is easy to see that   q is the left invariant vector of   A(k), 1£k£K.  To
find the matrix   P, we have, for 1£k,   j£K,
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Thus, we obtain the matrix   P explicitly in terms of the arrival rates and service rates.   
Intuitive, equation (7.5) makes sense since a work conserving service discipline is applied.  It is

easy to obtain that   sp(P) =   r and the corresponding right eigenvector is   b = (1/m1,   L, 1/mK)T.   

Let   z(t) =   eT +   tbT.  Then we have the following equalities:
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where   De=e is used.  The invertibility of matrix   I-D+eq can be proved routinely since the matrix
D is an irreducible stochastic matrix.  Therefore, conditions A, B, and C in Theorem 6.3 are
satisfied.  Therefore, the Markov chain of interest is positive recurrent if   r<1, transient if   r>1.

 We still need to prove that   r<1 is necessary for positive recurrence.  The idea is to look at
the total work-load in the queueing system at an arbitrary time.  The following approach was
used by Takine and Hasegawa [16] for continuous time cases.  Let   Vi(n,   x) be probability that the
total work-load in the queueing system at the end of the   nth period is   x and the state of the
underlying Markov chain is   i, i.e., the distribution of the virtual waiting time.  Note that the
initial state at   n=0 is not considered explicitly since it is not important for our proof.  Let   V(n,   x)
= (V1(n,   x),   L,   Vm(n,   x)).  Then the following difference equation holds:
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(7.8)

where   f(J,   x) is the joint density function of   
   

  Let   V*(n,   z) be the).(and,),(),(
||21

xfxfxf
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z-transform of the vector V(n,   x) with respect to   x.  It is easy to obtain
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where   f*(J,   z) is the   z-transform of   f(J,   x).  If the queueing system is positive recurrent, the
stationary distribution of the work-load exists.  Denote by   V*(z) the limit of {V*(n,   z),   n³0} and
y(0) the limit of {V(n,0),   n³0}.  Then we have
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 Let   t(z) be the Perron-Frobenius eigenvalue of matrix   D0+åJ>0   DJ   f*(J,   z).  Let   q(z) be
the left eigenvalue of   t(z) and   e(z) the right eigenvalue of   t(z) with   q(z)e =   q(z)e(z) = 1.  Since   D
is irreducible, it is easy to see that   e(1) =   e and   q(1) =   q.  Similar to HE [5], it can be proved that
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The Jordan canonical form of matrix is used to derive the last equality in equation (7.11).  This
leads to   y(0)e = 1-r > 0 if the Markov chain is positive recurrent.  This implies   r<1.

Therefore, the Markov chain or the queueing system is positive recurrent if and only if
r<1.  This completes the proof of Theorem 7.1.

8. The Continuous Time   MMAP[K]/G[K]/1 Queues

This section considers the continuous counterpart of the model studied in Section 7.  Since some
of the derivations and calculations are parallel to that of Section 7, details are omitted.
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The Markov arrival process with marked arrivals (MMAP[K]) is represented by matrices
{D0,   DJ,   J>0}, where   D0 is a matrix with negative diagonal elements and nonnegative
off-diagonal elements and {DJ,   J>0} are nonnegative matrices.  Matrix   D =   åJ   DJ is an
infinitesimal generator of the underlying Markov process.  We assume that   D is irreducible and
matrix   D*(z) is analytic at   z=eT.  Let   q be the stationary distribution of matrix   D, i.e.,   qD = 0 and
qe = 1.  The service time of a type   k customer has a distribution function   Fk(x) with Laplace

Stieltjes transform   f*k(s) and mean 1/mk.  We assume that   f*k(s) is analytic at   s=0.  Again, the
traffic intensity is defined as      r l m l m= + +1 1/ / .L K K

Again, we focus on the queue with a LCFS non-preemptive service discipline.  We
observe the queueing system at departure epochs.  Let   q(n) be the queue string right after the   nth
departure;   h(n) is the state of the underlying process of the arrival process right after the   nth
departure.  Then (q(n),   h(n)) is a Markov chain of matrix   M/G/1 type with a tree structure.

