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Abstract

The symmetric equilibrium resulting from the celebrated Tournament model of Lazear and

Rosen has a range of compensation between winner and loser which is inversely proportional

to E[f(X)], the expectation of the additive noise’s density. There seems to be a belief that

this functional is always increasing in the noise’s variability, which would agree with economic

intuition - when output is noisier it should be less worthwhile to work hard. We show such is not

the case for all distributions, and characterize classes where such is or is not the case. When the

number of players n grows, winning is more difficult so we would expect the required range of

compensation to be larger. That would require that E[f(Y )], where Y = max(X1, · · · , Xn−1),

will decrease in n. We examine the generality of this property. Finally we explore the same

issues within a multiplicative model.

1. Introduction

One of the main goals of the basic Tournament Model (Lazear and Rosen 1981, Rosen 1986, Gibbons

1992, Section 2.2.D) is to explain the observed large range of compensation between a firm’s top

executive and those below him/her.

Since each worker’s output is uncertain, the optimal range of compensation will depend on a

functional of the noise distribution, as well as on the player’s disutility of effort. Indeed, if the two
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players are similar, the symmetric Nash equilibrium for the prize range wH − wL is given by (e.g.

Gibbons)

(wH − wL)
∫ ∞

−∞
[f(x)]2dx = v′(e∗), (1)

where f(x) is the zero-mean noise’s density, v(e) is the disutility of effort function, assumed in-

creasing and convex, and e∗ is the equilibrium effort. Thus, in particular, the prize range inversely

depends on the integral of the square of the noise density. 1

Gibbons (p. 81) argues that “... it is not worthwhile to work hard when output is noisy,

because the outcome of the tournament is likely to be determined by luck rather than effort”. He

then shows that the function
∫∞
−∞[f(x)]2dx is indeed decreasing in the variance for a zero-mean

normal distribution.

We wish to explore the generality of this claim. We show that Ef(X) =
∫∞
−∞[f(x)]2dx, is not

always decreasing in the variance of a distribution, and characterize classes of distributions for

which the claim is or is not true.

We note that the quantity
∫
[f(x)]2dx ≡ Ef(x) bears resemblance to the Tsallis entropy of order

2 (Tsallis 1988), which for a discrete probability mass function (p1, · · · , pn) ≡ p is proportional

to
∑n

i=1 p2
i ≡ E(p). It is also somewhat related to the Rényi entropy of order 2 (Rényi 1970,

Cover and Thomas 1991, p. 499), which is proportional to − log2 E(p). It is known that these

entropies achieve their maxima for the uniform distribution pi = 1/n, i = 1, · · · , n; that is, for the

most variable distribution. But, as our random variable’s range is (−∞,∞), with zero mean, our

functional’s properties could be somewhat different.

How will/should the prize range depend on the number of players? Intuitively, since beating

many rivals is exceedingly difficult, the incentive has to be sufficient to warrant the effort. That

seems to suggest that wH − wL should be increasing in the number of players (assuming that the

winner receives wH and the rest wL). We examine whether the Tournament model indeed displays

that property. In turns out, again, that for some distributions the opposite behavior occurs. The

desired property does, however, hold for symmetric unimodal distributions. We note that Nti (1997)

has shown that in a rent-seeking game, increasing the number of players reduces the equilibrium

effort per player, and may even result in decline in the total level of effort. But the rent-seeking

model does not include explicit noise. For another instance of counter-intuitive behavior as the
1Lazear and Rosen, and some others, work with the difference between the two noise variables. Denoting the

density of the difference by h, the condition of the symmetric Nash equilibrium can be written as (wH − wL)h(0) =

v′(e∗). While equivalent, that way of writing “masks” the dependence of wH − wL on the noise’s distribution.
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number of players increase, see Hvide and Kristensen (1999).

The Tournament literature models noise as additive. But Lazear and Rosen and others comment

that modeling noise as multiplicative will not change the qualitative conclusions. We thus wish to

explore the veracity of that conjecture with respect to the two issues we investigate - the effect of

increased noise and the number of players.

2. The impact of the variability of X on Ef(X)

Assume that X and Y are two random variables. Let f(x) (g(x)) be the density function of X

(Y ) and F (x) (G(x)) the distribution function. Throughout this paper, we assume that f(x) is

uniformly finite on the entire real line (−∞,∞), i.e., F (x) is continuous. The following example

shows that Ef(X) is not always decreasing in the variance.

Example 1. Let the random variable X be uniform over the interval [−1, 1]. Random variable Y

has a uniform distribution on the union of intervals (−2,−2 + δ) and (2 − δ, 2), where 0 < δ < 1.

