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Abstract

This paper examines several inventory replenishment policies for a make-to-order inventory–production system that

consists of a production workshop and a warehouse. Demands arrive to the production workshop according to a

Poisson process, and are processed in an FCFS manner. The production workshop requires that the warehouse pro-

vides, as needed, raw materials for use in the production process. The warehouse inventory is replenished according to

an inventory replenishment policy. The optimal replenishment policy, which minimizes the average total cost per

product, is derived using a Markov decision process approach. The structure of the optimal replenishment policy is

explored. Simple ‘‘order-up-to’’, ‘‘myopic’’, and heuristic replenishment policies are introduced. The myopic and

heuristic replenishment policies are easy to compute, and yet perform almost as well as the optimal replenishment

policy. � 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In the manufacturing and distribution sectors, the importance of effective inventory control policies has
long been recognized and has been studied extensively. Recently, interest in supply chain management has
further increased awareness of the importance of inventory control throughout various links in a supply
chain. In this paper, we are concerned with a small supply chain (see Fig. 1) that is made up of a pro-
duction workshop and a warehouse of raw materials. The production workshop manufactures products on
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a make-to-order basis to meet customer demands. The warehouse provides raw materials to the production
workshop. We explore inventory replenishment policies that trade off the cost of ordering with the cost of
holding inventory of raw materials. The unique aspect of our model is the optimization of inventory de-
cisions by taking explicit account of what is happening in the production workshop.

Our model is a special two-echelon model (see [6]) in which a raw material inventory exists in the
warehouse, none exists in the production workshop, and production is make-to-order (i.e., the production
workshop carries no finished goods inventory). Thus, inventory control is necessary only for raw materials
replenishment in the warehouse. Studies of the optimal or near-optimal replenishment policies for multi-
echelon systems are extensive (see [1,4,6,8]). For instance, Axs€aater [1] looked at the ðS � 1; SÞ policy for
inventory systems with slow moving items. Chen and Zheng [4] conducted a performance analysis on
production/inventory systems with ðR; nQÞ type policies. For the models considered in these papers, in-
ventories are allowed at every stage of the echelon system and inventory control is based on the inventory
levels (or inventory positions) at various stages. Our model is unique compared to other two-echelon
systems since there is a delay between the arrival of a demand and the time raw materials are actually
needed to produce a product for that demand. This is a result of explicitly modeling the production process
as a queue. Consequently, inventory control in the warehouse will depend on both the inventory level in the
warehouse and the number of demands queued in the production workshop, instead of just the inventory
level (or inventory position) as in classical inventory control models (see [2,6,7]). Veatch and Wein [18]
considered the optimal control of a two-station tandem production–inventory system. Their focus is on the
control policy of the service rates at various production stages, not the inventory control policy.

Hariharan and Zipkin [8] studied an inventory model in which replenishment decisions are made based
on the current inventory level (position) as well as some customer-order information. The idea of using
customer-order information in inventory control is similar to that of using the number of waiting demands
in raw materials replenishment in our model. But we use the exact queue length of waiting demands in
making replenishment decisions, while they use information about the arrival of the next demand.

In this paper, we show the existence of the optimal replenishment policy, analyze the structure of the
optimal replenishment policy, construct simpler heuristic replenishment policies, and compare these re-
plenishment policies. Although the model considered in this paper is simple, the results obtained give in-
sights into more complex supply chain models. Note that since the focus of this paper is on the optimal and
near-optimal replenishment policies, issues related to performance analysis and the value of inventory
control are not discussed. Interested readers are referred to [9–11].

The rest of the paper is organized as follows. Section 2 defines the inventory–production model ex-
plicitly. Section 3 introduces a Markov decision process for the optimal replenishment policy problem. The
optimality equation for the optimal stationary replenishment policy is established. The structure of the
optimal replenishment policy is explored in Section 4. Based on the results obtained in Section 4, Section 5
introduces four simple replenishment policies as approximations to the optimal policy. In Section 6, nu-
merical examples are presented to show how well the simple replenishment policies perform. Finally,
Section 7 summarizes the paper and gives future research directions.

Fig. 1. The inventory–production system.
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2. The inventory–production model

The supply chain depicted in Fig. 1 is modeled as an integrated inventory–production system that
consists of a workshop and a warehouse (see Fig. 2). The workshop manufactures a single type make-to-
order product based on customer demands. Customer demands arrive one at a time to the workshop ac-
cording to a Poisson process with parameter k and are processed in a first-come-first-served manner. All
demands are processed in the workshop by a single machine in batch sizes of one. Production (or pro-
cessing) times of products have a common exponential distribution with parameter l. The demand arrival
process and the production times are assumed to be independent.

The warehouse stores raw materials for production in the workshop. The warehouse places orders to an
outside supplier for new raw materials. The raw materials replenishment leadtimes are zero so that all
orders to the supplier are filled immediately. There is a fixed ordering cost K associated with each order of
raw materials, regardless of the order size. The holding cost is Ch per unit of raw materials held per unit
time. The inventory level, defined as the number of units of raw materials, is reviewed continuously.

The warehouse and the workshop co-ordinate their operations in the following way: when the workshop
starts to process a customer demand, a call for a unit of raw materials is sent to the warehouse. If the
warehouse is not empty, a unit of raw materials is sent immediately to the workshop and production on
that unit begins. If the warehouse is empty, an order for more raw materials is placed. The order is filled
immediately, a unit of raw materials is sent to the workshop, and production on that unit begins. The
transportation time between the warehouse and the workshop is assumed negligible so that there is no
production delay in the workshop.

According to the definition above, the inventory–production system can be decomposed into two sub-
systems: an M/M/1 queue (the workshop) and an inventory system (the warehouse). The workshop can be
modeled as a classical M/M/1 queue [5] since no shortage of raw materials is allowed, i.e., the queueing
process is not influenced by the replenishment process. The warehouse can be modeled as a stochastic
inventory system with zero leadtimes and demands that occur at the epochs when the workshop begins to
produce a new product.

The status of the M/M/1 queue at time t can be represented by the number of customers in the workshop
(i.e., unfilled demands, or the queue length), which we denote by qðtÞ. Throughout this paper, we assume
that the traffic intensity q ¼ k=l < 1 so that the M/M/1 queue is stable. The status of the inventory system
can be represented by the number of units of raw materials in the warehouse (i.e., the inventory level) at
time t. We denote by IðtÞ the total number of units of raw materials in the system, i.e., the inventory in the
warehouse plus the unit of raw materials in the workshop (if any). Thus, the overall status of the inventory–
production system at time t can be represented by ðqðtÞ; IðtÞÞ.

The raw material replenishment policy determines when and how much raw material should be ordered
from the supplier. In this paper, we consider stationary replenishment policies that are based on the system
status ðqðtÞ; IðtÞÞ. Since leadtimes are zero, raw materials should not be ordered when IðtÞ is positive or qðtÞ is
zero. That observation implies that a stationary replenishment policy can be simply represented by a vector

Fig. 2. The inventory–production system with zero leadtimes.
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p ¼ ðpð0Þ; pð1Þ; pð2Þ; . . .Þ, where pðqÞ is the order size when the inventory level is zero and the number of
unfilled demands is q. Therefore, the set of replenishment policies under consideration is given by

P ¼ fp : pð0Þ ¼ 0 and pðqÞP 1 for qP 1g: ð2:1Þ
Throughout this paper, we only consider the stationary replenishment policies in P. For brevity, we may
drop the word ‘‘stationary’’ in the sequel.

