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Abstract

In this paper, we study the classification of matrix GI/M/1-typeMarkov chains with a tree
structure. We show that the Perron–Frobenius eigenvalue of a Jacobian matrix provides
information for classifying these Markov chains. A fixed-point approach is utilized. A
queueing application is presented to show the usefulness of the classification method
developed in this paper.
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1. Introduction

The matrix GI/M/1-type Markov chain with a tree structure was introduced by Yeung and
Sengupta [15]. Since then, such Markov chains have been used in the study of a number of
queueing models (see [7] and [15]) as well as some telecommunications systems (see [14]).
However, with the exception of [4] and [15], little work has been done on the classification of
such Markov chains.

As was pointed out in [15], the classification problem of the GI/M/1-type Markov chains
with a tree structure is a challenging problem. In [15], it was shown that the Perron–Frobenius
eigenvalue of a matrix associated with the minimal fixed point of a nonlinear mapping provides
information about the classification problem. In this paper, by using information related to a
special fixed point of the nonlinear mapping, we identify a condition for the location of the
minimal fixed point. The Markov chain is then classified according to where the minimal fixed
point is located. We also show how to compute the special fixed point and, for a special case,
where the special fixed point is located. Although the classification conditions obtained in this
paper are not explicit, the results provide useful insight into the classification problem of such
Markov chains and the method used in this paper is novel. Examples given in this paper show
that our approach providesmore information on the classification problem than that used in [15].

The methods used and the results obtained in this paper are closely related to the study of the
classification ofmatrixM/G/1-typeMarkov chainswith a tree structure. ThematrixM/G/1-type
Markov chain with a tree structure was introduced in [13]. The classification conditions of this
class of Markov chains were found in [1], [4] and [5]. In a recent paper, [6], the scalar M/G/1-
type, the scalar GI/M/1-type and the matrix M/G/1-type Markov chains with a tree structure
were studied. Using fixed-point theory, degree theory, the mean-drift method and the invariant-
measure method, it was shown that the Perron–Frobenius eigenvalue of a Jacobian matrix
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provides information for a complete classification of these Markov chains. The main results
were obtained by exploring the relationship between the locations of fixed points of a nonlinear
mapping and the classification problem. In this paper, we generalize the results obtained for
the scalar GI/M/1 case to the matrix GI/M/1 case. Unlike the generalization from the scalar
M/G/1 case to the matrix M/G/1 case (see [6]), the generalization from the scalar GI/M/1 case
to the matrix GI/M/1 case is much more involved mathematically. The classification condition
obtained in this paper gives an alternative to the classification condition given in [15] and
an alternative to Neuts’s condition for the classification of the classical GI/M/1-type Markov
chains. We shall demonstrate the usefulness of the results by showing an application in queueing
theory.

The rest of the paper is organized as follows. In Section 2, the Markov chain of interest
is introduced and a mapping A is defined. Section 3 studies the relationships among the
nonnegative fixed points of A, especially the relationship between the minimal fixed point
and other fixed points. In Section 4, a condition for positive recurrence of the Markov chain
of interest is presented, along with some interesting numerical examples. In Section 5, the
existence of a special fixed point (used in Section 4) in some convex set is proved for a special
case. Finally, in Section 6, a queueing example is analyzed.

2. Markov chains of matrix GI/M/1-type with a tree structure

The following matrix GI/M/1-type Markov chain was introduced in [15].
Let ℵ = {J : J = j1j2 . . . jn, 1 ≤ ji ≤ K, 1 ≤ i ≤ n, n ≥ 1} ∪ {0}, where K is a positive

integer, i.e. each nonzero element J inℵ is a string of integers between 1 andK . The length of a
stringJ inℵ is defined as the number of integers in the string and is denoted by |J |; ifJ = 0, then
|J | = 0. The addition operation for strings in ℵ is defined as J + H = j1 . . . jnh1 . . . hi ∈ ℵ
for J = j1 . . . jn ∈ ℵ and H = h1 . . . hi ∈ ℵ. If we view each string J ∈ ℵ as a node, then we
obtain a K-ary tree. In the K-ary tree, each nonzero node J has a parent node and K children
{J + 1, J + 2, . . . , J +K}; the root node J = 0 has no parent node. The node J + k is called
a type-k node.

We consider a Markov chain {(Cn, ηn), n ≥ 0}, where Cn takes values in ℵ and ηn takes
integer values from 1 tom, wherem is a positive integer. The random variable ηn is an auxiliary
variable (also called the phase variable). The transition probabilities of the Markov chain are
given as, for J and H in ℵ, 1 ≤ k ≤ K ,

P{Cn+1 = J + k, ηn+1 = j | Cn = J + H, ηn = i} = Ai,j (H, k), 1 ≤ i, j ≤ m,

P{Cn+1 = 0, ηn+1 = j | Cn = H, ηn = i} = Bi,j (H), 1 ≤ i, j ≤ m.

Let A(H, k) be the m×m matrix with (i, j )th element Ai,j (H, k). Let B(H) be the m×m

matrix with (i, j )th element Bi,j (H). If J = j1 . . . jn, define f (J, i) = jn−i+1 . . . jn, for
i = 1, . . . , n, and f (J, 0) = 0. By the law of total probability, we have

(
B(J ) +

|J |∑
i=0

K∑
k=1

A(f (J, i), k)

)
e = e for any J ∈ ℵ, (2.1)

where e is the column vector with all elements being 1.

Note 2.1. The K-ary tree defined above has a single root node 0. For some applications, the
node 0 can have a parent node who has only one child (i.e. node 0). The results obtained in this
paper hold for those Markov chains.
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From the definition, it is clear that, in one transition, the Markov chain can move from the
current node to one of its children, any node that is an immediate child of an ancestor of the
current node, or the root node. The transition probabilities depend on the type of the targeted
node. We assume that at least one of the matrices {A(0, k), 1 ≤ k ≤ K} is nonzero. Then
{(Cn, ηn), n ≥ 0} is called a Markov chain of matrix GI/M/1-type with a tree structure. The
Markov chain {(Cn, ηn), n ≥ 0} has the classical GI/M/1-type Markov chains (K = 1) and all
GI/M/1-type Markov chains with a tree structure with m = 1 as special cases.