Theorem 8.1  The Markov chain (q(n),   h(n)) or the queueing system is positive recurrent if and
only if   r<1, transient if   r>1.

Proof.  The continuous case is simpler since arrivals and service completions cannot occur at the
same time.  The   z-transform of transition matrices can be obtained as:
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Similar to equation (7.5), the matrix   P defined in Section 2 is obtained as
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Therefore, the matrix   P is simple and   sp(P) =   r.  The right eigenvector corresponding to   sp(P) is
b with   bk=1/mk.  Let   zk(t)   = 1+bkt, for 1£k£K.  It is easy to prove
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where   De=0 is used.  By Theorem 6.3, the Markov chain is positive recurrent if   r<1, transient if
r>1.  It has been proved in HE [5] that   r<1 is necessary for positive recurrence of the Markov
chain.  The proof of necessity is similar to the discrete case.  Let   V*(s) be the Laplace Stieltjes
transform of the virtual waiting time in steady state, then we have
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where   f*(J,   s) is the Laplace Stieltjes transform of the sum of the service times of all customers in
batch   J.  Using this result, we can prove that   y(0)e = 1-r > 0 if the Markov chain is positive
recurrent, which implies that   r<1.    

Therefore, the Markov chain or the queueing system is positive recurrent if and only if
r<1, transient if   r>1.  This completes the proof of Theorem 8.1.

 Theorem 8.1 applies to the   MMAP[K]/G[K]/1 queue with a FCFS service discipline, the
MMAP[K]/PH[K]/1 queue with a LCFS non-preemptive service discipline, and
MMAP[K]/G[K]/1 queue with a LCFS preemptive resume service discipline studied in HE [5, 6],
and HE and Alfa [8], respectively.

9. The Continuous Time   MMAP[K]/PH[K]/S Queues

This section considers a multiple server queueing system with a Markov arrival process
MMAP[K] and phase-type service times.  The service times of different types of customers may
have different distribution functions.  We consider work conserving service disciplines.  To solve
the classification problem, we only consider the queue in which all types of customers are served
on a LCFS non-preemptive basis.  Some notations introduced in previous sections are used.

The arrival process of this queueing system is the same as that of Section 8.  There are   S
identical servers in the queueing system.  The service times of type   k customers have a common
continuous time phase-type distribution (PH-distribution) with a matrix representation (ak,   Tk),

where   ak is an   mk-dimension vector and   Tk is an   mk´mk matrix.  Let   T0k =   -Tke.  Then

-Tk-1T0k =   e.  The mean service time is given by 1/mk =   -akT-1ke.  Then   mk is the average

service rate of type   k customers.  Let   pk be the stationary distribution of   Tk+T0k   ak.  Then 1/mk
=   pkT0k.  More details about   PH-distribution can be found in Chapter 2 of Neuts [14].

The traffic intensity of the queueing system is defined as      .   SKK /)//( 11 mlmlr ++= L

We want to show that the queueing system can reach its steady state if   r<1.  To avoid heavy
notation, we give details to the case with   S=1   only.  An outline for the proof of the multiple
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server case is given later.

 The queueing system of interest is represented by the following four dimensional
stochastic process (S=1):

q(t):    the string of customers in queue (exclude the one in server, if any),   q(t)ÎÀÈ{   -1};
I(t):  the state of the underlying Markov process   D, 1£I(t)£m;
I1,1(t): the type of the customer in service (if any) 1£ I1,1(t)£K;
I1,2(t): the phase of the   PH-distribution of the current service (if any),   

   
.)(1 )(2,1 1,1 tImtI ££

If there is no customer in the system at time   t,   q(t) = –1.  If there is one customer in the
system at time   t,   q(t) = 0, since the customer is in service.  If there are customers waiting at time
t,   q(t) is a string in   À.  It is easy to see that (q(t),   I(t), I1,1(t), I1,2(t)) is a Markov process with a

state space:   À´{1, 2,   L,   m}´ÈKk=1{1, 2,   L,   mk}.  This is a QBD Markov process with a tree
structure when (I(t), I1,1(t), I1,2(t)) is defined as the auxiliary random variable with    m    statesm

