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It has been shown recently that the Perron-Frobenius eigenvalue of a nonnegative matrix
provides information for a complete classification of   M/G/1 type Markov chains with a tree
structure.  The use of that ergodicity condition depends largely on the computation of a set of
nonnegative matrices, which can be quite challenging.  In this paper, without using a set of
nonnegative matrices, we develop two linear programs whose solutions provide sufficient
conditions for ergodicity of the Markov chains of interest.  We also introduce a simple
approximation to the ergodicity problem.  Numerical examples demonstrate that the linear

program approach, as well as the approximation approach, can be quite useful.

1 Introduction

Markov chains with a tree structure, introduced by Takine, Sengupta, and Yeung
[12], have broad applications in stochastic modeling, especially in queueing theory.   
For instance, the queueing processes of a number of queueing systems with a
last-come-first-served (LCFS) service discipline can be formulated into Markov
chains with a tree structure (see HE and Alfa [5] and Takine, Sengupta, and Yeung
[12], and references therein).  In Van Houdt and Blondia [7], the data transmission
process of a random access system is formulated as a Markov chain with a tree
structure.  As a result, the stability of these stochastic systems is closely related to
the ergodicity of the corresponding Markov chains with a tree structure.    

The ergodicity of Markov chains with a tree structure has attracted considerable
attention recently.  In HE [3, 4], it has been shown that the Perron-Frobenius
eigenvalue of a nonnegative matrix provides information for a complete
classification of   M/G/1 type Markov chains with a tree structure.  Unfortunately, the
ergodicity condition is based on a set of nonnegative matrices that are the fixed
points of certain matrix equations.  When the number of phases involved is large,
the computations required for calculating those matrices are quite demanding and, in
some cases, impossible to implement because of computer space limitations (e.g.,
the random access memory of a computer).  Therefore, other simpler conditions



(sufficient or necessary) can be quite useful in practice.    
In HE and Li [6], a linear program approach is used to find sufficient conditions

for stability of a queueing system with multiple types of customers and a
last-come-first-served preemptive repeat service discipline.  In this paper, we
generalize this linear program approach to   M/G/1 type Markov chains with a tree
structure.  We develop two linear programs whose solutions provide information
about ergodicity of the Markov chain of interest.  The two linear programs are
formulated using only original system parameters.  Since efficient algorithms have
been developed for solving linear programs, information for ergodicity can be
obtained efficiently even when the number of phases is large.  This is the main
contribution of this paper.  In addition, we also introduce a simple (approximation)
condition for ergodicity.

In queueing theory and queueing networks, stability has been an important
issue.  Various approaches have been explored (Chen and Zhang [1], Kumar and
Meyn [8]).  In fact, the linear program approach has been used to find stability
conditions for queueing networks with reentry (Kumar and Meyn [8]).  Our work
shows that the ergodicity problem of complicated Markov chains can be transformed
into a linear program, if the Markov chains possess a certain structure.    

Our work is based on matrix analytic methods and Foster’s criteria for Markov
chains.  Latouche and Ramaswami [9] and Neuts [10, 11] provide an introduction to
matrix analytic methods.  Fayolle, et al. [2] gives an introduction to the
classification of Markov chains, including Foster’s criteria.

The rest of the paper is organized as follows.  In Section 2, we introduce   M/G/1
type Markov chains with a tree structure.  In Section 3, we introduce three existing
approaches to the ergodicity problem.  In Section 4, we present two linear
programming formulations whose solutions give sufficient conditions for ergodicity.
 In Section 5, we give some details about the implementation of numerical
algorithms.  In Section 6, we present some numerical examples to gain insight into
the methods introduced in this paper and to draw general conclusions about the
usefulness of the methods.   

2 Markov Chain of Matrix   M/G/1 Type with a Tree Structure

The following discrete time Markov process of matrix   M/G/1 type with a tree
structure was first introduced in Takine, Sengupta, and Yeung [12].  Consider a
discrete time two-dimensional Markov chain {(Cn,   hn),   n³0} in which the values of
Cn are represented by the nodes of a   K-ary tree, and   hn takes integer values between
1 and   m, where   m is a positive integer.    Cn is referred to as the node variable and   hn
the auxiliary (phase) variable of the Markov chain at time   n.

