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Abstract

We study the convergence of certain matrix sequences that arise in quasi-birth-and-death
(QBD) Markov chains and we identify their limits. In particular, we focus on a sequence
of matrices whose elements are absorption probabilities into some boundary states of the
QBD.We prove that, under certain technical conditions, that sequence converges. Its limit
is either the minimal nonnegative solution G of the standard nonlinear matrix equation,
or it is a stochastic solution that can be explicitly expressed in terms ofG. Similar results
are obtained relative to the standard matrix R that arises in the matrix-geometric solution
of the QBD. We present numerical examples that clarify some of the technical issues of
interest.
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1. Introduction

Let� be the set of stochastic and substochastic matrices of orderm (a positive integer). Let
A0, A1, and A2 be nonnegative matrices in � such that A = A0 + A1 + A2 is stochastic, i.e.
Ae = e, where e is the column vector with all components one. To avoid insignificant cases,
we assume that the matrices A0 and A2 are nonzero. For any matrix X ∈ �, define f (X) as
the minimal nonnegative solution to the matrix equation:

f (X) = A2 + (A1 + A0X)f (X). (1.1)

Define a sequence of nonnegative matrices {Z(n), n ≥ 0} as follows: Z(0) ∈ � and
Z(n+ 1) = f (Z(n)), n ≥ 0. Our objective is to study the convergence of the sequence
{Z(n), n ≥ 0} and to identify its limit (if it exists). The sequence {Z(n), n ≥ 0} is closely
related to the minimal nonnegative solution G to the matrix equation:

G = A2 + A1G+ A0G
2. (1.2)

It is shown in [16] that the matrix G is in �. Denote by sp(G) the Perron–Frobenius
eigenvalue of the matrix G (i.e. the nonnegative eigenvalue of G with the largest modulus);
sp(G) is also called the spectral radius of G. Denote by g the left eigenvector of the matrix G
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corresponding to sp(G), i.e. gG = sp(G)g and ge = 1. In this paper, we prove that, under
certain conditions, the sequence {Z(n), n ≥ 0} converges either toG orG+ (I −G)eg, where
I is the identity matrix. We also identify conditions for the limit to be G or G + (I − G)eg

respectively.
The matrix G has much to do with the steady state distribution and fundamental periods of

quasi-birth-and-death Markov chains with transition blocks {A0, A1, A2} (see [16], [17], [18]
and Section 3 of this paper). Because of its importance to queueing models, the matrix G has
received major attention. Neuts [16] formally introduced the matrix G, gave its probabilistic
interpretation, and used it in queueing analysis. Since then, a number of papers focused on the
matrixG (or the equally important matrix R) have appeared. Among them are [2], [4], [5], [6],
[7], [9], [10], [11], [12], [15], [19], [20], and [22].

In all problems studied, the power-bounded solutions to (1.2) and algorithms for computing
the matrix G are closely related to our work. Gail et al. [6] identified all the power-bounded
solutions to (1.2) that include the matrices G and G + (I − G)eg. A number of papers ([1],
[2], [4], [12], [13], [21], etc.) developed various algorithms for computing the matrix G. For
the iteration algorithms utilizing (1.1) with Z(0) = 0, it has been proved that {Z(n), n ≥ 0}
converges to G. If G is stochastic, for Z(0) = I , it was shown in [13] that {Z(n), n ≥ 0}
converges to G. However, the convergence of the sequence {Z(n), n ≥ 0} is still an open
problem if Z(0) 	= 0 or Z(0) 	= I . In this paper, we identify conditions for the convergence of
{Z(n), n ≥ 0} if Z(0) is stochastic or substochastic. We also give a probabilistic interpretation
of the matrix sequence {Z(n), n ≥ 0}. In addition, if {Z(n), n ≥ 0} does converge, we shall
find the limit.

The matrices {Z(n), n ≥ 0} can be interpreted as the absorption probability matrix of some
boundary states of a sequence of finite Markov chains (see Section 3). Understanding the
matrices {Z(n), n ≥ 0} helps us study the corresponding quasi-birth-and-death Markov chain
constructed from {A0, A1, A2}. This is another motivation of this research.

In a recent paper, Latouche and Taylor [14] considered a similar problem. They use
probabilistic arguments to answer a (convergence) question more general than the one in this
paper. Unlike the conditions of this paper, which are given in terms of the properties of the
matrices {A0, A1, A2} and the solution to (1.2), their conditions for convergence are given in
terms of the structure of the corresponding QBD Markov chain.

The remainder of the paper is organized as follows. InSection 2, wepresent somepreliminary
results from nonnegative matrix theory. In Section 3, we give probabilistic interpretations and
some basic equations for the sequence {Z(n), n ≥ 0}. In Section 4, we prove that, under some
conditions, the sequence {Z(n), n ≥ 0} converges and the limit is eitherG orG+ (I −G)eg.
Conditions for the limit of {Z(n), n ≥ 0} to beG orG+ (I −G)eg are identified in Sections 5,
6, and 7. While Section 5 deals with the recurrent case, Sections 6 and 7 consider the transient
case. In Section 8, extensions to two matrix sequences related to the matrix R are carried out.
Finally, in Section 9, the results obtained in this paper are summarized.

2. Preliminaries

In this section, we review useful results about nonnegative matrices. These are treated in
detail in [8] and [23]. A few results related to (1.1) and to the matrix G are also presented.

Suppose that X is a nonnegative square matrix. Let sp(X) be the largest modulus of the
eigenvalues ofX. Then sp(X) is an eigenvalue ofX and sp(X) is nondecreasing with respect to
any element of the matrixX. Let u and v be the left and right eigenvectors ofX corresponding
to sp(X), respectively. Thenu and v are nonnegative. The vectorsu and v can be normalized by
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ue = uv = 1. If there exists a nonnegative c such that Xe ≤ ce, then sp(X) ≤ c. If the matrix
X is irreducible, sp(X) > 0, then the geometric and the algebraic degrees of sp(X) are 1, and the
vectors u and v are positive (i.e. every element of u or v is positive) and unique. Furthermore,
if the matrix X is irreducible, then sp(X) is strictly increasing with respect to every element of
X. If X is primitive (i.e. irreducible and aperiodic), sp(X) is the only eigenvalue of X with a
modulus sp(X). If X is primitive, a simple approximation Xn = (sp(X))nvu + o((sp(X))n)
can be verified by using the Jordan canonical form of matrix. Clearly, sp(X) ≤ 1 if X ∈ �,
and sp(X) = 1 if X is stochastic.

Throughout this paper, for any two vectors u = (u1, u2, . . . , um) and v = (v1, v2, . . . , vm),
u ≤ v means that ui ≤ vi for 1 ≤ i ≤ m; u < v means that u ≤ v and ui < vi for at least
one i, 1 ≤ i ≤ m.

For later use, we first derive, for any X ∈ �, an explicit expression for the minimal
nonnegative solution to (1.1). Note that, since various conditions on the matrices A, A0,
A1, A2, andG are used in different parts of this paper, the conditions for each theorem, lemma,
or corollary are stated individually.

Lemma 2.1. For any matrix X ∈ �, the minimal nonnegative solution to (1.1) is given as

f (X) =
∞∑
k=0

(A1 + A0X)
kA2. (2.1)

The sum in (2.1) converges for anyX ∈ �, and f (X) ∈ �. Furthermore, if sp(A1+A0X) < 1,
f (X) = (I − A1 − A0X)

−1A2 is the unique solution to (1.1).

Proof. By (1.1) and iteration, we obtain

f (X) =
n∑

k=0

(A1 + A0X)
kA2 + (A1 + A0X)

n+1f (X), n ≥ 0. (2.2)

Since X ∈ �, we have Xe ≤ e. Consequently, (A1 + A0X)e ≤ e and sp(A1 + A0X) ≤ 1.
If sp(A1 + A0X) < 1, then (A1 + A0X)

n+1 tends to 0 as n goes to infinity and the sum on
the right-hand side of (2.2) converges. That leads to (2.1) and f (X) = (I − A1 − A0X)

−1A2
is the unique solution to (1.1). Since e = (A2 + A1 + A0)e ≥ (A2 + A1 + A0X)e, we have
e ≥ (I − A1 − A0X)

−1A2e = f (X)e, that is, f (X) ∈ �.
If sp(A1 + A0X) = 1, we first show that the matrix A1 + A0X must be reducible. If

A1 +A0X were irreducible, then sp(A2 +A1 +A0X) > sp(A1 +A0X) = 1, since the matrix
A2 is nonzero. That contradicts sp(A2 +A1 +A0X) ≤ 1 since (A2 +A1 +A0X)e ≤ e. Thus,
the matrix A1 + A0X is reducible. After (possible) rearrangements of the rows and columns
of the matrices A1 + A0X, A2, A1, A0, and A, we can obtain

A1 + A0X =
(
P1 P2
0 P3

)

with P3e = e and sp(P1) < 1. Since (A2 + A1 + A0X)e ≤ e, it is easy to see that

A2 =
(
A2,11 A2,12
0 0

)
,
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where A2,11 is of the same size as the matrix P1. The equation (2.2) then becomes

f (X) =
n∑

k=0

(
P k
1A2,11 P k

1A2,12
0 0

)
+ (A1 + A0X)

n+1f (X)

→
(
(I − P1)

−1 0
0 0

)
A2, as n → ∞,

since f (X) is the minimal nonnegative solution to (1.1). Since (A2,11 + P1)e + (A2,12
+P2)e ≤ e, we find that (I − P1)

−1(A2,11e + A2,12e) ≤ e, and that leads to f (X)e ≤ e

and f (X) ∈ �.

Lemma 2.2. If sp(A1 + A0X) < 1 and Xe = e, then f (X) is stochastic.