Thus E(X) = E(Y ) = 0. It is easy to verify that V ar(X) = 1/3 < (12−6δ + δ2)/3 = V ar(Y ) (i.e.,

the variance of the random variable Y ) for 0 < δ < 1. It is also easy to verify that Y is larger than

X in convex order (Shaked and Shanthikumar 1994). Thus, it is reasonable to say that random

variable Y is more variable than X. However, Ef(X) is less than Eg(Y ) as demonstrated in the

following calculations.

Ef(X) =
∫ 1

−1
(
1
2
)2dx =

1
2
.

Eg(Y ) =
∫ −2+δ

−2
(

1
2δ

)2dx +
∫ 2

2−δ
(

1
2δ

)2dx =
1
2δ

.

When 0 < δ < 1, we have Ef(X) < Eg(Y ). Thus, the more variable random variable Y

actually has a larger value Eg(Y ). ‖

A closer look at the structure of the function g(x) leads to a more surprising conclusion: the

variability of a random variable Y has little to do with its corresponding Eg(Y ). To show this, we

introduce the concept ”support” of a density function,

The support of the density function f(x) of the random variable X is the set of points on which

f(x) is positive, i.e., Sf = {x : f(x) > 0}. Note that our definition of support is slightly different
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from the classical one (see Chow and Teicher 1988). We assume that Sf can be composed from

a countable number of disjoint intervals. We denote those disjoint intervals as {(ak, bk), bk ≤

ak+1 < bk+1,−∞ < k < ∞} for f(x). Note that it is possible that f(ak) > 0 or f(bk) > 0 for some

k. It is also possible that limk→−∞ ak = −∞ and limk→∞ bk = ∞. So, ∪∞k=−∞(ak, bk) includes all

the points in Sf with the possible exceptions of points {ak, bk,−∞ < k < ∞}. For later use, we

introduce another random variable Y . The density function of Y , g(x), has a support consisting

of disjoint intervals Sg = {(a′k, b′k), b′k ≤ a′k+1 < b′k+1,−∞ < k < ∞}. Now, we are ready to state

and prove one of the main results of this paper.

Proposition 1. Consider the random variables X and Y defined above. Assume that there is a

one-to-one relationship between the disjoint intervals of the supports of the density functions of X

and Y , i.e., for any k, there exists an m such that a′m = ak + ck and b′m = bk + ck for some ck and

vis versa. That is: the interval (a′m, b′m) can be obtained by moving the interval (ak, bk) to another

location. If f(x) = g(x + ck) for all x ∈ (ak, bk), −∞ < k < ∞, then Ef(X) = Eg(Y ).

Proof. By the assumption, the supports of f(x) and g(x) can be decomposed into the same number

of disjoint intervals. By definition,

Ef(X) =
∫ ∞

−∞
(f(x))2dx =

∞∑
k=−∞

∫ bk

ak

(f(x))2dx =
∞∑

k=−∞

∫ bk+ck

ak+ck

(f(x− ck))2dx

=
∞∑

m=−∞

∫ b′m

a′m

(g(x))2dx = Eg(Y ).
(2)

Also note that at the border points, f(ak) = g(ak + ck) or f(bk) = g(bk + ck) may or may not hold,

but that has no impact on the equalities in equation (2). ‖

Implications of Proposition 1 are interesting. First, Proposition 1 implies that the relationship

between the variability (or the variance) of the random variable X and its corresponding Ef(X) is

weak, especially when the support of its density function consists of more than one disjoint interval.

Based on Proposition 1, one can construct numerous examples for which the variances of random

variables are dramatically different but they all have the same value of Ef(X). For instance,

random variable Y in Example 1 has the same value of Ef(Y ) = 1/(2δ) as the uniform distribution

in the interval (−δ, δ). This example shows that the value of Ef(X) can be arbitrarily large or

small, which is independent of the mean and variance of the random variable X. Nonetheless, when

the support of the density function of a random variable has a single interval, Proposition 1 provides
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little information about Ef(X). Thus, the characteristics of f(x) in each interval of its support

should have larger impact on Ef(X), which will be verified, at least partially, by Propositions 2

and 4.