At time t, if IðtÞ ¼ 0 and pðqðtÞÞ > 0, an order of size pðqðtÞÞ is issued and filled immediately; otherwise,
no action takes place. If an order of the size pðqðtÞÞ is filled at time t, the inventory level becomes pðqðtÞÞ,
i.e., IðtþÞ ¼ pðqðtÞÞ. It is easy to see that for any replenishment policy p 2 P, the corresponding stochastic
process ðqðtÞ; IðtÞÞ is a continuous time Markov chain.

In order to evaluate replenishment policies, the average total cost per unit of raw materials delivered to the
workshop (or equivalently the average total cost per product) is chosen as the fundamental measurement.
The primary objectives of this paper are to find the optimal replenishment policy in P that minimizes the
average total cost per product, and to examine some simple, near-optimal replenishment policies.

3. The existence of the optimal stationary replenishment policy

In this section, a Markov decision process approach is utilized to establish an optimality equation for the
optimal stationary replenishment policy. For that purpose, we need to introduce the set of feasible policies,
the Markov chains associated with each feasible policy, the action sets associated with each state, and the
immediate average cost associated with each state. For information about Markov decision processes, we
refer to [3,13,16,17]. First, we state the following useful result.

Lemma 3.1. For the inventory–production system introduced in Section 2, to minimize the average total cost
per product, the order size must be less than 1þ Kl=Ch, regardless of the queue length at the decision epoch.

Proof. See Appendix A. �

Lemma 3.1 implies that the replenishment policy which minimizes the average total cost per product
must be in the following set of stationary policies:

Pb ¼ p : pð0Þf ¼ 0 and 16 pðqÞ6 b1þ Kl=Chc for qP 1g; ð3:1Þ
where b1þ Kl=Chc represents the largest integer that is smaller than or equal to 1þ Kl=Ch. Thus, from
now on, we shall only consider stationary replenishment policies in Pb with the understanding that the
optimal stationary replenishment policy in Pb (if it exists) is also optimal in the set P.

Let tn be the departure time of the nth customer (i.e., the completion time of the nth product), nP 0. We
assume that a unit of production is completed at time zero, i.e., t0 ¼ 0. Let qn ¼ qðtnþÞ and In ¼ IðtnþÞ,
nP 0. Apparently, the set ftn; nP 0g consists of the epochs at which a replenishment decision must be
made. Note that a replenishment decision is made right after the departure of a customer. Since leadtimes
are zero and there is no production delay, ftn; nP 0g are the departure epochs of the M/M/1 queue, which
are the same for all replenishment policies in Pb. It is easy to see that the process fðqn; InÞ; nP 0g is an
embedded Markov chain. For each stationary policy p in Pb, the corresponding probability transition
matrix of fðqn; InÞ; nP 0g can be constructed explicitly (see [9]).

We point out that if qn ¼ In ¼ 0, the replenishment decision must be ‘‘no action’’ since no raw materials
are needed until the next customer arrives. That implies that, if qn ¼ In ¼ 0, an order must be placed when
the next demand arrives. However, the set ftn; nP 0g does not include any arrival epoch. To avoid this
inconvenience, we assume that, if qn ¼ In ¼ 0, the replenishment decision at the next demand arrival epoch
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is made at tn, but the order is filled at the next demand arrival epoch. Such a change in the decision process
does not change the stochastic process under consideration. With that modification, ftn; nP 0g contains all
the decision epochs at which a replenishment decision must be made.

Let Aðq; iÞ be the set of actions associated with the state ðq; iÞ. It is easy to see that

Aðq; iÞ ¼ fno orderg; qP 0 and iP 1;
f1; 2; . . . ; b1þ Kl=Chcg; qP 0 and i ¼ 0:

�
ð3:2Þ

Note that Að0; 0Þ ¼ f1; 2; . . . ; b1þ Kl=Chcg is really the action set at the next arrival epoch (at which the
state is ð1; 0Þ) because of the modification of the decision in the state ð0; 0Þ.

Let cðq; i; iaÞ be the (average) immediate cost associated with the state ðq; iÞ and action ia 2 Aðq; iÞ, i.e.,
cðq; i; iaÞ is the average total cost incurred between two consecutive departures, given that the state right
after the first departure is ðq; iÞ and the action ia is taken right after the first departure. The sequence of state
change and decision making is: state change first, decision making second, and implementation of the
decision last. It can be shown that

cðq; i; iaÞ ¼
K þ iaCh=l; qP 0; i ¼ 0; ia P 1;
iCh=k þ iCh=l; q ¼ 0; iP 1; ia ¼ no order;
iCh=l; qP 1; iP 1; ia ¼ no order:

8<
: ð3:3Þ

If q ¼ i ¼ 0 and the action is to order ia, according to the modification, the order is filled when the next
customer arrives. Thus, the total ordering cost is K and the expected total holding cost is iaCh=l before the
next departure, which leads to a total cost K þ iaCh=l. Similarly, we can prove Eq. (3.3) for the case with
qP 1, i ¼ 0, and action ia. If q ¼ 0 and iP 1, these i units of raw materials must be held during the idle
period of the M/M/1 queue and during the production time of the next unit. The mean length of the idle
period in the M/M/1 queue is 1=k and the mean production time is 1=l. Thus, the immediate cost incurred
until the next departure is iChð1=k þ 1=lÞ. The last case fqP 1; iP 1g can be proven easily.

In summary, the Markov decision process of interest can be defined with the following four components:

1. A set of stationary replenishment policy Pb given in Eq. (3.1).
2. The Markov chain fðqn; InÞ; nP 0g with a state space: fðq; iÞ : qP 0; 06 i6 b1þ Kl=Chcg.
3. Action sets fAðq; iÞg defined by Eq. (3.2).
4. A set of immediate costs fcðq; i; iaÞg (given in Eq. (3.3)) associated with individual states in the state space.

Clearly, we are dealing with a Markov decision process with a countable state space, finite decision sets,
and bounded immediate costs. To find the optimal stationary replenishment policy p in Pb, we need to
prove its existence first. Next, we show the following lemma about the Markov chain fðqn; InÞ; nP 0g,
which leads to the existence of the optimal replenishment policy in Pb.

Lemma 3.2. For any replenishment policy p in Pb, the corresponding Markov chain fðqn; InÞ; nP 0g has only
one closed set of states and is positive recurrent when it is restricted to the closed set. The state ð0; 0Þ is always
in the closed set. Let fxðq; iÞ : qP 0; 06 i6 b1þ Kl=Chcg be the stationary distribution of fðqn; InÞ; nP 0g (if
the state ðq; iÞ is not in the closed set, then xðq; iÞ ¼ 0). Then

xðq; 0Þ þ xðq; 1Þ þ � � � þ xðq; b1þ Kl=ChcÞ ¼ ð1� qÞqq for qP 0:

(Note that q ¼ k=l.)

