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Abstract:   

 
In this paper, we study the stochastic root matrices of stochastic matrices.  All stochastic roots of 

2´2 stochastic matrices are found explicitly.  A method based on characteristic polynomial of matrix is 
developed to find all real root matrices that are functions of the original 3´3 matrix, including all 
possible (function) stochastic root matrices.  In addition, we comment on some numerical methods for 
computing stochastic root matrices of stochastic matrices. 
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1.  Introduction 

Let A = (ai,j) be an m´m stochastic matrix, 
i.e.,  A is a nonnegative matrix satisfying Ae = e, 
where m is a positive integer and e is the column 
vector with all elements being one.  Let Am be 
the set of all m´m stochastic matrices.  The 
problem of interest in this paper can be stated as 
follows: for a positive integer n and AÎAm, find 
a matrix B such that  

 ee =³= BBBA n ,0, . (1.1) 

If there exists a stochastic matrix B to 
equation (1.1), we call B an nth stochastic root 
matrix of A (or an nth stochastic root).  The 
objective of this paper is to find stochastic roots 
of a stochastic matrix of order 2 or 3 and to 
discuss some numerical methods for more 
general cases.  

Finding a stochastic root for a stochastic 
matrix has many applications in stochastic 

modelling (see Egilsson [6], Neuts [14], and 
Seneta [15]).  Quite often in practice, the use of 
available sample data for estimating the 
transition matrix of a Markov chain is limited.  
For instance, consider a Markov chain that 
describes the state of weather condition in an 
airport (Egilsson [6]).  For certain purpose, it is 
required that the state of weather condition must 
be predicted on a quarter hour basis (every 
fifteen minutes).  However, information about 
weather condition in the airport was only 
collected and recorded hourly.  Using the 
existing data, the transition matrix A of the 
Markov chain for the state of the airport at the 
end of each hour can be estimated.  Then we 
need to find a transition matrix B such that A = 
B4 for a Markov chain to track the state of the 
airport on a quarter hour basis.  Another 
example arises in risk management of portfolio.  
In that case, company’s credit ratings are 



recorded yearly.  Thus, when the process of 
changes in credit ratings is modelled as a 
Markov chain, the transition matrix for yearly 
changes can be estimated.  However, investment 
horizon is shorter than a year, usually a month 
or a quarter of a year.  Therefore, a quarterly 
(monthly) transition matrix is needed to estimate 
potential quarterly (monthly) loss resulting from 
companies in the portfolios being downgraded 
to a lower rating.  Again, we need to find 
stochastic roots of stochastic matrices.  These 
are just some examples of a common situation in 
which practitioners find that data has been 
collected on a time basis that is different from 
that which is necessary for modelling. Thus it is 
of great interest to practitioners to find 
stochastic roots of stochastic matrices. 

Although the stochastic root problem seems 
a problem of broad interest, the study of the 
problem is limited.  A related problem, known 
as Elfving’s problem, is to find an infinitesimal 
generator T such that A = exp{T} for a 
stochastic matrix A (Elfving [7]).  If there is a 
solution to Elfving’s problem, then A has an nth 
stochastic root B = exp{T/n} for any positive n.  
It has been proved in Kingman [11] that 
Elfving’s problem has a solution if and only if A 
has an nth stochastic root for all positive integer 
n.  Therefore, Elfving’s problem can be 
considered as a special case of the stochastic 
root problem (1.1).  Since the existence 
conditions for stochastic roots are different for 
different n, the problem of interest in this paper 
is more complicated than Elfving’s problem.   

Finding a root matrix of a matrix appears 
quite often in the literature of matrix theory and 
its applications (Bhatia [3], Higham [10], 
Lancaster and Tismenetsky [12], Minc [13]).  It 

is known that a stochastic solution to Problem 
(1.1) does not always exist and, if it exists, may 
not be unique.  On the other hand, for some 
special classes of matrices, root matrices can be 
found explicitly.  For instance, for a symmetric 
matrix, root matrices can be found.  Bjorck and 
Hammarling [4] proposed a Schur method to 
find square roots of a matrix.  Denman [5] and 
Higham [8, 9] developed methods to find roots 
of real matrices or real roots of real matrices.  
There are also algorithms developed for 
computing a particular root (Higham [9, 10]).  
However, there is no method developed to find 
all solutions for any m and n (Problem (1.1)).  
The problem becomes more complicated when 
we restrict the solutions to the set of stochastic 
matrices.  Furthermore, it is widely known that 
there may not be a uniform and effective 
approach towards the matrix root problem.  
Thus, it is quite possible that we have to deal 
with the stochastic root problem (1.1) on a case-
by-case basis.  Therefore, there is a need to 
study special cases, such as the case with m=2 or 
m=3.  

