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Abstract

The benefits of pooling risks, manifested in inventory management by consolidating

multiple random demands in one location, are well known. What is less well understood

are the determinants of the magnitude of the savings. Recently several researchers

speculated about the impact of demands’ variabilities on the benefits of risk-pooling.

We provide an example where increased variability of the individual demands actually

reduces the benefits of risk pooling. We prove, however, that if we restrict increased

variability to a common linear transformation, the greater the demand variabilities

the larger the benefits of consolidating them, in agreement with intuition. We also

provide bounds on the benefits of the consolidation of demands. Our results do not

require independence of the demands, apply to any number of pooled demands, and

are obtained in pure-cost driven model.



On the Relation Between the Benefits of Risk Pooling

and the Variability of Demand

1 Introduction

Risk pooling, or statistical economies of scale, is a pervasive phenomenon which underlies

major economic activities like banking and insurance. In operations management, it is often

achieved by consolidating a product with random demand into one location, which is long

known to be beneficial (e.g. Eppen 1979, Cherikh 2000). Though the potential for such benefit

is being repeatedly (re)discovered in many contexts, a more interesting set of questions

pertain to the manner in which the risk-pooled inventory policy differs from the non-pooled

solutions and their aggregate.

These issues were explored both in the “minimalistic” setting of aggregating several

demands in newsvendor-like models (Gerchak and Mossman 1992, Gerchak and Wang 1997,

Anupindi and Bassok 1999, Yang and Schrage 2000), as well as in assemble-to-order models

with component commonality (Gerchak and Henig 1989, Eynan 1996, Eynan and Rosenblatt

1996, Hillier 1999, Dong and Lee 2000) and delayed differentiation and substitution problems

(Lee and Tang 1997, Rao, Swaminathan and Zhang 2000).

In particular, Gerchak and Mossman (1992) showed that aggregation of independent

demands in pure-cost driven newsvendor models, while beneficial, need not reduce∗ the

optimal inventory nor move it closer to the mean or relevant median demand. Gerchak

and Wang (1997) showed that such is still the case in a newsvendor model with quadratic

shortage costs (a cost structure which better reflects the costs of liquidating increasingly less

liquid assets to meet claims). Yang and Schrage (2000) analyzed the implications of partial

substitutions.

Anupindi and Bassok (1999) raised the question whether the expected sales always

∗Partly since that observation is not well known, and partly since some researchers derive required in-
ventory amounts from service level constraints (in which case risk pooling always reduces inventory), one
occasionally encounters unqualified statements about risk pooling always resulting in smaller stocks (e.g.,
Simchi-Levi et al. 2000, p. 60).
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increase with aggregation (one of the parties in their supply chain, the manufacturer, would

then benefit). The answer, again, is that such will not always be the case.

What seems to have not yet been seriously explored, however, are the exact determinants

of the savings due to pooling. In particular, one would like to know how demand variability

affects the consequences and benefits of risk-pooling. Intuition seems to suggest that the

benefits of risk-pooling will increase with respect to the original demands’ variabilities; after

all, it has no (statistical) benefits if demands are known. Benjaafar and Kim (2001) show,

however, that in make-to-stock queues, high variability of original demands renders risk-

pooling of little benefit. See also Benjaafar et al. (2002). Simchi-Levi et al. (2000, p. 60)

state that an increase in benefits due to randomness always holds, which is indeed true in a

service-level model which they use. The situation is less obvious in a setting where trades-off

between overage and underage costs are considered (pure-cost driven model), which is the

one of interest to us. Pertaining to that question, Rao et al. (2000, Section 5.3.3) state that

“We found that proving this observation is difficult in general”, and then show that it holds

for a particular example. We provide an example which shows that increasing the variability

of one of the individual demands may reduce the benefit of combining it with another.

We do however, prove that within the more economically meaningful framework of mean-

preserving variability-increasing transformations (see definitions and references in Section

4), the intuition is right: increased demand variability always results in larger benefits. Our

result does not require independence and applies to any number of pooled demands. Other

related insights are also derived.

2 The Model and its Basic Properties

Let X be a non-negative random demand with distribution function F (x) (denoted as X ∼

F ). Let c be the unit ordering/production cost, net of salvage value; the unit opportunity

loss for missing a sale is scaled to one, and we assume that c < 1. Then the basic newsvendor
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problem is:

Φ∗(X) ≡ min
0≤Q<∞

cQ +

∞∫
Q

(x−Q)dF (x)

 = min
0≤Q<∞

{
cQ + E(X −Q)+

}
, (1)

where (x−Q)+ = x−Q if x ≥ Q; 0 if x < Q.

The solution to equation (1) is Q∗
X = F−1(1− c), where F−1(x) is the inverse function

of F (x) and the optimal objective value can be written as Φ∗(X) =
∞∫

F−1(1−c)

xdF (x).