Proof. See Appendix B. �

With Lemma 3.2, we are ready to show that there exists an optimal stationary replenishment policy in P.
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Theorem 3.3. For the inventory–production system defined in Section 2, if q ¼ k=l < 1, there exists a sta-
tionary replenishment policy in P that has the minimal average total cost per product. We call that policy the
optimal replenishment policy. The optimal replenishment policy can be found by solving a set of optimality
equations (when restricted to Pb).

Proof. See Appendix C. �

Based on Theorem 3.3, we can establish the optimality equation for computing the optimal replenish-
ment policy. Define, for 06 i, q6 n and nP 1:

V �ðq; i; nÞ¼ The minimal average total cost to produce n products, given that there are q demands
(customers) and i units of raw materials in the system initially.

The minimal average total cost per product can be defined as

g ¼ lim
n!1

V �ðq; i; nÞ
n

: ð3:4Þ

According to Theorem 3.3, the limit in Eq. (3.4) exists, and g is finite (since g is upper bounded by
K þ Ch=l) and independent of the initial state. We choose the state ð0; 0Þ as a distinguished state [17]. Define
the relative cost functions as

hðq; i; nÞ ¼ V �ðq; i; nÞ � V �ð0; 0; nÞ; iP 0; qP 0; nP 1: ð3:5Þ
Let, for iP 0 and qP 0

hðq; iÞ ¼ lim
n!1

hðq; i; nÞ ¼ lim
n!1

½V �ðq; i; nÞ � V �ð0; 0; nÞ�: ð3:6Þ

By Theorem 3.3, the limits in Eq. (3.6) exist. The following equations for the optimal replenishment policy
can be established:

g þ hð0; 0Þ ¼ min
16 i6 1þ Kl=Chb c

K

(
þ iCh

l
þ
X1
n¼0

xð1� xÞnhðn; i� 1Þ
)
; q ¼ i ¼ 0;

g þ hðq; 0Þ ¼ min
16 i6 1þ Kl=Chb c

K

(
þ iCh

l
þ
X1
n¼0

xð1� xÞnhðq� 1þ n; i� 1Þ
)
; qP 1; i ¼ 0;

g þ hð0; iÞ ¼ iCh

k
þ iCh

l
þ
X1
n¼0

xð1� xÞnhðn; i� 1Þ; q ¼ 0; 16 i6 1þ Kl=Chb c;

g þ hðq; iÞ ¼ iCh

l
þ
X1
n¼0

xð1� xÞnhðq� 1þ n; i� 1Þ; qP 1; 16 i6 1þ Kl=Chb c;

ð3:7Þ

where x ¼ l=ðk þ lÞ, the probability that a production completes before the next arrival occurs. The re-
lationships in Eq. (3.7) can be proven easily. For instance, given the current state ðq; iÞ, the Markov chain
can be in the state ðq� 1þ n; i� 1Þ after the next transition with probability xð1� xÞn, for nP 1. Note
that for the state ðq; iÞ with i > 0, the optimal action is ‘‘no order’’ since the leadtimes are zero. Also note
that in the state ð0; 0Þ (i.e., q ¼ i ¼ 0), the optimal replenishment decision in the state ð0; 0Þ is for the
optimal decision in the state ð1; 0Þ and it is indeed equivalent to the optimal decision in the state ð1; 0Þ.

Based on the solutions to Eq. (3.7) and the understanding of the replenishment decisions in the state (0,
0), the optimal replenishment policy p� can be obtained by
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p�ðqÞ ¼
0; q ¼ 0;
arg min

16 i6 1þ Kl=Chb c
fhðq; iÞg; qP 1:

(
ð3:8Þ

With the optimality equation (3.7), we are now able to analyze the optimal stationary replenishment
policy.

4. Structure of the optimal stationary replenishment policy

In this section, we analyze the structure of the optimal replenishment policy and explain how and why
the optimal replenishment policy fluctuates. In addition, we make a remark on the computation of the
optimal replenishment policy. First, we introduce the following example to show numerically how a typical
optimal replenishment policy behaves.

Example 4.1. Consider an inventory–production system with the following parameters: Ch ¼ 1, K ¼ 30,
k ¼ 0:3, and l ¼ 1. The optimal replenishment policy for this system is plotted in Fig. 3, in which the
horizontal axis represents the queue length, the vertical axis represents the order size and

EOQðlÞ ¼ arg min
16 i<1

K
i

�
þ ðiþ 1ÞCh

2l

�
: ð4:1Þ

EOQðlÞ can be interpreted as the optimal order size in the warehouse if the demands to the warehouse
follow a Poisson process with parameter l [2].

As Fig. 3 illustrates, the optimal order size is strongly dependent on the queue length. Intuitively, when
the queue length is near zero, the demand rate to the warehouse is small so that the order size of raw
materials should be small in order to avoid unnecessary inventory build-up during possible idle periods in
the workshop. As the queue length increases, the demand for raw materials in the workshop increases and
so does the optimal order size. When the queue length is moderate, the optimal order size fluctuates around
the EOQðlÞ in order to reduce inventory holding costs during possible idle periods in the workshop. Lastly,
when the queue length is large, the optimal order size converges to EOQðlÞ since the demand rate to the
warehouse will be l (approximately) for a long period of time. In general, knowing the queue length at a
decision epoch makes it possible to predict the length of the current busy period, or equivalently the average
demand rate to the warehouse in the near future. Then the order size can be adjusted accordingly in order
to reduce the total inventory costs.

From Example 4.1 and many other numerical examples, we observed the following important properties
of the optimal replenishment policy.

Fig. 3. The optimal replenishment policy.
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Property 4.1. For the inventory–production system introduced in Section 2, (a) the optimal order size p�ðqÞ has
a upper bound, and (b) p�ðqÞ ¼ EOQðlÞ for large q.

Proof. Part (a) has been proved in Lemma 3.1. The basic argument for part (b) has been made already:
when the queue length is large, the demand rate for raw materials will be l for a long time. In such a case,
the warehouse can be considered approximately as a stochastic inventory system with a Poisson demand
process with parameter l, which implies that EOQðlÞ is the optimal choice for the order size. Details of the
proof of part (b) are given in Appendix D. �

Remark 4.1. Property 4.1 provides important information about the structure of the optimal replenishment
policy and can be used to develop algorithms for computing the optimal replenishment policy. For mP 1,
define the following subsets of stationary replenishment policies:

PbðmÞ ¼ fp : pð0Þ ¼ 0; 16 pðqÞ6 b1þ Kl=Chc for 16 q < m; and pðqÞ ¼ EOQðlÞ; qPmg: ð4:2Þ
According to Property 4.1, when m is large enough, the optimal replenishment policy in PbðmÞ is equivalent
to the optimal replenishment policy in P. Thus, the optimal replenishment policy can be obtained by
finding the optimal replenishment policy in PbðmÞ when m is large enough. According to He et al. [11], the
problem of finding the optimal replenishment policy in PbðmÞ can be transformed into a Markov decision
process with finite states and finite actions. Then some existing algorithms for computing the optimal policy
of finite Markov decision processes can be utilized for computing the optimal replenishment policy effi-
ciently. We refer to [11] and [15] for details of that computational approach.

Fluctuation in the optimal order size is strongly related to the systems parameters, particularly the traffic
intensity q ¼ k=l and the cost ratio K=Ch. We use the following example to demonstrate that relationship,
which is useful in developing simple replenishment policies (Section 5) and analyzing those simple policies
(Section 6).