While it is possible to find all or some roots 
of matrices of order 2 or 3, it is quite 
challenging to find just one stochastic root if the 
order is large.  Various approaches were utilized 
in the past to solve the matrix root problem 
(Bjorck and Hammarling [3], Higham [8, 10], 
etc.), including Taylor expansion, Newton’s 
method, nonlinear programs, Pade 
approximation, etc.  However, these methods 
cannot always find a stochastic root.  In this 
paper, we briefly discuss three numerical 
methods that may find a solution to Problem 
(1.1) for any n and m. 



The spectrum inverse problem in matrix 
theory is closely related to the stochastic root 
problem (e.g., Bapat and Ragharan [1] and 
Chapter 7 in Minc [13]).  Useful results are 
obtained only for doubly stochastic matrices and 
positive matrices.  Since the solution (if it 
exists) for the spectrum inverse problem is not 
unique and an algorithm for finding all the 
solutions has not been found yet (Bapat and 
Ragharan [1]), this approach may not be able to 
produce the expected solution (even if a solution 
can be found).   

The rest of the paper is organized as follows.  
In Section 2, we find all stochastic root matrices 
of 2´2 stochastic matrices explicitly.  It seems 
that the 2´2 case is the only one that all 
solutions can be found explicitly.  In Section 3, 
all real roots of 3´3 stochastic matrices that are 
functions of the original stochastic matrix are 
found.  The stochastic roots that are functions of 
the original stochastic matrix are among these 
roots.  In Section 4, we comment on the Taylor 
expansion method, a nonlinear programming 
method, and a Newton’s method for computing 
stochastic roots. 

 
2.  Explicit Solutions for the 2´2 
Case 

In this section, we find explicit solutions to 
Problem (1.1) when m=2.  The idea is to explore 
a relationship between the diagonal elements of 
A and the existence of a solution to Problem 
(1.1).  Denote by Tr(A) = a1,1 + a2,2 the trace of 
A and det(A) the determinant of A (Lancaster 
and Tismenetsky [12]).  Numerical examples 
show that, in order to have a stochastic root B, 
we must have either Tr(A) ³ 1 or, if Tr(A) < 1, 
a1,1 and a2,2 are close to each other.  These 

observations lead to the following main theorem 
for m=2.  

Theorem 2.1.   Assume that n is a positive 
integer and A is a 2´2 stochastic matrix.  If n is 
odd, a stochastic root matrix B satisfying A = Bn 
exists if and only if  
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If it exists, the stochastic solution B = (bi,j) is 
unique and is given as follows.  If a11 + a22 = 2, 
then B = I, where I is the identity matrix.  If a11 
+ a22 < 2, B is given by: b1,2=1–b1,1, b2,1=1–b2,2,  

( )

( )
.

2
1)1(1

,
2

1)1(1

2,21,1

/1
2,21,12,21,1

2,2

2,21,1

/1
2,21,11,12,2

1,1

aa
aaaa

b
aa

aaaa

b

n

n

--

-+-+-
=

--

-+-+-
=

 (2.2) 

If n is even, a stochastic root matrix B 
satisfying A = Bn exists if and only if Tr(A) ³ 1, 
or equivalently, det(A) ³ 0.  For this case, there 
are at most two stochastic roots.  If a1,1 + a2,2 = 
2, there are two stochastic roots: 
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If a1,1 + a2,2 < 2 and the following condition 
is satisfied  
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there are exactly two stochastic roots B:  one is 
given by equation (2.2) and  the other is given 
by: b1,2=1–b1,1, b2,1=1–b2,2,  
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If condition (2.4) is not satisfied, there is exactly 
one stochastic root B, which is given by 
equation (2.2).   

Proof.  The proof of Theorem 2.1 is based 
on the Jordan canonical form of matrix.  Details 
are given in Appendix A.  