If another random demand Y ∼ G is served by a separate stock, the total optimal

inventory will be Q∗
X + Q∗

Y = F−1(1 − c) + G−1(1 − c), and the sum of expected costs

Φ∗(X) + Φ∗(Y ) =
∞∫

F−1(1−c)

xdF (x) +
∞∫

G−1(1−c)

xdG(x).

If the two demands are consolidated, then the relevant random demand becomes X+Y ≡

Z. We shall not assume that X and Y are independent and thus Z’s distribution is generally

not the convolution of X and Y ’s distributions.

The basic advantage of risk-pooling is captured by the fact that the optimal risk-pooled

costs Φ∗(X + Y ) are always lower than or equal to the sum of the unpooled costs Φ∗(X) +

Φ∗(Y ). While this can be proved formally (and we will, shortly, for completeness), it is

rather obviously true since, if one stocked in the pooled case exactly the sum of the optimal

unpooled stocks, one could do at least as well, and thus, by acting optimally in the pooled

case, one can do still better. The optimal stock, however, does not necessarily go down with

pooling (Q∗
X+Y > Q∗

X + Q∗
Y is possible), and neither do the expected sales.

This note focuses on the benefits of risk-pooling, i.e., the benefit function Φ∗(X) +

Φ∗(Y ) − Φ∗(X + Y ), which is always nonnegative. As discussed in the Introduction, we

shall investigate the relationship between the demand variability and the benefits of risk-

pooling. We first show an example where the benefits of risk-pooling are decreasing in demand

variability.

3 Counterexample

We say that X is smaller than Y in convex ordering, denoted by X ≤c Y , if E[f(X)] ≤

E[f(Y )] for all convex functions f (e.g., Shaked and Shanthikumar 1994). Let random de-
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mand Xn = 0, w.p. (with probability) 1− 1/n; and n, w.p. 1/n, for any positive integer n.

It is easy to verify that E(Xn) = 1 ∀n and V ar(Xn) = n − 1. It is also easy to verify that

Xn ≤c Xn+1, i.e., Xn+1 is more variable than Xn with respect to the convex ordering.

Consider another random demand Y = 0, w.p. 0.5; and 1, w.p. 0.5. We assume that Xn

and Y are independent. Let c be the unit ordering cost (0 < c < 1). We are interested in

the benefits of risk-pooling Φ∗(Xn) + Φ∗(Y )− Φ∗(Xn + Y ) as a function of n.

We assume that 0 < c < 0.5 and that n satisfies cn > 1 + c. Then we have

Φ∗(Xn) = min
0≤Q<∞

{cQ + E(Xn −Q)+}

= min{ min
0≤Q≤n

{cQ + (n−Q)/n}, min
n<Q

{cQ}} = min{1, cn} = 1.

It is also easy to show that the random variable Xn + Y = 0, w.p. (1− 1/n)/2; 1, w.p.

(1− 1/n)/2; n, w.p. 1/(2n); and n + 1, w.p. 1/(2n). By routine calculations, we have

Φ∗(Xn + Y ) = c + 1− 1

2n
.

Then we obtain the benefits of risk-pooling as

Φ∗(Xn) + Φ∗(Y )− Φ∗(Xn + Y ) = 1 + Φ∗(Y )− c− 1 +
1

2n
= Φ∗(Y )− c +

1

2n
.

The above expression implies that the benefits of risk-pooling decrease when the demand

variability (of Xn) increases (even though the mean demand remains unchanged). Note that

in this example Q∗
Xn

= Q∗
Y = 0, implying that Φ∗(Xn) = E(Xn) and Φ∗(Y ) = E(Y ), while

Q∗
Xn+Y = 1, and thus Φ∗(Xn + Y ) < E(Xn + Y ).

While the example may not be quite realistic economically, the possibility of such behav-

ior means that the concept of increased variability needs to be refined so that the intuitive

expectations will be validated.

4 Costs and Improvements as Function of Mean-

Preserving Variability Increases

Let

Xα = αX + (1− α)µX , 0 ≤ α ≤ 1, (2)
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where µX ≡ E(X). Denote by V ar(X) the variance of X. Then, E(Xα) = E(X) and

V ar(Xα) = α2V ar(X), which is nondecreasing in α. Thus, the random demand Xα becomes

more variable when α increases. Throughout this paper we assume that α takes values

between 0 and 1. This mean-preserving transformation (spread) is a common device for ex-

ploring the implications of changing variability in probabilistic micro-economics (e.g., Baron

1970, Sandmo 1971, Hey 1979). While Xα usually does not belong to the same parametric

family as X (though it does so in normal case), X can have any distribution. It was previ-

ously used in operations management by Gerchak and Mossman 1992, Gupta and Gerchak

1995, and Gerchak 2000. We shall first show this transformation is consistent with convex

ordering.