Example 4.2. Consider an inventory–production system with system parameters K ¼ 10, Ch ¼ 0:2, and
l ¼ 1. The optimal replenishment policies for k ¼ 0:1, 0.4, 0.618, and 0.95 are plotted in Fig. 4. The
horizontal axis represents the queue length and the vertical axis represents the order size.

Fig. 4 shows that the structure of the optimal replenishment policy p depends strongly on the traffic
intensity q ¼ k=l. If q is close to zero, the optimal order size fluctuates with the queue length dramatically

Fig. 4. The optimal policies for Example 4.2.
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(see the curve for k ¼ 0:1 in Fig. 4). If q is close to 1, the optimal order size is EOQðlÞ, even for a small
queue length (see the curve for k ¼ 0:95 in Fig. 4). Thus, when the traffic intensity q increases from 0 to
1, the optimal replenishment policies becomes less variable and the optimal order size settles at EOQðlÞ
quickly.

For the cost ratio K=Ch, numerical examples show that the optimal order size tends to be constant if
K=Ch is small and is more variable if K=Ch is large. This is intuitively explained by Lemma 3.1.

To end this section, we briefly discuss why the optimal order size fluctuates with respect to the queue
length. Consider a modified inventory–production system obtained by ignoring the holding costs incurred
in all the idle periods of the workshop. The only difference between the modified system and the original
system is how the holding costs incurred in idle periods are calculated. For the modified inventory–pro-
duction system, the optimal replenishment policy can be found similarly. In fact, all the concepts, results of
existence, and equations introduced in Section 3 can be used, except that the holding costs ðiCh=kÞ incurred
in the idle periods are removed from Eq. (3.7). It can be proven that, for the modified inventory–production
system, the optimal order size is EOQðlÞ for all queue lengths except zero (details are omitted). That implies
that, for the inventory–production system introduced in Section 2, the optimal order size fluctuates because
of the holding cost incurred during idle periods. In other words, the optimal order size is adjusted according
to the queue length so as to reduce the holding costs during possible idle periods.

5. Simple stationary replenishment policies

Property 4.1 shows that the optimal order size converges to EOQðlÞ as the queue length increases.
However, prior to the convergence, the optimal order size fluctuates and can be somewhat complex. The
complexity of the optimal replenishment policy makes it difficult to study theoretically, and it also makes it
difficult to implement in practice. To overcome such difficulties, an alternative approach is to look for
simple, but effective policies. Four simple policies, two ‘‘order-up-to’’ policies, a myopic policy (see [12] for
more discussion on myopic policies), and a heuristic policy, are introduced as follows.

An order-up-to policy is defined as a replenishment policy p ¼ ðl; l; . . .Þ, i.e., pðqÞ ¼ l for all qP 0, where
l is a positive integer. For such a replenishment policy, if the inventory level becomes zero, an order of the
size l is placed immediately (regardless of the queue length). Order-up-to replenishment policies are simple
to analyze (see [9]) and straightforward to implement. In fact, it has been proven in [9] that the average total
costs per product of a replenishment policy p ¼ ðl; l; . . .Þ is given by

gpðlÞ ¼
K
l
þ ðlþ 1ÞCh

2k
: ð5:1Þ

It is easy to see that expression (5.1) is minimized at EOQðkÞ (see Eq. (4.1) for definition).
Two order-up-to policies are of special interest: the EOQðkÞ policy and the EOQðlÞ policy, which are

defined as the order-up-to policies with order sizes EOQðkÞ and EOQðlÞ, respectively. The EOQðkÞ policy
is interesting since it is the best order-up-to policy. The EOQðlÞ policy is interesting because EOQðlÞ is the
order size of the optimal replenishment policy when the queue length is large.

The myopic policy is defined as the replenishment policy that minimizes the average total cost per
product for the current production run (i.e., until the current raw materials inventory is depleted). No
future cost on or after the next replenishment epoch is considered in making the current order size decision.
The difference between the myopic policy and the optimal replenishment policy is how the costs after the
next replenishment epoch are dealt with. Since the myopic policy ignores the influence of future costs on the
current decision, it is simpler and an explicit description of the structure of it can be obtained. Let:
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V ðq; iÞ: The average total cost of producing exactly i products, given that the queue length is q and
the inventory level is i initially.

The following recursive formulas for fV ðq; iÞg can be easily derived:

V ðq; 0Þ ¼ 0; qP 0; i ¼ 0;

V ð0; 1Þ ¼ Ch

k
þ Ch

l
; q ¼ 0; i ¼ 1;

V ðq; 1Þ ¼ Ch

l
; qP 0; i ¼ 1;

V ð0; iÞ ¼ iCh

k
þ iCh

l
þ
X1
n¼0

xð1� xÞnV ðn; i� 1Þ; q ¼ 0; i > 1;

V ðq; iÞ ¼ iCh

l
þ
X1
n¼0

xð1� xÞnV ðnþ q� 1; i� 1Þ; qP 1; i > 1:

ð5:2Þ

The myopic policy, denoted as pm, is defined as

pmðqÞ ¼
0; q ¼ 0;

argmin
iP 1

K þ V ðq; iÞ
i

� �
; qP 1:

8<
: ð5:3Þ

The following result shows that the myopic order size is a monotone function of the queue length and it
is no larger than EOQðlÞ. These properties are useful in determining upper bounds on i and q in computing
the myopic policy.

Property 5.1. For the myopic policy pm, pmðqÞ6EOQðlÞ for qP 0, and pmðqÞ ¼ EOQðlÞ for qPEOQðlÞ.
pmðqÞ is nondecreasing in q.

Proof. See Appendix E. �

To find the order sizes of the myopic policy, Property 5.1 implies that the search range for both i and q
are from zero to EOQðlÞ. Based on this result, the following efficient algorithm is developed for computing
the myopic policy.
Step 1. Find EOQðlÞ using Eq. (4.1).
Step 2. Calculate V ðq; iÞ recursively by using Eq. (5.2) for 06 i, q6EOQðlÞ.
Step 3. Find the optimal order size pmðqÞ using Eq. (5.3).
The myopic policy is much simpler than the optimal replenishment policy (see Table 1). However, the

order size of the myopic policy for small queue lengths is not a simple function of the queue length. Thus,
we consider a policy with an even simpler structure.

A Heuristic policy: For the optimal replenishment policy shown in Fig. 3, p�ð1Þ is the smallest order size.
As the queue length increases, the optimal order size first increases linearly, and then fluctuates around
EOQðlÞ until finally it coincides with EOQðlÞ. The heuristic policy approximates the optimal policy by
removing the fluctuations in the optimal order size.