Note 2.1:  According to Kingman [11], if 
m=2, the equation A = exp{T} has an 
infinitesimal generator solution T if and only if 
Tr(A) ³ 1.  According to Theorem 2.1, Tr(A) ³ 1 
implies that a stochastic solution to Problem 
(1.1) exists for all positive integer n, which is 
consistent with the result in Kingman [11].  
However, the condition Tr(A) ³ 1 is not 
necessary for the existence of a stochastic 
solution to Problem (1.1) if n is odd.  For 
instance, let 
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Then the matrix A and B satisfy the 
equation A = B5.  Since Tr(A) = 0.7 < 1, by 
Theorem 2.1, there is no solution to A = Bn if n 
is even.  Therefore, there is no infinitesimal 
generator T satisfying A = exp{T}.   

Theorem 2.1 implies that there are only a 
finite number of stochastic roots for any 
stochastic matrix if m=2.  That is not true if m³3 
(see the example in equation (3.2)).  Theorem 
2.1 shows that all stochastic roots are functions 
of A, except when A = I.  That is no longer true 

for m³3 (equation (3.2)).  In fact, the solutions 
to Problem (1.1) with m³3 are much more 
complicated than that of the m=2 case.  Thus, 
we do not intend to find all stochastic roots if 
m³3.  Instead, we shall focus on stochastic roots 
that are functions of A.  Further, the method 
used for solving the m=2 case cannot be applied 
to more general case directly.  Therefore, 
another method based on the characteristic 
polynomial of matrix is developed in Section 3 
to solve the m=3 case.  

 
3.  Real Roots for the 3´3 Case 

A matrix B is a function of the matrix A if B 
= SidiAi for some complex numbers {d0, d1, …} 
(Lancaster and Tismenetsky [12]). If m=3, as 
was pointed out in Section 2, there can be 
infinite number of solutions to Problem (1.1) 
and many of the roots are not functions of A.  
For instance, the identity matrix I has stochastic 
roots such as I itself,  
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Apparently, the last two stochastic roots are 
not functions of I.  Another example is  
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It is easy to verify that A = (B(e))n for any 
n³2 and B(e) is stochastic for all small enough e.  
However, the matrix B(e) is not a function of A 
(non function root)  It was shown in Higham [9] 



that non function roots exists only if the 
algebraic multiplicities of some eigenvalues of A 
are more than one.  For lower order matrix A, it 
is possible to find when A has eigenvalues with 
algebraic multiplicities that are larger than one.  
According to Theorem 4 in Higham [9], the 
number of real roots that are functions of A is 
finite.  Consequently, it is possible to find all 
real roots that are functions of A.  Thus, we relax 
the constraints in Problem (1.1) and try to find 
all real roots with row sums being one, i.e.,  

   ee == BBA n , ,                      (3.3) 

and B is a function of A.  It is easy to see that the 
solutions to Problem (1.1) that are functions of 
A are included in the solutions to Problem (3.3).   

The method to solve Problem (3.3) is based 
on the characteristic polynomial of the solution 
B.  Let {m1, m2, m3} be the eigenvalues of the 
matrix B with m1 = 1.  Denote by fB(x) = det(xI–
B), the characteristic polynomial of B.  It is well 
known that 

 ,)()(
3

0

3

1
åÕ

==

=-=
i

i
i

i
iB xbxxf m      (3.4) 

where  

              
.1),1(

,,

3322

32321320

=++-=

++=-=

bb
bb
mm

mmmmmm       (3.5) 

Using the well known fact fB(B) = 0, we 
express A and A2 as functions of B.   

Lemma 3.1  If B is a solution to Problem 
(3.3), we have, for n=2,  
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for n ³ 3,  
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where  
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Furthermore, we have ck,0+ck,1+ck,2 = 1 for 
k³3.  

Proof.  The proof is based on fB(B) = 0, i.e., 
B3 = –(b0I+ b1B+ b2B2).  Equations (3.6) to (3.8) 
can be obtained by routine calculations.  This 
completes the proof of Lemma 3.1. 

By equations (3.6) and (3.7), we can express 
B with A and A2 as follows: 
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It is easy to verify that the sum of the 
coefficients of I, A, and A2 in equation (3.9) is 
one.  Suppose that the minimum polynomial of B 
has a degree of 2 (denote it again by fB(x)), i.e., 
fB(x) = (x–1)(x–m2) = x2–(1+m2)x+m2, where m2 is 
the eigenvalue that is different from 1.  Similar 
to equation (3.9), the matrix B can be expressed 
in terms of A as: 
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where, for k ³ 2,  
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It can be verified that the sum of the 
coefficients of I and A in equation (3.10) is one.  
If the minimum polynomial of B has a degree of 
1, we must have B = I = A.   