(where       =   m1+L+mK), except that if   q(t) =   -1, the auxiliary variable takes values {1, 2,   L,m
m}.  Furthermore, the infinitesimal generator of the QBD Markov process is defined by the
following transition blocks.  For   J   =   k1Lkn   ÎÀ and 1£k£K,
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where “Ä” represents the Kronecker product of matrices (see Gantmacher [4]) and   In is an   n´n
identity matrix for positive integer   n.  Transitions associated with the root node 0 and the node
J=-1 can be found in HE [6].  They are omitted since they are not used here.  The function   A*(k,
z) is rewritten in the following way.
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 First, it has been proved in HE [6] that   r<1 is necessary for positive recurrence if   S=1.   
The idea is to show that the probability that the queueing system is empty is 1-r, if the queueing
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system can reach steady state.  Therefore, we only need to prove the sufficiency of the condition.   
For this purpose, we prove the following lemma.

Lemma 9.1  If   r <1, there exists a positive vector   u* such that

       (9.3),1,),(* KkkA ££-£ euz * e

for some   z with {zk>1, 1£k£K} and some positive   e.  If   r >   1, there exists a positive vector   u*

and   z   satisfing equation (9.3) with {0<zk<1, 1£k£K} and   e³0.

Proof.  Let   bk=1/mk and   zk(t)   = bkt+1, for 1£k£K.  Let   D*(t) =   åJ   (z(t))JDJ.  Let   x(t) be the

Perron-Frobenius eigenvalue of matrix   D*(t) and   z(k,   t) the Perron-Frobenius eigenvalue of
matrix      , 1£k£K.  Then we have   D*(t)uD(t) =   x(t)uD(t) and      uT(k,)(/ˆˆ),(ˆ 0* tzTTtkT kk+= ),(ˆ * tkT

t) =   z(k,t)uT(k,   t) for some nonnegative nonzero analytical vector   uD(t) and   uT(k,t) with   uD(0) =
e and   uT(k,0) =   e.   Let   q(t) and   p(k,   t) be the right eigenvector corresponding to   x(t) and   z(k,   t)

with   q(t)e =1 and   p(k,   t)e = 1, respectively.  Then   q(0) =   q and   p(k, 0) = (0,   L, 0,   pk, 0,   L, 0).   
Similar to Lemma 1.3.3 in Neuts [14], it can be proved that   
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Then we have the following Taylor expansions at   t=0:
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where {uT (1)(k), 1£k£K} are finite vectors.  This leads to, for 1£k£K,
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Dividing   uT(1)(k) into sub-vectors {uT(1)(k,   j), 1£j£K} of sizes {mj, 1£j£K}.  Then the last
equality in equation (9.6) gives
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If   r<1, choose   
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Choose positive   t small enough so that   x(t) =   rt+O(t2) <   t(1+7r)/8 and equation (9.10)
holds.    By equation (9.2), we have, for 1£k£K,
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 Set   e =   (1-r)/8 (>0) and   u* =   uD(t)ÄuT(t), equation (9.3) holds for 1£k£K.   

If   r>1, repeat the whole process but with a   negative small   t, we obtain   u* for which the
inequality holds with   e   = (r-1)/8 (>0).    This completes the proof Lemma 9.1.

Theorem 9.2    For a continuous time   MMAP[K]/PH[K]/S queue with a work conserving service
discipline, the Markov process {(q(t),   I(t), I1,1(t), I1,2(t)),   t>0} or the queueing system is positive
recurrent if   r<1, transient if   r>1.

Proof.  First, Lemmas 6.1 and 6.2 are modified to   A*(k,   z)u*   < 0 and   A*(k,   z)u*   £ 0,
respectively.  Then the result for   S=1 is obtained by Lemma 9.1.  The generalization to   S>1 can
be accomplished by using the following expression:
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 Then   u* =   uD(t)ÄuT(t)ÄLÄuT(t) can be used to prove the results in Lemma 9.1 for
S>1, which leads to this theorem.  Note that the boundary nodes are not essential for this problem
and are not considered.  This completes the proof of Theorem 9.2.