Next, we introduce a mapping A, which plays a central role in this paper. Define

N K
m = {X : X = (X1, . . . ,XK), where X1, . . . ,XK are m × m nonnegative matrices},

and
N K

m (Y ) = {X : X ∈ N K
m and Xk ≤ Yk for k = 1, . . . , K} for Y ∈ N K

m .

It is clear that N K
m and N K

m (Y ) are convex sets. The product of matrices in X ∈ N K
m is defined

as follows; for J = j1j2 . . . j|J |−1j|J | ∈ ℵ,
X(J ) = Xj1Xj2 · · · Xj|J |−1Xj|J | for X ∈ N K

m .

The mapping A: N K
m → N K

m is defined as follows: for X ∈ N K
m ,

A(X) = (A∗
1(X), . . . ,A∗

K(X)),

where
A∗

k(X) =
∑
J∈ℵ

X(J )A(J, k) for k = 1, . . . , K.

For any X = (X1,X2, . . . ,XK) and Y = (Y1,Y2, . . . ,YK) in N K
m , if Xk ≤ Yk for

k = 1, . . . , K , then we say that X ≤ Y . It is easy to see that the mappings A∗
k(X), for

k = 1, . . . , K , are continuous and nondecreasing, i.e. for any X and Y in N K
m with X ≤ Y ,

A(X) ≤ A(Y ). An X in N K
m is called a fixed point of A if X = A(X). In the rest of the

paper, ‘a fixed point’ means ‘a nonnegative fixed point of the mapping A’. A fixed point Xmin
is called the minimal fixed point in N K

m if Xmin ≤ Y for any other fixed point Y in N K
m .

3. Fixed points of the mapping A

First, an elementary relationship between the minimal fixed point and other fixed points is
given in the following lemma.

Lemma 3.1. If the mapping A has a fixed point, then there exists a minimal fixed point Xmin in
N K

m . In addition, if Y is a fixed point, then the subset N K
m (Y ) is invariant under the mapping A.

Proof. Suppose that there exists a fixed point X in N K
m . We now show that there exists

a minimal nonnegative fixed point. For that purpose, we construct the following sequence:
X[0] = 0, X[n] = A(X[n−1]) for n ≥ 1. It is easy to verify that the sequence {X[n], n ≥ 0}
is nondecreasing. Since X is a fixed point and X ≥ X[0] = 0, by induction, it is easy to prove
that X ≥ X[n] for n ≥ 0. Since {X[n], n ≥ 0} is nondecreasing and is bounded by X, the
sequence {X[n], n ≥ 0} converges and the limit is less than or equal toX. It is readily seen that
the limit is a fixed point of A, which is less than or equal to any fixed point of A. Therefore,
that limit is the minimal fixed point Xmin.

If Y is a fixed point, then, since the mapping A is monotone, we have A(X) ≤ A(Y ) = Y

for any X in N K
m (Y ). Therefore, the subset N K

m (Y ) is invariant under A. This completes the
proof of Lemma 3.1.
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If m = K = 1, the Markov chain defined in Section 2 is the classical GI/M/1 Markov chain
[9]. It is well known that y = 1 is a fixed point. It is also well known that the derivative
of A at y = 1 determines where the minimal fixed point Xmin is located. Let A(1)(1) be
the derivative of A at y = 1. If A(1)(1) > 1, then Xmin < 1; otherwise, Xmin = 1. In
this section, these results are generalized to cases with m ≥ 1 and K ≥ 1. If A has a fixed
point Y in N K

m (1) (defined in Section 4), Y can play a role similar to that of y = 1 for the
m = K = 1 case. Instead of the derivative A(1)(y) at y = 1, we consider the Jacobian matrix
A(1)(Y ,Y ) at Y . Then we look at the Perron–Frobenius eigenvalue sp(A(1)(Y ,Y )) to locate
the minimal nonnegative fixed point of A. Note that the Perron–Frobenius eigenvalue sp(X)

of the nonnegative matrix X is the eigenvalue of X with the largest modulus. Next, we define
the Jacobian matrix explicitly. For 1 ≤ k, j ≤ K , let

A
∗(1)
j,k (X,Y ) =

∑
J∈ℵ:J �=0

|J |∑
n=1

δ(j,jn)(Xj1 · · · Xjn−1)
�⊗(Yjn+1 · · · Yj|J |A(J, k)), X,Y ∈ N K

m ,

(3.1)
where ‘⊗’ denotes the Kronecker product of matrices [2], δ(·,·) is the Kronecker delta function
(i.e. δ(i,j) = 1 if i = j ; δ(i,j) = 0 otherwise) and ‘�’ denotes the matrix transpose. The
matrix A

∗(1)
j,k (X,Y ) is an m2 × m2 matrix. Define A(1)(X,Y ) to be the (m2K) × (m2K)

matrix with (j, k)th block A
∗(1)
j,k (X,Y ), 1 ≤ j, k ≤ K . Clearly, every entry of A(1)(X,Y )

is nondecreasing with respect to every entry of X and Y . The matrix A(1)(Y ,Y ) is the
differentiation matrix ofA at Y and is called the Jacobian matrix. In fact, ifm = 1, A(1)(Y ,Y )

is the matrix of partial differentiation of A at the point Y . The relationship between Xmin and
sp (A(1)(Y ,Y )) is summarized in the following lemma.

Lemma 3.2. Assume that Y is a fixed point in N K
m . Assume that A(1)(Y ,Y ) is irreducible

and that A(1)(X,Y ), as a function of X, is strictly increasing at X = Y with respect to every
element of X. If sp(A(1)(Y ,Y )) ≤ 1, then Xmin = Y . In this case, Xmin = Y is the only fixed
point in N K

m (Y ). If sp(A(1)(Y ,Y )) > 1, then Xmin < Y (i.e. Xmin ≤ Y and Xmin �= Y ). In this
case, the mapping A has at least two (different) fixed points in N K

m (Y ). On the other hand, if
there exists a fixed point Z in N K

m such that Y ≤ Z and Y �= Z, then sp(A(1)(Y ,Y )) < 1.