Proof. Since sp(A1 + A0X) < 1, the matrix I − A1 − A0X is invertible. Since e =
(A2 +A1 +A0)e = (A2 +A1 +A0X)e, we obtain (I −A1 −A0X)e = A2e, which leads to
e = (I − A1 − A0X)

−1A2e = f (X)e.

Let G(0) = 0 and G(n + 1) = f (G(n)) for n ≥ 0. The sequence {G(n), n ≥ 0} and the
matrix G are related in a way that is important to our discussion.

Lemma 2.3. The sequence {G(n), n ≥ 0} is nondecreasing and converges to the matrix G.

Proof. Since G(0) = 0, G(n)e ≤ e for all n by Lemma 2.1. Since G(1) ≥ G(0) = 0,
it follows by (2.1) and induction that {G(n), n ≥ 0} is nondecreasing. Thus, {G(n), n ≥ 0}
converges and the limit is denoted by G̈. By (1.1), it is easy to see that G̈ satisfies (1.2). Since
the matrix G is in �, by (1.2) and Lemma 2.1, G ≥ f (G). Since G ≥ G(0), by (2.1) and
induction, it can be shown that G ≥ G(n) for all n, which implies that G ≥ G̈. By definition,
G is the minimal nonnegative solution to (1.2). Therefore, we must have G = G̈.

3. Probabilistic interpretations and some basic equations

In the context of quasi-birth-and-death (QBD)Markov chains, thematricesG, {G(n), n ≥ 0},
and {Z(n), n ≥ 0} have explicit probabilistic interpretations. These are given in the first part of
this section. Based on these probabilistic interpretations, we establish equations that are useful
in the proofs of our main results.

At the center of attention is a QBD Markov chain {(qk, Jk) : qk ≥ 0, 1 ≤ Jk ≤ m, k ≥ 0}
with the transition probability matrix

Q =



I 0
A2 A1 A0

A2 A1 A0
. . .

. . .
. . .


 .

Define level k as the set of states {(k, 1), (k, 2), . . . , (k,m)} for k ≥ 0. Note that all states
of level 0 are absorption states. It is proved in [16] that the (i, j )th element of the matrix G
is the conditional probability that the Markov chain Q reaches level k for the first time in the
state (k, j ), given that the Markov chain was initially in state (k + 1, i), for 1 ≤ i, j ≤ m and
k ≥ 0. We shall call the matrix G the absorption probability matrix of level 0. (Note that we
shall use the term ‘probability matrix’ in a similar manner.)
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In order to give probabilistic interpretations to the matrices {Z(n), n ≥ 0}, we introduce the
Markov chains {Qn, n ≥ 0} defined by their transition probability matrices:

Q0 =

 I 0 0
Z(0) 0 e − Z(0)e
0 0 1


 , Q1 =



I 0
A2 A1 A0

Z(0) 0 e − Z(0)e
0 1


 ,

Qn =




I 0
A2 A1 A0

. . .
. . .

. . .

A2 A1 A0
Z(0) 0 e − Z(0)e

0 1



, n ≥ 2.

The Markov chain Qn has n + 3 levels of states. States {(0, j), 1 ≤ j ≤ m} in level 0
and state {(n+ 2, 1)} in level n+ 2 are absorption states. Level n+ 1 can be considered as a
reflecting barrier. When Z(0)e = e, we call level n+ 1 ofQn a solid reflecting barrier. When
Z(0)e 	= e, we call the level n+ 1 ofQn a leaking reflecting barrier. The concept of reflecting
barrier is useful in explaining the main results in Sections 4–7.

Lemma 3.1. The matrix Z(n) is the absorption probability matrix of level 0 of the Markov
chain Qn, given that the Markov chain starts in level 1. The matrix G(n) is the absorption
probability matrix of level 0 without visiting level n+ 1, given that the Markov chainQn starts
in level 1.

Proof. When n = 0, Z(0) is clearly the absorption probability matrix of level 0 of the
Markov chain Q0. Suppose that Lemma 3.1 holds for Qn. For Qn+1, let X(n + 1) be the
absorption probability matrix of level 0, given that this Markov chain is initially in level 1. By
spatial homogeneity, the first passage time from level 2 to level 1 forQn+1 is equivalent to the
first passage time from level 1 to level 0 for Qn. Using that observation and conditioning on
the first transition ofQn+1, we obtain

X(n+ 1) = A2 + A1X(n+ 1)+ A0Z(n)X(n+ 1)

=
t∑

k=0

(A1 + A0Z(n))
kA2 + (A1 + A0Z(n))

t+1X(n+ 1). (3.1)

Then we need to show that X(n+ 1) is the minimal nonnegative solution to (3.1). That can be
done by considering the embedded Markov chain at the epochs whenQn+1 is in level 1. Then∑t

k=0(A1 + A0Z(n))
kA2 is the probability matrix that the embedded Markov chain reaches

level 0 within t transitions. SinceX(n+1) is the probability matrix thatQn+1 reaches level 0 in
finite time, we must have X(n+ 1) = ∑∞

k=0(A1 +A0Z(n))
kA2, i.e. the minimal nonnegative

solution to (3.1). By (1.1), (2.1), and (3.1), we have X(n+ 1) = f (Z(n)) = Z(n+ 1).
The interpretation of the matrices {G(n), n ≥ 0} is obtained in a similar way.

Lemma 3.1 establishes the relationship between the matrices {Z(n),G(n), n ≥ 0} and the
Markov chains {Qn, n ≥ 0}. From now on, we refer to the sequence {Z(n), n ≥ 0} as the ab-
sorption probabilities into level 0. This is another way to introduce the matrices {Z(n), n ≥ 0}.
In fact, the study of the solutions to (1.1) was originally motivated by consideration of these
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absorption probabilities. Next, we introduce two sets of matrices to elucidate further properties
of the sequence {Z(n), n ≥ 0}.
Definition 3.1. Let D(n) be an m×m matrix whose (i, j )th element is the conditional prob-
ability that the Markov chain Qn is eventually absorbed into level 0 in state (0, j ) and has
visited level n + 1 at least once before, given that the Markov chain is in state (1, i) initially,
1 ≤ i, j ≤ m. We readily see that D(0) = Z(0).

Definition 3.2. Let W(n) be an m × m matrix whose (i, j )th element is the conditional
probability that the Markov chain Qn visits level n + 1 for the first time in state (n + 1, j )
before being absorbed into level 0 or level n+ 2, given that the Markov chain is in state (1, i)
initially, 1 ≤ i, j ≤ m. We readily see thatW(0) = I .

The following relationships between the matrices {Z(n), n ≥ 0}, {G(n), n ≥ 0}, {D(n),
n ≥ 0}, and {W(n), n ≥ 0} are used in proving the main theorems in Sections 4–7.

Lemma 3.2. For all n ≥ 0,

Z(n) = G(n)+D(n) and Z(n)e ≤ e. (3.2)

In addition, for any convergent subsequence {Z(nt ), nt ≥ 0}, we have limnt→∞ Z(nt ) ≥ G.

Proof. The results in (3.2) readily follow from Lemma 3.1 and the definition of {D(n),
n ≥ 0}. The rest follows from (3.2) and Lemma 2.3.

Lemma 3.2 shows that the limit of {Z(n), n ≥ 0} (if it exists) is in the convex subset
{X : X ∈ � and X ≥ G} of �. Lemma 3.2 also implies that {Z(n), n ≥ 0} converges to the
matrix G for any Z(0) in � if G is stochastic (see Theorem 4.2). Thus, much effort in this
paper is concentrated on dealing with cases where the matrix G is not stochastic.

Equation (3.2) shows that there are two possible paths to absorption in level 0: (i) without
hitting the reflecting barrier (G(n)) and (ii) hitting the reflecting barrier at least once (D(n)).
Since {G(n), n ≥ 0} converges to the matrix G monotonically, the convergence of {Z(n),
n ≥ 0} is determined by that of {D(n), n ≥ 0}. The following two expressions for {D(n),
n ≥ 0} are useful in studying the convergence of {D(n), n ≥ 0} in Sections 4, 6, and 7.

Lemma 3.3. For all n ≥ 1, if sp(A1 + A0Z(n− 1)) < 1, then

D(n) = (I − A1 − A0Z(n− 1))−1A0D(n− 1)G(n). (3.3)

If sp(A1 + A0Z(k)) < 1 for 0 ≤ k ≤ n− 1, then

D(n) = (I −A1 −A0Z(n− 1))−1A0 · · · (I −A1 −A0Z(0))
−1A0Z(0)G(1) · · ·G(n). (3.4)

Proof. Let the Markov chainQn start in level 1. Conditioning on the first transition and by
Lemma 3.2, we obtain, for all n ≥ 1,

D(n) = A1D(n)+ A0[D(n− 1)Z(n)+G(n− 1)D(n)]
= A1D(n)+ A0[D(n− 1)(D(n)+G(n))+G(n− 1)D(n)]
= A1D(n)+ A0[Z(n− 1)D(n)+D(n− 1)G(n)].

That leads to [1−A1 −A0Z(n− 1)]D(n) = A0D(n− 1)G(n). If sp(A1 +A0Z(n− 1)) < 1,
the matrix I − A1 − A0Z(n − 1) is invertible and (3.3) follows. Equation (3.4) is readily
obtained from (3.3).
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Lemma 3.3 is important to the theorems in Section 6, but the condition {sp(A1 + A0Z(n))

< 1, n ≥ 0} does not always hold. In Section 6, we shall identify conditions under which it
holds. Also, in Sections 6 and 7, counterexamples are presented to demonstrate the complexity
of the issues related to sp(A1 + A0Z(n)) < 1.