Note 9.1:  For   S=1, it has been proved in HE [6] that   r<1 is necessary for positive recurrence of
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the corresponding Markov process.  The same method can be used to prove that   r<1 is necessary
for positive recurrence for the case with   S>1.  In summary, a continuous time
MMAP[K]/PH[K]/S queue with a work conserving service discipline is positive recurrent if and
only if   r<1; transient if   r>1.

Note 9.2: Note that the above method does not apply directly in the discrete time
MMAP[K]/PH[K]/S queue with a work conserving service discipline if   S>1.  The main problem
with the discrete time case is that arrivals and completions of service can occur at the same time,
which makes the corresponding Markov chain more complicated.  Nonetheless, we believe, the
same conclusion can be proved for the discrete time   MMAP[K]/PH[K]/S queue with a work
conserving service discipline.  But details need further study.

10. Conclusion

In this paper, we showed that the classification of Markov chains of matrix   M/G/1 type with a
tree structure is determined by the Perron-Frobenius eigenvalue of a nonnegative matrix.  A
computational method was developed for computing the Perron-Frobenius eigenvalue of interest.
 Also in this paper, we proved two sufficient conditions for positive recurrence and transience of
Markov chains of matrix   M/G/1 type with a tree structure.  Using these results, we have proved
in this paper that discrete time and continuous time   MMAP[K]/G[K]/1 queues with a work
conserving service discipline is positive recurrent if and only if the traffic intensity is less than
one, transient if the traffic intensity is larger than one.  We also proved that the
MMAP[K]/PH[K]/S (S>1) queue is positive recurrent if   r<1 and transient if   r>1.    

Future research includes finding refined conditions for Theorem 2.1 if   m>1 and   K>1,
especially for the null recurrent case.  Results of that sort can be used to study the classification
problem of   MMAP[K]/G[K]/1 queues if   r = 1, a case which needs more attention.
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Extra Examples
==========\\\
Example 5.1  Consider a   MAP/PH/1 queue with a LCFS-GPR service discipline with the
following arrival process and service time distribution:
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We consider the following LCFS-GPR service disciplines:
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 The Perron-Frobenius eigenvalues   sp(P(G)) as a function of the arrival rate   l
corresponding to the above matrix   Qs are shown in Figure 5.1.  In Figure 5.1, the horizontal axis
is the   l and the vertical axis is   sp(P(G)).
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Figure 5.1  Perron-Frobenius eigenvalues   sp(P(G))

 In Figure 5.1, the difference between   Q(3) and the rest is more clear.  For   Q(1),   Q(2), and
Q(4),   sp(P(G)) crosses 1 from below for   l between 0.6 and 0.7.  For   Q(3),   sp(P(G)) crosses 1
from below for   l between 0.8 and 0.9.  Although the absolute value of   sp(P(G)) may not be an
indicator of traffic intensity of the corresponding queueing system, its position to 1 does show the
stability of the queueing system.  Thus, Figure 5.1 show that the queueing systems go from stable
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to unstable when   l goes from 0.6 to 0.7 for   Q(1),   Q(2), and   Q(4).  But the queueing system is
still stable for   Q(3) until   l is close to 0.9.  The reason is that the service process has a larger
probability to complete in state 1 than in that 2 (see the definition of matrix T).  The implication
of the numerical results need further study.

Example 4.2  Consider a Markov chain of   M/G/1 type with a tree structure with   m=2,   K=2, and
transition matrices (only those nonzero matrices):
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 For this Markov chain, matrices {G*(1),   G*(2)} are not stochastic and   sp(P(G)) =
1.0294.  Thus, the Markov chain is transient, but   sp(P)=0.9861<1.  Therefore,   sp(P) fails to
provide correct information for a classification of the Markov chain.
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