The heuristic policy ph is constructed as follows. When phð1Þ6EOQðlÞ, the heuristic policy takes the
following form:

ph ¼ ð0; phð1Þ; phð1Þ þ 1; . . . ;EOQðlÞ � 1;EOQðlÞ;EOQðlÞ; . . .Þ; ð5:4Þ
where phð1Þ is an approximation of the optimal order size p�ð1Þ. When phð1Þ > EOQðlÞ, the heuristic policy
has a slightly different form:
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ph ¼ ð0; phð1Þ; phð1Þ � 1; . . . ;EOQðlÞ þ 1;EOQðlÞ;EOQðlÞ; . . .Þ: ð5:5Þ
A key in the construction of the heuristic policy is to find a good approximation phð1Þ for p�ð1Þ since

there is no explicit solution of p�ð1Þ. Based on some properties about the optimal order size p�ð1Þ, the
following phð1Þ is proposed:

phð1Þ ¼ max
min
iP 1

ðK=iÞ þ ððiþ 1ÞCh=2lÞf g � ðCh=lÞ

ðCh=lÞ þ xðCh=kÞ
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K
Ch

1

ðð1=lÞ þ xð1=kÞÞ

s( )
: ð5:6Þ

The first term on the right-hand side of Eq. (5.6) comes from the inequality ðg � ChlÞ=ðCh=l þ
xCh=kÞ6 p�ð1Þ, which can be proved by using Eq. (3.7). Note that miniP 1 fK=iþ ðiþ 1ÞCh=ð2lÞg is used in
Eq. (5.6) as an approximation (upper bound) of g. The second term on the right hand side of Eq. (5.6) is
(approximately) EOQð1=ð1=l þ x=kÞÞ (see Eq. (4.1)), where the average arrival rate is 1=ð1=l þ x=kÞ. Note
that 1=l þ x=k is an approximation of the mean time between two consecutive demands to the warehouse if
the queue length is one initially.

6. Numerical examples

The replenishment policies introduced in Section 5 are simple, easy to compute, and easy to implement.
However, they must perform well compared to the optimal replenishment policy to be effective substitutes.
In this section, we compare the performance of these simple policies with that of the optimal policy and
analyze numerically when these simple policies perform well.

Example 6.1 (Example 4.1 continued). Consider the inventory–production system with system parameters
Ch ¼ 1, K ¼ 30, k ¼ 0:3, and l ¼ 1. The optimal replenishment policy, the myopic policy, the heuristic
policy, and their corresponding average total cost per product (g) are given in Table 1.

According to Table 1, the difference in the average total costs per product of the optimal policy and the
two order-up-to policies is significant. One of the reasons is that the order-up-to policies place an order even
when the queue length is zero. Thus, these two policies do not perform well compared to the optimal policy
in general. Nonetheless, numerical experiments do show that the performance of the two polices can be
close to that of the optimal policy under some conditions.

First, both the EOQðkÞ and EOQðlÞ policies perform well if the system traffic intensity ðq ¼ k=lÞ is close
to one. This is intuitive since, in this case, the optimal order size is EOQðlÞ for almost all queue lengths and
the idle periods are much shorter than the busy periods. Second, both EOQðkÞ and EOQðlÞ can perform
well if the cost ratio K=Ch is small. When K=Ch is small, the optimal order size will be close to one and the
holding costs incurred during the idle periods account for a small portion in the total inventory costs. Note
that the EOQðkÞ policy always outperforms the EOQðlÞ policy since the EOQðkÞ policy is the best order-
up-to policy.

Table 1

Comparison of replenishment policies

qðtÞ 0 1 2 3 4 5 6 7 8 9 10 qP 11 g

Optimal 0 4 5 6 7 8 8 9 8 7 7 8 15.64039

Myopic 0 4 5 5 6 6 7 7 8 8 8 8 15.65638

Heuristic 0 4 5 6 7 8 8 8 8 8 8 8 15.64044

EOQðkÞ 4 4 4 4 4 4 4 4 4 4 4 4 15.83333

EOQðlÞ 8 8 8 8 8 8 8 8 8 8 8 8 18.75000
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Table 1 also shows that the myopic and heuristic policies perform very close to that of the optimal
policy. In fact, our numerical experiments show that these two simple policies perform extremely well for
most of the cases we examined. We present the next example to demonstrate more specifically when the
myopic and heuristic policies perform well.

Example 6.2 (Example 4.2 continued). We consider the inventory–production system with fixed Ch ¼ 0:2
and l ¼ 1 and changing K and k. The corresponding average total costs per product of the three replen-
ishment policies are shown in Table 2.

The computational results in Table 2 indicate that two simple inventory replenishment policies per-
form well in general. The reason is that both the myopic and heuristic policies choose order sizes close to
the optimal ones, while removing the fluctuation in the optimal order sizes. Nonetheless, Table 2 does
show the difference between the three policies. In fact, similar to the order-up-to policy case, Table 2 shows
that the performance of two simpler policies is related to the traffic intensity q ¼ k=l and the cost ratio
K=Ch.

First, the two simple policies work extremely well when the traffic intensity is close to one. In this case,
the optimal order size is EOQðlÞ for almost all the queue lengths (except zero). Thus, the three policies
behave similarly. Second, the two simple policies work extremely well when the traffic intensity is close to
zero. In this case, the optimal policy usually fluctuates dramatically. However, since the traffic intensity is
small, the queue is small most of the time. Therefore, only the order sizes corresponding to small queue
length matter. Since the myopic and heuristic policies match the optimal policy when the queue length is
small, their performance is close to the optimal policy. Third, when the traffic intensity is moderate, the
myopic or heuristic policy can achieve good performance but the difference between these simple policies
and the optimal one can be significant.

In terms of the cost ratio K=Ch, Table 2 shows that the difference between the simple policies and
the optimal policy becomes larger when the cost ratio is larger. If the cost ratio K=Ch is small, the opti-
mal order size is small (Lemma 3.1). The two simple policies are close to the optimal policy with re-
spect to the order sizes. If the ratio K=Ch is large, more choices are available for the optimal order
size (which can fluctuate), while the two simple policies have fewer choices of order size because of
their structure. Thus, the difference between the optimal policy and the two simple policies can be sig-
nificant.

Table 2

Cost comparison for systems with Ch ¼ 0:2 and l ¼ 1

K ¼ 0:1 K ¼ 0:5 K ¼ 1 K ¼ 10

k ¼ 0:1 Optimal 0.3 0.697409 1.192844 5.527922

Myopic 0.3 0.697450 1.192859 5.528331

Heuristic 0.3 0.697450 1.192859 5.527922

k ¼ 0:4 Optimal 0.3 0.668832 0.940697 3.099032

Myopic 0.3 0.668953 0.943844 3.106538

Heuristic 0.3 0.668953 0.940697 3.099035

k ¼ 0:618 Optimal 0.3 0.611812 0.835806 2.568029

Myopic 0.3 0.611812 0.835806 2.576088

Heuristic 0.3 0.611812 0.835806 2.578051

k ¼ 0:95 Optimal 0.3 0.555262 0.743858 2.143805

Myopic 0.3 0.555262 0.743858 2.144449

Heuristic 0.3 0.555262 0.743858 2.147364

124 Q.-M. He et al. / European Journal of Operational Research 141 (2002) 113–132



7. Conclusions and future research

Several inventory replenishment policies are examined in this paper for the make-to-order inventory–
production system depicted in Fig. 1. It was shown that the optimal stationary replenishment policy exists
and can be obtained by solving an optimality equation. It was found that the optimal order size, though
fluctuating, is bounded and converges to EOQðlÞ when the queue length increases. The characterization of
the optimal replenishment policy, though not complete, provides good insights into the structure of the
optimal policy. These insights led to the introduction of the myopic and heuristic policies. The myopic and
heuristic policies have a simpler structure than the optimal one and yet they perform extremely close to the
optimal policy. This is useful in practice where a simple control scheme is more feasible to implement.