Proof. In the following proof, we shall use the direct sum of a matrix. For any matrix X,
its direct sum φ(X) is obtained by putting its rows into a single row vector, starting from
the top [9]. A useful property of the direct sum is that, for three matrices X, Y and Z,
φ(XYZ) = φ(Y )(X�⊗Z), given that themultiplications are valid. First, we have the following
calculations:

A∗
k(Y ) − A∗

k(X)

=
∑
J∈ℵ

(Y (J ) − X(J ))A(J, k)

=
∑

J∈ℵ:J �=0

{ |J |∑
n=1

Xj1 · · · Xjn−1(Yjn − Xjn)Yjn+1 · · · Yj|J |

}
A(J, k)

=
K∑

j=1

( ∑
J∈ℵ:J �=0

{ |J |∑
n=1

δ(j,jn)Xj1 · · · Xjn−1(Yjn − Xjn)Yjn+1 · · · Yj|J |

}
A(J, k)

)
. (3.2)



Matrix GI/M/1-type Markov chains 1091

Taking the direct sum on both sides of (3.2), we obtain that

φ(A∗
k(Y )) − φ(A∗

k(X))

=
K∑

j=1

(
φ(Yj − Xj )

∑
J∈ℵ: J �=0

{ |J |∑
n=1

δ(j,jn)(Xj1 · · · Xjn−1)
�⊗ (Yjn+1 · · · Yj|J |A(J, k))

})

=
K∑

j=1

(φ(Yj − Xj )A
∗(1)
j,k (X,Y )).

This implies that

φ(A(Y ) − A(X)) ≡ (φ(A∗
1(Y )) − φ(A∗

1(X)), . . . , φ(A∗
K(Y )) − φ(A∗

K(X)))

= (φ(Y1) − φ(X1), . . . , φ(YK) − φ(XK))A(1)(X,Y )

≡ φ(Y − X)A(1)(X,Y ). (3.3)

If sp(A(1)(Y ,Y )) ≤ 1, we would like to show that Y is the minimal nonnegative fixed
point. Suppose that Y is not the minimal fixed point. By Lemma 3.1, there exists another
fixed point in N K

m (Y ). We denote that fixed point by X. Then (3.3) becomes φ(Y − X) =
φ(Y −X)A(1)(X,Y ). SinceX is strictly smaller thanY (i.e.X < Y ) and thematrixA(1)(Y ,Y )

is irreducible, we must have sp(A(1)(X,Y )) < sp(A(1)(Y ,Y )).
Let α = (α�

1 ,α�
2 , . . . ,α�

K)� be the right eigenvector of A(1)(Y ,Y ) corresponding to the
eigenvalue with the largest modulus. Since A(1)(Y ,Y ) is irreducible, α is positive. We nor-
malize the vector α by φ(Y )α = 1. Postmultiplying by α on both sides of (3.3), we obtain
that

φ(Y − X)α = φ(Y − X)A(1)(X,Y )α

< φ(Y − X)A(1)(Y ,Y )α

= (φ(Y − X)α) sp(A(1)(Y ,Y )), (3.4)

which implies that sp(A(1)(Y ,Y )) > 1, since φ(Y − X)α is positive. That contradicts the
assumption that sp(A(1)(Y ,Y )) ≤ 1. Therefore, if sp(A(1)(Y ,Y )) ≤ 1, there is no fixed point
smaller than Y . According to Lemma 3.1, Y is the minimal nonnegative fixed point.

If sp(A(1)(Y ,Y )) > 1, we would like to show that there is another fixed point that is smaller
than Y . Define N K

m (Y ,≤ ε) = {X : φ(X)α ≤ 1− ε, X ∈ N K
m (Y )} and N K

m (Y ,= ε) = {X :
φ(X)α = 1 − ε, X ∈ N K

m (Y )}. It is easy to see that both N K
m (Y ,≤ ε) and N K

m (Y ,= ε) are
convex sets. We would like to show that, if ε is small enough, then the subset N K

m (Y ,≤ ε) is
invariant under the mapping A. For any X ∈ N K

m (Y ,= ε), by (3.3),

φ(A(X))α − φ(A(Y ))α

= φ(X − Y )A(1)(X,Y )α

= φ(X − Y )A(1)(Y ,Y )α + φ(X − Y )[A(1)(X,Y ) − A(1)(Y ,Y )]α
= sp(A(1)(Y ,Y ))φ(X − Y )α + φ(X − Y )[A(1)(X,Y ) − A(1)(Y ,Y )]α. (3.5)
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Note that φ(Y )α − φ(X)α = 1 − φ(X)α = ε. The equality (3.5) implies that

φ(A(X))α = 1 − sp(A(1)(Y ,Y ))φ(Y − X)α + φ(X − Y )[A(1)(X,Y ) − A(1)(Y ,Y )]α
= 1 − ε − [sp(A(1)(Y ,Y )) − 1]ε + φ(Y − X)[A(1)(Y ,Y ) − A(1)(X,Y )]α.

(3.6)

Since A(1)(X,Y ) and φ(X) are continuous in X and every element of α is positive, we can
choose a small enough ε such that

[A(1)(Y ,Y ) − A(1)(X,Y )]α ≤ [sp(A(1)(Y ,Y )) − 1]α
for any X ∈ N K

m (Y ,= ε). This inequality along with (3.6) implies that φ(A(X))α ≤ 1−ε for
any X ∈ N K

m (Y ,= ε), that is, A(X) ∈ N K
m (Y ,≤ ε) for any X ∈ N K

m (Y ,= ε). For any X ∈
N K

m (Y ,≤ ε), consider the closed line segmentX(t) = (1−t)X+tY , 0 ≤ t ≤ 1. It can be shown
that there exists a t1 such that X(t1) ∈ N K

m (Y ,= ε) and X ≤ X(t1). This implies that A(X) ≤
A(X(t1)) ∈ N K

m (Y ,≤ ε). Thus, wehave shown that the convex subsetN K
m (Y ,≤ ε) is invariant

under the mapping A. Since A is continuous, by the well-known Brouwer theorem [3], there is
a fixed point in N K

m (Y ,≤ ε), which is smaller than Y . Thus, the minimal fixed point is smaller
than Y .

