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Abstract. This paper studies a single server queueing system with multiple types of customers. The first
part of the paper discusses some modeling issues associated with the Markov arrival processes with marked
arrivals (MMAP[K], where K is an integer representing the number of types of customers). The usefulness
of MMAP[K] in modeling point processes is shown by a number of interesting examples. The second part
of the paper studies a single server queueing system with an MMAP[K] as its input process. The busy
period, virtual waiting time, and actual waiting times are studied. The focus is on the actual waiting times
of individual types of customers. Explicit formulas are obtained for the Laplace–Stieltjes transforms of
these actual waiting times.
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1. Introduction

The objective of this paper is to show how to model point processes with multiple types
of customers by using Markov arrival processes with marked arrivals (MMAP[K]) and
to study a single server queueing system with multiple types of customers.

This study was motivated by the potential applications of the results obtained in
this paper in telecommunications, manufacturing, and service systems where multiple
types of customers are present. In telecommunications, systems such as switch centers
are required to handle different types of data (e.g., voice, video, and facsimile) simulta-
neously. The nature of these data processes is usually dramatically different. Some of
them are bursty, some are in high volume, some cannot afford any loss, and some cannot
have long delays. These data compete for system resource and, thus, have mutual influ-
ence when they travel in a network. Therefore, to do system performance analysis, it is
useful to understand how each type of data behaves in the network. In manufacturing,
a customer order may consist of several suborders (for different components). Thus,
the demand processes of individual components are dependent and so should be their
replenishment (or production) processes. To gain insights into such production systems,
an analysis at the component level is as important as an analysis at the aggregate level. In
the service industry, customers can be distinguished into different groups each requiring
a particular type of service. It is important to understand how a system serves individual
types of customers when they compete for the same resource.
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For all the above cases, a formal and convenient formalism of the input process is
vital in system modeling. A detailed analysis of the corresponding (queueing) systems
considering the behavior or performance of individual types of customers is useful in
practice. It is worth pointing out that even for queueing systems with only one type of
customer, when the input process is bursty, the waiting times of different customers can
be significantly different. Thus, it makes sense to distinguish customers into subgroups
and analyze the queueing processes of individual groups of customers respectively (see
[8, example 2]).

This paper suggests the use of MMAP[K] to model point processes with multiple
types of customers. MMAP[K] is a generalization of Markov arrival processes (MAP)
which have been studied and used extensively in queueing theory. MAP was introduced
in [18] to model non-Markovian point processes. MAP or some of its special cases are
widely used by researchers and practitioners in telecommunications and manufacturing
(see [4,14–17,21,22,26,27]). While MAP is a useful tool to model point processes with
one type of customer, MMAP[K] is useful when multiple types of customers are present.
MMAP[K] was introduced by Neuts (see [11]). Asmussen and Koole [3] introduced
MMAP[K] independently. Closely related work can also be found in [24,25], where the
term MMAP was introduced for special cases of multivariate Markov additive processes.
In this paper, it will be shown that MMAP[K] provides flexibility in modeling correlated
point processes with special arrival patterns. It will also be shown that queueing systems
with MMAP[K] as input processes are analytically and computationally tractable.

Queueing systems with multiple types of customers have been studied extensively
when the input processes are independent Poisson processes and priorities are assigned
to different types of customers (see [29–31 and references therein]). Useful results have
been obtained for system stability conditions, queue length, waiting time, and busy pe-
riod distributions. To extend applications of these results, queueing systems with more
general input processes were introduced and studied. Takine et al. [34] and Yeung
and Sengupta [36] considered Markov modulated Poisson processes and superposition
processes of Markov arrival processes. HE [9] and HE and Alfa [10] studied queue-
ing systems with MMAP[K], PH-distributed service times, and a last-come-first-served
service discipline. In [8,33], a queueing system with dependent arrival processes of
multiple types of customers and a first-come-first-served (FCFS) service discipline was
studied. Some results were obtained for the fundamental periods, queue length, and
waiting times. This paper generalizes most of the results obtained in [8].

The work of Takine and Hasegawa [33] (also see [32]) is closely related to this
paper. In fact, the analysis of the busy period, busy cycle, idle probabilities, virtual
waiting times of the queueing system studied in this paper can be carried out by using
results obtained in [33]. The differences between this paper and [33] are:

(1) this paper discusses some modeling issues related to MMAP[K];

(2) this paper considers the actual waiting time of any particular type of customer and
derives the corresponding Laplace–Stieltjes transform.
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Compared to [8], this paper gives a more detailed discussion on the modeling issues
of MMAP[K]. Queueing systems with general batch arrivals are considered in this
paper, while [8] focused on the case where each batch has only one customer. This
paper also considers the service sequence of customers within each batch, an issue that
is rarely discussed in the existing literature. In addition, this paper presents some of the
proofs given in [8] in a formal way. New insights into why some of the methods work
are gained and explained.

The study of the waiting times in a single server queue dates back to the Pollaczek–
Khinchin formula for the M/G/1 queue (see [6,12]). For the M/G/1 queue and its re-
lated Poisson arrival queueing systems, PASTA [35] guarantees that the actual waiting
time and the virtual waiting time have the same distribution. However, for queueing
systems with more general input processes (e.g., BMAP), PASTA does not hold, i.e.,
the virtual waiting time and the actual waiting time have different probability distrib-
utions. For the BMAP/G/1 queue, Pollaczek–Khinchin type formulas for virtual and
actual waiting times have been found (see [14–17,19,20,26]). When multiple types of
customers are present, not only are the virtual waiting time and the actual waiting time
different, but also the actual waiting times of individual types of customers are different
(see [8]). Therefore, an analysis of the waiting processes of individual types of cus-
tomers is necessary to gain insights into such queueing systems. Such an analysis is
conducted in sections 5 and 6 of this paper.

The rest of the paper is organized as follows. Section 2 gives the definition of
MMAP[K] and presents some limiting properties associated with MMAP[K]. Section 3
shows the usefulness of MMAP[K] by presenting a number of interesting examples and
introduces the MMAP[K]/G[K]/1 queue with a FCFS service discipline. Section 4
presents some results about the busy period and the Laplace–Stieltjes transform of the
virtual waiting time. Sections 5 and 6 study the actual waiting times of individual types
of customers. In section 5, the Laplace–Stieltjes transforms of actual waiting times of
various types of customers are presented with intuitive proofs. Formal proofs of these
results are given in section 6. Finally, in section 7, results obtained in this paper are
summarized and some discussion is given to future research.