Proposition 1 For any nonnegative random demand X, we have Xα ≤c X for 0 ≤ α ≤ 1.

Proof. To show the result, we note that µX ≤c X, so E(µX − x)+ ≤ E(X − x)+ holds for

any x. Then we have, for any x,

E(Xα − x)+ = E(α(X − x) + (1− α)(µX − x))+

≤ αE(X − x)+ + (1− α)(µX − x)+

≤ αE(X − x)+ + (1− α)E(X − x)+.

Thus, E(Xα − x)+ ≤ E(X − x)+ holds for any x. Therefore, (e.g., Shaked and Shan-

thikumar, 1994, Thm. 2.A.1) since the means are equal, Xα ≤c X. ‖

Gerchak and Mossman showed that Q∗
α = αQ∗

X +(1−α)µX . That implies that the stock

is increasing in demand variability if and only if F−1(1 − c) > µX . We shall show that the

benefits of risk pooling always increase in the variabilities of individual random demands

under such mean-preserving transformation.

Let {X1, X2, ..., Xn} be n random demands (nonnegative random variables), where n is

a positive integer. Let Xi,αi
= αiXi +(1−αi)µXi

, for 0 ≤ αi ≤ 1 and 1 ≤ i ≤ n. The benefits

of risk-pooling of the n demands are defined as, for α = (α1, ..., αn),

φ(α) ≡
n∑

i=1

Φ∗(Xi,αi
)− Φ∗(

n∑
i=1

Xi,αi
). (3)
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The following theorem presents the main result of this paper.

Theorem 2 For 0 ≤ t ≤ 1 and 0 ≤ αi ≤ 1, 1 ≤ i ≤ n,

φ(tα) = tφ(α); φ(α) =
n∑

i=1

αiΦ
∗(Xi)− Φ∗(

n∑
i=1

αiXi). (4)

The function φ(tα) is nonnegative. In addition, the function φ(α) is non-decreasing in
each αi for 1 ≤ i ≤ n. The benefits of risk-pooling are upper-bounded:

φ(tα) ≤ t(1− c)
n∑

i=1

αiµXi
.

The optimal risk-pooled order size has the following property:

Q∗
X1,tα1+...+Xn,tαn

= tQ∗
α1X1+...+αnXn

+
n∑

i=1

(1− tαi)µXi
. ‖

The linear relationship in equation (4) is due to the mean-preserving transformation

used. Since φ(α) is nonnegative, Theorem 2 shows that the benefits of risk-pooling increase

in the variabilities of individual random demands. But that property is not always shared

by the optimal order size.

We divide the proof of Theorem 2 into a series of lemmas and properties. Some of these

are of independent managerial/economic interest. We shall comment on the implications of

various results when they are presented. The first result establishes that variability increases

the expected costs as well as bounds the expected costs for any random demand.

Lemma 3 For any nonnegative random demands X and Y , if Y ≤c X, i.e., Y is less than
X in the convex ordering, then Φ∗(Y ) ≤ Φ∗(X). Consequently, we have

cµX ≤ Φ∗(X) ≤ µX . (5)

Proof. By definition, if Y ≤c X, E(Y − x)+ ≤ E(X − x)+ holds for any x. Then we have

Φ∗(X) = cQ∗
X + E(X −Q∗

X)+ ≥ cQ∗
X + E(Y −Q∗

X)+ ≥ Φ∗(Y ).

It is well-known that µX ≤c X (Shaked and Shanthikumar, 1994). Choose Y ≡ µX . We

obtain Φ∗(µX) ≤ Φ∗(X). Since Φ∗(µX) = cµX (note that 0 < c < 1), we have cµX ≤ Φ∗(X).

By choosing Q = 0 in equation (1), we obtain Φ∗(X) ≤ µX . ‖
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Next, we present some results concerning the optimization problem in equation (1) when

the demand undergoes a mean-preserving transformation. The proofs of the following results

are straightforward.

Lemma 4 For any nonnegative random demand X and a nonnegative constant y, we have

Φ∗(X + y) = Φ∗(X) + cy. (6)

The corresponding optimal order size is given by Q∗
X + y. Also, we have

Φ∗(αX) = αΦ∗(X). (7)

The optimal order size is αQ∗
X . Consequently, we have

Φ∗(Xα) = αΦ∗(X) + (1− α)cµX . (8)

The optimal order size is given by αQ∗
X + (1− α)µX . ‖

Note that Gerchak and Mossman (1992) claimed that both order size and costs undergo

the same transformation as the demand, which is true for the order size but not the costs

(due to the presence of c in the last term of (8)).

The results in Lemma 4 are quite intuitive. When the random demand increases by a

constant, the optimal decision is to add that constant to the original optimal solution, and

the extra cost is then cy. When the random demand increases proportionally, the optimal

order size and costs increase by the same multiplier.