Suppose that there exists a fixed point Z of A in N K
m such that Y < Z. By replacing X

by Z in (3.4) and changing the direction of the inequality, we obtain that sp(A(1)(Y ,Y )) < 1.
This completes the proof of Lemma 3.2.

For cases with m, K ≥ 2, in general, there is no explicit expression for any fixed point of
A in N K

m . Thus, the condition given in Lemma 3.2 cannot be explicit. The implication of this
is that the classification condition (presented in Section 4) may not be explicit.

4. Classification of the Markov chain of interest

According to Neuts’s conditions in matrix-analytic methods (see [9] and [10]) and classi-
fication conditions for matrix M/G/1-type Markov chains with a tree structure (see [4] and
[5]), the classification of the Markov chains of interest has much to do with the fixed points
of the mapping A. According to Yeung and Sengupta [15], the Markov chain defined in
Section 2 is positive recurrent if and only if the minimal fixed point Xmin satisfies sp(Xmin,1 +
· · · + Xmin,K) < 1. Note that, in the literature of matrix-analytic methods, the matrices
Xmin,1, . . . ,Xmin,K are usually denoted by R1, . . . ,RK . In this section, we show that the
locations of the fixed points of A classify the Markov chain of interest. Let

N K
m (1) = {X : X ∈ N K

m and sp(X1 + · · · + XK) = 1},
N K

m (≤ 1) = {X : X ∈ N K
m and sp(X1 + · · · + XK) ≤ 1}.

By assuming that A has a fixed point in N K
m (1), the results given in Section 3 can be

utilized to allocate the minimal fixed point in N K
m (≤ 1). We now translate these results into a

classification condition for the Markov chain of interest.

Theorem 4.1. Assume that the Markov chain {(Cn, ηn), n ≥ 0} defined in Section 2 is
irreducible and aperiodic. Also assume that the mapping A has a fixed point Y in N K

m (1)
and that Y1 + · · · + YK is irreducible. If the Jacobian matrix A(1)(Y ,Y ) is irreducible and
if A(1)(X,Y ) is strictly increasing in X, then the Markov chain {(Cn, ηn), n ≥ 0} is positive
recurrent if and only if sp(A(1)(Y ,Y )) > 1.



Matrix GI/M/1-type Markov chains 1093

Proof. If sp(A(1)(Y ,Y )) > 1, then, according to Lemma 3.2, there exists a fixed point in
N K

m (Y ) that is smaller than Y . That implies that the minimal nonnegative solution Xmin is
smaller than Y . Since sp(Y1 + · · · + YK) = 1 and Y1 + · · · + YK is irreducible, we must have
sp(Xmin,1 + · · · + Xmin,K) < 1. Further, the matrix

∑
J∈ℵ X

(J )
minB(J ) is stochastic because,

by (2.1),

∑
J∈ℵ

X
(J )
minB(J )e =

∑
J∈ℵ

X
(J )
min

(
e −

K∑
k=1

|J |∑
i=0

A(f (J, i), k)e

)

=
∑
J∈ℵ

X
(J )
mine −

K∑
k=1

(∑
J∈ℵ

|J |∑
i=0

X
(J )
minA(f (J, i), k)

)
e

=
∑
J∈ℵ

X
(J )
mine −

K∑
k=1

( ∞∑
i=0

∑
J∈ℵ:|J |≥i

X
(J )
minA(f (J, |J | − i), k)

)
e

=
∑
J∈ℵ

X
(J )
mine −

K∑
k=1

( ∞∑
i=0

∑
J,H∈ℵ:|J |=i

X
(J+H)
min A(f (J + H, |H |), k)

)
e

=
∑
J∈ℵ

X
(J )
mine −

K∑
k=1

( ∞∑
i=0

∑
J∈ℵ:|J |=i

X
(J )
min

∑
H∈ℵ

X
(H)
minA(H, k)

)
e

=
∑
J∈ℵ

X
(J )
mine −

( ∞∑
i=0

∑
J∈ℵ:|J |=i

X
(J )
min

)( K∑
k=1

Xmin,k

)
e

=
( ∞∑

i=0

∑
J∈ℵ:|J |=i

X
(J )
min

)(
I −

K∑
k=1

Xmin,k

)
e

=
( ∞∑

i=0

( K∑
k=1

Xmin,k

)i)(
I −

K∑
k=1

Xmin,k

)
e

=
(

I −
K∑

k=1

Xmin,k

)−1(
I −

K∑
k=1

Xmin,k

)
e = e,

where I denotes the identity matrix.

Let π(J ) = π(0)X(J )
min for J ∈ ℵ, where π(0) is a nonnegative and nonzero vector satisfying

π(0) = π(0)
∑

J∈ℵ X
(J )
minB(J ). Then it is straightforward to verify that {π(J ), J ∈ ℵ}

is an invariant measure that is finite. Since the Markov chain is irreducible and aperiodic,
{π(J ), J ∈ ℵ} is unique up to a positive constant. According to Theorem 5.5 of [11], the
Markov chain is positive recurrent.

On the other hand, if theMarkov chain is positive recurrent, according to [15], {π(J ), J ∈ ℵ}
must be the stationary distribution of {(Cn, ηn), n ≥ 0} and sp(Xmin,1 + · · · + Xmin,K) < 1.
Thus, we have a fixed point in N K

m (Y ) that is smaller than Y . According to Lemma 3.2, we
must have sp(A(1)(Y ,Y )) > 1. This completes the proof of Theorem 4.1.