2. Definition of MMAP[K]

A Markov arrival process with marked arrivals (MMAP[K]) is a stochastic point process
with multiple arrivals (batches) occurring in continuous time or discrete time. Each ar-
rival (batch) represents the arrivals of a number of customers into the system of interest.
There are K different types of customers. (Throughout of this paper, the words “arrival”
and “batch” are equivalent. The word “arrival” is used mostly in the first part of the
paper, while “batch” is used mainly in the second part of the paper.) For later use in this
paper, a definition of MMAP[K] is given to the continuous time case. This definition
was given by Neuts in [11]. Let

ℵ = {h: h = h1h2 . . . hn, 1 � hi � K, 1 � i � n, 1 � n < ∞}, (2.1)
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where K is a positive integer that represents the number of customer types. Each h ∈ ℵ
represents the types of customers within an arrival and their relative order. The length of
h ∈ ℵ, denoted by |h|, is the number of integers (customers) in h.

Consider an m-state Markov renewal process with an irreducible embedded
Markov chain with transition probability matrix P = (pi,j ) and exponential sojourn
time distributions in state i given by 1 − exp{−σix}, for 1 � i, j � m. This is also a
Markov chain in continuous time. Let D be the infinitesimal generator of this Markov
chain. The matrix D and the parameters P and σi , 1 � i � m, of the Markov renewal
process are related by Di,i = −(1 − pi,i)σi , for 1 � i � m, and Di,j = pi,j σi, for
1 � i, j � m, i �= j . Let J (t) denote the state of this Markov renewal process at time t .
J (t) is called the underlying Markov process with infinitesimal generator D.

Define a Markov renewal process {(Jn, Ln, τn), n � 0} on the state space
{[{1, . . . , m} × ℵ] × [0,∞)} with the transition probability matrix, for 1 � i, j � m,
h ∈ ℵ, i �= j, x � 0,

P{Jn = j, Ln = h, τn � x | Jn−1 = i} =
[∫ x

0
exp{D0u} duDh

]
i,j

, (2.2)

where Ln is the marking variable. The matrices {Dh, h ∈ ℵ} are nonnegative. The
matrix D0 has negative diagonal elements and nonnegative off-diagonal elements. D0 is
assumed to be nonsingular. The relationship between the infinitesimal generator D and
{D0, Dh, h ∈ ℵ} is

D = D0 +
∑
h∈ℵ

Dh. (2.3)

An arrival is called a type h arrival (batch) if the arrival is marked by h ∈ ℵ. The
marking rate (matrix) of type h arrivals is Dh. A type h arrival includes |h| customers
whose types are {h1, h2, . . . , h|h|} and sequenced within the arrival accordingly, i.e., the
first customer in the arrival is a type h1 customer, the second a type h2 customer, . . . , the
last a type h|h| customer. Let Nk(t) be the total number of type k customers who arrived
in (0, t). The set {Nk(t), 1 � k � K} consists of the counting processes of individual
types of customers. Denote by

pi,j (n1, . . . , nK, t) = P
{
N1(t) = n1, . . . , NK(t) = nK, J (t) = j | J (0) = i

}
,

1 � i, j � m, (2.4)

and P(n1, . . . , nK, t) an m × m matrix with elements pi,j (n1, . . . , nK, t). Let P ∗(z1,

. . . , zK, t) be the moment generating function of P(n1, . . . , nK, t). It can be proved
that

P ∗(z1, . . . , zK, t) ≡ EzN1(t)
1 · · · zNK(t)K = exp

{[
D0 +

∑
h∈ℵ

( |h|∏
n=1

zhn

)
Dh

]
t

}
, (2.5)

where ≡ represents definition and E represents mathematical expectation.
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Denote by θ the stationary probability vector of the matrixD, i.e., θD = 0, θe = 1,
where e is the column vector with all components one (see [7] for more about matrix
theory). Using equation (2.5), it is easy to verify that the stationary arrival rate of type h
arrivals is given by λh = θDhe for h ∈ ℵ (see [23, appendix]). Intuitively, the number
of type h arrivals during the period (t, t + δt) is given by λhδt , a basic fact that will be
used repeatedly. Furthermore, the arrival rates of individual types of customers, a group
of customers, and all the customers can be defined and obtained in a similar manner. For
instance, the following stationary arrival rates can be obtained easily. For h = h1 . . . h|h|
and 1 � n � |h|, let

λh,k,n ≡ θDhe I {hn = k}: the stationary arrival rate of type k customers which come

from type h arrivals and are the nth customer within their corresponding

arrivals;

λh,k ≡
|h|∑
n=1

θDhe I {hn = k}
(

=
|h|∑
n=1

λh,k,n

)
: the stationary arrival rate of type k custo-

mers which come from type h arrivals;

λk ≡
∑
h∈ℵ

|h|∑
n=1

θDheI {hn = k}
(

=
∑
h∈ℵ

|h|∑
n=1

λh,k,n

)
: the stationary arrival rate of

type k customers;

λb ≡
∑
h∈ℵ

θDhe
(

=
∑
h∈ℵ

λh

)
: the stationary arrival rate of arrivals (batches);

λ≡
∑
h∈ℵ

|h|θDhe
(

=
∑
h∈ℵ

|h|λh

)
: the stationary arrival rate of all customers regard-

less of their types,

where I {·} is the indication function. Some conditional probabilities and limiting results
of MMAP[K], which shall be used in later sections, can be obtained immediately.