According to Proposition 1, the study of Ef(X) can focus on random variables with bk = ak+1

for all the intervals of the supports of their density functions. For this reason, we merge all these

intervals together to get a single interval (a1, b1) in which f(x) is positive except at a countable

number of points. We call the interval (a1, b1) the quasi-support of f(x) since f(x) can be zero in this

interval. It is possible that (a1, b1) = (−∞,∞). In general, when f(x) has a single quasi-support,

the real line (−∞,∞) is divided into three intervals (−∞, a1], (a1, b1), and [b1,∞). The function

f(x) is zero in (−∞, a1]∪ [b1,∞) if these intervals exist (with possible exceptions at a1 and b1). In

the rest of this section, we assume that the density functions have a single quasi-support. According

to Proposition 1, we understand that all the results hold when the quasi-support is divided in any

way into a countable number of disjoint intervals that are relocated in any non-overlapping manner.

In what follows, we identify some classes of random variables for which the variability does lead

to a smaller or larger value of Ef(X).

The function f(x) is called unimodal (reverse-unimodal) if there exists a constant c such that

f(x) is nondecreasing (nonincreasing) on (a1, b1) ∩ (−∞, c) and nonincreasing (nondecreasing) on

(a1, b1) ∩ (c,−∞). Apparently, f(x) attains its maximum (minimum) at c when it is restricted to

its quasi-support. We call c the quasi-middle point of function f(x). Let X−
c = min{c,X} and

X+
c = max{c,X}. Note that these definitions include cases where f(x) is monotone on its entire

quasi-support. For such cases, we set c = a1 or c = b1. We define Y −
c and Y +

c similarly.

Proposition 2. Consider random variables X and Y defined in Proposition 1. Assume that X−
c ≤st

Y −
c and X+

c ≥st Y +
c . If f(x) is unimodal, then Ef(X) ≤ Eg(Y ). If f(x) is reverse-unimodal, then

Ef(X) ≥ Eg(Y ).

Proof. First, we note that Ef(Y ) =
∫∞
−∞ f(y)g(y)dy =

∫∞
−∞ g(x)f(x)dx = Eg(X).

Suppose that f(x) and g(x) are unimodal functions. Since X−
c ≤st Y −

c and (f + g)(x) is

nondecreasing in (−∞, c), we have E(f + g)(X−
c ) ≤ E(f + g)(Y −

c ) (Ross 1983 and Shaked and

Shanthikumar 1994). Since X+
c ≥st Y +

c and (f + g)(x) is nonincreasing in (−∞, c), we have

E(f + g)(X−
c ) ≤ E(f + g)(Y −

c ). When f(x) and g(x) are unimodal on their quasi-supports, they

are also unimodal on (−∞,∞). Then we have following calculations:
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E[f(X) + g(X)] =
∫∞
−∞[f(x) + g(x)]f(x)dx

=
∫ c
−∞[f(x) + g(x)]f(x)dx +

∫∞
c [f(x) + g(x)]f(x)dx

= E[f(X−
c ) + g(X−

c )]− [f(c) + g(c)](1− F (c))

+E[f(X+
c ) + g(X+

c )]− [f(c) + g(c)]F (c)

= E[(f + g)(X−
c )] + E[(f + g)(X+

c )]− [f(c) + g(c)]

≤ E[(f + g)(Y −
c )] + E[(f + g)(Y +

c )]− [f(c) + g(c)]

= E[f(Y ) + g(Y )].

(3)

The inequality in the above equation is due to the monotonicity of the function f(x) + g(x) in

the intervals (−∞, c) and (c,∞). Since Ef(Y ) = Eg(X), the above inequality leads to Ef(X) ≤

Eg(Y ).

When f(x) is reverse-unimodal on its quasi-support, we introduce a function f̂(x) as: f̂(x) =

f(a1+) when −∞ < x ≤ a1 and f̂(x) = f(b1−) when b1 ≤ x < ∞. The function f̂(x) is reverse-

unimodal on (−∞,∞). We introduce ĝ(x) in a similar manner. Since F (x) = 0 for x ∈ (−∞, a1)

and F (x) = 1 for x ∈ (b1,∞), F ′(x) = 0 in the two intervals (if the two intervals exist). Thus,

Ef̂(X) = Ef(X) and Eĝ(Y ) = Eg(Y ). The rest of the proof is similar to the unimodal case. This

completes the proof. ‖

Many interesting cases can be solved using Proposition 2. For instance, results related to

symmetric distribution functions are given in the following Corollary.

Corollary 3. Assume that f(x) and g(x) are symmetric at a point c, i.e., f(x) = f(2c − x)

and g(x) = g(2c − x). Assume that X+
c ≥st Y +

c . If f(x) and g(x) are nonincreasing in their

quasi-support on (c,∞). We have Ef(X) ≤ Eg(Y ). If f(x) and g(x) are nondecreasing on their

quasi-support on (c,∞). We have Ef(X) ≥ Eg(Y ).