The current work can be generalized in two directions. The first one includes investigating the value of
queue length information in the replenishment decision. Some results in this direction have been reported in
[10]. The second research direction is to consider an inventory–production system with nonzero leadtimes.
In such cases, orders might be issued when the inventory level is still positive, i.e., the optimal order size will
depend on the inventory level as well as the queue length. The problem becomes much more challenging
than the current one.

Appendix A. Proof of Lemma 3.1

We prove Lemma 3.1 by comparing the following two ordering schemes for iþ 1 units of raw materials.
The first scheme is to place an order of the size iþ 1. The second scheme is to place two orders of the size i
and 1 (one) respectively. In both cases, the iþ 1 units of raw materials are used to produce the next iþ 1
products.

Now, we compare the average total costs associated with the two schemes. In terms of the ordering costs,
it is clear that the second scheme leads to an extra cost of the amount K. For the holding costs, we consider
the average total holding costs associated with each of the iþ 1 units. It is easy to see that the average total
holding costs associated with the first i units used in production are the same for both schemes. But the
average total holding costs associated with the last unit of raw materials (i.e., the ðiþ 1Þth unit) is different
for the two schemes. Since the last unit is in the system from the very beginning for the first scheme, holding
costs are incurred during the production of the first i units and any possible idle periods between these
productions. That extra holding cost (associated with the ðiþ 1Þth unit of raw materials) is at least iCh=l.
Note that the mean production time of a product is 1=l. The extra average total holding cost associated
with the ðiþ 1Þth units can be larger than iCh=l since the holding cost incurred during possible idle periods
of the workshop (when qðtÞ ¼ 0) is not included in the expression.

If iP 1þ Kl=Ch, it is easy to verify that iCh=l > K, which implies that the first scheme has a larger
average total cost. Thus, the first scheme has a larger average total cost per product as well. Therefore, in
order to reduce the total inventory cost per product, the order size must be less than 1þ Kl=Ch, regardless
of the queue length at the decision epoch. This completes the proof of Lemma 3.1. �

Appendix B. Proof of Lemma 3.2

For any replenishment policy p in Pb, we organize the states of the corresponding Markov chain
fðqn; InÞ; nP 0g according to its first coordinate. We call the set of states fðq; iÞ; 06 i6 b1þ Kl=Chcg the
level q of states for qP 0.

For the Markov chain fðqn; InÞ; nP 0g, the state ð0; 0Þ can be reached from any other states for two
reasons: (1) since the M/M/1 queue is not influenced by inventory control, qn will become zero after a finite
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number of transitions, which implies that the level 0 is always reachable from any state; (2) since the
number of products produced in a busy period can be any positive number, it is possible that the inventory
level becomes zero at the end of a busy period. Consequently, the Markov chain fðqn; InÞ; nP 0g has only
one closed set.

Since the M/M/1 queue is not influenced by inventory control, the limit of the probability Pfqn ¼ 0g as n
goes to infinity exists and is 1� q, i.e., the probability that the queueing system is empty (see [5]). Since

Pfqn ¼ 0g ¼ Pfqn ¼ 0; In ¼ 0g þ Pfqn ¼ 0; In ¼ 1g þ � � � þ Pfqn ¼ 0; In ¼ 1þ b1þ Kl=Chcg;
limfn!1g Pfqn ¼ 0g ¼ 1� q, and the state ð0; 0Þ is reachable from any other state, we must have xð0; 0Þ ¼
limfn!1g Pfqn ¼ 0; In ¼ 0g > 0. That implies that the Markov chain fðqn; InÞ; nP 0g is positive recurrent if
it is restricted to its only closed set. Finally, we must have

xðq; 0Þ þ xðq; 1Þ þ � � � þ xðq; b1þ Kl=ChcÞ ¼ lim
fn!1g

Pfqn ¼ qg ¼ ð1� qÞqq for qP 0:

This completes the proof of Lemma 3.2. �

Appendix C. Proof of Theorem 3.3

We apply Theorem 10.4 in [13] to prove the theorem. In order to do so, we need to verify two conditions:
(1) for any stationary replenishment policy p in Pb, the corresponding Markov chain fðqn; InÞ; n > 0g is
recurrent;
(2) the stationary distributions fxðq; iÞ : qP 0; 06 i6 b1þ Kl=Chcg of all replenishment policies in Pb is
tight.
First, condition (1) is satisfied because of Lemma 3.2. Second, condition (2) is satisfied because, ac-

cording to Lemma 3.2,

xðq; 0Þ þ xðq; 1Þ þ � � � þ xðq; b1þ Kl=ChcÞ ¼ ð1� qÞqq for qP 0

for any replenishment policy in Pb. Since the Markov decision process has a countable state space, finite
decision sets, and bounded immediate costs, we conclude that all the conditions of in Theorem 10.4 [13] are
satisfied. Therefore, an optimal replenishment policy exists in Pb. Furthermore, the optimality equations
hold and can be used to find the optimal replenishment policy. Finally, according to Lemma 3.1, the
optimal policy in Pb is also optimal in P. This completes the proof of Theorem 3.3. �

Appendix D. Proof of Property 4.1

To prove Property 4.1, we first show that the sequence fhðq; iÞ � hðqþ 1; iÞ; qP 0g converge to a
common limit for all 06 i6 b1þ Kl=Chc. That implies that fhðq; iÞ; 06 i6 b1þ Kl=Chcg is minimized at a
common order size for large q. Then we show that fhðq; iÞ; 06 i6 b1þ Kl=Chcg is minimized at EOQðlÞ
for large q. First, the following preliminary results are needed.

Lemma D.1. The relative functions fhðq; iÞg introduced in Section 3 satisfy

06 hðq; iÞ � hðqþ 1; iÞ6 ð1þ Kl=Chb cÞCh

k
: ðD:1Þ

Proof. We consider the cost functions V �ðq; i; nÞ introduced in Section 3. We first estimate the difference
V �ðq; i; nÞ � V �ðqþ 1; i; nÞ by considering two systems starting with ðq; iÞ and ðqþ 1; iÞ, respectively. If the
system starting in (q, i) places orders using the optimal order sizes of the system starting in ðqþ 1; iÞ until
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the queue length goes to zero for the first time, the average total cost incurred is higher than that of using its
own optimal order sizes. When the queue length of the system starting in ðq; iÞ reaches zero, the workshop
stops working until the next demand arrives so that the system becomes ð1; i0Þ, where i0 is the inventory level
right after the epoch when the queue length becomes zero. The solid line in Fig. 5 shows the change in qðtÞ
when qð0Þ ¼ q. It is not difficult to see that ð1; i0Þ is the state of the system starting in ðq; iþ 1Þ at the epoch
when the other system becomes ð0; i0Þ. The dashed line in Fig. 5 shows the change in qðtÞ when qð0Þ ¼ qþ 1.
If the system with qð0Þ ¼ q does not reach queue length zero before finishing n products, then the two
systems has the same total costs (but the system with qð0Þ ¼ q is not operating optimally).