Let pi,j (h) be the probability that the state of the underlying Markov process J (t)
right after a type h arrival is j , given that the arrival is of type h and the underlying
Markov process was in state i just before the arrival at an arbitrary time. Consider the
event that there is a type h arrival in (t, t + δt). In steady state, the probability that there
is a type h arrival in (t, t + δt) is θDheδt = λhδt . The probability that the state changes
from i to j is (Dh)i,j δt . Then

pi,j (h) = lim
δt→0

(Dh)i,j δt + o(δt)

λhδt + o(δt)
= (Dh)i,j

λh
. (2.6)

Let pi,j (h, k, n) be the probability that the state of the underlying Markov process
J (t) right after the arrival of a type k customer which is the nth customer in a type h
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arrival is j , given that the arrival is of type h and the underlying Markov process was in
state i just before the arrival. Then

pi,j (h, k, n) = (Dh)i,j I {hn = k}
λh

. (2.7)

Similarly, let pi,j (k) be the probability that the state of the underlying Markov
process J (t) right after the arrival of a type k customer is j , given that a type k customer
just came in and the underlying Markov process was in state i just before the customer
arrives. Let pi,j (an arrival) be the probability that the state of the underlying Markov
process J (t) right after an arrival is j , given that there is an arrival and the underlying
Markov process was in state i just before the arrival at an arbitrary time. Then

pi,j (k) =
∑

h∈ℵ
∑|h|

n=1(Dh)i,j I {hn = k}
λk

and pi,j (an arrival) =
∑

h∈ℵ(Dh)i,j

λ
.

(2.8)

Property 2.1. For the MMAP[K] defined above, we have the following useful conclu-
sions.

(a) The probability that an arbitrary arrival (batch) is of type h is λh/λb.

(b) The probability that an arbitrary type k customer is from a type h arrival is λh,k/λk.

(c) The probability that an arbitrary type k customer is from the nth position of a type h
arrival is λh,k,n/λk.

(d) The probability that an arbitrary customer is of type k is λk/λ.

Finally in this section, the ratio of the number of total customers arrived and
the number of a particular type of batch arrived is obtained. Let ξh(n) be the num-
ber of type h batches that arrived before and when the nth customer arrives. Then
lim{n→∞} n/ξh(n) is the average number of customers who arrived between two con-
secutive type h batches. Let N(h, h) be the total number of customers who arrived
between two consecutive type h batches (including one type h batch). The moment
generating function of N(h, h) can be obtained as

EzN(h, h) = θDh

λh

(
D0 +

∑
L�=h,L∈ℵ

z|L|DL

)−1

Dhe + z|h|. (2.9)

Differentiating expression (2.9) with respect to z and setting z = 1, yields EN(h,h) =
λ/λh. Then it is easy to prove that

lim
n→∞

ξh(n)

n
= 1

EN(h,h)
= λh

λ
. (2.10)

More asymptotic and limiting results can be derived for MMAP[K]. Nonetheless,
only these to be used later in this paper are presented in this section. Strict proofs of
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all the conclusions can be obtained following the approaches used for the special case:
Markov arrival processes. See [23] for more details.

3. Modeling with MMAP[K] and the MMAP[K]/G[K]/1 queue

In this section, a number of special cases and examples of MMAP[K] are presented
and the MMAP[K]/G[K]/1 queue is introduced as well. The objective of this section
is to demonstrate the usefulness of MMAP[K] in the modeling of point processes and,
hence, the potential applications of MMAP[K] to telecommunications, manufacturing,
and service industries.

Special case 3.1. The superposition process of K independent Poisson processes is
an MMAP[K]. Suppose that the arrival rates of the K Poisson processes are
{λ1, λ2, . . . , λK}. The matrix representation of its corresponding MMAP[K] is D0 =
−(λ1 + · · · + λK),D1 = λ1, . . . , and DK = λK .

Special case 3.2. A batch Markov arrival process (BMAP) with matrix representation
{D0, D1, D11, D111, . . .} is an MMAP[K] with K = 1. Dh is the arrival rate (matrix)
of batches of the size |h| for h = 1 . . . 1. See [14,15,17,18] for more details about
BMAP.

Special case 3.3. An MMAP[K] with matrix representation {D0, D1, D2, . . . , DK}
describes a point process with K types of customers. Each arrival (batch) consists of
a single customer. This type of MMAP[K] has been studied in [11] and used as input
processes to queueing systems in [8–10].

Next, a few interesting examples are presented to show how to use MMAP[K] to
model stochastic point processes with a special arrival pattern.

Example 3.4. Consider a point process with 2 types of customers. An arrival may con-
sist of a single type 1 customer, a single type 2 customer, or a type 1 customer and a
type 2 customer. Such point processes can be modeled by MMAP[2] with a carefully
chosen underlying Markov process J (t), and matrices {D0,D1,D2,D12}. When the or-
der of the two customers in an arrival (batch) must be considered for some reason, D12

can then be split into two matrices {D12,D21} to distinguish a {12} batch from a {21}
batch.

Example 3.5. When the arrivals of a point process with 2 types of customers possess a
cyclic pattern, the process can be modeled by the following MMAP[2]:

D0 =
(
d0,11 0

0 d0,21

)
, D1 =

(
0 d1,12

0 0

)
, D2 =

(
0 0

d2,21 0

)
, (3.1)
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where d0,11, d0,21, d1,12, and d2,21 are matrices with dimensions chosen properly. Ma-
trices d0,11 and d0,21 have negative diagonal elements and nonnegative off-diagonal el-
ements. Matrices d1,12 and d2,21 are nonnegative. In this MMAP[2], a type 2 customer
follows a type 1 customer and a type 1 customer follows a type 2 customer. With this
formulation, not only the sequence of customers is modeled, but also the interarrival
times between arrivals of different types can be specified.

Example 3.6. Consider a point process with two types of customers. It is observed that
any type 2 customer is followed by at least one type 1 customer. Such a point process
can be modeled by an MMAP[2] with a matrix representation:

D0 =
(
d0,11 0

0 d0,21

)
, D1 =

(
d1,11 d1,12

0 0

)
, D2 =

(
0 0

d2,21 0

)
, (3.2)

where d0,11, d0,21, d1,11, d1,12, and d2,21 are nonzero matrices with dimensions chosen
properly. Matrices d0,11 and d0,21 have negative diagonal elements and nonnegative off-
diagonal elements. Matrices d1,11, d1,12, and d2,21 are nonnegative.

Example 3.7. Consider a point process with three types of customers. Priorities exist
among different types of customers within each batch. However, such priorities may
change from batch to batch. MMAP[K] can be used to model such point processes.
For instance, an MMAP[K] with {D0, D121, D112, D312, D113, D32} describes a point
process in which type 3 customers have higher priorities over type 1 customers when a
type 2 customer is present; otherwise, type 1 customers have higher priorities over type 3
customers in a batch.