The   K-ary tree of interest is a tree for which each node has a parent and   K
children, except the root node of the tree.  The root node is denoted as 0.  Strings of



integers between 1 and   K are used to represent nodes of the tree.  For instance, the
kth child of the root node is represented by   k, the   lth child of node   k is represented
by   kl, and so on.

Let    À = {J:    J=k1k2Lkn, 1£ ki   £K, 1£   i   £n,   n>0}È{0}.  Any string   JÎÀ
represents a node in the   K-ary tree.  The length of a string   J is defined as the number
of integers in the string and is denoted by |J|.  When   J = 0, |J| = 0.  The   addition
operation and the   subtraction operation for strings in   À are defined as follows:  if   J
= k1Lkn   ÎÀ,   J¹0,   H = h1Lhi   ÎÀ, and   H¹0, then   J+H =   k1Lknh1Lhi   ÎÀ;  if

JÎÀ, then   J+0 = 0+J   =   J;  if   J = k1Lkn   ÎÀ and   H =   kiLkn   ÎÀ,   i>0, then   J-H =

k1Lki-1   ÎÀ.

The Markov chain {(Cn,   hn),   n³0} takes values in   À´{1, 2,   L,   m}.  To be
called a homogenous Markov chain of matrix   M/G/1 type with a tree structure, (Cn,
hn) transits at each step either to its parent node or to a descendent of its parent
node.  Assuming that (Cn,   hn) = (H+k,   i) for   k>0 and 1£i,   i¢£m, then (Cn+1,   hn+1)
=     (H+J,   i') with probability   a(i,i¢)(k,   J) for   JÎÀ.  If (Cn,   hn) = (0,   i), then (Cn+1,
hn+1) = (J,   i¢) with probability   b(i,i¢)(J) for   JÎÀ.

Note that transition probabilities depend only on the last integer in the string
representing the current node   H+k.  If we call the node   J+k a type   k node, it is clear
that all type   k nodes have the same transition probabilities, 1£k£K.  In matrix form,
transition probabilities are represented as:

A(k,   J) is an   m´m matrix with elements   a(i,i’)(k,   J), 1£ k   £K, for   JÎÀ;    
B(J) is an   m´m matrix with elements   b(i,i’)(J) for   JÎÀ.

Let   
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where   N(J,   k) is the number of appearances of integer   k in the string   J.  By the law
of total probability, we must have   A(k)e =   e, 1£k£K, and   
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the column vector with all components being one.    

3 Three Existing Approaches to Ergodicity   



In this section, we introduce three approaches to establish ergodicity conditions of
the Markov chain {(Cn,   hn),   n³0} defined in Section 2.   

1 The Perron-Frobenius Eigenvalue (PEF) Approach

Let   X = {X1,   L,   XK}, where   X1,   X2,   L, and   XK are   m´m stochastic matrices, i.e.,

Xk is nonnegative and   Xke   =   e, 1£k£K.  Let   Â be a set of all   X   for which   X1,   L, and
XK are stochastic matrices and satisfy the following equations, for 1£k£K, (J =

k1Lk|J|)
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By the well-known Brouwer’s fixed point theorem, it was shown in HE [4] that
the set   Â is nonempty.  For any fixed point   X = {X1,   L,   XK}ÎÂ, define
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where   d(k,   j) = 1, if   k=j;  0, otherwise, and   I is the identity matrix.  Note that the
matrix   N(J,   j,   X) counts the number of appearances of integer   j in the string   J and
keeps track of the phase changes in the transition process.  The matrix   p(k,   j,   X) can
be interpreted as the average number of appearances of integer   j in the next
transition, given that the Markov chain is currently in node   H+k for   HÎÀ.  Define
an   mK´mK matrix   P(X) by
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(3.3)

Let   sp(P(X)) be the Perron-Frobinus eigenvalue of the matrix   P(X) (i.e., the
eigenvalue with the largest real part).    