Lemma 3.4. For all n ≥ 0,

Z(n) = G(n)+W(n)Z(0)Z(1) · · ·Z(n). (3.5)

Proof. Conditioning on whether or not the Markov chain Qn visits level n + 1 prior to
absorption into level 0, we obtainZ(n) = G(n)+W(n)Z(0)Y (n), whereY (n) is the probability
matrix that Qn transits from level n to level 0. The special structure of Qn implies that the
transitions from level n to level 0 can be divided into n stages: the first passage times from
level n to level n− 1, n− 1 to n− 2, . . . , 2 to 1, and 1 to 0. It is easy to see that the transition
probability matrix for the first passage time from level k to k − 1 is Z(n+ 1 − k), 1 ≤ k ≤ n,
which leads to Y (n) = Z(1) · · ·Z(n).

In order to deal with the sequence {W(n), n ≥ 0}, we introduce a matrix sequence
{Ĝ(n), n ≥ 0} as follows. For any matrix X ∈ �, define f̂ (X) as the minimal nonnegative
solution to the matrix equation:

f̂ (X) = A0 + (A1 + A2X)f̂ (X).

Let Ĝ(0) = 0 and Ĝ(n + 1) = f̂ (Ĝ(n)) for n ≥ 0. According to Lemma 3.1, the matrix
Ĝ(n) can be interpreted as the probability matrix that theMarkov chainQn transits from level n
to level n+ 1 for the first time before being absorbed into level 0, given that the Markov chain
Qn starts in level n. It is clear that {Ĝ(n), n ≥ 0} and {G(n), n ≥ 0} have similar properties.
For instance, {Ĝ(n), n ≥ 0} is a nondecreasing matrix sequence and its limit exists. We denote
the limit by Ĝ, which is the minimal nonnegative solution to the matrix equation

Ĝ = A0 + A1Ĝ+ A2Ĝ
2. (3.6)

Lemma 3.5. For the Markov chain Qn, W(n) = I if n = 0 and W(n) = Ĝ(1)Ĝ(2) · · · Ĝ(n)
if n ≥ 1.

Proof. The proof is similar to that of Lemma 3.4.

4. Convergence of {Z(n), n ≥ 0}
In general, establishing the convergence of {Z(n), n ≥ 0} is complicated. We begin by

discussing some easy cases, where fewer conditions are needed.

Theorem 4.1. Consider the sequence {Z(n), n ≥ 0} introduced in Section 1. The limits
of convergent subsequences of {Z(n), n ≥ 0} have the same row sums, i.e. the sequence
{Z(n)e, n ≥ 0} converges.

Proof. Suppose that {Z(nt )e} and {Z(kt )e} are convergent subsequences with limits Z1e

and Z2e respectively. We want to show that Z1e = Z2e. Without loss of generality, we assume
that nt < kt < nt+1. Postmultiplying by e on both sides of (3.5), since Z(n)e ≤ e for n ≥ 0,
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we have

Z(kt )e = G(kt )e +W(kt )Z(0)Z(1) · · ·Z(kt )e
≤ G(kt )e +W(kt )Z(0)Z(1) · · ·Z(nt )e
= [G(kt )−G(nt )]e + [W(kt )−W(nt )]Z(0)Z(1) · · ·Z(nt )e

+G(nt )e +W(nt )Z(0)Z(1) · · ·Z(nt )e
≤ [G(kt )−G(nt )]e + [W(kt )−W(nt )]e + Z(nt )e

≤ [G(kt )−G(nt )]e + Z(nt )e. (4.1)

The last inequality is due to Lemma 3.5 and Ĝ(n)e ≤ e, n ≥ 0, which implies that [W(kt ) −
W(nt )]e ≤ 0 if kt > nt . By Lemma 2.3, (4.1) implies that Z2e ≤ Z1e. Similarly, it can be
shown that Z1e ≤ Z2e. Therefore, Z2e = Z1e. Thus, all the convergent subsequences of
{Z(n)e, n ≥ 0} have the same limit.

Since the sequence {Z(n)e, n ≥ 0} is uniformly bounded, any subsequence of {Z(n)e,
n ≥ 0} must have a convergent subsequence with a finite limit. According to the above proof,
all these limits must be the same. Therefore, we conclude that {Z(n)e, n ≥ 0} converges.
Theorem 4.2. Consider the sequence {Z(n), n ≥ 0} introduced in Section 1.

(i) If the matrix G is stochastic, then {Z(n), n ≥ 0} converges to G for any Z(0) in �.

(ii) If Z(0) ≤ G and Z(0) ∈ �, then {Z(n), n ≥ 0} converges to G. Consequently, if
Z(0) ≤ (I − A1)

−1A2, then {Z(n), n ≥ 0} converges to G.

Proof. Part (i) follows immediately from Lemma 3.2. To prove (ii), notice that G ≥ f (G)

by Lemma 2.1. Then it is easy to see that, if Z(0) ≤ G, then Z(n) ≤ G for all n ≥ 0. By
Lemma 3.2, {Z(n), n ≥ 0} must converge and the limit is G. By (1.2), it is easy to verify that
(
∑∞

n=0 A
n
1)A2 = (I − A1)

−1A2 ≤ G. The matrix I − A1 is invertible since A0 and A2 are
nonzero and A is irreducible. The second part of (ii) follows.

Theorem 4.2 implies that the convergence of {Z(n), n ≥ 0} can be verified if Z(0) is in
some special subset of �. Following this direction, we prove that {Z(n), n ≥ 0} converges if
Z(0) has the form G+ v0g with 0 ≤ v0 ≤ (I −G)e and G is irreducible. First, some results
related to the matrix G are presented.

Lemma 4.1. If the matrix G is irreducible, the matrix A is irreducible.

Proof. Suppose that G is irreducible. If A is reducible, then the matrices {A2, A1, A0} are
reducible in a similar manner. Consequently, the minimal nonnegative solution to (1.2), G, is
reducible, which is a contradiction.

The converse of Lemma 4.1 is not always true. A counterexample is given as follows.

Example 4.1. Set

A2 =
(
0 1
0 0

)
, A1 = 0, A0 =

(
0 0

1 − p p

)
,

with 0 < p < 1. There are only two solutions to (1.2) in �, namely,

G =
(
0 1
0 0

)
and G =

(
0 1
0 1

)
.

It is easy to see that A is primitive. But the matrix G is reducible.
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Lemma 4.2. Assume that the matrix A and the matrixG are irreducible. Let θ be the (unique)
left eigenvector of A corresponding to the Perron–Frobenius eigenvalue 1, that is, θA = θ and
θe = 1. Then we have

(i) (I − A1 − A0G)
−1A0(I −G)e = (I −G)e;

(ii) if sp(G) < 1, then θA0(I − A1 − A0G)
−1 = θ ; and

(iii) sp((I − A1 − A0G)
−1A0) = sp(A0(I − A1 − A0G)

−1) = 1.

Proof. Since G ∈ �, according to the proof of Lemma 2.1, either the matrix A1 + A0G is
reducible with sp(A1 +A0G) = 1 or it has sp(A1 +A0G) < 1. If A1 +A0G is reducible with
sp(A1 + A0G) = 1, then by the proof of Lemma 2.1, we must have

A1 + A0G =
(
P1 P2
0 P3

)
and A2 =

(
A2,11 A2,12
0 0

)
,

which implies that the matrix G is reducible. That is a contradiction. Therefore, if G is
irreducible, we must have sp(A1 +A0G) < 1, i.e. the matrix I −A1 −A0G is invertible if G
is irreducible.

Postmultiply by e on both sides of the equation G = A2 + A1G + A0G
2. Replacing A2e

by e −A1e −A0e and after some algebra, we obtainA0(I −G)e = (I −A1 −A0G)(I −G)e,
which leads to (i). Part (ii) is obtained similarly by premultiplying by θ on both sides of
G = A2 + A1G+ A0G

2.
By (ii), θ [A0(I − A1 − A0G)

−1]n = θ for n ≥ 0. Since A is irreducible, θ is posi-
tive. Thus, the eigenvalue of A0(I − A1 − A0G)

−1 with the largest modulus is 1, in other
words, sp(A0(I − A1 − A0G)

−1) = 1. Since the matrix I − A1 − A0G is invertible, the
matrix A0(I − A1 − A0G)

−1 and the matrix (I − A1 − A0G)
−1A0 are similar. Therefore,

sp((I − A1 − A0G)
−1A0) = sp(A0(I − A1 − A0G)

−1) = 1.

Theorem 4.3. Consider the sequence {Z(n), n ≥ 0} introduced in Section 1. Assume that
the matrix G is irreducible. Let Z(0) = G + v0g with 0 ≤ v0 ≤ (I − G)e. If (I − A1 −
A0G)

−1A0v0 < (I −G)e, then Z(n) converges toG. If (I −A1 −A0G)
−1A0v0 = (I −G)e,

then Z(n) converges to G+ (I −G)eg.

Proof. If sp(G) = 1, then the matrix G must be stochastic since it is irreducible. By
Theorem 4.2, Z(n) converges to G for any Z(0) and Theorem 4.3 follows. In the rest of the
proof, we focus on the case where sp(G) < 1.