In general, point processes with multiple types of arrivals and more complicated
arrival patterns can be modeled by using MMAP[K].

The MMAP[K]/G[K]/1 queue. The MMAP[K]/G[K]/1 queue is a single server
queueing system with an MMAP[K] input process. The input process is represented
by matrices {D0,Dh,h ∈ ℵ}. There are K types of customers. The service times of type
k customers have a common distribution function Fk(x) with Laplace–Stieltjes trans-
form f ∗

k (x) and mean service time 1/µk, 1 � k � K. We assume that all service times
are independent of each other and independent of the input process.

All customers join a single queue and are served based on a first-come-first-served
(FCFS) basis. However, service priorities may be assigned to customers in the same
batch. That is, within each batch, customers are served as they are sequenced. For ex-
ample, for a batch of the type h = 1231, the first type 1 customer is served first, then
the type 2 customer, then the type 3 customer, and finally the other type 1 customer. Be-
cause of the flexibility of MMAP[K] in modeling the input process, a variety of service
priorities within batches can be included.
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Define the traffic intensity of the queueing system as

ρ =
K∑
k=1

λk

µk
. (3.3)

It is assumed that the traffic intensity ρ < 1 so that the queueing system can reach its
steady state.

To end this section, we present an example to show that the consideration of the
correlation or pattern in the arrival process does make a difference in the performance
analysis of queueing systems with multiple types of customers.

Example 3.8. Consider a queueing system with an MMAP[2] input process. The ser-
vice times of the two types of customers have exponential distributions with parameters
µ1 and µ2, respectively, i.e., f ∗

1 (s) = µ1/(s + µ1) and f ∗
2 (s) = µ2/(s + µ2). For the

input process, we consider two cases:

(a) D0 =
(−t1 0

0 −t2
)
, D1 =

(
0 t1
0 0

)
, D2 =

(
0 0
t2 0

)
,

t1 > 0, t2 > 0;
(b) D0 = −(λ1 + λ2), D1 = D2 = λ1 = λ2 (= t1t2/(t1 + t2)).

(3.4)

For the two input processes, the average arrival rates of type 1 and type 2 customers
are the same. Using the results obtained in sections 4 and 5, the Laplace–Stieltjes trans-
forms of the waiting times of type 1 customers in steady state (for the two cases) can be
obtained as

(a) w∗
1(s)e = s[y01(s + µ2)(s − t2)− y02t2µ2](s + µ1)(t1 + t2)

[(s + µ1)(s + µ2)(s − t1)(s − t2)− t1t2µ1µ2]t2 ,

(b) w∗
1(s) = y0

(s + µ1)(s + µ2)

s2 + s(µ1 + µ2 − λ1 − λ2)+ µ1µ2 − λ1µ2 − λ2µ1
,

(3.5)

where vector y0 = (y01, y02) and y0 are the (vector) probabilities that the queueing
system is empty at an arbitrary time when the input processes are given by part (a) and
(b) in equation (3.4), respectively. It is easy to see that y0e = y0 = 1 − λ1/µ1 − λ2/µ2.
More details about y0 can be found in section 4. The difference between expressions (a)
and (b) in equation (3.5) shows that the modeling of the input process is useful and may
be necessary to obtain good approximations of performance measures.

4. The busy period and the virtual waiting time

The busy period of the MMAP[K]/G[K]/1 queue is only related to the total service
time of each batch. Thus, the discussion can be confined at the batch level, not at the
individual customer level. It is then convenient to consider individual batches as super
customers. The service time of a super customer of the type h ∈ ℵ is the summation
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of the service times of all customers within the batch. The distribution function and the
corresponding Laplace–Stieltjes transform of the service time of h = h1 . . . hn ∈ ℵ are
given by

Fh(x) = Fh1 ∗ Fh2 ∗ · · · ∗ Fhn(x) and f ∗
h (s) = f ∗

h1
(s)f ∗

h2
(s) · · · f ∗

hn
(s). (4.1)

For the busy period of the MMAP[K]/G[K]/1 queue, many results obtained in
[8,33] can be applied immediately with minor changes. For instance, the exponential
equations given in [8, theorem 6.1] for the joint transform of the length of a busy pe-
riod and the numbers of different types of customers served in the busy period still
hold. Using these equations, expressions of the moments of the length of a busy period
and numbers of customers served in a busy period can be derived. Since these results
are straightforward generalization and are not used in later sections, details are not pre-
sented. For later use, the distribution of the length of an arbitrary busy period (regardless
of the type of the first arrival of the busy period) is discussed. The results are similar to
those obtained in [33] and proofs are omitted.

Let ψi,j (x, y) be the probability that the length of a busy period is y or less, the
state of the underlying Markov process J (t) is j when the busy period ends, given that
the initial state is i and the initial workload is x. )(x, y) is an m × m matrix with
elements ψi,j (x, y). )∗(x, s) is the Laplace–Stieltjes transform of )(x, y) with respect
to y. Define

Q∗(s) = −sI +D0 +
∑
h∈ℵ

Dh

∫ ∞

0
)∗(x, s)Fh(dx), (4.2)

where I is the identity matrix. Then it can be shown that matrix Q∗(s) satisfies ([33])

Q∗(s) = −sI +D0 +
[∑

h∈ℵ
Dh

∫ ∞

0
Fh(dx)

]
exp

{
Q∗(s)x

}
. (4.3)

Let Q = lims→0+Q∗(s). It can be proved that matrix Q is the infinitesimal gen-
erator of the underlying Markov process that is obtained by excising the busy periods.
Matrix Q satisfies

Q = D0 +
[∑

h∈ℵ
Dh

∫ ∞

0
Fh(dx)

]
exp{Qx}. (4.4)

Detailed interpretations of Q can be found in [2,33]. A computation method of Q can
be found in [33].

System emptiness probabilities are also important functions of the queueing system
of interest, especially when they will be needed for the distribution functions of the
virtual and actual waiting times. Thus, some basic results about idle probabilities are
presented. Let y0,i be the probability that the queueing system is idle at an arbitrary time
and the state of the underlying Markov process J (t) is i, 1 � i � m. Let y0 be an
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m-dimensional vector with components y0,i . Similar to [33, section 4], it can be proved
that y0 satisfies

y0Q = 0. (4.5)

Since Q is an irreducible infinitesimal generator, the solution of y0 is unique up
to a constant. The constant shall be determined as 1 − ρ in theorem 4.2. Intuitively,
equation (4.5) holds since Q is the infinitesimal generator of the underlying Markov
process during the idle periods and y0 is the stationary distribution (up to a constant)
during the idle periods.