Theorem 3.1 (Theorem 3.2, HE [4]) Assume that the Markov chain {(Cn,   hn),   n³0}

is irreducible and aperiodic and that       is finite, 1£k£K.  For any element)()1*( kB
XÎÂ, if the matrix   P(X) is irreducible, then the Markov chain of matrix   M/G/1 type
with a tree structure {(Cn,   hn),   n³0} is

1)  positive recurrent if and only if   sp(P(X)) < 1;
2)  null recurrent if and only if sp(P(X)) = 1;
3)  transient if and only if sp(P(X)) > 1.   ,

If   m=1,   X is reduced to   X = {1, 1, …, 1}.  Then Theorem 3.1 gives an explicit
ergodicity condition.  If   m>1, since the matrix set   X has to be calculated in order to
construct the matrix   P(X), the usefulness of Theorem 3.1 is compromised.  Thus,
there is a need to find ergodicity conditions without the presence of   X.    
Remark:  Let   G = {G1,   L,   GK} be the minimal nonnegative solutions to equation
(3.1).  It has been shown in HE [4] that   sp(P(G))   £ 1, a fact that is quite useful in
accuracy check and validating algorithms.

2  The Perron-Frobenius Eigenvalue sp(Q)

In this section, we introduce a descriptor for ergodicity without using any fixed point
X in   Â.  It is easy to calculate the descriptor, though it may not provide correct
information about the ergodicity of the Markov chain of interest.

Let   q(k) be the left invariant vector of the stochastic matrix   A(k), where   q(k) is
nonnegative and is normalized by   q(k)e = 1, 1£k£K.  Let
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Let   Q be a   K´K matrix with the (k,   j)th element being   q(k,   j).  Denote by   sp(Q)
the Perron-Frobenius eigenvalue of the matrix   Q.

Intuitively,   sp(Q), similar to   sp(P(X)), measures the average magnitude of an
one-step movement of the Markov chain {(Cn,   hn),   n³0}.  Thus,   sp(Q) should have
a close relationship with ergodicity of the Markov chain.  Furthermore, the
computations of the matrix   Q and of   sp(Q) are straightforward.  The size of the



matrix   Q is smaller than that of the matrix   P(X).  Therefore, it would be ideal if
sp(Q) could replace   sp(P(X)) for ergodicity (i.e., if   sp(Q) < 1, the Markov chain is
positive recurrent; if   sp(Q) > 1, the Markov chain is transient.)  Unfortunately,   sp(Q)
may not provide correct information for ergodicity of the Markov chain.  The
change of the phase variable   hn depends on the type of node   Cn.  Therefore,   q(k)
may not provide accurate information about the steady state distribution of the phase
hn.  Consequently,   sp(Q) may not accurately measure the average magnitude of the
one-step movement of the Markov chain.    

Nonetheless, our numerical examples show that   sp(Q) is close to   sp(P(X)) and
can be useful in practice since its computation is much easier than that of   sp(P(X)).   
In Section 6, we shall present a large number of examples to show the relationship
between   sp(Q) and   sp(P(X)).    

3 Sufficient Conditions for Ergodicity

The following sufficient conditions for ergodicity have been obtained in HE [4].   

Denote by R+ the set of nonnegative real numbers.  Let   z = (z1,   L,   zK)   ÎR+K and
define, for 1£k£K,
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Lemma 3.2   (Lemma 6.1, HE [4])  Assume that the Markov chain {(Cn,   hn),   n³0}   

is irreducible and aperiodic and that       is finite, 1£k£K.  If there exists an)()1*( kB
m´1 positive vector   u such that   A*(k,   z)u   <   zku, (i.e., every element of   A*(k,   z)u is

strictly smaller than its counterpart in   zku,) and   B*(z)u   <   ¥ for some   z satisfying 1 <

zk   <   ¥, 1£k£K, then the Markov chain {(Cn,   hn),   n³0} is positive recurrent.    ,