Theorem4.1 implies that the location of theminimal nonnegative fixed point ofA determines
whether or not theMarkov chain is positive recurrent. But the corresponding condition depends
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on the fixed point Y in N K
m (1), which is not given explicitly. We shall discuss the existence of

a fixed point of A in N K
m (1) in Section 5.

Corollary 4.1. Assume that the Markov chain {(Cn, ηn), n ≥ 0} defined in Section 2 is
irreducible and aperiodic. Assume also that the mapping A has a fixed point Y in N K

m (1)
and Y1 + · · · + YK is irreducible. Then sp(A(1)(Xmin,Xmin)) ≤ 1. If the Markov chain is
positive recurrent, then sp(Xmin,1 + · · · + Xmin,K) < 1 and sp(A(1)(Xmin,Xmin)) ≤ 1 <

sp(A(1)(Y ,Y )); otherwise, sp(Xmin,1 + · · · + Xmin,K) = 1 and sp(A(1)(Xmin,Xmin)) =
sp(A(1)(Y ,Y )) ≤ 1.

Proof. The first conclusion is fromLemma 3.2. The rest of the results are fromTheorem 4.1.

Note 4.1. When m = 1 and K ≥ 1, Theorem 4.1 is consistent with Theorem 5.4 of [6]. When
m ≥ 1 and K = 1, the condition given in Theorem 4.1 is different from Neuts’s condition. But
the two conditions are equivalent to each other; this is shown in Appendix A.

Note 4.2. Corollary 4.1 shows that, with respect to the classification of the Markov chains,
sp(A(1)(Y ,Y )) (if the fixed point Y exists) provides more accurate information than
sp(Xmin,1 + · · · + Xmin,K), especially when the Markov chain is transient. Although it
has not been proved mathematically, numerical examples and the results in [6] indicate that
sp(A(1)(Y ,Y )) < 1 may hold if the Markov chain is transient. Thus, sp(A(1)(Y ,Y )) may
provide information about transience of theMarkov chain that is not available from sp(Xmin,1+
· · ·+Xmin,K), since sp(Xmin,1 +· · ·+Xmin,K) = 1 for both null recurrent and transient cases.

Based on Theorem 4.1 and the above discussion, we propose the following procedure for
the classification of the Markov chain defined in Section 2:

1. Compute all the transition blocks {A(J, k), J ∈ ℵ, 1 ≤ k ≤ K}.
2. Check irreducibility and periodicity of the Markov chain.

3. Compute a fixed point Y in N K
m (1) (Section 5) and construct the matrix A(1)(Y ,Y ).

4. Check whether or not A(1)(Y ,Y ) is irreducible and calculate sp(A(1)(Y ,Y )).

Next, we present a numerical example in order to analyse sp(Xmin,1 + · · · + Xmin,K),
sp(A(1)(Xmin,Xmin)) and sp(A(1)(Y ,Y )) numerically.

Example 4.1. Consider a matrix GI/M/1-type Markov chain with m = K = 2,

A(0, 1) =
(
0 0.1
µ µ

)
,

A(0, 2) =
(
0.1 0
µ µ

)
,

A(11, 1) = A(21, 1) =
(

0.1 0.4
0.25 − µ 0.25 − µ

)
,

A(12, 1) = A(22, 1) =
(

0.2 0.1
0.5 − 2µ 0

)
,

A(11, 2) = A(21, 2) =
(

0.1 0.2
0.25 − µ 0.25 − µ

)
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Table 1: Perron–Frobenius eigenvalues for Example 4.1.

µ 0.1 0.15 0.17 0.1785 0.18 0.20 0.24

sp(Xmin,1 + · · · + Xmin,K) 0.4454 0.7416 0.9120 0.9992 1 1 1
sp(A(1)(Xmin,Xmin)) 0.6254 0.8597 0.9572 0.9996 0.9928 0.8898 0.6640

sp(A(1)(Y ,Y )) 1.3745 1.1403 1.0427 1.0003 0.9928 0.8898 0.6640

and

A(12, 2) = A(22, 2) =
(
0 0.5
0 0.5 − 2µ

)
,

with all other matrices A(J, k) equal to zero and 0 < µ < 0.25. Since the transition from
node 11 to node 2 in one step is possible, this Markov chain is not an M/G/1-type Markov
chain. Therefore, the results obtained in [5] and [6] cannot apply. Thus, we apply Theorem 4.1
to classify the Markov chain. Information for classification is given in Table 1.

Table 1 shows that the Markov chain is positive recurrent if µ < 0.1785 and null recurrent
or transient if µ > 1.8. The Perron–Frobenius eigenvalue sp(Xmin,1 +· · ·+Xmin,K) is nonde-
creasing with respect to µ. The Perron–Frobenius eigenvalue sp(A(1)(Y ,Y )) is nonincreasing
with respect to µ. This is quite intuitive since, when µ is increasing, the probabilities that the
Markov chain moves away from the root node 0 are increasing.

Table 1 shows that, if the Markov chain is null recurrent (for some µ between 1.7 and 1.8),
then sp(A(1)(Xmin,Xmin)) and sp(A(1)(Y ,Y )) are close to 1. If µ ≥ 0.18, then the Markov
chain is null recurrent or transient and sp(Xmin,1 + · · · + Xmin,K) = 1. On the other hand, if
µ ≥ 0.18, then sp(A(1)(Y ,Y )) is smaller than 1, which shows clearly that the Markov chain is
transient.

5. Fixed points in N K
m (1)

To use Theorem 4.1, we need to compute a fixed point Y in N K
m (1) and Xmin in N K

m (≤ 1).
A computation procedure for Xmin has been given in the proof of Lemma 3.1. A fixed point Y
in N K

m (1) can be computed as follows. Let Yk[0] = (1/K)I for k = 1, . . . , K . For n ≥ 1,
let Y [n] = A(Y [n − 1]). Then the limit of the sequence {Y [n], n ≥ 0}, if it exists and is in
N K

m (1), can be chosen as Y . Unfortunately, the convergence of {Y [n], n ≥ 0} has not yet been
proved. There is no guarantee that (i) {Y [n], n ≥ 0} converges and (ii) the limit is in N K

m (1)
if the sequence does converge. Nonetheless, numerical experimentation shows that, in general,
{Y [n], n ≥ 0} does converge to a fixed point of A in N K

m (1). Thus, the procedure given in
Section 4 can be applied to classify the Markov chain defined in Section 2.