Equation (4.4) for matrix Q and equation (4.5) for vector y0 are especially impor-
tant in computing the distributions of virtual and actual waiting times.

The virtual waiting time is the total workload in the system at an arbitrary time.
Apparently, the virtual waiting time depends only on the service times of batches and
does not require information about how individual customers in a batch are served. Thus,
a relatively simple analysis can be conducted on the virtual waiting time.

Let v∗
i (s) be the Laplace–Stieltjes transform of the workload in the queueing sys-

tem at an arbitrary time when the state of the underlying Markov process J (t) is i. Let
v∗(s) = (v∗

1(s), v
∗
2(s), . . . , v

∗
m(s)).

Theorem 4.1. When the queueing system of interest can reach its steady state, it has,
for s > 0,

v∗(s) = sy0

(
sI +D0 +

∑
h∈ℵ

Dhf
∗
h (s)

)−1

, (4.6)

where f ∗
h (s) is defined in equation (4.1).

Proof. Equation (4.6) can be proved using the result obtained in [33, section 5]. Details
are omitted. �

Equation (4.6) gives a complete answer to the Laplace–Stieltjes transform of the
distribution of the virtual waiting time except that the vector y0 needs to be determined.
It is known that y0 is the left invariant vector (up to a constant) of matrix Q. Therefore,
y0 is determined completely when y0e is known.

Theorem 4.2. When the queueing system of interest can reach its steady state, y0e =
1 − ρ.

Proof. This proof is similar to the one given in [8, theorem 4]. Details are omitted. �

Note. The results obtained in this section for the busy period and virtual waiting time
hold not only for the FCFS case, but also for many work conserving service disciplines.
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5. The actual waiting times: results and an informal proof

In this section, the FCFS service discipline is imposed. The actual waiting times of
various types of arrivals and customers are investigated. To make it easy for readers to
follow, the results about the actual waiting time of batches (or the waiting time of the
first customer to be served in a batch) are given first.

Let w∗
b,L,j (s) be the Laplace–Stieltjes transform of the actual waiting time Wb,L

of the first customer to be served in an arbitrary type L batch when the state of the
underlying Markov process J (t) right after the arrival of the batch L is j , for 1 � j � m

and L ∈ ℵ. Let w∗
b,L(s) = (w∗

b,L,1(s), w
∗
b,L,2(s), . . . , w

∗
b,L,m(s)). Let w∗

b,j (s) be the
Laplace–Stieltjes transform of the actual waiting time of the first customer to be served
in an arbitrary batch when the state of the underlying Markov process J (t) right after
the arrival of the batch is j . Let w∗

b(s) = (w∗
b,1(s), w

∗
b,2(s), . . . , w

∗
b,m(s)).

Theorem 5.1. When the queueing system of interest can reach its steady state, the actual
waiting time of an arbitrary type L ∈ ℵ batch is given by

w∗
b,L(s) = sy0

(
sI +D0 +

∑
h∈ℵ

Dhf
∗
h (s)

)−1

DL
1

λL
. (5.1)

The actual waiting of an arbitrary batch (regardless of the type of the batch) is given by

w∗
b(s) = sy0

(
sI +D0 +

∑
h∈ℵ

Dhf
∗
h (s)

)−1(∑
h∈ℵ

Dh

)
1

λb
. (5.2)

Proof. By theorem 4.1, the workload at an arbitrary time is given by v∗
i (s) when the

underlying Markov process J (t) is in state i. According to results in section 2, the
probability that a type L batch arrives when the underlying Markov process J (t) is in
state j right after the arrival, given that the underlying Markov process was in state i just
before the arrival, is (DL)i,j /λL. Then it is easy to see that

w∗
b,L,j (s) =

m∑
i=1

v∗
i (s)(DL)i,j

λL
, 1 � j � m. (5.3)

This leads to equation (5.1). Equation (5.2) can be proved similarly. This completes the
proof. �

For the actual waiting time of individual customers, it is useful to see that the
waiting time of a customer is the waiting time of its batch plus the service times of the
customers in the same batch but sequenced ahead of it. For instance, consider the waiting
time of a type k customer who arrives in a type h batch and is the nth customer of the
batch. Denote by Wh,k,n its waiting time (assume that 1 � n � |h|). Then

Wh,k,n = Wb,h + v1,h1 + v2,h2 + · · · + vn−1,hn−1 , if hn = k, (5.4)
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where vi,hi is the service time of the ith customer in the batch h, 1 � i � |h|. This
equation, combining with theorem 5.1, leads to the following elementary result.

Theorem 5.2. Let w∗
L,k,n,j (s) be the Laplace–Stieltjes transform of the actual waiting

time of an arbitrary type k customer who comes from the nth position of a type L batch
when the state of the underlying Markov process is j right after the customer (or its
batch) arrived. Let w∗

L,k,n(s) = (w∗
L,k,n,1(s), w

∗
L,k,n,2(s), . . . , w

∗
L,k,n,m(s)). When the

queueing system of interest can reach its steady state, we have

w∗
L,k,n(s) = sy0

(
sI +D0 +

∑
h∈ℵ

Dhf
∗
h (s)

)−1

DL

(
n−1∏
i=1

f ∗
hi
(s)

)
I {hn = k} 1

λL,k,n
. (5.5)

Proof. Note that λL,k,n = λL when hn = k. This completes the proof. �

Theorem 5.2 gives the actual waiting time distribution of a particular type of cus-
tomer from a particular position of a particular batch. This result is useful in finding the
waiting time distributions for many special groups of customers. For instance, let w∗

L,k(s)

be the Laplace–Stieltjes transform of the actual waiting time of an arbitrary type k cus-
tomer which comes from a type L ∈ ℵ batch; w∗

k(s) the Laplace–Stieltjes transform of
the actual waiting time of an arbitrary type k customer; and w∗(s) the Laplace–Stieltjes
transform of the actual waiting time of an arbitrary customer.