Now, it is clear that the costs incurred in both systems after their corresponding ð1; i0Þ epochs are the
same, but the system starting in ðq; iÞ has paid an extra holding cost i0Ch=k, but it is not operating optimally.
Therefore, it must be that

V �ðq; i; nÞ6 V �ðqþ 1; i; nÞ þ i0Ch=k6 V �ðqþ 1; i; nÞ þ ð1þ bKl=ChcÞCh=k:

By Eqs. (3.5) and (3.6), we obtain

hðq; i; Þ6 hðqþ 1; iÞ þ ð1þ bKl=ChcÞCh=k:

On the other hand, if both systems using the optimal replenishment policy of the system starting with
ðq; iÞ, the same argument leads to

V �ðq; i; nÞP V �ðqþ 1; i; nÞ þ i0Ch=kP V �ðqþ 1; i; nÞ;
which leads to hðq; iÞP hðqþ 1; iÞ. This completes the proof of Lemma D.1. �

This result implies that the decrease in cost with respect to the increases in queue length is bounded
uniformly, i.e., the increase in queue length by one can only reduce cost by a limited amount. The next
result shows that the magnitude of the decrease converges when the queue length goes to infinity.

Lemma D.2. For the relative functions defined by Eq. (3.6), we have, for 06 i6 b1þ Kl=Chc,
lim
q!1

½hðq; iÞ � hðqþ 1; iÞ� ¼ g1; ðD:2Þ

where g1 is a finite nonnegative constant.

Fig. 5. The sample paths of the queue length.
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Proof. Since fhðq; i; Þ � hðqþ 1; iÞ; qP 0; 06 i6 b1þ Kl=Chcg are all bounded, then any subsequence has
at least one converging subsequence. We shall use these converging subsequences to prove Property 4.1.
Let, for 06 i6 b1þ Kl=Chc,

�ggðiÞ ¼ lim
q!1

sup½hðq; iÞ � hðqþ 1; iÞ� and gðiÞ ¼ lim
q!1

inf ½hðq; iÞ � hðqþ 1; iÞ�: ðD:3Þ

For q > i, there is no idle period before the next ordering epoch. Then, by Eq. (3.7) and Eq. (E.1), for large
q (>i),

hðq; iÞ � hðqþ 1; iÞ ¼
X1
j¼0

xð1� xÞj½hðq� 1þ j; i� 1Þ � hðqþ j; i� 1Þ�

¼
X1
j¼0

P i
ðq;jÞ

�
� P i

ðqþ1;jÞ

�
hðj; 0Þ ¼

X1
j¼0

P i
ðq;jÞ½hðj; 0Þ � hðjþ 1; 0Þ�; ðD:4Þ

where P i
ðq;jÞ is the ðq; jÞth element of the matrix P i. Note that the qth row of the matrix P i is obtained by

shifting the ðqþ 1Þth row of the matrix P i to the left by one (when q > i). Since P is a stochastic matrix, so is
P i. Then Eq. (D.4) leads to, using Fatou Lemma,

gð0Þ6 gð1Þ6 � � � 6 gð1þ Kl=Chb cÞ6 �ggð1þ Kl=Chb cÞ6 � � � 6 �ggð1Þ6 �ggð0Þ: ðD:5Þ

By Lemma D.1, we must have 06 �ggð0Þ6 1þ Kl=Chb cCh=k. Let @ðgÞ ¼ fj : hðj; 0Þ � hðjþ 1; 0Þ < gg for
some g < �ggð0Þ. Suppose that a subsequence fqng leads fhðqn; 0Þ � hðqn þ 1; 0Þg to �ggð0Þ. Then we have

hðqn;p�ðqn þ 1ÞÞ � hðqn þ 1;p�ðqn þ 1ÞÞ ¼
X1
j¼0

pp�ðqnþ1Þ
ðqn;jÞ ½hðqn þ j� p�ðqn þ 1Þ;0Þ � hðqn þ 1þ j� p�ðqn þ 1Þ;0Þ�

6

X1
j¼0:j62@ðgÞ

pp�ðqnþ1Þ
ðqn;jÞ ð�ggð0Þ þ eÞ þ

X1
j¼0:j2@ðgÞ

pp�ðqnþ1Þ
ðqn;jÞ g

� ½1� Sðqn;@ðgÞÞ�ð�ggð0Þ þ eÞ þ Sðqn;@ðgÞÞg: ðD:6Þ

On the other hand,

hðqn; p�ðqn þ 1ÞÞ � hðqn þ 1; p�ðqn þ 1ÞÞP hðqn; 0Þ � hðqn þ 1; 0ÞP �ggð0Þ � e: ðD:7Þ
Then Eqs. (D.6) and (D.7) yield

�ggð0Þ � e6 ½1� Sðqn;@ðgÞÞ�ð�ggð0Þ þ eÞ þ Sðqn;@ðgÞÞg; i:e:; Sðqn;@ðgÞÞ6
2e

gð0Þ þ e � g
: ðD:8Þ

Eq. (D.8) leads to Sðqn;@ðgÞÞ ! 0 when qn ! 1. That implies that hðq; 0Þ � hðqþ 1; 0Þ is approximately as
large as g when q is large enough. Since that conclusion holds for any g that is less than �ggð0Þ, we can
conclude that any convergent sequence of fhðq; 0Þ � hðqþ 1; 0Þg converges to �ggð0Þ. Therefore, �ggð0Þ ¼ gð0Þ
and the sequence fhðq; 0Þ � hðqþ 1; 0Þg converges. By Eq. (D.5), all the sequences fhðq; iÞ � hðqþ 1; iÞg
converge and the limits are the same. �

Using Lemma D.2, we prove the following useful result.

Lemma D.3. Let

DðqÞ ¼ K þ hðq; 1Þ � hðq; 0Þ for qP 1: ðD:9Þ
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Then D� ¼ limq!1 DðqÞ exists and is finite and nonnegative.

Proof. By definition, K þ hðq; 1ÞP hðq; 0Þ so that DðqÞ is nonnegative. If hðq; 0Þ < hðq; 1Þ, it has K þ
hðq; p�ðqÞÞ < hðq; 1Þ. Then it is optimal to order at ðq; 1Þ to bring down the cost, which is a contradiction.
Thus hðq; 0ÞP hðq; 1Þ and DðqÞ is upper bounded by K. Then fDðqÞ; qP 0g must have a convergence
subsequence. Since

DðqÞ � Dðqþ 1Þ ¼ hðq; 1Þ � hðqþ 1; 1Þ � hðq; 0Þ þ hðqþ 1; 0Þ ! 0; q ! 1;

it is easy to see, by Lemma D.2, that there is only one limit. The limit is nonnegative and less than K. This
completes the proof of Lemma D.3. �

Using Lemmas D.2 and D.3, the following property shows that the optimal order size converges to
EOQðlÞ, which is Property 4.1.

Property D.4. limfq!1g p�ðqÞ ¼ EOQðlÞ and D� ¼ K � CEOQðEOQðlÞÞ þ Ch=l, where CEOQðiÞ ¼ K=i þ
ðiþ 1ÞCh=ð2lÞ.