To prove that there is a fixed point in N K
m (1), the idea used in [6] is to show that the convex

set N K
m (1) is invariant under the mapping A. However, numerical experimentation shows

that N K
m (1) may not be invariant under A for the matrix GI/M/1 case, though a fixed point

exists. In the rest of this section, we identify some conditions on the transition probabilities
{A(J, k), J ∈ ℵ, 1 ≤ k ≤ K} such that N K

m (1) is invariant under A. Consequently, the
existence of a fixed point in N K

m (1) is ensured.
Assume that there is a stochastic matrix A satisfying the following condition: for any ε > 0,

there exists an N > 0 such that

max
J∈ℵ: |J |=n

{∥∥∥∥A −
K∑

k=1

N∑
i=0

A(f (J, i), k)

∥∥∥∥
max

}
≤ ε, (5.1)
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where the norm ‖.‖max is defined as ‖X‖max = max1≤i,j≤m{|(X)i,j |}. We assume that the
matrix A is irreducible. Then the Perron–Frobenius eigenvalue sp(A) of A is 1. Let θ be the
probability invariant vector of A, that is θA = θ and θe = 1. Since A is irreducible, every
element of θ is positive. Define

N K
m,θ (1) = {X : X ∈ N K

m and θ(X1 + · · · + XK) = θ}.
It is easy to see that N K

m,θ (1) ⊂ N K
m (1) and N K

m,θ (1) is a convex set. The next lemma shows
that, under the condition (5.1), the mapping A has a fixed point in N K

m,θ (1). Consequently, A
has a fixed point in N K

m (1).

Lemma 5.1. Under the condition (5.1), the set N K
m,θ (1) is invariant under the mapping A.

Thus, the mapping A has a fixed point in N K
m,θ (1).

Proof. For X ∈ NK
m,θ (1), by definition, we have θ(X1 + · · · + XK) = θ and, for N > 0,

θ

K∑
k=1

N∑
i=0

∑
J∈ℵ: |J |=i

X(J )A(J, k) = θ

K∑
k=1

N∑
i=0

∑
J∈ℵ: |J |=i

(X1 + · · · + XK)N−iX(J )A(J, k)

= θ
∑

J∈ℵ: |J |=N

X(J )
K∑

k=1

N∑
i=0

A(f (J, i), k)

= θ
∑

J∈ℵ: |J |=N

X(J )A + θ
∑

J∈ℵ: |J |=N

X(J )

( K∑
k=1

N∑
i=0

A(f (J, i), k) − A

)

= θ(X1 + · · · + XK)NA + θ
∑

J∈ℵ: |J |=N

X(J )

( K∑
k=1

N∑
i=0

A(f (J, i), k) − A

)

= θ + θ
∑

J∈ℵ: |J |=N

X(J )

( K∑
k=1

N∑
i=0

A(f (J, i), k) − A

)
. (5.2)

By the condition (5.1), (5.2) and the monotone convergence theorem, we obtain that, for any
X ∈ N K

m,θ (1),

θ

K∑
k=1

A∗
k(X) = θ

K∑
k=1

∑
J∈ℵ

X(J )A(J, k)

= lim
N→∞ θ

K∑
k=1

N∑
i=0

∑
J∈ℵ: |J |=i

X(J )A(J, k)

= θ + lim
N→∞ θ

∑
J∈ℵ: |J |=N

X(J )

( K∑
k=1

N∑
i=0

A(f (J, i), k) − A

)

= θ + lim
N→∞ θ

∑
J∈ℵ: |J |=N

X(J )ε(N)

(
where ε(N) =

K∑
k=1

N∑
i=0

A(f (J, i), t) − A

)

= θ + lim
N→∞ θε(N) = θ ,
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where the matrix ε(N) tends to 0 as N → ∞ (by the condition (5.2)). Thus, the convex set
N K

m,θ (1) is invariant under the mapping A. By Brouwer’s fixed-point theorem, there is a fixed

point of A in N K
m,θ (1). This completes the proof of Lemma 5.1.

The condition (5.1) is satisfied for a number of easy-to-check cases. Intuitive explanations
of (5.1) can be seen in these special cases as well. We give two such examples below. The first
case is as follows:

lim
n→∞ max|J |=n

{B(J )} = 0, J ∈ ℵ, (5.3)

B(J ) = B(j + J ) +
K∑

k=1

A(j + J, k) for j = 1, . . . , K, J ∈ ℵ. (5.4)

The condition (5.3) implies that the Markov chain does not jump from a ‘remote’ node directly
to the root node 0. The condition (5.4) ensures that there is a certain level of homogeneity
in the transition probabilities associated with the phase variable {ηn, n ≥ 0}. That condition
can be satisfied by stochastic systems for which the phase variable (environmental factor) is
independent of system actions. One such example is shown in Section 6. When the conditions
(5.3) and (5.4) are satisfied, the matrix A is given by A = B(0) + A(0, 1) + · · · + A(0,K).
By the law of total probability, the matrix A is a stochastic matrix.

The second case is as follows: for a given positive integer N ,

A(J, k) = 0, J ∈ ℵ and |J | > N, (5.5)

A =
K∑

k=1

|J |∑
i=0

A(f (J, i), k), J ∈ ℵ and |J | = N, (5.6)

where A is a stochastic matrix. The condition (5.5) implies that, in one transition, the Markov
chain can only ‘jump’ at most N levels towards the root node. Similar to (5.4), the condition
(5.6) ensures that there is some kind of homogeneity in the transition process. Given the
conditions (5.5) and (5.6), it is easy to verify that (5.1) is satisfied.