Theorem 5.3. When the queueing system of interest can reach its steady state, we have

w∗
L,k(s)= sy0

(
sI +D0 +

∑
h∈ℵ

Dhf
∗
h (s)

)−1
[ |L|∑
n=1

DL

(
n−1∏
i=1

f ∗
hi
(s)

)
I {hn = k}

]
1

λL,k
;

w∗
k(s)= sy0

(
sI +D0 +

∑
h∈ℵ

Dhf
∗
h (s)

)−1
[∑

h∈ℵ

|h|∑
n=1

Dh

(
n−1∏
i=1

f ∗
hi
(s)

)
I {hn = k}

]
1

λk
;

w∗(s)= sy0

(
sI +D0 +

∑
h∈ℵ

Dhf
∗
h (s)

)−1
[∑

h∈ℵ

|h|∑
n=1

Dh

n−1∏
i=1

f ∗
hi
(s)

]
1

λ
.

(5.6)

Proof. The Laplace–Stieltjes transforms in equation (5.6) can be obtained by condi-
tioning on the type of the arbitrary customer under consideration. According to prop-
erty 2.1, the probability that a type k customer comes from the nth position of a type L
batch, given that it is a type k customer is λL,k,n/λk. Then

w∗
L,k(s) =

|h|∑
n=1

λL,k,n

λL
w∗

L,k,n(s), (5.7)



410 Q.-M. HE

which leads to the first expression in equation (5.5). Similarly, the following relation-
ships hold:

w∗
k(s) =

∑
h∈ℵ

λh,k

λk
w∗

h,k(s) =
∞∑
n=1

∑
h∈ℵ

λh,k,n

λk
w∗

h,k,n(s);

w∗(s) =
K∑
k=1

λk

λ
w∗
k(s).

(5.8)

These two relationships lead to the second and third expressions in equation (5.6). This
completes the proof. �

6. A formal proof of the actual waiting time distributions

As was shown, the key in proving all the formulas obtained in section 5 is to prove
theorem 5.1. The objective of this section is to provide a rigorous proof for theorem 5.1.

Let x0,j be the probability that the queueing system is empty after the departure of
an arbitrary customer (regardless of its type) when the state of the underlying Markov
process J (t) right after the departure is j, 1 � j � m. Denote by x0 the m-dimensional
vector with components x0,j .

First, we show that, when the queueing system of interest can reach its steady state,
the actual waiting time of an arbitrary type L(∈ ℵ) batch is given by

w∗
b,L(s) = −sλx0D

−1
0

(
sI +D0 +

∑
h∈ℵ

Dhf
∗
h (s)

)−1

DL
1

λL
. (6.1)

We shall then establish a relationship between the vectors x0 and y0 to complete the
proof of theorem 5.1.

Suppose that the queueing system of interest is in steady state. Let WL be the
waiting time of an arbitrary type L batch. Between this and the next type L batch, there
might be some other batches, denoted by h1,h2, . . . ,hN , i.e., there are N other batches
who arrived between the two consecutive type L batches. Note that N is a random
variable. Then the waiting time of the next type L batch is given by

WL,h1,...,hN ,L = ((
. . .
(
(WL + vL −Uh1)

+ + vh1 −Uh2

)+ + · · · )+ + vhN −UL
)+
, (6.2)

where vh = ∑|h|
i=1 vi,hi , i.e., the total service time of all customers in batch h, and Uh

is the interarrival time when the next arrival is of type h; and x+ = max{0, x}. (Notice
that vhi (Uhi ) and vhj (Uhj ) are different for i �= j even when hi = hj .) To derive the
stationary distribution function ofWL from equation (6.2), consider the following simple
case first. Let

WL,h1 = (WL + vL − Uh1)
+. (6.3)

Denote by WL,j (x) the distribution of the waiting time of a type L batch when the
state of the underlying Markov process J (t) is j right after the type L batch arrived.
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Denote by WL,h1,j (x) the distribution of the waiting time of a type h1 batch (following a
type L batch) when the state of the underline Markov process J (t) is j right after the h1

batch arrived. Then conditioning on the interarrival time Uh1 and the service time of the
batch L, yields

WL,h1,j (x) =
∫ ∞

0

∫ x+t

0

m∑
i=1

WL,i (x − u+ t)
(
exp{D0t}Dh1

)
i,j
FL(du) dt . (6.4)

Equation (6.4) can be written into vector form as follows:

WL,h1(x)=
∫ ∞

0

∫ x+t

0
WL(x − u+ t) exp{D0t}Dh1FL(du) dt

≡
∫ x

−∞
WL(x − u)HL,h1(du), (6.5)

where

HL,h1(u) =
∫ ∞

0
exp{D0t}Dh1FL(u+ t) dt , −∞ < u < +∞. (6.6)

Then the Laplace–Stieltjes transform of HL,h1(u) is

H ∗
L,h1

(s)=
∫ ∞

−∞
e−suH ∗

L,h1
(du) =

∫ ∞

−∞

∫ ∞

0
exp

{
(sI +D0)t

}
Dh1 dt e−suFL(du)

= −f ∗
L(s)(sI +D0)

−1Dh1 . (6.7)

Extend the function WL,h1(x) to x < 0 to obtain function ŴL,h1(x). Then, for x < 0,

ŴL,h1(x)=
∫ ∞

−x

∫ x+t

0
WL(x − u+ t) exp{D0t}Dh1FL(du) dt

=
∫ ∞

0

∫ t

0
WL(t − u) exp

{
D0(t − x)

}
FL(du) dtDh1 (t := t + x)

=
∫ ∞

0−

∫ ∞

0
WL(y) exp

{
D0(y + u− x)

}
FL(du) dyDh1 (y := t − u)

=
∫ ∞

0−
WL(y) exp{D0y} dy

∫ ∞

0
exp{D0u}FL(du) exp{−D0x}Dh1

=
∫ ∞

0−
WL(dy) exp{D0y}

∫ ∞

0
exp{D0u}FL(du)

(−D−1
0

)
exp{−D0x}Dh1

≡ C(L)
(−D−1

0

)
exp{−D0x}Dh1 . (6.8)

For the extended function ŴL,h1(x), −∞ < x < ∞, its Laplace–Stieltjes transform is
given as