Lemma 3.3   (Lemma 6.2, HE [4])  Assume that the Markov chain {(Cn,   hn),   n³0}   

is irreducible and aperiodic and that       is finite, 1£k£K.  If there exists an)()1*( kB
m´1 positive vector   u such that   A*(k,   z)u   £   zku for some   z satisfying   zk>0, 1£k£K,
and 0<zk<1 for at least one   k (1£k£K), then the Markov chain {(Cn,   hn),   n³0} is

transient.    ,



These two sufficient conditions do not make use of any fixed point   X = {X1,   L,
XK} in   Â and they provide correct information about ergodicity.  However, it is not
straightforward to verify the conditions.  In Section 4, based on Lemmas 3.2 and
3.3, we develop two linear programs for the ergodicity problem.    

4 Linear Programs for Ergodicity Conditions

Let   d = (d1,   d2, …,   dK)T and   v = (v1,   v2, …,   vm)T, where superscript “T”
represents matrix transpose.  Define a linear system with variables (d,   v,   e) as
follows:   
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Lemma 4.1  Consider the Markov chain {(Cn,   hn),   n³0} defined in Section 3.  We

assume that       is finite, 1£k£K, and   B*(z)   <   ¥ for some   z satisfying 1 <   zk   <)()1*( kB
¥, 1£k£K.  If the linear system (4.1) has a solution (d,   v,   e) with positive   dk, 1£k£K,
and positive   e, then the Markov chain {(Cn,   hn),   n³0} is positive recurrent.

Proof.  We use Lemma 3.2 to prove Lemma 4.1.  The idea is to choose a direction   d
= (d1,   d2, …,   dK)T with   dk   ³ 0, 1£k£K, such that, when   zk(t) = 1 +   dkt, 1£k£K, (i.e.,
z(t) =   e +   dt) and   u(t) =   e +   tv, we have, for 1£k£K,   

       (4.3),)()()())(,(* euuz etttzttkA k -£

with positive   u(t) and   de = 1 for some positive   e and positive   t.  By using the Taylor
expansion of   A*(k,   z(t)) with respect to the variable   t, the problem can be
transformed into the linear system (4.1) in the following way:
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Then, for 1£k£K, inequality (4.3) becomes,   
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Canceling the vector   e   and letting   t   ® 0 on both sides of the inequality in
equation (4.5), we obtain
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It is easy to see that inequality (4.6) is equivalent to the linear system (4.1).  If
the linear system (4.1) has a solution (d,   v,   e) with positive   dk, 1£k£K, and positive
e, then equation (4.3) holds for small enough positive   t and some positive   e¢   £   e.   
Note that we choose positive   t small enough to ensure that 1) inequality (4.3) is
satisfied, 2)   zk(t)>1, 1£k£K, 3)   u(t) is positive, and 4)   B*(z(t)) is finite.  By Lemma

3.2, the Markov chain is positive recurrent.    ,

To find a condition for transient Markov chains, we define the following linear
system for (d,   v,   e):
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with   d   ³ 0, –¥ <   vj   <   ¥, 1   £   j   £   m, and   e   ³ 0.    

Lemma 4.2  Consider the Markov chain {(Cn,   hn),   n³0} defined in Section 3.  If
the linear system (4.7) has a solution (d,   v,   e) with nonzero nonnegative vector   d and
positive   e, then the Markov chain {(Cn,   hn),   n³0} is transient.    

Proof. The proof is similar to that of Lemma 4.1.  Choose   zk(t) = 1-dkt, 1£k£K, i.e.,
z(t) =   e –   dt, and   u(t) =   e +   tv.  By Lemma 3.3, we need to find   d and   v such that
A*(k,   z(t))u(t)   £   zk(t)u(t) holds for some positive   t.  As in the proof of Lemma 4.1,

we expand   A*(k,   z(t))u(t)   £   zk(t)u(t) and evaluate the expanded expressions in the
following way:    
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Canceling the vector   e   and letting   t   ® 0 on both sides of the inequality in
equation (4.8), we obtain
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We add the vector   ee to the left hand side of equation (4.9) to obtain equation
(4.7).  If the linear system (4.7) has a solution (d,   v,   e) with a nonzero nonnegative
vector   d and positive   e, inequality (4.9) is satisfied in strict sense.  That implies that
inequality (4.8) holds for small enough positive   t.  Thus the conditions given in
Lemma 3.3 are satisfied for small enough positive   t.  Therefore, the Markov chain is
transient.   ,