By Lemma 4.1, A is irreducible if G is irreducible. From (1.1), we have [I − A1 −
A0(G + v0g)]Z(1) = A2. By the proof of Lemma 4.2, I − A1 − A0G is invertible if G is
irreducible. Since I−A1−A0G is invertible, we obtain [I−(I−A1−A0G)

−1A0v0g]Z(1) =
(I − A1 − A0G)

−1A2 = G, which leads to

Z(1) = G+ (I − A1 − A0G)
−1A0v0gZ(1)

= G+
∞∑
k=0

(I − A1 − A0G)
−1A0v0[g(I − A1 − A0G)

−1A0v0]kg sp(G)

= G+ sp(G)

1 − g(I − A1 − A0G)−1A0v0
(I − A1 − A0G)

−1A0v0g

≡ G+ v1g, (4.2)
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where v1 = t1(I −A1 −A0G)
−1A0v0 and t1 = sp(G)/[1−g(I −A1 −A0G)

−1A0v0]. Since
v0 ≤ (I −G)e, g(I −A1 −A0G)

−1A0v0 ≤ g(I −A1 −A0G)
−1A0(I −G)e = g(I −G)e =

1− sp(G) < 1. (Note that sp(G) > 0 sinceG is irreducible.) Thus, the sum on the second line
of (4.2) converges. Further, we have t1 ≤ sp(G)/[1 − (1 − sp(G))] = 1(≡ t0). Inductively,
we can show that Z(n) = G+ vng, where

tn = sp(G)tn−1

1 − g(I − A1 − A0G)−1A0vn−1
(≤tn−1), n > 0;

vn = tn(I − A1 − A0G)
−1A0vn−1 = tntn−1 · · · t0[(I − A1 − A0G)

−1A0]nv0, n > 0.
(4.3)

By Lemma 4.2, [(I −A1 −A0G)
−1A0]nv0 ≤ (I −G)e. Thus, g(I −A1 −A0G)

−1A0vn−1 ≤
1 − sp(G) < 1.

Since G is irreducible, g is positive. If (I − A1 − A0G)
−1A0v0 < (I − G)e, then

g(I − A1 − A0G)
−1A0v0 < 1 − sp(G) and t1 < sp(G)/[1 − (1 − sp(G))] = 1. Thus,

tn ≤ t1 < 1 for n > 0. By the second equality in (4.3), vn converges to zero, which
implies that Z(n) converges to G. If (I − A1 − A0G)

−1A0v0 = (I − G)e, then tn = 1
and Z(n) = G+ (I −G)eg for n ≥ 1. Therefore, Z(n) converges to G+ (I −G)eg.

Theorem 4.3 shows that if Z(0) is in the convex subset {G + v0g : 0 ≤ v0 ≤ (I − G)e}
of � and G is irreducible, then the sequence {Z(n), n ≥ 0} converges and there are only two
possible limits: G and G + (I − G)eg. That fact is used later in this paper (e.g. in the proof
of Theorem 4.4).

Note 4.1. It seems possible to generalize Theorem 4.3 to cases with Z(0) in the convex subset
{G + " : " is nonnegative and "e ≤ (I − G)e} of �. That approach is left open for future
research.

IfG is not stochastic,Z(0) ≤ G does not hold, orZ(0) 	= G+v0g with 0 ≤ v0 ≤ (I−G)e,
then convergence of {Z(n), n ≥ 0} can be a complicated problem (see examples in Sections 6
and 7). Based on our experience, the complexity of the problem comes from the reducibility
of the matrixA, the multiplicity of nonnegative solutions to (1.2), the reducibility of the matrix
G, and the selection of the matrix Z(0). For instance, according to Gail et al. [6], there can
be many substochastic or stochastic solutions to (1.2) if G is not stochastic. Many of these
solutions to (1.2) can be the limit of a sequence {Z(n), n ≥ 0} with some carefully chosen
Z(0) in�. In order to reduce the complexity of the problem and to identify the limit explicitly,
we assume that the matrices G and Ĝ (see (3.6)) are primitive and show that the sequence
{Z(n), n ≥ 0} converges to either G or G + (I − G)eg. We shall then discuss briefly how
to ensure that both G and Ĝ are primitive. In Sections 5–7, we shall identify conditions on
{A2, A1, A0} for the limit to be G or G+ (I −G)eg.

Lemma 4.3. If sp(Ĝ) < 1, then the sequence {W(n), n ≥ 0} converges to zero. If sp(Ĝ) = 1,
we assume that Ĝ is primitive. Denote by ĝ the left eigenvector corresponding to the Perron–
Frobenius eigenvalue of Ĝ. Then the sequence {W(n), n ≥ 0} converges to v0ĝ, where v0 is a
nonnegative vector satisfying v0 ≤ (I −G)e.

Proof. If sp(Ĝ) < 1, then sp(Ĝn) = (sp(Ĝ))n → 0 and Ĝn → 0 when n goes to infinity.
Since the sequence {Ĝ(n), n ≥ 0} is nondecreasing, we haveW(n) ≤ Ĝ(1) · · · Ĝ(n) ≤ Ĝn →
0.
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If sp(Ĝ) = 1 and Ĝ is primitive, then the left and right eigenvectors corresponding to
sp(Ĝ) = 1 are unique. Since Ĝe ≤ e and Ĝ is irreducible, we must have Ĝe = e, i.e. Ĝ is
a stochastic matrix. Since the sequence {W(n), n ≥ 0} is uniformly bounded, there must be
a convergent subsequence, say W(nt ) → W0. Using the same argument, it can be concluded
that there is a convergent subsequence of {W(nt − 1)} converging to a matrix W1. Then we
have W0 = W1Ĝ since W(nt ) = W(nt − 1)Ĝ(nt ). Furthermore, we must have a convergent
subsequence of {W(nt − k)} converging to a matrixWk , andW0 = WkĜ

k for any k > 0. Since
{Wk, k ≥ 0} is uniformly bounded, it has a convergent subsequence. Denote by W∞ the limit
of the convergent subsequence of {Wk, k ≥ 0}. Since sp(Ĝ) = 1 is the only eigenvalue of Ĝ
with modulus 1, we have Ĝk = eĝ + o(1), which implies thatW0 = WkĜ

k → W∞eĝ ≡ v0ĝ.
Thus, we have proved that the limit of any convergent subsequence {W(nt )} of {W(n), n ≥ 0}
has the form v0ĝ.

Since Ĝ(n)e ≤ e, the sequence {W(n)e, n ≥ 0} is nonincreasing. Thus, {W(n)e, n ≥ 0}
converges. This implies that v0 is the same for any convergent subsequence of {W(n), n ≥ 0}.
Since {W(n), n ≥ 0} is uniformly bounded, it converges and the limit has the form v0ĝ, where
v0 is a nonnegative vector. Since [G(n)+W(n)]e ≤ e, we must have v0 ≤ (I −G)e.

Theorem 4.4. Consider the sequence {Z(n), n ≥ 0} introduced in Section 1. Assume that the
matrices G and Ĝ are primitive. Then {Z(n), n ≥ 0} converges and, for any Z(0) ∈ �, the
limit is either G or G+ (I −G)eg.

Proof. Under the assumptions, by Lemmas 3.4 and 4.3, the limit of any convergent subse-
quence of {Z(n), n ≥ 0} has the formZ∗ = G+v0ĝZ(0)Y , where Y is the limit of a convergent
subsequence of {Z(1) · · ·Z(n), n ≥ 0}. Consider a convergent subsequence {Z(nt ), nt ≥ 0}
and denote its corresponding limit by G+ v0u0 (where u0 = ĝZ(0)Y ). Rewrite (3.5) as

Z(nt ) = G(nt )+W(nt )Z(0)Z(1) · · ·Z(nt − 1)Z(nt )

= G(nt )+ [W(nt )−W(nt − 1)]Z(0)Z(1) · · ·Z(nt − 1)Z(nt )

+ [W(nt − 1)Z(0)Z(1) · · ·Z(nt − 1)]Z(nt )
= G(nt )+ [W(nt )−W(nt − 1)]Z(0)Z(1) · · ·Z(nt − 1)Z(nt )

+ [Z(nt − 1)−G(nt − 1)]Z(nt ). (4.4)

Denote the limit of a convergent subsequence of {Z(nt − 1)} by G + v0u1. By (4.4), we
have Z∗ = G + (v0u1)Z

∗. Note that W(n) converges by Lemma 4.3. Since sp(v0u1) <

sp(G + v0u1) ≤ 1 and G is irreducible, we have u1v0 = sp(v0u1) < 1. It is then easy to
see that Z∗ = G + v0u1G/(1 − u1v0) ≡ G + v0u2G, where u2 = u1/(1 − u1v0). It is
clear that the same conclusion holds for any convergent subsequence of {Z(nt − 2)}, i.e. the
limit has the form G + v0u2G. Using v0u2G for the limit of any convergent subsequence of
Z(nt−1)−G(nt−1) in (4.4), we obtainZ∗ = G+v0u3G

2, whereu3 is a vector obtained from
the convergent subsequence of {Z(nt−2)}. In general, suppose that the limit of {Z(nt )−G(nt )}
has the form v0ukG

k−1 for k (k > 1). In the same spirit, there exists a convergent subsequence
of {Z(nt −1)−G(nt −1)}with a limit of the form v0ukG

k−1. ReplacingZ(nt −1)−G(nt −1)
in (4.4) by v0ukG

k−1 when nt → ∞, we obtain Z∗ = G+ v0ukG
k−1Z∗, which implies that

Z∗ = G+ v0

( ∞∑
t=0

(ukG
k−1v0)

t

)
ukG

k = G+ v0ukG
k

1 − ukGk−1v0
. (4.5)

Note that ukGk−1v0 = sp(v0ukGk−1) < sp(G+ v0ukG
k−1) ≤ 1. By (4.5), with a mild abuse

of notation, we denote Z∗ = G + v0ukG
k , where uk is a nonnegative vector, for k > 0. If
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v0 = 0, then Z∗ = G = G + v0g. Suppose that v0 is nonzero. Since Z∗e ≤ e, ukG
k is

uniformly bounded. Since G is primitive, we have Gk = (sp(G))kvg + o((sp(G))k), where v

is the left eigenvector ofG corresponding to sp(G). Thus, ukGk converges to cg, where c is a
nonnegative constant. This implies that Z∗ = G+ v0g (where v0 is for cv0). In summary, we
have proved that Z∗ = G+ v0g with 0 ≤ v0 ≤ (I −G)e for any convergent subsequence of
{Z(n), n ≥ 0}.