ŵ∗
L,h1

(s) =
∫ ∞

−∞
e−sx

∫ x

−∞
WL(dx − u)HL,h1(du) = w∗

L(s)H
∗
L,h1

(s). (6.9)
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On the other hand, the Laplace–Stieltjes transform of the extended function can be found
by[∫ 0−

−∞
+
∫ 0

0−
+
∫ ∞

0

]
e−sxŴL,h1(dx)

= C(L)
(−D−1

0

) ∫ 0−

−∞
e−sx exp{−D0x} dx(−D0)Dh1 − C(L)

(−D−1
0

)
Dh1 + w∗

L,h1
(s)

= −sC(L)(−D−1
0

)
(sI +D0)

−1Dh1 + w∗
L,h1

(s). (6.10)

Combining equations (6.9) and (6.10) yields

w∗
L,h1

(s) = −sC(L)D−1
0 (sI +D0)

−1Dh1 + w∗
L(s)H

∗
L,h1

(s). (6.11)

Consider the nth batch (n < N) after the first type L batch and before the next type
L batch. The waiting time the type hn batch is given as follows:

WL,h1,h2,...,hn = ((
. . .
(
(WL + vL − Uh1)

+ + vh1 − Uh2

)+ + · · · )+ + vhn−1 − Uhn

)+
= (WL,h1,h2,...,hn−1 + vhn−1 − Uhn)

+. (6.12)

Inductively, the Laplace–Stieltjes transform of the distribution function of WL,h1,h2,...,hn
is given as

w∗
L,h1,...,hn(s)

= −sC(Lh1 . . . hn−1)D
−1
0 (sI +D0)

−1Dhn + w∗
L,h1,...,hn−1

(s)H ∗
hn−1,hn(s)

= w∗
L(s)H

∗
L,h1

(s) · · ·H ∗
hn−1,hn(s)− s

n∑
t=1

C(Lh1 . . .ht−1)D
−1
0

× (sI +D0)
−1DhtH

∗
ht ,ht+1

(s) · · ·H ∗
hn−1,hn(s), (6.13)

where

C(L)=
∫ ∞

0
exp{D0u}FL(du);

(6.14)

C(Lh1 . . .hn)=
∫ ∞

0
WL,h1,...,hn−1(dy) exp{D0y}

∫ ∞

0
exp{D0u}Fhn(du), n � 1.

For the actual waiting time of batch L, conditioning on N , the number of batches be-
tween two consecutive L batches, using equations (6.11) and (6.14), yields

w∗
L(s)= w∗

L(s)

[ ∞∑
n=0

∑
{h1,h2,...,hn: hi �=L, 1�i�n}

H ∗
L,h1

(s) · · ·H ∗
hn−1,hn(s)H

∗
hn,L(s)

]

− s

∞∑
n=0

∑
{h1,h2,...,hn: hi �=L, 1�i�n}

n∑
t=1

C(Lh1 . . . ht−1)D
−1
0
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× (sI +D0)
−1DhtH

∗
ht ,ht+1

(s) · · ·H ∗
hn,L(s)

≡ w∗
L(s) · Part I − s · Part II. (6.15)

Part I and Part II of equation (6.15) are evaluated next. Part I is evaluated as:

∞∑
n=0

∑
{h1,h2,...,hn: hi �=L, 1�i�n}

(−1)n+1(sI +D0)
−1Dh1f

∗
L(s)(sI +D0)

−1Dh2f
∗
h1
(s) · · ·

× (sI +D0)
−1Dhnf

∗
hn−1

(s)(sI +D0)
−1DLf

∗
hn(s)

=
∞∑
n=0

∑
{h1,h2,...,hn: hi �=L, 1�i�n}

(−1)n+1(sI +D0)
−1Dh1f

∗
h1
(s)(sI +D0)

−1Dh2f
∗
h2
(s)×

· · · (sI +D0)
−1Dhnf

∗
hn(s)(sI +D0)

−1DLf
∗
L(s)

= −
∞∑
n=0

(−1)n
( ∑

h: h�=L, h∈ℵ
(sI +D0)

−1Dhf
∗
h (s)

)n
(sI +D0)

−1DLf
∗

L (s)

= −
(
sI +D0 +

∑
h: h�=L, h∈ℵ

Dhf
∗
h (s)

)−1

DLf
∗
L(s). (6.16)

Part II is evaluated as: (Notice that L = h0)

∞∑
t=1

∞∑
n=t−1

∑
{h1,h2,...,hn: hi �=L, 1�i�n}

C(Lh1 . . . ht−1)D
−1
0 (sI +D0)

−1Dht H
∗
htht+1

(s) · · ·

×H ∗
hnL(s)

=
∞∑
t=1

∞∑
n=t−1

∑
{h1,...,ht−1: hi �=L, 1�i�t−1}

C(Lh1 . . .ht−1)D
−1
0

×
∑

{ht ,...,hn: hi �=L, t�i�n}
(sI +D0)

−1Dht H
∗
htht+1

(s) · · ·H ∗
hnL(s)

=
( ∞∑
t=0

∑
{h1,...,ht : hi �=L, 1�i�t}

C(Lh1 . . . ht )

)
D−1

0

×
(

I +
∑

h: h�=L

(sI +D0)
−1Dhf

∗
h (s)

)−1

(sI +D0)
−1DL

≡ CLD
−1
0

(
sI +D0 +

∑
h: h�=L, h∈ℵ

Dhf
∗
h (s)

)−1

DL. (6.17)
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Equations (6.16) and (6.17) lead to

w∗
L(s)= −w∗

L(s)

(
sI +D0 +

∑
h: h�=L, h∈ℵ

Dhf
∗
h (s)

)−1

DLf
∗
L(s)

− sCLD
−1
0

(
sI +D0 +

∑
h: h�=L, h∈ℵ

Dhf
∗
h (s)

)−1

DL. (6.18)

This leads to

w∗
L(s) = −sCLD

−1
0

(
sI +D0 +

∑
h∈ℵ

Dhf
∗
h (s)

)−1

DL. (6.19)

The next step is to prove that CL = x0λ/λL. Intuitively, the vector C(Lh1 . . .hn)
is the probability that the system becomes idle after the completion of the services of all
customers in the nth batch (of the type hn) after the first L, but before the next type L
batch. Then the vector CL is the probability that the queueing system becomes idle at the
completion epochs of batches between two consecutive type L batches. Since x0 is the
probability that the system becomes idle at the completion epoch of an arbitrary batch,
it has

x0 = λL

λ
CL ⇒ CL = λ

λL
x0. (6.20)

Equations (6.19) and (6.20) lead to equation (6.1). A rigorous proof of equation
(6.20) is given as follows.