It is easy to see that the key step in the application of Lemmas 4.1 and 4.2 is to
show the existence of the required solutions to the linear systems (4.1) and (4.7).   
For that purpose, we introduce the following linear programs.  First, we define a
linear program from linear system (4.1) to get a sufficient condition for an ergodic
Markov chain:
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Note that the constraints of the above linear program are from linear system
(4.1), except that the constraint   de = 1 is added to ensure a finite optimal solution
(which may not be unique).  Next, we define a linear program from linear system
(4.7) to get a sufficient condition for a transient Markov chain:    
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Now, we are ready to present the main theorem of this paper.

Theorem 4.3  Consider the Markov chain {(Cn,   hn),   n³0} defined in Section 3.   
The linear system (4.1) has a solution with positive (d,   e) if and only if   x1 > 0.  The
linear system (4.8) has a solution with nonzero   d and positive   e if and only if   x2 > 0.
 Consequently, if   x1 > 0, the Markov chain is positive recurrent (provided that other
assumptions of Lemma 4.1 are satisfied); if   x2 > 0, the Markov chain is transient.    

Proof.  First, we note that both (4.10) and (4.11) have a feasible solution (d,   v,   e) =
(0, …, 0).  Therefore, optimal solutions exist for both problems and   x1,   x2   ³ 0.

If the linear system (4.1) has a solution with positive (d,   e), then we have   x1 >   e
> 0.  On the other hand, if the objective function of the optimal solution of (4.10) is
positive, then the linear system (4.1) has a solution (d,   v,   e) with a positive   e.  Next,
we show that   d is also positive.  If   d=0, then the constraints in equation (4.10)



(except the last line) become (A(k)–I)v +   ee   £ 0, 1£k£K.  Multiplying both sides of
these inequalities by the nonnegative and nonzero vector   q(k) yields   eq(k)e =   e   £ 0,
1£k£K, which is a contradiction.  (Note that   q(k) is the left invariant vector of   A(k)
defined in Subsection 3.2.)  Therefore,   d is nonzero.  If the vector   d is not positive,
i.e., if there exists   k such that   dk=0, then we multiply   q(k) on both sides of the   kth
inequality in (4.10) to obtain   
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Since all of the components of the above vectors are nonnegative and some of
them are positive (e>0), the inequality cannot hold.  Therefore, the vector   d is
positive.  According to Lemma 4.1, the Markov chain is positive recurrent.    

The second part of the theorem about equation (4.11) can be proved similarly,
except that the vector   d only has to be nonzero for this case.  Details are omitted.    ,

We note that, if   m=1, information provided by the solutions of (4.10) and (4.11)
for ergodicity of Markov chains is sufficient and necessary (provided that the other
assumptions of Lemma 4.1 are satisfied).  That is, the Markov chain is positive
recurrent if and only if (4.10) has a positive optimal objective value; the Markov
chain is transient if and only if (4.11) has a positive optimal objective value.   
Consequently, if neither (4.10) nor (4.11) has a positive optimal objective value,
then the Markov chain of interest is null recurrent.  Unfortunately, it is not easy to
check how accurate the information provided by equations (4.10) and (4.11) is if
m>1.  In Section 6, a numerical analysis will be carried out to analyze the usefulness
of Theorem 4.3.

Remark:  The sufficient conditions given by Theorem 4.3 are closely related to
P(X).  To see the relationship, let   v=0.  Then the constraints of equation (4.10)
becomes   P(X)D   –   D +   ee   £ 0, where the vector   D = (d1eT,   d2eT, …,   dKeT)T.  Thus,
finding a solution to (4.10) is equivalent to finding a special type of subinvariant
measure of   P(X).  However,   P(X) may not have such a subinvariant vector.  Thus,
Theorem 4.3 may fail to provide information for ergodicity.   