By Theorem 4.1, Z∗e = Ge + v0 is the same for all convergent subsequences of {Z(n),
n ≥ 0}. This implies that v0 is the same for all convergent subsequences. Thus, the sequence
{Z(n), n ≥ 0} converges and the limit has the form Z∗ = G + v0g with 0 ≤ v0 ≤ (I − G)e

under the assumptions of Theorem 4.4. Since Z(n + 1) = f (Z(n)), we obtain Z∗ = f (Z∗),
which is equivalent to (1.2). Since G is primitive and Z∗ has the form G+ v0g, Theorem 4.3
implies that Z∗ is either G or G+ (I −G)eg.

The proof of Theorem 4.4 (as well as that of Theorems 6.1 and 7.1) shows that the validity of
the approximationGk = (sp(G))kvg +o((sp(G))k) forGk (and for Ĝk), as k → ∞, is critical
to the convergence of {Z(n), n ≥ 0}. In order to get that approximation, we assumed that both
G and Ĝ are primitive. But the conditions are restrictive and difficult to check directly.

Alternatively, we can impose appropriate conditions on the matrices {A,A0, A1, A2}. Let
A∗(z) = A0 + zA1 + z2A2. Assume that A is irreducible and the function zI − A∗(z) is
nonsingular for |z| = 1 except z = 1. By Theorem 4 in [6], the matricesG andG+ (I −G)eg

are the only solutions to (1.2) in�. Furthermore, sp(G) is the only eigenvalue ofG of modulus
sp(G) and its geometric and algebraic degrees are one. Thus, the approximation for Gk is
valid. The same results hold for the matrix Ĝ. Therefore, the results in Theorem 4.4 (and
Theorems 6.1 and 7.1) follow under these conditions on A and zI − A∗(z).

5. The recurrent case

Section 4 shows that under certain conditions,Z(n) converges to eitherG orG+(I−G)eg.
We still need to distinguish between these two alternatives. Here, and in Sections 6 and 7, we
identify conditions for either limit. Using examples, we showwhy our conditions are necessary.

Mainly, we distinguish between the case θA2e ≥ θA0e and the case θA2e < θA0e. The
conditions θA2e > θA0e, θA2e = θA0e, and θA2e < θA0e are used to classify the QBD
Markov chain Q defined in Section 3: θA2e > θA0e for positive recurrence, θA2e = θA0e

for null recurrence, and θA2e < θA0e for transience. The condition θA2e > θA0e is called
Neuts’ drift condition for the positive recurrence of QBD Markov chains.

The case θA2e > θA0e can easily be dealt with. If θA2e > θA0e, then the Markov
chain Qn is, in general, drifting towards level zero. Thus, the possibility of Qn hitting the
reflecting barrier (given that Qn starts in level 1) tends to zero when n goes to infinity, i.e.
limn→∞D(n) = 0. Thus, we expect that {Z(n), n ≥ 0} converges to G in this case. The
second case (θA2e = θA0e) differs from the first in the behavior of the Markov chainsQn and
Q, but the same result holds for {Z(n), n ≥ 0}. The results are summarized in the following
theorem.

Theorem 5.1. If θA2e ≥ θA0e, then the matrix G is stochastic and is the unique solution in
� to (1.2). For any Z(0) ∈ �, the sequence {Z(n), n ≥ 0} converges to G.

Proof. It is proved in [18] that, under the stated conditions, the matrix G is stochastic and
it is the unique solution to (1.2) in �. By Theorem 4.2, the sequence {Z(n), n ≥ 0} converges
to G for any Z(0) ∈ �.
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For the case θA2e < θA0e, the problem is more involved. Some conditions on the matrices
A, G, and Z(0) are necessary to identify the limit. Since the limit has much to do with Z(0),
we shall distinguish three cases according to Z(0): (i) Z(0) is stochastic, (ii) Z(0) is strictly
substochastic (i.e. Z(0)e ≤ εe for some positive ε < 1), and (iii) other cases (i.e. some
components of Z(0)e are 1 while others are less than 1). Note that we use the term ‘strictly
substochastic’ with a slightly different meaning than in the general literature. The first case is
dealt with in Section 6 and the second and third in Section 7.

6. The stochastic case: Z(0)e = e

If θA2e < θA0e, then theMarkov chainQn is, in general, drifting away from level 0. So the
matrixG is not stochastic. On the other hand, ifZ(0)e = e, then level n+1 is a solid reflecting
barrier forQn. The Markov chainQn should eventually be absorbed into level 0 for any finite
n. Thus, it is expected that {Z(n), n ≥ 0} converges to a stochastic matrix. Unfortunately,
Example 6.1(a) demonstrates that {Z(n), n ≥ 0} does not have to converge to a stochastic
matrix if Z(0) is stochastic, even though the matrixG is primitive. Therefore, other conditions
are required to guarantee that {Z(n), n ≥ 0} converges to a stochastic matrix. Some of these
conditions are identified in this section.

Theorem 6.1. Assume that the matrixG is primitive, that θA2e < θA0e, and that Z(0)e = e.
If sp(A1 + A0Z(n)) < 1, for all n ≥ 0, then the sequence {Z(n), n ≥ 0} converges to the
matrix G+ (I −G)eg. On the other hand, if {Z(n), n ≥ 0} converges to G+ (I −G)eg for
some stochastic matrix Z(0), then sp(A1 + A0Z(n)) < 1 for all sufficiently large n.

Proof. The proof is given in Appendix A.

Note 6.1. In this section and in Section 7, the matrix Ĝ is not used. But the proof of
Theorem 6.1 can be significantly reduced ifwe assume that thematrix Ĝ is also primitive. In that
case, Theorem 4.4 is used. The proof is as follows. SinceZ(0)e = e and sp(A1+A0Z(0)) < 1,
we must have Z(1)e = e by Lemma 2.2. By induction, it is easy to prove that Z(n)e = e for
all n since sp(A1+A0Z(n)) < 1 for all n. Thus, any convergent subsequence of {Z(n), n ≥ 0}
converges to a stochastic matrix. Therefore, by Theorem 4.4, {Z(n), n ≥ 0} converges to
G+ (I −G)eg. The proof of necessity is the same as that in Appendix A.

Intuitively, the condition {sp(A1 + A0Z(n)) < 1, n ≥ 0} ensures that there is no closed
subset of states (except levels 0 and n + 2) for all {Qn, n ≥ 0}. The condition Z(0)e = e

ensures that Qn will never be absorbed into level n + 2 for all n. Thus, {Z(n), n ≥ 0} are
all stochastic. The sequence converges to a stochastic matrix. To explain why the limiting
matrix isG+ (I −G)eg, we introduce the (fictitious) level ∞ (infinity) as a reflecting barrier
for the Markov chain Q. Level ∞ is a solid reflecting barrier since Z(0) is stochastic. The
first part of the limit, G, represents the absorption into level 0 without hitting the reflecting
barrier. The second part, (I − G)eg, is interpreted as follows. Elements of (I − G)e are the
probabilities that the Markov chainQ hits the reflecting barrier (level ∞). The vector g, which
is the quasistationary distribution of G, is the distribution of states when the Markov chain
Q eventually enters level 0 after being forced back from the remote solid reflecting barrier
(level ∞).

Theorem 6.1 shows that, if Z(0) is stochastic, the condition {sp(A1 +A0Z(n)) < 1, n ≥ 0}
is a sufficient condition and is ‘almost’ a necessary condition for {Z(n), n ≥ 0} to converge
to G + (I − G)eg. However, the condition {sp(A1 + A0Z(n)) < 1, n ≥ 0} is not necessary
for the convergence of {Z(n), n ≥ 0}. If the condition {sp(A1 + A0Z(n)) < 1, n ≥ 0} does
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not hold, Example 6.1 shows that the matrix Z(0) can affect the limit of {Z(n), n ≥ 0} in a
major way.

Example 6.1. Set

A0 =
(
0 0
1 0

)
, A1 =

(
0 0.8
0 0

)
, A2 =

(
0.1 0.1
0 0

)
.

Clearly, A = A0 + A1 + A2 is irreducible and aperiodic. It can be shown that θ = (1/1.9,
0.9/1.9), θA2e = 0.2/1.9 < θA0e = 0.9/1.9, and

G =
(
0.111111 0.111111
0.013889 0.013889

)
,

which is irreducible and aperiodic.

(a) Choose

Z(0) =
(
0 1
1 0

)
.

Then sp(A1 + A0Z(0)) = 1,

Z(1) =
(
0.1 0.1
0 0

)
,

and limn→∞ Z(n) = G. For n > 0, sp(A1 + A0Z(n)) < 1.

(b) Choose

Z(0) =
(
0.4 0.6
0.3 0.7

)
,

for which sp(A1 + A0Z(n)) < 1, n ≥ 0. Then

lim
n→∞Z(n) =

(
0.5 0.5
0.5 0.5

)
= G+ (I −G)eg.

Carefully examining Example 6.1(a), we find that a combination of matrices A0 and Z(0)
may create closed subsets in the state space of the Markov chainQn, n ≥ 0. This implies that
sp(A1 + A0Z(0)) = 1. This is why {Z(n), n ≥ 0} may not converge to a stochastic matrix
even when there is a solid reflecting barrier.

In the remainder of this section, we shall focus on the matrices A1 and A2 in order to find
simple conditions that ensure that sp(A1 + A0Z(n)) < 1 for n ≥ 0 and G is primitive.

Corollary 6.1. Assume that the matrix G is primitive and that θA2e < θA0e. If for some
positive ε, A2e ≥ εe holds, then the sequence {Z(n), n ≥ 0} converges to G+ (I −G)eg for
any stochastic Z(0).