Suppose that the queueing system is in steady state. There is a type L batch that
arrived at time zero (batch zero). Let /n,j be the event that the nth customer leaves
an empty system and the underlying Markov process J (t) is in state j right after the
departure.

Let ηL(n) be the sequential number of the first customer in the nth type L batch,
i.e., the first customer of the nth type L batch is the lth customer (l = ηL(n)) to arrive to
the queueing system. It is easy to see that ηL(n+1) � ηL(n)+|L|, n � 0. Then we have
ξL(n) = max{t : ηL(t) � n}, i.e., the number of type L batches that arrived when the
nth customer arrives, which was introduced in section 2. When a type L batch arrives
at zero (called batch zero), we have ηL(0) = 1. Then according to renewal theory (see
[5]), when x0 exists,

x0 = lim
N→∞

∑N
n=0(I {/n,1}, . . . , I {/n,m})

N

= lim
N→∞

ξL(N)

N

∑ξL(N)−1
l=0

∑ηL(l+1)−1
n=ηL(l)

(I {/n,1}, . . . , I {/n,m})
ξL(N)

. (6.21)

According to equation (2.10), ξL(N)/N converges to λL/λ. The other part converges
to C(L), which is proved as follows. Consider the embedded stochastic process at the
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first departure epochs after type L batches arrive. It is clear that the embedded stochastic
process is a regenerative process (see [28]). Thus

lim
N→∞

∑ξL(N)−1
l=0

∑ηL(l+1)−1
n=ηL(l)

(I {/n,1}, . . . , I {/n,m})
ξL(N)

= E
ηL(1)−1∑
n=1

(
I {/n,1}, . . . , I {/n,m}). (6.22)

Let ζL(1) be the number of batches that arrived between two consecutive type L
batches (ζL(1) � 0). Let /̂n,j be the event that the nth batch (super customer) leaves an
empty system behind and the underlying Markov process J (t) is in state j right after the
departure. Then

E
ηL(1)−1∑
n=1

(
I {/n,1}, . . . , I {/n,m}) = E

ςL(1)∑
n=0

(
I
{
/̂n,1

}
, . . . , I

{
/̂n,m

})
, (6.23)

since only the last customer in a batch is in the position to leave an empty system behind.
Then

x0 = λL

λ
E

ς(1)∑
n=0

(
I
{
/̂n,1

}
, . . . , I

{
/̂n,m

})
= λL

λ
E

∞∑
n=0

(
I
{
/̂n,1 ∩ {ςL(1) > n

}}
, . . . , I

{
/̂n,m ∩ {ςL(1) > n

}})
= λL

λ

∞∑
n=0

∑
{h1,...,hn: hi �=L, 1�i�n}

E
[(
I
{
/̂n,1 ∩ {ςL(1) > n

}}
, . . . ,

I
{
/̂n,m ∩ {ςL(1) > n

}})
: h1, . . . ,hn

]
= λL

λ

∞∑
n=0

∑
{h1,... ,hn: hi �=L, 1�i�n}

C(Lh1 . . .hn) = λL

λ
CL, (6.24)

which leads to equation (6.1). (Notice that L = h0.)
In order to complete the proof of theorem 5.1, we need to find the relationship

between y0 and x0. In fact, when the queueing system of interest can reach its steady
state, the following relationship between y0 and x0 holds:

y0 = −λx0D
−1
0 and − λx0D

−1
0 e = 1 − ρ. (6.25)

To prove equation (6.25), similar to theorem 4.2, we first show that −λx0D
−1
0 e =

1 − ρ. By equation (4.5), vector y0 satisfies equation y0Q = 0. Consider the embedded
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Markov chain at the last departures of busy periods. The one step transition matrix of
this embedded Markov chain is given by

(−D0)
−1

[∑
h∈ℵ

Dh

∫ ∞

0
)∗(0, x)Fh(dx)

]
= (−D0)

−1(Q−D0)

= (−D0)
−1Q+ I. (6.26)

It is easy to see that x0 must satisfy equation x0 = x0[(−D0)
−1Q+I], which implies that

x0(−D0)
−1Q = 0. Therefore, −x0D

−1
0 = cy0. Since y0e = 1 − ρ and −λx0D

−1
0 e =

1 − ρ, the constant c = 1/λ, which leads to equation (6.25).
Combining equations (6.1) and (6.25), we obtain theorem 5.1. This completes the

proof. �
This formal proof of theorem 5.1 is long, but it becomes natural when two key facts

are observed. The first one is equation (6.2). Once the relationship in equation (6.2)
is obtained, a proof following Lindley’s approach (see [13]), which is the second key,
becomes possible.

All other results given in section 5 can be proved in a similar way. In fact, the proof
of equation (5.2) is simpler. Details of those proofs are omitted.

7. Summary and future research

The contribution of this paper is two-fold. First, it shows how to use MMAP[K] to
model a variety of point processes with some special arrival patterns such as cyclic,
mixed batch, and priorities. Second, it presents a detailed analysis of the actual waiting
time processes of individual types of customers in queueing systems with an MMAP[K]
input process. Combining the two parts, this paper shows that queueing systems with a
complicated input process and multiple types of customers are still analytically tractable
when the input process is modeled appropriately.

It is certainly important to develop algorithms for moments of the busy period,
virtual waiting time, and actual waiting times. Since moments can be obtained by routine
calculations (see [1,8,14,18,22]), details are omitted.

This paper studied the queueing system with an FCFS service discipline. It is
interesting to investigate queueing systems with priorities assigned to different types of
customers (see [30,31]). Though some of the methodologies used in this paper may not
be working for other cases, the formalism adopted in this paper will certainly be useful in
that research. Some results along this direction can be found in [33]. This paper does not
consider the queue length due to some technical difficulty. For a special case where each
batch has only one customer, some results about the queue length have obtained in [8].
In [9,10], the steady state queue length distribution is obtained when the service times
have PH-distributions and the service discipline is last-come-first-served (LCFS). The
study of the queue length of the queueing system of interest is left as an open problem
for future research.
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