Proof. Since f(x) (g(x)) is nonincreasing in its quasi-support on (c,∞), it is nondecreasing in its

quasi-support on (−∞, c). Since X+
c ≥st Y +

c , we have X−
c ≤st Y −

c . All conclusions are obtained

by Proposition 2. ‖

By Corollary 3, it is easy to see that among all the uniform distributions on (−a, a) for all real

a (> 0), Ef(X) is decreasing in the parameter a. This implies that for this class of distributions,
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larger variability means a smaller Ef(X). By Proposition 1 and Corollary 3, it is clear why

Eg(Y ) ≤ Ef(X) in Example 1. Note that Example 1 shows that symmetry of f(x) together with

X+
0 ≥st Y +

0 does not ensure that Ef(X) ≥ Eg(Y ). Monotonicity of the density function f(x) does

play a positive role.

By Corollary 3, Ef(X) is decreasing in the parameter σ for all Normal distributions with (fixed)

mean µ (as observed in the Tournaments literature).

We now briefly discuss a simple transform defined as: Xc,d = cX +d for c > 0 and d. Denote by

fc,d(x) the density function of random variable Xc,d. It can be verified that fc,d(x) = f((x−d)/c)/c.

Thus, Efc,d(Xc,d) = Ef(X)/c for c > 0. Thus, Efc,d(cX + d) is decreasing in c. Since V ar(Xc,d)

is increasing in c, it is clear that Ef(X) is nonincreasing with respect to variability under the

transform. By setting d = (1 − c)E(X), we obtain a mean-preserving transformation (Sandmo

1972, Baron 1972). We conclude that under such transformation Ef(Xc,(1−c)E(X)) does decrease

in the variability of Xc. So the conjecture voiced by Gibbons is correct within this family of

distributions, but not in general.

3. Effect of Number of Players

If the output of player i, i = 1, · · · , n, depends on his/her effort ei in the additive form yi = ei +xi,

then the probability that player i will win is

P [yi(ei) > yj(e∗j ), j 6= i] = P (ei + xi > e∗j + xj , j 6= i)

= P (xj < ei − e∗j + xi, j 6= i)

which for the symmetrical case equals∫ ∞

−∞
[F (ei − e∗ + x)]n−1f(x)dx

so
d

dei
P =

∫ ∞

−∞
(n− 1)[F (x)]n−2[f(x)]2dx

at ei = e∗.

Thus the symmetric equilibrium is

(wH − wL)
∫ ∞

−∞
(n− 1)[F (x)]n−2[f(x)]2dx = v′(e∗).
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Let

A(n) ≡
∫ ∞

−∞
(n− 1)[F (x)]n−2[f(x)]2dx. (4)

We wish to explore when A(n) is decreasing in n.

Let X be a random variable with density function f(x) and distribution function F (x). Let

{Xn, n ≥ 0} be independent random variables with a common distribution F (x). By definition, it

is easy to see that

A(n) =
∫ ∞

−∞
f(x)d(F (x))n−1 = Ef(max{X1, X2, ..., Xn−1}), for n ≥ 2. (5)

For later use, we denote (F (x))n by Fn(x), which is a proper distribution function. Obviously,

Fn(x) ≥ Fn+1(x), which corresponds to max{X1, ..., Xn} ≤st max{X1, ..., Xn, Xn+1}. We shall

write X(n) = max{X1, ..., Xn} and X(n) ≤st X(n+1). We also write A(n) =
∫∞
−∞ f(x)d(F (x))n−1 =

Ef(X(n−1)). The limit of A(n) is obtained explicitly from equation (5) as follows:

lim
n→∞

A(n) = lim sup
x→sup(Sf )

f(x),

where sup(Sf ) = limk→∞ bk. The above equality holds since f(x) is uniformly finite on the entire

real line and
∫ t
−∞ f(x)d(F (x))n → 0 when F (t) < 1 for any t. Thus, if the support of f(x) does

not stretch to +∞, i.e., sup(Sf ) < ∞, the limit of A(n) is given by the above formula. Otherwise,

the limit of A(n) is zero.

Assume that the support Sf of f(x) consists of disjoint intervals {(ak, bk), bk ≤ ak+1 <

bk+1,−∞ < k < ∞}. It is clear that F (x) changes its value only in these intervals. Conse-

quently, Fn(x) = (F (x))n changes its value only in these intervals as well. Intuitively, this means

that the derivative ((F (x))n)′ = 0 when x is outside of the support Sf . We are now ready to give

a series of characterizations of A(n). We begin with an extension of Proposition 1.