It can be shown that (4.10) and (4.11) provide consistent information about
ergodicity.  If   x1 > 0, then   x2 = 0 and the Markov chain is positive recurrent.  On
the other hand, if   x2 > 0, then   x1 = 0 and the Markov chain is transient.  It is
possible that   x1 =   x2 = 0.  For this case,   x1 and   x2 provide no information about the
ergodicity of the Markov chain.  These results can be proved in a way similar to that
of Property 5.5 in HE and Li [6].  Details are omitted.

To end this section, we outline a computational scheme to check whether or not



the Markov chain defined in Section 2 is ergodic.

Step 1.    Calculate {A(k), 1£k£K}.
 Step 2.    Calculate {d(k,   j), 1£k,   j£K} by equation (4.2).
 Step 3.    Solve linear programs (4.10) and (4.11).
 Step 4.  If neither (4.10) nor (4.11) provides information about system

stability, use the PFE method given in Section 3.1.    

Compared to the methods introduced in Section 3.1, the linear program
approach has a larger matrix (the constraints of equations (4.10) and (4.11)) to deal
with.  In fact, the space complexity of the PFE approach is   O(Km2) and the space
complexity of the linear program approach is   O(K+m+1)(Km+1) =   O(K2m+Km2).   
If   m is much larger than   K, then the space complexity of the two methods is more or
less the same.  On the other hand, the matrix iterations for   X = {X1, …,   XK} that are
necessary for the PFE approach are avoided for the linear program approach so that
the time complexity of the linear program approach is low and numerical precision
can be ensured.  Furthermore, there are well-developed algorithms and software that
can solve linear programs efficiently, even when the number of phases is large.   
Therefore, the linear program approach has its advantages over the other approach.

5 Computational Details

In order to use the methods introduced in Sections 3 and 4, we have to compute
summations of matrices over string   JÎÀ.  Examples of such summations can be
found in equations (2.1), (3.1), (3.2), (3.4), and (4.2).  However, the actual
implementation of such a summation is not straightforward.  We introduce the
following transformations that transform the summations over   JÎÀ into summations
over two indices.  The latter can be implemented easily in computation.

For any string   J=k1k2…k|J|   ÎÀ and   J¹0, we introduce a pair of integers (n,   t)
as follows:
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On the other hand, for any pair of integers (n,   t) with   n>0 and 0£t£Kn   –1, we
introduce a string   J =   k1…kn as follows:   
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where   ëxû represents the largest integer that is smaller than or equal to   x.    

Lemma 5.1.  Assume that the string   J=0 corresponds to the pair (n,   t) = (0, 0).  Then
the transformations defined by equations (5.1) and (5.2) are two one-to-one
transforms between the two sets   À and {(n,   t): 0£t£Kn–1,   n³0}.  Furthermore,
define   Àn = {J:    JÎÀ and |J|=n} for   n³0.  Then the transformations defined by
equations (5.1) and (5.2) are one-to-one transformations between the two sets   Àn
and {(n,   t): 0£t£Kn –1} for all   n³0.    

Proof.  The conclusion is obtained from the fact that the transformation defined by
equation (5.1) is the inverse of the transformation defined by equation (5.2) and vice
versa.     ,

6 Numerical Examples

To study the usefulness of the linear program approach and   sp(Q), we have run and
analyzed a large number of numerical examples.  In this section, we present the
results of our numerical analysis.  First, we show in Example 6.1 that the PFE,
sp(Q), and linear program methods may provide different information for ergodicity.
 Second, in Example 6.2, we show how good   sp(Q) and the linear program approach
can be by summarizing the results for a large number of randomly chosen examples.   
    