Proof. By Theorem 6.1, it is sufficient to prove that, under the current conditions, sp(A1 +
A0Z(n)) < 1 for n ≥ 0. For n = 0, if sp(A1 + A0Z(0)) = 1, there exists a nonzero,
nonnegative vector u such that u(A1 + A0Z(0)) = u and ue = 1. Since Z(0)e = e, 1 =
u(A1 + A0Z(0))e = u(A1 + A0)e = u(A0 + A1 + A2)e − uA2e = 1 − uA2e. This implies
that uA2e = 0, which contradicts uA2e ≥ uεe = ε > 0. Thus, sp(A1 + A0Z(0)) < 1. By
Lemma 2.2, Z(1) is stochastic. The proof can then be completed by induction.
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Intuitively, the condition A2e ≥ εe for some positive ε ensures that the Markov chain Qn

can move towards level 0 (jump to the left) at any state. It implies that there will be no closed
subset for anyQn. Thus, {Z(n), n ≥ 0} converges to a stochastic matrix.

In order to use Corollary 6.1, we need to check whether the matrix G is primitive or not.
Unfortunately, this cannot be verified directly. Thus, we present the following operational
version of Corollary 6.1 (with possibly stronger conditions).

Corollary 6.2. (i) If θA2e < θA0e, the matrixA2 is irreducible, and the matrixG is aperiodic,
then the sequence {Z(n), n ≥ 0} converges to G+ (I −G)eg for any stochastic Z(0).

(ii) If θA2e < θA0e, and the matrixA2 is primitive, then the sequence {Z(n), n ≥ 0} converges
to G+ (I −G)eg for any stochastic Z(0).

Proof. First, the irreducibility of A2 implies that G is irreducible since G ≥ A2. It also
implies that A2e ≥ εe for some positive ε. Thus, all the conditions in Corollary 6.1 are
satisfied. Second, if A2 is primitive, G is primitive since G ≥ A2. Thus, all the conditions in
Corollary 6.1 are satisfied.

Example 6.1(b) shows that conditions on the matrix A2 given in Corollary 6.1 and
Corollary 6.2 are not necessary for {Z(n), n ≥ 0} to converge to G + (I − G)eg. Next,
we identify another condition to ensure that sp(A1 + A0Z(n)) < 1 for n ≥ 0.

Corollary 6.3. Assume that G is primitive and that θA2e < θA0e. If the matrix A1 + A2 is
irreducible, then the sequence {Z(n), n ≥ 0} converges to G + (I − G)eg for any stochastic
Z(0).

Proof. Similar to Corollary 6.1, it is sufficient to prove that, under all these conditions,
sp(A1 +A0Z(n)) < 1, n ≥ 0. For n = 0, suppose that sp(A1 +A0Z(0)) = 1. Since A1 +A2
is irreducible andA2 is nonzero, wemust have sp(A2+A1+A0Z(0)) > sp(A1+A0Z(0)) = 1.
But (A2 + A1 + A0Z(0))e = (A2 + A1 + A0)e = e, which implies that sp(A2 + A1 + A0
Z(0)) = 1. This is a contradiction. Therefore, sp(A1 + A0Z(0)) < 1 and Z(1) is stochastic.
The corollary is proved by induction.

Again, Example 6.1(b) shows that the condition that A1 +A2 is irreducible is not necessary
for sp(A1 +A0Z(n)) < 1, n ≥ 0. However, if A0 has a row of zeros or A1 +A2 is reducible,
the problem becomes more complicated. We use the following example to further demonstrate
the impact of the structure of the matrices A1 and A2 on the convergence of {Z(n), n ≥ 0}.
Example 6.2. Set

A0 =
(
0.3 0.3
0.4 0.5

)
, A1 =

(
0.1 0.1
0 0

)
, A2 =

(
0.1 0.1
0 0.1

)
.

Corollary 6.1 proves that for any stochastic Z(0), {Z(n), n ≥ 0} converges toG+ (I −G)eg.
However, small changes in A1 and A2 can affect the result dramatically.

Reset

A0 =
(
0.3 0.3
0.4 0.5

)
, A1 =

(
0.1 0.1
0 0.1

)
, A2 =

(
0.1 0.1
0 0

)
.

In this case, A1 + A2 is reducible and sp(A1 + A0Z(0)) = 1 when

Z(0) =
(
0 1
0 1

)
.
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Nonetheless, it can be shown that

Z(1) =
( 1

9
1
9

0 0

)

and {Z(n), n ≥ 0} converges to

G =
(
0.11699 0.11699
0.00692 0.00692

)
.

It is also easy to verify that {Z(n), n ≥ 0} converges to

G+ (I −G)eg =
(
0.5 0.5
0.5 0.5

)
if

Z(0) =
(
0.3 0.7
0.6 0.4

)
.

Note 6.2. The condition that A1 + A0Z(n) is irreducible for all n guarantees that sp(A1 +
A0Z(n)) < 1, n ≥ 0. But checking this condition is as hard as checking that sp(A1 + A0
Z(n)) < 1, n ≥ 0, directly.

To end this section, we give an operational version of Corollary 6.3.

Corollary 6.4. (i) If θA2e < θA0e, the matrix (I −A1)
−1A2 is irreducible, and the matrixG

is aperiodic, then the sequence {Z(n), n ≥ 0} converges to G+ (I −G)eg for any stochastic
Z(0).

(ii) If θA2e < θA0e and the matrix (I−A1)
−1A2 is primitive, then the sequence {Z(n), n ≥ 0}

converges to G+ (I −G)eg for any stochastic Z(0).

Proof. Since G ≥ (I − A1)
−1A2, all the conditions in Corollary 6.3 are satisfied. This

proves the first part of the corollary. The second part is obtained similarly.

7. The substochastic case: Z(0)e �= e

If Z(0) is not stochastic, then the reflecting barrier is leaking, i.e. Qn can go from level
n+ 1 to level n+ 2. Consequently,Qn can go from level 1 to level n+ 2. Thus, if Z(0) is not
stochastic, we expect {Z(n), n ≥ 0} to converge to the matrixG. However, Example 7.1 shows
that {Z(n), n ≥ 0} may converge to the matrix G+ (I −G)eg even if Z(0) is not stochastic.
In this section, we identify conditions guaranteeing the convergence of {Z(n), n ≥ 0} to G if
Z(0) is not stochastic. The main result is given in the following theorem.

Theorem 7.1. Assume that the matrix G is primitive and that θA2e < θA0e. The sequence
{Z(n), n ≥ 0} converges to G if and only if lim supn→∞ sp(Z(n)) < 1. Furthermore, if the
sequence {Z(n), n ≥ 0} converges to G, sp(A1 + A0Z(n)) < 1 for large enough n.

Proof. The proof is given in Appendix B.

Note 7.1. The proof of Theorem 7.1 can be significantly reduced if the matrix Ĝ is also
primitive. The proof is as follows. According to Theorem 4.4, {Z(n), n ≥ 0} converges
to either G or G + (I − G)eg. If {Z(n), n ≥ 0} converges to G + (I − G)eg, we must
have lim supn→∞ sp(Z(n)) = 1, which contradicts the assumption. Therefore, {Z(n), n ≥ 0}
converges to G. The proof of necessity is the same as that in Appendix B.
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The following example shows that {Z(n), n ≥ 0} may converge to G+ (I −G)eg even if
Z(0) is not stochastic.

Example 7.1. Set

A0 =
(
0.2 0
0.9 0

)
, A1 =

(
0.3 0.3
0 0.1

)
, A2 =

(
0.1 0.1
0 0

)
.

(a) If

Z(0) =
(
0 1
0 0

)
,

then {Z(n), n ≥ 0} converges to

G =
(
0.16667 0.16667
0.03333 0.03333

)
.

For this case, sp(A1 + A0Z(n)) < 1 holds only for n ≥ 1.

(b) If

Z(0) =
(
1 0
0 0

)
,

then, even though Z(0) is not stochastic,

Z(n) = G+ (I −G)eg =
(
0.5 0.5
0.5 0.5

)
, n ≥ 1.

For this case, sp(A1 + A0Z(n)) < 1 holds for n ≥ 0.

Example 7.1 shows that the condition that sp(A1 + A0Z(n)) < 1 holds for n ≥ 1 does not
guarantee that the sequence {Z(n), n ≥ 0} converges to eitherG orG+(I−G)eg ifZ(0) is not
stochastic. However, sp(A1 +A0Z(n)) < 1 for large enough n is necessary for {Z(n), n ≥ 0}
to converge to G.

Two conditions are identified to ensure lim supn→∞ sp(Z(n)) < 1 if Z(0) is not stochastic.
First, we focus on the case where Z(0) is strictly substochastic.

Corollary 7.1. Assume that the matrix G is primitive and that θA2e < θA0e. If Z(0)e ≤ εe

for some positive ε < 1, then the sequence {Z(n), n ≥ 0} converges to G.

Proof. By Theorem 7.1, it is sufficient to show that lim supn→∞ sp(Z(n)) < 1. If
lim supn→∞ sp(Z(n)) = 1, there exists a convergent subsequence {sp(Z(nt )), nt ≥ 0} such
that limnt→∞ sp(Z(nt )) = 1. Since {Z(nt ), nt ≥ 0} is uniformly bounded, there exists a
convergent subsequence {Z(nt ′), nt ′ ≥ 0} that converges to Z̄, say, with Z̄e ≤ e. It is easy to
see that sp(Z̄) = 1. Since Z̄ ≥ G and G is irreducible, the matrix Z̄ is irreducible. Then we
must have Z̄e = e, otherwise sp(Z̄) < 1. SinceZ(n)e ≤ e for n ≥ 0 andW(n)e ≤ e−G(n)e,

e = Z̄e ≤ lim
n→∞[G(n)e +W(n)Z(0)e] ≤ Ge + lim

n→∞W(n)εe ≤ e − ε(I −G)e. (7.1)

Since θA2e < θA0e, (I −G)e 	= 0, which contradicts (7.1).
Intuitively, Z(0)e ≤ εe implies that every state of the reflecting barrier is leaking. Under

the drift condition θA2e < θA0e, there is always a chance for Qn to hit the leaking reflecting
barrier and be absorbed into level n+ 2. Thus, we expect that the probability that the Markov
chain will be absorbed into level 0 is less than 1.
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Next, we relax the condition on Z(0) by assuming only that Z(0) is not stochastic. On the
other hand, we add the condition that the matrix A0 is primitive. This condition is contrasted
to the condition that A1 + A2 is irreducible given in Corollary 6.3.