Proposition 4. Consider the random variables X and Y defined in Proposition 1. The function

A(n) is the same for X and Y .

Proof. The proof is similar to that of Proposition 1. ‖

Proposition 4 implies that A(n) is invariant under the transform {Xn+c, n ≥ 1} for any constant

c. Proposition 4 implies that the study of A(n) can focus on density functions with a single interval

of support (quasi-support). Proposition 4 shows that the variability of X has a weak connection

to the monotonicity of A(n).
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It it easy to prove that for a uniform distribution on (a, b), A(n) = 1/(b−a), which is independent

of n. This result can be easily generalized as follows.

Proposition 5. Suppose that X has a uniform distribution over its support. Then A(n) =

1/[
∑∞
−∞(bk − ak)], which is independent of n.

Proof. When X has a uniform distribution over its support, the total length of Sf must be

positive and finite, i.e., 0 <
∑∞

k=−∞(bk−ak) < ∞ and f(x) = 1/[
∑∞

k=−∞(bk−ak)]. The conclusion

is obtained by equation (5). ‖

Basically, Proposition 5 considered a class of density functions that are constant over its support.

Next, we consider density functions that are monotone over its entire support. Apparently, A(n)

is no longer constant but the following Proposition shows that A(n) is monotone with respect to n

when f(x) is monotone in x over its support.

Proposition 6. If f(x) is nondecreasing on its support Sf , then A(n) is nondecreasing. If f(x) is

nonincreasing on its support Sf and is uniformly bounded, then A(n) is nonincreasing.

Proof. First, we introduce the following f̂(x):

f̂(x) =

 f(x), if x ∈ Sf ;

f(bk), if bk < x < ak+1.

The value of f̂(x) at border points {ak, bk,−∞ < k < ∞} can be arbitrary as long as they are

uniformly finite. When f(x) is nondecreasing on its support, f̂(x) is a nondecreasing function.

Since X(n−1) ≤st X(n) and f̂(x) is nondecreasing, we have Ef̂(X(n−1)) ≤ Ef̂(X(n)). Since the

derivative F ′n(x) = 0 when x is outside of the support Sf , we have

Ef̂(X(n)) =
∞∑

k=−∞
(
∫ bk

ak

+
∫ ak+1

bk

)f̂(x)dFn(x) =
∞∑

k=−∞

∫ bk

ak

f(x)dFn(x) = Ef(X(n)). (6)

Thus, Ef(X(n−1)) ≤ Ef(X(n)), which is equivalent to A(n) ≤ A(n + 1).

Similarly, it can be proved that A(n) is nonincreasing when f(x) is nonincreasing on its entire

support. ‖

Based on Proposition 6, numerous examples can be easily constructed for increasing A(n) or

decreasing A(n). The exponential and hyperexponential distributions are examples of the latter.
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The conclusions in Proposition 6 hold for larger class of density functions. We use the following

example to demonstrate this point.

Example 2. Consider random variable X with the following density function:

f(x) =



0, x < 0;

1− x, 0 ≤ x ≤ 1;

0, 1 < x < 2;

3− x, 2 ≤ x ≤ 3.

By direct calculation, it can be found that

A(n) = (0.5)n−2(n− 1)
[∫ 1

0
x2(1− x2)n−2dx +

∫ 1

0
x2(2− x2)n−2dx

]
≈ (n− 1)

∫ 1

0
x2(1− x2

2
)n−2dx → 0,

(decreasingly) when n goes to infinity by the mean value theorem in calculus.

Consider another random variable Y with with the following density function:

g(x) =



0, x < 0;

x, 0 ≤ x ≤ 1;

0, 1 < x < 2;

x− 2, 2 ≤ x ≤ 3.

It is clear that X and Y have the same means and variances. By direct calculation, it can be found

that

A(n) =
n− 1
2n−2

 1
2n− 1

+
n−2∑
i=0

 n− 2

i

 1
2i + 3


≈ (n− 1)

n−2∑
i=0

 n− 2

i

 (
1
2
)n−2 1

2i + 3

= E

(
n− 1

2Un−2 + 3

)
= E

 1

2Un−2

n−1 + 3
n−1

 ,

where Un−2 is the Binomial distribution with parameters n − 2 and 0.5. It is well-known that

Un−2/(n − 2) converges to 0.5 with probability one when n goes to infinity (Chow and Teicher,

1988). Then A(n) converges to 1 (increasingly) when n goes to infinity. ‖
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Example 2 suggests that conclusions in Proposition 6 may be true for cases where f(x) is

monotone when restricted to every individual interval in its support. Example 2 shows that the

shape of f(x) has a major impact on the monotonicity of the sequence A(n), n ≥ 2.