To end this section, we point out that finding fixed points of the mapping A is a key to the
classification of GI/M/1-type Markov chains with a tree structure. But the computation of such
fixed points can be expensive. Alternatively, it might be worthwhile to find sufficient conditions
for positive recurrence where the fixed points (Xmin and Y ) are not involved (see Lemmas 6.1
and 6.2 in [5]). In fact, in [8], some linear programming problems are constructed such that
their optimal solutions provide information for classifying M/G/1-type Markov chains with a
tree structure. It is interesting to extend that approach to GI/M/1-type Markov chains with a
tree structure.

6. Stability of an SM[K]/G[K]/1/LCFS queue

In this section, we consider an SM[K]/G[K]/1/LCFS preemptive repeat queue. The issue
is system stability. For more on the study of queues with multiple types of customers, see [7]
and [12].

The queueing system of interest is defined as follows. Customers arrive in the queueing
system according to a continuous-time semi-Markov chain {(ξn, τn), n ≥ 0} with m phases.
The variable ξn is the phase of the semi-Markov chain immediately after the nth transition. The
variable τn is the time of the nth transition with τ0 = 0. The arrivals of customers occur at the
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transition epochs of the semi-Markov process. Let kn be the type of the customer associated
with the nth transition. Define, for k = 1, . . . , K ,

P{ξn+1 = j, τn+1 ≤ t, kn+1 = k | ξn = i} = dk,i,j (t), 1 ≤ i, j ≤ m, n ≥ 0,

where t is a nonnegative real number. The function dk,i,j (t) is the probability that the next
customer arrives within time t of the arrival of the preceding customer, the phase of the
underlying semi-Markov process becomes j after the arrival and the next customer is of type k,
given that the phase was initially i. We assume that dk,i,j (0) = 0. LetDk(t) be anm×mmatrix
with (i, j)th entry dk,i,j (t). The matrices {Dk(t), 1 ≤ k ≤ K} provide all the information
about the semi-Markov arrival process. Let

D(t) = D1(t) + · · · + DK(t),

Dk = lim
t→∞ Dk(t),

D = D1 + · · · + DK.

The matrix D is the probability transition matrix of the embedded Markov chain of the semi-
Markov process {(ξn, τn), n ≥ 0} at transition epochs. We assume that D is irreducible. Let
θa be the probability invariant vector of D, that is, θaD = θa and θae = 1. In steady state, the
interarrival time of the semi-Markov process can be calculated as Eθa (τ ) = θa

∫ ∞
0 tD(dt)e.

The arrival rate of customers is given as λ = (Eθa (τ ))
−1, i.e. the average number of customers

arriving per unit time. The arrival rate of type-k customers is given by λk = λθaDke for
k = 1, . . . , K .

For a type-k customer, its service time sk has a general distribution with mean E sk = 1/µk

for k = 1, . . . , K . The service process and arrival process are independent. All customers,
regardless of their types, join a single queue. The service discipline for all customers is last-
come-first-served (LCFS) preemptive repeat. When a customer enters the system, it pushes
the customer in service (if any) out of the server and begins its own service. When the server
becomes available, the youngest customer in queue reenters the server and begins its service
like a new customer.

Let q(t) be the queue string at time t , that is, q(t) records the types of customers in queue
at time t and their order in queue. For instance, q(t) = 2313 means that there are 4 customers
in the system at time t . The youngest customer, who is in the server, is of type 3. The second
youngest is of type 1. The oldest customer is of type 2 and the second oldest is of type 3. Let
qn = q(τn−), i.e. the queue seen by the nth arriving customer. Let kn be the type of the nth
customer. Then {(qn, kn, ξn), n ≥ 0} is a Markov chain of matrix GI/M/1-type with a tree
structure. The transition matrices of that Markov chain are given as follows: for k = 1, . . . , K ,

A(0, k) =




0∫ ∞

0
P{sk > t}(D1(dt), . . . ,DK(dt))

0


 ,

A(k + J, k) =




∫ ∞

0
P{sJ + s1 ≤ t < sk+J + s1}(D1(dt), . . . ,DK(dt))

...∫ ∞

0
P{sJ + sK ≤ t < sk+J + sK}(D1(dt), . . . ,DK(dt))


 , J ∈ ℵ,

A(k + J, j) = 0, k �= j, J ∈ ℵ,
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and

B(J ) =




∫ ∞

0
P{sJ + s1 ≤ t}(D1(dt), . . . ,DK(dt))

...∫ ∞

0
P{sJ + sK ≤ t}(D1(dt), . . . ,DK(dt))


 , J ∈ ℵ,

where sJ = ∑|J |
n=1 sjn , the sum of the service times of customers in the queue J = j1 . . . j|J |.

Note that in the above, for convenience, we write
∫ ∞
0 f (t)(D1(dt), . . . ,DK(dt)) for the matrix

(
∫ ∞
0 f (t)D1(dt), . . . ,

∫ ∞
0 f (t)DK(dt)). It is easy to see that the condition (5.3) is satisfied.

The condition (5.4) is satisfied because

P{sJ+h ≤ t} = P{sk+J+h ≤ t} + P{sJ+h ≤ t < sk+J+h}, t > 0.

The results obtained in Section 4 can be applied to find whether or not the queueing system is
stable. For some special cases, explicit stability conditions can be found. For instance, for the
M[K]/M[K]/1 queue, where customers arrive according to K independent Poisson processes
and all service times are exponentially distributed, it can be shown that the queueing system
is stable if and only if ρ := λ1/µ1 + · · · + λK/µK < 1. For general cases, we follow the
procedure presented in Section 4 to do the stability check.