Note that since the right-hand side of equation (8) can be written as α[Φ∗(X)− cµX ] +

cµX , and, by Lemma 3, Φ∗(X) ≥ cµX , it follows that Φ∗(Xα) is linearly increasing in α.

Now, we consider models with two random demands and explore the benefits of risk-

pooling. It is well-known that

Φ∗(X + Y ) ≤ Φ∗(X) + Φ∗(Y ). (9)

The pooled costs are bounded as follows:

c(µX + µY ) ≤ Φ∗(X + Y ) ≤ Φ∗(X) + Φ∗(Y ) ≤ µX + µY . (10)

The inequalities in (10) imply that the benefits of risk-pooling are always smaller than

or equal to (1−c)(µX +µY ). If c is close to 1, the benefits of risk-pooling is immaterial. That
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is not surprising, since when c is close to 1 the optimal Q approaches zero (no production)

and the objective function thus approaches the expected demand, which is additive.

As for the benefits of risk-pooling under mean-preserving transformation, we consider

two scenarios: a) Xα + Yα and b) Xα + Y , where 0 ≤ α ≤ 1. In the first scenario, the

variabilities of both demands are changed in a “coordinated” fashion. In the second scenario,

only the variability of one of the demands is changed.

Proposition 5 For any two nonnegative random demands X and Y , we have,

Φ∗(Xα) + Φ∗(Yα)− Φ∗(Xα + Yα) = α[Φ∗(X) + Φ∗(Y )− Φ∗(X + Y )]. (11)

Thus, the benefits of risk-pooling are non-decreasing in α. Also, we have

Φ∗(Xα) + Φ∗(Yα)− Φ∗(Xα + Yα) ≤ α(1− c)(µX + µY ).

Proof. By Lemma 3, we have

Φ∗(Xα + Yα)− Φ∗(Xα)− Φ∗(Yα)

= αΦ∗(X + Y ) + (1− α)c(µX + µY )− αΦ∗(X)− (1− α)cµX − αΦ∗(Y )− (1− α)cµY

= α[Φ∗(X + Y )− Φ∗(X)− Φ∗(Y )]

By equation (9), the benefits of risk-pooling are non-decreasing in α. The upper-bound

on the benefits of risk-pooling is obtained by using the inequalities given in equation (10). ‖

Proposition 6 For any two nonnegative random demands X and Y , the benefits of risk-
pooling Φ∗(Xα) + Φ∗(Y )− Φ∗(Xα + Y ), are non-decreasing in α.

Proof. For any δ > 0, by equation (9),

Φ∗(αX + Y )− Φ∗((α + δ)X + Y ) ≥ −Φ∗(δX) = −δΦ∗(X).

By Lemma 4,

Φ∗(Xα+δ) − Φ∗(Xα+δ + Y )− [Φ∗(Xα)− Φ∗(Xα + Y )]

= (α + δ)Φ∗(X)− Φ∗((α + δ)X + Y )− [αΦ∗(X)− Φ∗(αX + Y )]

= δΦ∗(X) + Φ∗(αX + Y )− Φ∗((α + δ)X + Y )

≥ δΦ∗(X)− δΦ∗(X) = 0.
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Therefore, the benefits of risk-pooling are non-decreasing in α. ‖

By equations (9) and (10) and Proposition 6, it is easy to show that, for any two

nonnegative random demands X and Y and 0 ≤ α, β ≤ 1, φ(α, β) = Φ∗(Xα) + Φ∗(Yβ) −

Φ∗(Xα + Yβ) is non-decreasing in both α and β. Therefore, the benefits of risk-pooling are

non-decreasing with respect to the variabilities of (correlated) individual random demands.

In addition, we have φ(α, β) ≤ (1 − c)(αµX + βµY ), which implies that the benefits of

risk-pooling is insignificant if c is close to 1.

In summary, we have shown that Theorem 2 holds for a special case where two demands

are involved. Using Lemma 4, equations (9) and (10), and Propositions 5 and 6, Theorem 2

can be proved directly. Details are omitted.

5 Concluding Remarks

This Note provided an answer to an interesting question pertaining to implications of risk

pooling, raised by several authors: Do the benefits of risk-pooling increase in the variabilities

of the original demands? While this behavior is not guaranteed for an arbitrary setting, it

does hold for a structured model of increased variability. Our positive results do not assume

any particular distributional forms or independence of demands.

Our analysis made heavy use of a mean-preserving transformation - a cardinal model

for changing variability. In this case, a mean-preserving transformation provides information

about the cardinal magnitude of change in benefits, not just the sign of change. The mean-

preserving transformation defines an ordering of random variables that is stronger than the

convex ordering. An interesting topic for future research is to explore the weakest stochastic

variability ordering for which the benefits of risk-pooling are still non-decreasing.
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