Now, as in Section 2, we explore the impact of symmetry of the random variable X on A(n).

First, lets have a look at one more example.

Example 3. Consider random variables X and Y with the following density functions.

f(x) =



0, x < −2;

−(x + 1), −2 ≤ x ≤ −1;

0, −1 < x < 1;

x− 1, 1 ≤ x ≤ 2.

g(x) =



0, x < −2;

x + 2, −2 ≤ x ≤ −1;

0, −1 < x < 1;

3− x, 1 ≤ x ≤ 2.

The two functions are not monotone on their corresponding supports, but they are monotone

in each interval of their supports. In fact, they are increasing in one interval and decreasing in

another. Therefore, Proposition 6 does not apply. But f(x) and g(x) possess a symmetry property

that leads to the monotonicity of A(n), which is shown next.

First, we introduce the function hn(t) = tn−1 − (1− t)n−1, for 0.5 ≤ t ≤ 1 and n ≥ 2.

Lemma 7. The function hn(x) has hn(0.5) = 0, hn(1) = 1, and 0 ≤ hn(t) ≤ 1 for 0.5 ≤ t ≤ 1.

hn(t) is increasing in [0.5, 1] and hn(t) ≥ hn+1(t).

Proof. It is easy to see that hn(t) is increasing in [0.5, 1]. We also have the following:

hn(t)− hn+1(t) = tn−1 − (1− t)n−1 − tn + (1− t)n

= tn−1(1− t)− (1− t)n−1t

= t(1− t)[tn−2 − (1− t)n−2] ≥ 0,

when 0.5 ≤ t ≤ 1. ‖

Proposition 8. Assume that the random variable X is symmetric at point c. Then A(2) = A(3).

If f(x) is nonincreasing on its support in [c,∞), then A(n) is nonincreasing. If f(x) is nondecreasing

on its support in [c,∞), then A(n) is nondecreasing.

11



Proof. For n ≥ 2, we have

A(n) =
∫ ∞

−∞
f(x)d(F (x))n−1 =

∫ c

−∞
f(x)d(F (x))n−1 +

∫ ∞

c
f(x)d(F (x))n−1

=
∫ c

∞
f(2c− x)d(F (2c− x))n−1 +

∫ ∞

c
f(x)d(F (x))n−1

= −
∫ ∞

c
f(x)d(1− F (x))n−1 +

∫ ∞

c
f(x)d(F (x))n−1

=
∫ ∞

c
f(x)d[(F (x))n−1 − (1− F (x))n−1] =

∫ ∞

c
f(x)dhn(F (x)).

The fourth equality is due to symmetry, i.e., F (2c − x) = 1 − F (x). According to Lemma 7,

the function hn(F (x)) is a proper probability distribution function (define hn(F (x)) = 0 for x <

c). Since hn(F (x)) ≥ hn+1(F (x)), we say that hn(F (x)) ≤st hn+1(F (x)) (with minor abuse of

notation).

When n = 2, A(2) =
∫∞
c f(x)dh2(F (x)) = 2

∫∞
c f(x)2dx. When n = 3, A(3) =

∫∞
c f(x)dh3(F (x))

= 2
∫∞
c f(x)2dx. Therefore, A(2) = A(3).

When f(x) is nonincreasing in its support in [c,∞), we can introduce a nonincreasing function

f̂(x) in [c,∞) as we have done in the proof of Proposition 6. Then it is easy to obtain that A(n)

is nonincreasing.

Similarly, we can show that when f(x) is nondecreasing in [c,∞), A(n) is nondecreasing. ‖

The monotonicity of A(n) associated with Example 3 is obtained immediately from Proposition

8. Furthermore, Proposition 8 implies that normal distributions A(n) is decreasing in n.

4. Multiplicative Model

For the multiplicative model y(e) = eZ, where Z is a non-negative random variable with mean 1,

to be equivalent to the additive model y(e) = e + X, one needs to have

P (eZ ≤ z) = P (e + X ≤ z) ∀z.

Denoting the distribution of Z by H and that of X by F , that translates to

H(x) = F (e(x− 1)) ∀x.

or

h(x) = ef(e(x− 1)) ∀x.