Corollary 7.2. Assume thatG is primitive and that θA2e < θA0e. If A0 is primitive, then the
sequence {Z(n), n ≥ 0} converges to G for any Z(0)e 	= e and Z(0) ∈ �.

Proof. By Theorem 7.1, it is sufficient to show that lim supn→∞ sp(Z(n)) < 1. Since A0 is
irreducible and aperiodic, every element of Am0 is positive (recall that A0 is an m×m matrix).
By definition, Z(m)e ≤ e − Am0 (e − Z(0)e). Since every element of Am0 is positive and
e − Z(0)e is nonzero, the vector Am0 (e − Z(0)e) is positive.

If lim supn→∞ sp(Z(n)) = 1, then there exists a convergent subsequence {sp(Z(nt )), t ≥ 0}
such that limnt→∞ sp(Z(nt )) = 1. Conditioning on the first passage time from level 1 to level
n−m for theMarkov chainQn, we rewrite (3.5) asZ(n) = G(n−m)+W(n−m)Z(m) · · ·Z(n).
Then we obtain Z(n)e ≤ G(n−m)e +W(n−m)Z(m)e. For any convergent subsequence of
{Z(nt ), t ≥ 0} and {W(nt −m), t ≥ 0}, we have (denote by Z̄ and W̄ their respective limits)

Z̄e ≤ Ge + W̄ [e − Am0 (e − Z(0)e)] < Ge + W̄e ≤ e.

Since Z̄ (≥G) is irreducible, we have sp(Z̄) < 1, which contradicts limnt→∞ sp(Z(nt )) = 1.

Note 7.2. The condition thatA0e ≥ εe for some positive ε does not guarantee that the sequence
{Z(n), n ≥ 0} converges to G for an arbitrary substochastic Z(0). See Example 7.1 for a
counterexample.

8. Generalizations to the matrix R

In this section, we extend the results forG to the matrixR that arises in the matrix-geometric
solution ([16] and [24]). We do so by two methods. The first method consists in directly
translating the results from G to the corresponding results for R. That method is based on the
duality betweenG andR. The second method is based on the probabilistic interpretation of the
matrices G and R. That method is interesting since it provides insight into the Markov chains
{Q,Qn, n ≥ 0} introduced in Section 3.
8.1. A duality approach

We consider a matrix sequence {L(n), n ≥ 0} generated as follows. Let L(0) be a non-
negative matrix and L(n+ 1) the minimal nonnegative solution to the equation

L(n+ 1) = A0 + L(n+ 1)[A1 + L(n)A2], n ≥ 0.

The matrix R is defined to be the minimal nonnegative solution to the equation

R = A0 + RA1 + R2A2.

We are interested in the relationship between the sequence {L(n), n ≥ 0} and the matrix R,
a problem that is analogous to that of {Z(n), n ≥ 0} andG. The dual relationship between the
matrices G and R provides ready answers.

Let " = diag(θ), Ã2 = "−1A�
0 ", Ã1 = "−1A�

1 ", and Ã0 = "−1A�
2 ", where

‘�’ represents matrix transpose. Let G̃ be the minimal nonnegative solution to (1.2) when
{Ã0, Ã1, Ã2} replaces {A0, A1, A2}. For Z̃(0) ∈ �, a sequence {Z̃(n), n ≥ 0} is generated
by using (1.1) when {Ã0, Ã1, Ã2} replaces {A0, A1, A2}. It was shown in [3] and [21] that



On the convergence and limits of certain matrix sequences 537

the matrices R and G̃ have a dual relationship G̃ = "−1R�". It is also easy to see that, if
Z̃(0) = "−1(L(0))�" ∈ �, then Z̃(n) = "−1(L(n))�", n ≥ 0. Thus, all the results obtained
in Sections 2–7 can be passed on to the matrix R and the sequence {L(n), n ≥ 0} through the
matrices {Ã0, Ã1, Ã2, G̃} and their corresponding sequence {Z̃(n) = "−1(L(n))�", n ≥ 0}.
Details are omitted.

8.2. The expected number of visits to level 2

In [16], the matrix R is interpreted as the expected number of visits to level n + 1 before
reaching level n or lower levels, given that the Markov chainQ is in level n initially. The above
duality approach does not give similar probabilistic interpretations to L(n). We now take a
probabilistic approach and introduce a sequence {R(n), n ≥ 0} directly from Markov chain
{Qn, n ≥ 0}.

In [10], the following relationships have been established for the Markov chainQ:

R = A0 + RU ; G = A2 + UG; U = A1 + RA2 = A1 + A0G,

where U is an m × m matrix whose (i,j )th element is the probability that the Markov chain
Q reaches level 1 in state (1, j ) before visiting any other state in levels 0 or 1, given that the
Markov chainQ is in state (1, i) initially. Next, we introduce matrix sequences {R(n), n ≥ 0}
and {U(n), n ≥ 0} for {Qn, n ≥ 0} and establish similar relationships between {R(n), n ≥ 0},
{U(n), n ≥ 0}, and {Z(n), n ≥ 0}.
Definition 8.1. The matrix R(n) is an m × m matrix whose (i, j )th element is the expected
number of visits to the state (2, j ) before reaching levels 1 or 0, given that the Markov chain
Qn is in state (1, i) initially.

Definition 8.2. The matrix U(n) is an m×m matrix whose (i, j )th element is the probability
that theMarkov chainQn reaches level 1 in state (1, j ) before visiting any other state in levels 0
or 1, given that the Markov chainQn is in state (1, i) initially.

By the definitions and probabilistic arguments, it can be shown that (details are omitted)

R(n) =



0, n = 0,

A0, n = 1,

A0 + R(2)A1 + R(2)R(1)Z(0), n = 2,

A0 + R(n)A1 + R(n)R(n− 1)A2, n ≥ 3,

U(n) =



0, n = 0,

A1 + A0Z(0), n = 1,

A1 + R(n)A2 = A1 + A0Z(n− 1), n ≥ 2.

(8.1)

Equation (8.1) leads to the following interesting relationships:

R(n) =
{
A0 + R(n)U(n− 1), n ≥ 1,

A0 + R(n)A1 + R(n)A0Z(n− 2), n ≥ 2,

Z(n) =
{
A2 + U(n)Z(n), n ≥ 1,

A2 + A1Z(n)+ R(n)A2Z(n), n ≥ 2.

(8.2)
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Theorem 8.1. Assume that G is irreducible. If {Z(n), n ≥ 0} converges to G, then {R(n),
n ≥ 0} converges toR = A0(I −A1−A0G)

−1. If {Z(n), n ≥ 0} converges toG+ (I −G)eg,
then {R(n), n ≥ 0} converges to R + A0(I −G)eg(I − A1 − A0G)

−1/sp(G).

Proof. If {Z(n), n ≥ 0} converges to G, then sp(A1 + A0Z(n)) < 1 for large enough n
by Theorem 7.1. By (8.1) and Theorem 7.1, when n is large enough, R(n) = A0[I − A1 −
A0Z(n − 2)]−1. Letting n tend to infinity, R(n) converges to A0(I − A1 − A0G)

−1 = R.
The matrix I − A1 − A0G is invertible since G is irreducible. If {Z(n), n ≥ 0} converges to
G+ (I −G)eg, sp(A1 + A0Z(n)) < 1 for large enough n by Theorem 6.1. Thus,

lim
n→∞R(n) = R + lim

n→∞R(n)[A0(I −G)eg(I − A1 − A0G)
−1].

Using A0(I − A1 − A0G)
−1 = R and Lemma 4.2, similar to the proof of Theorem 4.3, we

obtain the expected result.

9. Summary

In this paper, we studied the convergence of the sequence {Z(n), n ≥ 0} generated by using
(1.1). We have shown that, if the matrix G is stochastic or if Z(0) ≤ G, then the sequence
{Z(n), n ≥ 0} converges to G. We have also shown that, if the matrix G and the matrix Ĝ are
primitive, then the sequence {Z(n), n ≥ 0} converges to either G or G+ (I −G)eg.

We then identified conditions for the limit to beG orG+ (I −G)eg. Under the assumption
that θA2e ≥ θA0e, we have proved that the sequence {Z(n), n ≥ 0} converges to the stochastic
matrix G for any stochastic or substochastic Z(0). Assuming that G is primitive and θA2e <

θA0e, we have proved that (i) ifZ(0) is stochastic, the sequence {Z(n), n ≥ 0} converges to the
matrixG+(I−G)eg if ‘and only if’sp(A1+A0Z(n)) < 1, n ≥ 0; (ii) ifZ(0) is not stochastic,
the sequence {Z(n), n ≥ 0} converges to G if and only if lim supn→∞ sp (Z(n)) < 1. Two
conditions are identified to ensure that sp(A1 + A0Z(n)) < 1, n ≥ 0: (i) A2e ≥ εe for some
positive ε, and (ii) the matrix A1 + A2 is irreducible. Two conditions are identified to ensure
that lim supn→∞ sp(Z(n)) < 1: (i) Z(0)e ≤ εe for some positive ε < 1, and (ii) the matrixA0
is primitive.