Example 6.1. We consider an SM[2]/G[2]/1/LCFS queue. Parameters of this queueing system
are given as follows: K = m = 2, D1(t) = 0.7D(t), D2(t) = 0.3D(t) and

D(t) =
(
d1,1(t) d1,2(t)

d2,1(t) d2,2(t)

)
,

where

d1,1(t) =
{
0, t < 1,

0.3, t ≥ 1,
d1,2(t) =

{
0, t < 2,

0.7, t ≥ 2,

d2,1(t) =
{
0, t < 5,

1, t ≥ 5,
d2,2(t) = 0;

and

P{s1 ≤ t} =



0, t < 1.6,

0.1, 1.6 ≤ t < 2,

0.9, t ≥ 2,

P{s2 ≤ t} =



0, t < 2,

µ, 2 ≤ t < 5,

1 − µ, t ≥ 5,

where µ is a parameter between 0 and 1. By routine calculations, we have θa = (0.59, 0.41),
λ = 0.36, λ1 = 0.25, λ2 = 0.11, µ1 = 1/1.96 and µ2 = 1/(5−3µ). Then the classical traffic
intensity is given as ρ = λ1/µ1 + λ2/µ2 = 0.25× 1.96+ 0.11(5− 3µ) = 1.04− 0.33µ. For
µ ∈ (0, 1), we have 1.04 > ρ > 0.71.

For µ ∈ (0, 1), similar to Example 4.1, we compute ρ, sp(Xmin,1 + · · · + Xmin,K) and
sp(A(1)(Y ,Y )) to check the stability of the queueing system. The results are given in Table 2.

FromTable 2, we learn that, ifµ = 0.5, then we have ρ = 0.88 but sp(A(1)(Y ,Y )) = 0.998.
Consequently, the queueing system is unstable. Thus, ρ does not provide accurate information



1100 Q.-M. HE

Table 2: Perron–Frobenius eigenvalues and ρ for Example 6.1.

µ 0.1 0.3 0.5 0.52 0.55 0.6 0.7 0.9

ρ 1.007 0.94 0.88 0.87 0.86 0.84 0.81 0.74
sp(Xmin,1 + · · · + Xmin,K) 1 1 1 0.956 0.885 0.786 0.640 0.475

sp(A(1)(Y ,Y )) 0.833 0.892 0.998 1.009 1.025 1.053 1.109 1.213

for system stability, which is a well-known fact. For µ < 0.5, the queueing system is unstable
and sp(Xmin,1+· · ·+Xmin,K) = 1. For such cases, Table 2 shows clearly that sp(A(1)(Y ,Y )) <

1. Therefore, sp(A(1)(Y ,Y )) is a better indicator than sp(Xmin,1 + · · · + Xmin,K) for system
(in)stability.

Appendix A. Equivalence of Neuts’s condition and Theorem 4.1 when K = 1

If K = 1, then all strings have the form J = 1 . . . 1. The Markov chain defined in Section 2
becomes a classical GI/M/1-type Markov chain. Let A(|J |) = A(J, 1). Let Y = {Y } be a
fixed point of A in N 1

m(1). By (3.1), A(1)(Y ,Y ) becomes

A(1)(Y ,Y )

=
∞∑
n=1

[I�⊗ (Y n−1A(n)) + (Y 1)� ⊗ (Y n−2A(n)) + · · · + (Y n−1)�⊗ A(n)]

=
∞∑
n=1

[I�⊗ Y n−1 + (Y 1)�⊗ Y n−2 + · · · + (Y n−1)�⊗ I ][I ⊗ A(n)]. (A.1)

Theorem 4.1 states that sp(A(1)(Y ,Y )) > 1 (plus some other conditions) if and only if the
Markov chain is positive recurrent. It is readily seen that θY = θ , where θ is defined in
Section 4. Let u be the right eigenvector of Y corresponding to the eigenvalue 1, i.e. Yu = u.
The vector u is normalized by θu = 1. Neuts’s condition states that the Markov chain is
positive recurrent if and only if θ

∑∞
n=0 nA(n)e > 1. We now prove the equivalence of the two

conditions for positive recurrence of the Markov chain of interest.

Premultiplying by I ⊗ (I − Y + uθ) on both sides of (A.1) yields that

(I ⊗ (I − Y + uθ))A(1)(Y ,Y )

= (I ⊗ u)

( ∞∑
n=1

(n−1∑
j=0

(Y j )�
)

⊗ θA(n)

)

+
∞∑
n=1

[n−1∑
j=0

(Y j )�⊗ Y n−1−j −
n−1∑
j=0

(Y j )�⊗ Y n−j

]
[I ⊗ A(n)]. (A.2)

Since (I − Y + uθ)u = u, we have

(I − Y + uθ)−1u = u.
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The invertibility of the matrix I − Y + uθ can be proved routinely (see [9]). Premultiplying
by I ⊗ (I − Y + uθ)−1 on both sides of (A.2) yields that

A(1)(Y ,Y ) = (I ⊗ u)

( ∞∑
n=1

(n−1∑
j=0

(Y j )�
)

⊗ (θA(n))

)

+ (I ⊗ (I − Y + uθ)−1)

×
∞∑
n=1

[n−1∑
j=0

(Y j )� ⊗ Y n−1−j −
n−1∑
j=0

(Y j )� ⊗ Y n−j

]
[I ⊗ A(n)]. (A.3)

Note that Y�θ� = θ� since θ = θY . Also note that Y = ∑∞
n=0 Y nA(n). Postmultiplying

θ�⊗ e on both sides of (A.3) yields that

A(1)(Y ,Y )(θ�⊗ e)

= θ�⊗ u

(
θ

∞∑
n=1

nA(n)e

)

+ (I ⊗ (I − Y + uθ)−1)

∞∑
n=1

[I ⊗ I − I ⊗ Y n][I ⊗ A(n)](θ�⊗ e)

= θ�⊗ u

(
θ

∞∑
n=1

nA(n)e

)
+ (I ⊗ (I − Y + uθ)−1)(I ⊗ (I − Y ))(θ�⊗ e)

= θ�⊗ u

(
θ

∞∑
n=1

nA(n)e

)
+ (I ⊗ (I − Y + uθ)−1)(I ⊗ (I − Y + uθ − uθ))(θ�⊗ e)

= θ�⊗ e + (θ�⊗ u)

{(
θ

∞∑
n=1

nA(n)e

)
− 1

}
. (A.4)

If A(1)(Y ,Y ) is irreducible, then (A.4) indicates that sp(A(1)(Y ,Y )) > 1 if and only if
θ

∑∞
n=0 nA(n)e > 1. This completes the proof.
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