It is thus clear that the distribution H(x) which achieves equivalence depends on the effort level

e. Thus by selecting a single (fixed) distribution for the multiplier Z, which is what one would

12



normally do in adopting a multiplicative model, the resulting model will not have a single (fixed)

additive counterpart for every effort level. Also, although the multiplicative model can be written

in the additive form log y− log e + log z, two z multipliers with equal means (one) do not generally

have equal E(log z). Thus it is not apriori obvious that the properties of the prize range in both

models will be similar.

Now, for the multiplicative model

P [yi(ei) > yj(e∗j )] = P

(
Zi >

e∗jZj

ei

)
=
∫ ∞

0
H̄i

(
e∗jzj

ei

)
hj(zj)dzj .

Thus
d

dei
P [yi(ei) > yj(e∗j )] =

e∗j
e2
i

∫ ∞

0
zjhi

(
e∗jzj

ei

)
hj(zj)dzj ,

So the Nash equilibrium is

(wH − wL)
e∗j
e2
i

∫ ∞

0
zjhi

(
e∗jzj

ei

)
hj(zj)dzj = v′(ei),

and in the symmetric case it becomes

(wH − wL)
∫ ∞

0
z[h(z)]2dz = ev′(e). (7)

Thus the functional of interest is E[Zh(Z)] =
∫∞
0 z[h(z)]2dz, where E(Z) = 1. Is the effect of

larger variability of Z on that functional similar to what we obtain in the additive model?

Now, if Z has support [0,∞] and E(Z) = 1, then for the mean-preserving transformation

Zc = cZ + (1− c),

hc(z) =
1
c
h

(
z − (1− c)

c

)
,

So ∫∞
0 z[hc(z)]2dz =

∫ ∞

0
z{1

c
h

(
z − (1− c)

c

)
}2dz

=
∫ ∞

−(1−c)/c
y [h(y)]2 dy +

1− c

c

∫ ∞

−(1−c)/c
[h(y)]2dy.

Since (1− c)/c is decreasing in c, each of the above terms is decreasing in c. Thus
∫∞
0 z[hc(z)]2dz

is decreasing in c for E(Zc) = 1.

Is the functional E[Zh(Z)] always decreasing with respect to the variability of Z? The answer

is no. To prove this conclusion, we introduce a transform to translate the functional E[Zh(Z)] into

a functional of the form E[g(Y )]. Then some of the results obtained in Section 2 can be applied.

Let

g(x) =
1

2E[Z]
h(
√

x), for x ≥ 0. (8)
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Lemma 9 The function g(x) is a density function in (0,∞). Define a random variable Y having

the density function g(x). When E[Z] = 1, we have E[Zh(Z)] = 2E[g(Y )] and E[ 1√
Y

] = 1. On the

other hand, if E[Zh(Z)] = 2E[g(Y )] and E[ 1√
Y

] = 1, h(x) = 2g(x2) is a proper density function

with mean 1.

Proof. Since∫ ∞

0
g(y)dy =

∫ ∞

0

1
2E[Z]

h(
√

y)dy =
1

2E[Z]

∫ ∞

0
h(x)dx2 =

1
E[Z]

∫ ∞

0
xh(x)dx = 1,

g(x) is a density function. When E[Z] = 1, we have

E[g(Y )] =
∫ ∞

0
(g(y))2dy =

∫ ∞

0

1
4
(h(
√

y))2dy =
1
4

∫ ∞

0
(h(x))2dx2 =

1
2

∫ ∞

0
x(h(x))2dx.

Finally, by E[Z] = 1, we have

E[
1√
Y

] =
∫ ∞

0

1
√

y
g(y)dy =

∫ ∞

0

1
2x

h(x)dx2 =
∫ ∞

0
h(x)dx = 1.

Similarly, we can prove that h(x) = 2g(x2) is a proper density function under the given conditions.

If the random variable Z has the density function h(x), then E(Z) = 1. This completes the proof.

‖

An immediate consequence of Lemma 9 is that some of the results obtained in Section 2 can

be applied to the multiplicative case. For instance, Propositions 1, 2, and 3 hold provided that

E[ 1√
Y

] = 1 holds for all the random variables involved. Nonetheless, the constraint E[ 1√
Y

] = 1

restricts the use of some of the results obtained.

Another immediate result from Lemma 9 is that E[Zh(Z)] may not be decreasing with respect

to the variability of Z. According to Lemma 9, counterexamples can be constructed similar to

those given in Sections 2 and 3 (plus that constraint E[ 1√
Y

] = 1 must be satisfied). We present the

following example.