Example 6.1  Consider an   M/G/1 type Markov chain with a tree structure with the
following transition blocks:    K=m=2,   
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where 0 <   m < 0.6.  For   m goes from 0.2 to 0.5, the values of   sp(P(X)),   sp(Q),   x1,
and   x2 are shown in Table 6.1.  Note that, in Table 6.1,   sp(P(X)) is the only
measurement that always provides correct information about ergodicity.

Table 6.1  Values of   sp(P(X)),   sp(Q),   x1, and   x2 for Example 6.1
m 0.2 0.3 0.35 0.3597 0.37 0.4 0.5

sp(P(X)) 1.31422 1.1170 1.0188 0.999863 0.9883 0.9211 0.7278
sp(Q) 1.31421 1.1171 1.0190 1.000084 0.9809 0.9214 0.7285

x1 0 0 0 0 0.0098 0.0370 0.1317

x2 0.1530 0.0558 0.0089 0 0 0 0

As shown in Table 6.1, if   sp(P(X))   » 1 (m   » 0.36),   x1 and   x2 do not provide
information about ergodicity since they are both zero.  If   m < 0.35,   x2 is positive so
that the Markov chain is transient.  If   m > 0.37,   x1 is positive so that the Markov
chain is positive recurrent.  If   m = 0.3597,   sp(P(X)) = 0.999863 < 1 < 1.000084 =
sp(Q).  For this case,   sp(Q) does not provide correct information about ergodicity.   
Nonetheless, if   m < 0.359 or   m > 0.36, information about ergodicity provided by
sp(Q) is consistent with that provided by   sp(P(X)).    

Example 6.2  In this example, we plot   sp(P(X)) against   sp(Q),   x1, and   x2
respectively for a large number of randomly chosen examples.  In Figure 6.1, we
plot (sp(P(X)),   sp(Q)).  In Figure 6.2, we plot (sp(P(X)),   x1) and (sp(P(X)),   x2).    
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Figure 6.1  Plot of (sp(P(X)),   sp(Q)).

Figure 6.1 demonstrates clearly that   sp(Q) and   sp(P(X)) are very close for
almost all the examples, though outliers do exist.  Thus,   sp(Q) can be a useful
indicator of ergodicity of the Markov chain.    

By Theorem 4.3,   x1 may be useful if the Markov chain is positive recurrent and
x2 may be useful if the Markov chain is transient.  Therefore, we plot (sp(P(X)),   x1)
only for   sp(P(X)) < 1 and (sp(P(X)),   x2) only for   sp(P(X)) > 1.  Figure 6.2 shows
that both   x1 and   x2 may be zero and so fail to provide information about ergodicity
if   sp(P(X))   » 1 (0.9 <   sp(P(X)) < 1.1).  Nonetheless, Figure 6.2 does show that   x1
starts to provide information if   sp(P(X)) goes below 0.9 and   x2 starts to provide
information if   sp(P(X)) goes beyond 1.1.  Figure 6.2 also shows that   x1 and   x2 may
provide useful information even if   sp(P(X))   » 1 (0.9 <   sp(P(X)) < 1.1).  It is
reasonable to conclude that if neither (4.10) nor (4.11) provides information about
ergodicity, i.e.,   x1 =   x2 = 0, then the Markov chain is “close” to null recurrent.   
More numerical examples for the relationship between   sp(P(X)),   x1, and   x2 can be
found in HE and Li [6].    
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Figure 6.2  Plots of (sp(P(X)),   x1) and (sp(P(X)),   x2)

In summary,   sp(Q) is close to   sp(P(X)) and may provide correct information
about ergodicity if   sp(P(X)) is not close to one.  The linear program approach
provides correct information about ergodicity if one of the two linear programs has a
positive optimal value, which is usually true if the Markov chain is not on the border
of being transient or recurrent.  Without using   sp(P(X)), the following scheme can
be used for the ergodicity problem:  1) If   x1 > 0, the Markov chain is positive
recurrent; 2) If   x2 > 0, the Markov chain is transient; 3) If   x1 =   x2 = 0 and   sp(Q) is
close to one, the Markov chain is on the border of being transient or recurrent; 4)
Otherwise, the ergodicity of the Markov chain is unsure.
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