Proof. 8e > 0, qe satisfies for all q > qe, jDðqÞ � D�j < e. By Lemma D.3, it must have

iCh

l
� K þ D� � e < hðq; iþ 1Þ � hðq; iÞ < iCh

l
� K þ D� þ e: ðD:10Þ

Taking the summation for i from 1 to i in the above inequality gives, for i > 1,

hðq; iÞ � hðq; 1Þ > iði� 1ÞCh

2l
� ði� 1ÞK þ ði� 1ÞD� � ði� 1Þe;

hðq; iÞ � hðq; 1Þ < iði� 1ÞCh

2l
� ði� 1ÞK þ ði� 1ÞD� þ ði� 1Þe:

ðD:11Þ

The above inequalities further imply that

hðq; 0Þ � ðK þ hðq; 1ÞÞ > min
16 i6 1þKl=Chb c

iði� 1ÞCh

2l

�
� ði� 1ÞðK � D�Þ � ði� 1Þe

�
;

hðq; 0Þ � ðK þ hðq; 1ÞÞ < min
16 i6 1þKl=Chb c

iði� 1ÞCh

2l

�
� ði� 1ÞðK � D�Þ þ ði� 1Þe

�
:

ðD:12Þ

Letting q ! 1 and e ! 0, by the definition of D�, gives

D� ¼ � min
16 i6 1þKl=Chb c

iði� 1ÞCh

2l

�
� ði� 1ÞðK � D�Þ

�
) 0 ¼ min

16 i6 1þKl=Chb c

iði� 1ÞCh

2l

�
� ði� 1ÞK þ iD�

�
:

Dividing both sides of the last equation by i yields

0 ¼ min
16 i6 1þKl=Chb c

ði� 1ÞCh

2l

�
þ K

i
þ D� � K

�
) Ch

l
þ K � D� ¼ min

16 i6 1þKl=Chb c

ðiþ 1ÞCh

2l

�
þ K

i

�
:

The right-hand side of the last equation is CEOQðEOQðlÞÞ, which gives the value of D�.
Replacing D� in Eq. (D.12) results in, for q > qe,

ðiþ 1ÞCh

2l

 � CEOQðEOQðlÞÞ � ½hðq; iþ 1Þ � hðq; iÞ�
 < e: ðD:13Þ
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This implies that fhðq; iþ 1Þ � hðq; iÞg (when q is large enough) lies between two linear functions (with
respect to i) which are independent of q. The two linear functions are parallel to each other and could be
arbitrarily close to each other. Then fhði; qÞg is minimized at a common point when e is small enough. This
common point is given by

min
16 i6 1þKl=Chb c

arg
ðiþ 1ÞCh

l

�
� CEOQðEOQðlÞÞ : closest to zero

�

¼ min
16 i6 1þKl=Chb c

arg min
ðiþ 1ÞCh

2l

��
� K

i

�
: closest to zero

�
¼ EOQðlÞ: ðD:14Þ

The last equality is true since

½EOQðlÞ þ 1�Ch=ð2lÞ > K=EOQðlÞ > ½EOQðlÞ � 1�Ch=ð2lÞ;

and, when i > EOQðlÞ, it must have

ðiþ 1ÞCh=ð2lÞ � K=i > ½EOQðlÞ þ 1�Ch=ð2lÞ � K=EOQðlÞ > 0;

when i < EOQðlÞ, it has

ðiþ 1ÞCh=ð2lÞ � K=i < ½EOQðlÞ � 1�Ch=ð2lÞ þ Ch=ð2lÞ � K=i < ½EOQðlÞ � 1�Ch=ð2lÞ � K=EOQðlÞ < 0:

This completes the proof of Property D.4. �

Appendix E. Proof of Property 5.1

To prove Property 5.1, we need the concepts of majorization and monotonicity [14]. For vectors x and y
in R1, we say that x is majorized by y if and only if

Pn
i¼1 xi 6

Pn
i¼1 yi for nP 1. Denote this relationship as

x � y. Let X be a matrix with rows fxng. The matrix X is called monotone if x1 � x2 � x3 � � � �. We note
that the concept of ‘‘majorization’’ and ‘‘monotonicity’’ defined here is slightly different from that in some
classical literature [14]. Let

P ¼

x xð1� xÞ xð1� xÞ2 � � �
x xð1� xÞ xð1� xÞ2 � � �

x xð1� xÞ . .
.

x . .
.

. .
.

0
BBBBBBBB@

1
CCCCCCCCA
: ðE:1Þ

By definition, it is easy to see that the matrix P j is monotone for jP 1. Therefore, ðPjÞq;0 P ðP jÞqþ1;0 for
qP 0 and jP 0. Proofs of these conclusions can be found in [14].

Let VðiÞ ¼ ðV ð0; iÞ; V ð1; iÞ; . . .ÞT, where ‘‘T’’ represents the transpose of matrix. Eq. (5.2) can be rewritten
as

V ðiÞ ¼ iðiþ 1ÞCh

2l
eþ

Xi

j¼1

P i�j

jCh=k
0

..

.

0
@

1
A; iP 1: ðE:2Þ
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Eq. (E.2) gives the cost functions fV ðq; iÞg explicitly. By Eqs. (5.2) and (E.2), we have

K þ V ðq; iþ 1Þ
iþ 1

� K þ V ðq; iÞ
i

¼ iV ðq; iþ 1Þ � ðiþ 1ÞV ðq; iÞ � K
iðiþ 1Þ

¼ 1

iðiþ 1Þ i
ðiþ 1Þðiþ 2ÞCh

2l

"(
þ
Xiþ1

j¼1

ðP iþ1�jÞq;0
jCh

k

#

� ðiþ 1Þ iðiþ 1ÞCh

2l

"
þ
Xi

j¼1

ðP i�jÞq;0
jCh

k

#
� K

)

¼ 1

iðiþ 1Þ
iðiþ 1ÞCh

2l

"
þ Ch

k

Xi

j¼0

jðP jÞq;0 � K

#

P
1

iðiþ 1Þ
iðiþ 1ÞCh

2l

"
þ Ch

k

Xi

j¼0

jðP jÞqþ1;0 � K

#

¼ K þ V ðqþ 1; iþ 1Þ
iþ 1

� K þ V ðqþ 1; iÞ
i

: ðE:3Þ

In Eq. (E.3), we used the fact that ðP jÞq;0 > ðP jÞqþ1;0 since P j is monotone. Note that ðP jÞq;0 can be inter-
preted as the probability that the M/M/1 queue has zero customer after j service completions, given that
there are q customers in the queue initially. Therefore

K þ V ðq; iþ jÞ
iþ j

� K þ V ðq; iÞ
i

P
K þ V ðqþ 1; iþ jÞ

iþ j
� K þ V ðqþ 1; iÞ

i
; ðE:4Þ

which implies that pmðqÞ6 pmðqþ 1Þ. The second equality in (E.3) implies that

K þ V ðq; iþ 1Þ
iþ 1

�
� K þ V ðq; iÞ

i

�
P

1

iðiþ 1Þ
iðiþ 1ÞCh

2l

�
� K

�
¼ 1

ðiþ 1Þ
ðiþ 1ÞCh

2l

�
� K

i

�
: ðE:5Þ

For i > EOQðlÞ, the right-hand side of Eq. (E.5) is positive and so is the left-hand side. Therefore, i
(>EOQðlÞ) is not optimal. When qPEOQðlÞ, optimal order size must be EOQðlÞ since it is where the
average total cost per product is minimized under that condition. This completes the proof of Property
5.1. �
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