The results obtained in this paper were extended to two matrix sequences related to the
matrix R in the matrix-geometric solution by using some relationships between G and R.

Some open problems remain. For instance, if (1.2) has many solutions and the matrix G is
not primitive, what will be the limit of {Z(n), n ≥ 0}? Furthermore, it appears that the results
for the QBD Markov chains can be generalized to the M/G/1 paradigm. But the problem
becomes tedious and many more details have to be worked out.

Appendix A. Proof of Theorem 6.1

Assume that the matrix G is primitive. By Lemma 2.3 and Lemma 3.2, it is sufficient to
prove that {D(n), n ≥ 0} converges to (I − G)eg. We shall use Lemma 3.3 and the fact that
{G(n), n ≥ 0} is nondecreasing in our proof.

Let v be the right eigenvector of the matrix G corresponding to ρ = sp(G) with gv = 1.
Since G is primitive, all components of v are positive and all elements of Gm are positive
(see [8]). Note that G is an m×m matrix. Thus, for small enough ε(0 < ε < ρm), the matrix
Gm − εvg is positive. Since {G(n), n ≥ 0} converges monotonically toG, it is clear that when
n is large enough, G(n − m + 1) · · ·G(n) ≥ Gm − εvg. Since sp(A1 + A0Z(n)) < 1 for
n ≥ 0, the matrix I − A1 − A0Z(n) is invertible for n ≥ 0. Therefore, (3.4) holds. For a
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positive integer k < n/m, let

H [n, k] = (I −A1 −A0Z(n−1))−1A0 · · · (I −A1 −A0Z(0))
−1A0Z(0)G(1) · · ·G(n−mk).

For a fixed positive integer k, (3.4) leads to the inequality:

H [n, k](Gm − εvg)k ≤ D(n) ≤ H [n, k]Gmk. (A.1)

Postmultiplying by the vector v on both sides of the above inequalities yields

H [n, k](Gm − εvg)kv ≤ D(n)v ≤ H [n, k]Gmkv

⇒ (ρm − ε)kH [n, k]v ≤ D(n)v ≤ ρmkH [n, k]v
⇒ D(n)v

ρmk
≤ H [n, k]v ≤ D(n)v

(ρm − ε)k
. (A.2)

Since {D(n), n ≥ 0} is uniformly bounded and every element of the vector v is positive, the
last line in (A.2) implies that for every fixed k, the sequence {H [n, k], n ≥ 0} is uniformly
bounded.

Consider a convergent subsequence of {Z(n), n ≥ 0}. Suppose that the limit of that
subsequence {Z(nt ), t ≥ 0}(nt → ∞ when t → ∞) is Z̃ = G + D̃. Since the sequence
{H [nt , k], t ≥ 0} is uniformly bounded, there exists a subsequence {nt ′ , t ′ ≥ 0} of {nt , t ≥ 0}
such that {H [nt ′ , k], t ′ ≥ 0} converges and the limit is denoted by H ∗[k]. Letting nt ′ → ∞,
the inequalities in (A.1) imply that

H ∗[k](Gm − εvg)k ≤ D̃ ≤ H ∗[k]Gmk, (A.3)

for small enough positive ε. Letting ε → 0 in (A.3), we obtainH ∗[k]Gmk = D̃ for any positive
k. Since G is primitive, we have Gmk = ρmkvg + o(ρmk), which implies that

D̃ = ρmkH ∗[k]vg + h∗[k]o(ρmk).
Since D̃v = H ∗[k]Gmkv = ρmkH ∗[k]v for all k and all components of v are positive,
the sequence {ρmkH ∗[k], k ≥ 0} is uniformly bounded. Thus, there exists a convergent
subsequence {ρmk′

H ∗[k′], k′ ≥ 0} with its limit denoted by H̃ . Then

D̃ = lim
k′→∞

{ρmk′
H ∗[k′]vg +H ∗[k′]o(ρmk′

)}
= lim

k′→∞
{ρmk′

H ∗[k′]vg + ρmk
′
H ∗[k′]o(1)} = H̃vg.

Therefore, Z̃ = G + H̃vg. Since Z(0)e = e and sp(A1 + A0Z(n)) < 1 for n ≥ 0, by
Lemma 2.2, Z(n)e = e for all n. Therefore, Z̃ẽ = e. Since ge = 1, we have H̃v = (I −G)e.
Finally, we obtain that Z̃ = G+ (I −G)eg.

Since for any convergent subsequence of {Z(n), n ≥ 0}, the equality Z̃ = G+ (I −G)eg

holds and {Z(n), n ≥ 0} is uniformly bounded, we conclude that the sequence {Z(n), n ≥ 0}
converges to G+ (I −G)eg if sp(A1 + A0Z(n)) < 1 for n ≥ 0.

Now, suppose that {Z(n), n ≥ 0} converges to G + (I − G)eg. If there exists an infinite
subsequence such that sp(A1+A0Z(nt )) = 1 for nt ≥ 0, by the proof of Lemma 2.1,Z(nt +1)
has the form (∗ ∗

0 0

)
,

i.e. some rows of Z(nt + 1) are zero. Thus, there exists a subsequence of {Z(nt + 1)} that
converges and the limit matrix has at least one zero row. Clearly, that contradicts the fact that
the limit matrix of {Z(n), n ≥ 0} is stochastic.
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Appendix B. Proof of Theorem 7.1

Assume that the matrix G is primitive. Since sp(G) < 1, the necessity of the condition is
obvious. The method of proving sufficiency of the condition is to use (3.5) and to show that
Y (n) = Z(1) · · ·Z(n) converges to 0 when n goes to infinity. For that purpose, we prove that
any convergent subsequence of {Y (n), n ≥ 1} converges to 0.

Since Z(n), n ≥ 0, are stochastic or substochastic matrices, the sequence {Y (n), n ≥ 1}
is uniformly bounded. Suppose that a subsequence {Y (nt ), nt ≥ 0} converges to a matrix Y .
We choose nt+1 > nt + m. Set Y (nt+1) = Y (nt )U(t). It is easy to see that {U(t), t ≥ 0}
is uniformly bounded and it has convergent subsequences. Suppose that a subsequence of
{U(t), t ≥ 0} converges to U . Then Y = YU . This implies that Y = YUk for any k. If
sp(U) < 1, it is clear that Y = 0. Suppose that sp(U) = 1. Since nt+1 > nt + m and
Z(n) ≥ G(n), we have

(G(nt ))
mZ(nt +m+ 1) · · ·Z(nt+1) ≤ U(t) ⇒ GmÛ ≤ U ; (B.1)

Z(nt + 1) · · ·Z(nt +m)Z(nt +m+ 1) · · ·Z(nt+1) = U(t) ⇒ U̇ Û = U, (B.2)

for some subsequence of {nt } and some matrices U̇ (the limit of a subsequence of {Z(nt + 1)
· · ·Z(nt + m)} and Û (the limit of a subsequence of {Z(nt + m + 1) · · ·Z(nt+1)} in �. We
also have

Z(nt + 1) · · ·Z(nt+1 −m)(G(nt ))
m ≤ U(t) ⇒ ŨGm ≤ U ; (B.3)

Z(nt + 1) · · ·Z(nt+1 −m)Z(nt+1 −m+ 1) · · ·Z(Nt+1) = U(t) ⇒ Ũ Ü = U, (B.4)

for some subsequence of {nt } and some matrices Ü (the limit of a convergent subsequence of
{Z(nt+1 − m + 1) · · ·Z(nt+1)} and Ũ (the limit of a convergent subsequence of {Z(nt + 1)
· · ·Z(nt+1 − m)} in �. If Û is a zero matrix, the matrix U is 0 by (B.2). This is impossible,
since we assumed that sp(U) = 1. Therefore, Û is not a zero matrix. Since every element of
the matrix Gm is positive, the matrix U has no zero row by (B.1). Similarly, Ũ is not a zero
matrix by (B.4) and U has no zero column by (B.3). Since U has no zero column, Û has no
zero column by (B.2). Since Û has no zero column, every element of U is positive by (B.1).
Thus, the matrix U is primitive. Let u be the left eigenvector of the matrix U corresponding to
sp(U) = 1. The vectoru is positive. ByY = YUk for any k, it can be shown thatY = sp(Y )xu,
where ux = 1 and the vector x is nonzero. In order to prove that Y = 0, we only need to prove
that sp(Y ) = 0.

The sequence {Y (nt )Z(nt + 1), nt ≥ 0} is uniformly bounded and must have a convergent
subsequence. Denote the limit by YZ. Since Y (nt )e ≥ Y (nt )Z(nt + 1)e ≥ Y (nt+1)e, we
have YZe = Y e. This implies that sp(Y )xuZe = sp(Y )xue, that is sp(Y )xuZe = sp(Y )x. If
sp(Y ) > 0, we obtain xuZe = x, which implies that uZe = 1. This implies that u(e −Ze) =
0. Since lim supn→∞ sp(Z(n)) < 1, we have sp(Z) < 1 and Ze 	= e, which implies that
e − Ze 	= 0 and e − Ze ≥ 0. This implies that u(e − Ze) > 0 since every element of u is
positive. This is a contradiction. Therefore, sp(Y ) = 0, that is Y = 0.

Since any convergent subsequence of {Y (n), n ≥ 0} converges to 0, we conclude that
{Y (n), n ≥ 0} converges 0 and {Z(n), n ≥ 0} converges to G.

If {Z(n), n ≥ 0} converges to G, sp(A1 + A0Z(n)) < 1 for large enough n must be true.
Otherwise, G should have zero row(s), which contradicts the fact that G is primitive.
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