Example 4. Consider a random variable Y with density function g(y) = 1 for y ∈ (a, a + 0.5) ∪

(b, b+0.5) and g(y) = 0 for y /∈ (a, a+0.5)∪ (b, b+0.5) , where 0 ≤ a ≤ 0.5 and 1 ≤ b. Apparently,

g(y) is a density function. The condition E[ 1√
Y

] = 1 is equivalent to

1 =
1

√
a +

√
a + 0.5

+
1√

b +
√

b + 0.5
.
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For 0.0625 < a ≤ 0.5, we can find b (≥ 1) so that the above equation is satisfied, i.e., E[ 1√
Y

] = 1.

It is easy to verify that E[g(Y )] = 1, which is independent of the values of a and b. Let Z

be a random variable with a density function h(x) = 2g(x2). The support of the function h(x) is

(
√

a,
√

a + 0.5) ∪ (
√

b,
√

b + 0.5). By Lemma 9, E[Z] = 1 and E[Zh(Z)] = 2. It can be shown that

the variance of Z is approximately 0.25
√

b when b is large. Thus, the variance of Z goes to infinity

when b goes to infinity. This implies that E[g(Y )] with E[ 1√
Y

] = 1 has a weak relationship with

the variability of Y .

Several special cases can be dealt with easily. For instance, let Z be a random variable with a

uniform distribution on (1 − a, 1 + a) for 0 < a < 1. Then it is easy to verify that E[Zh(Z)] =

1/(2a), which is decreasing with respect to the variance of Z. For a Gamma distribution, h(x) =

ααxα−1e−αx/Γ(α) for α > 0, it is easy to find that when E[Z] = 1, E[Zh(Z)] = Γ(2α)/(2αΓ(α))2,

which is decreasing with respect to α = E[(Z−E[Z])2], i.e., decreasing with respect to the variance

of Z.

Multiplicative Model with n players

For n players, the multiplicative model becomes

P [yi(ei) > yj(e∗j ) ∀j 6= i] = P

(
Zj <

ei

e∗j
Zi ∀j 6= i

)

which for the symmetric model equals∫ ∞

0
[H
(

ei

e∗
zi

)
]n−1h(zi)dzi,

and the derivative w.r.t. ei is

1
e∗

∫ ∞

0
(n− 1)z[H(z)]n−2[h(z)]2dz

Thus the symmetric equilibrium is

(wH − wL)
∫ ∞

0
(n− 1)z[H(z)]n−2[h(z)]2dz = ev′(e).

Thus our interest is in the functional

B(n) =
∫ ∞

0
(n− 1)z[H(z)]n−2[h(z)]2dz (9)
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for a random variable Z with E(Z) = 1. We wish to find when B(n) is indeed decreasing in n.

First, we rewrite B(n) in the following way.

B(n) =
∫ ∞

0
zh(z)d[H(z)]n−1. (10)

Now, similarly to the limit of A(n),

lim
n→∞

B(n) = lim sup
z→sup(Sf )

zh(z),

Let w(z) = zh(z) and Z(n) = max{Z1, ..., Zn}. Then B(n) = E(w(Z(n))). It is then clear that,

based on the results obtained in Section 3, the monotonicity of B(n) has a close relationship with

the monotonicity of the function w(x). Proposition 6 in Section 3 holds after replacing f(x) with

w(x), given that E(Z) = 1. We use the following examples to illustrate that point.

Example 5. Let Z be a random variable with a uniform distribution on (1−a, 1+a) for 0 < a < 1.

Then xh(x) = x/(2a), which is increasing on the support of g(x): (1 − a, 1 + a). Then B(n) is

increasing in n. In fact, it is easy to derive B(n) = (1− a)/(2a) + (n− 1)/n.

Let Z be a random variable with a density function h(x) = x/2 for x ∈ (0, 2) and otherwise

h(x) = 0. Then E(Z) = 1. Since xh(x) = x2/2 is increasing on its support (0, 2), by Proposition

6, B(n) is increasing in n. By direct calculation, we found that B(n) = 2(n− 1)/n.

Let Z be a random variable with a density function h(x) = (2− x)/[x(1.5− b)] on the interval

(b, b + 1) (the support of h(x)), where b is between 0.5 and 0.75 that satisfies the equation 2.5 =

b+2 ln(1+1/b). It can be proved that h(x) is a proper density function on (b, b+1) and E(Z) = 1.

Clearly, xh(x) = (2 − x)/(1.5 − b) is decreasing on the support (b, b + 1) of h(x). By Proposition

6, B(n) is decreasing in n.
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