Next, we find the eigenvalues of B and 
identify conditions for equations (3.9) and 
(3.10).  Let {l1, l2, l3} be the eigenvalues of the 
matrix A.  Since A is stochastic, we set l1 = 1.  
The following equations can be established for 
l2 and l3: 
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By equation (3.12), it is easy to obtain  
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If (Tr(A)–1)2 < 4det(A), denote by l2,3 = a ± 
b = re±iq, where 
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The solutions to Problem (3.3) have much to 
do with the quantity (Tr(A)–1)2–4det(A).  
According to the sign of (Tr(A)–1)2–4det(A), we 
give all the solutions to Problem (3.3) that are 
functions of A in the following theorem.   

Theorem 3.2  Assume that n is a positive 
integer and A is a 3´3 stochastic matrix.  All 
solutions to Problem (1.1) that are functions of 
A are solutions to Problem (3.3).  All solutions 
to Problem (3.3) that are functions of A can be 
computed as follows. 

If (Tr(A)–1)2 < 4det(A), there are total n 
solutions to Problem (3.3).  Each solution 
corresponds to a set of eigenvalues: for 0£k£n-1, 
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The corresponding solution can be calculated 
by equation (3.9).  

If (Tr(A)–1)2 > 4det(A) and n is odd, the 
solution to Problem (3.3) is unique.  The 
eigenvalues of the solution are m1 = 1, m2 = 
(l2)1/n,  and  m3 = (l3)1/n.  If (Tr(A)–1)2 > 
4det(A), n is even, and det(A) < 0, there is no 
solution to Problem (3.1).  If (Tr(A)–1)2 > 
4det(A), n is even, det(A) ³ 0, and Tr(A) < 1, 
there is no solution to Problem (3.3).  If (Tr(A)–
1)2 > 4det(A), n is even, det(A) ³ 0, and Tr(A) ³ 
1,  there are four solutions to Problem (3.3).  
The four sets of eigenvalues are {1, m2 = (l2)1/n, 
m3 = (l3)1/n}, {1, m2 = –(l2)1/n, m3 = (l3)1/n}, {1, 
m2 = (l2)1/n, m3 = –(l3)1/n}, and {1, m2 = –(l2)1/n, 
m3 = –(l3)1/n}.  For all the cases having 
solutions, the corresponding solutions can be 
calculated by equation (3.9).  

If (Tr(A)–1)2 > 4det(A) and l2 = 1, then A is 
reducible.  Problem (3.3) is reduced to solve a 
Problem (3.3) for a 2´2 substochastic matrix. 

Assume (Tr(A)–1)2 = 4det(A).  If l1 = l2 = l3 

= 1, the only solution to Problem (3.3) that is a 
function of A is A=I itself.  There can be other 
solutions that are not functions of A (see 
equation (3.1) for an example).  If 1 = l1 > l2 = 
l3 = a, A2–(1+a)A + aI ¹0, n is odd, there is a 
unique solution B that can be calculated by 
either equation (3.9) or equation (3.10), 
whichever is valid.  If 1 = l1 > l2 = l3 = a >0, 
A2–(1+a)A + aI ¹0, and n is even, there are 
possibly two solutions to Problem (3.3) with 
eigenvalues {m1=1, m2 = m3 = |a|1/n} and {m1=1, 
m2 = m3 = –|a|1/n}, which can be computed by 
equation (3.9).  If 1 = l1 > l2 = l3 = a, A2–



(1+a)A + aI ¹0, n is even and a<0, there is no 
solution to Problem (3.3).  If 1 = l1 > l2 = l3 = 
a, A2–(1+a)A + aI ¹ 0, a = 0, there is no 
solution to Problem (3.3).  If 1 = l1 > l2 = l3 = 
a, A2–(1+a)A + aI = 0, and a¹0, there are 
possibly n sets of eigenvalues of B: for 0£k£n-1, 
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For each set of eigenvalues, the matrix B can 
be computed by using equation (3.10).  If 1 = l1 

> l2 = l3 = a, A2–(1+a)A + aI = 0, and a=0, 
there are infinitely many solutions to Problem 
(3.3) that are not functions of A (see Equation 
(3.2)).  For this case, B = A is a solution to 
Problem (3.3) with eigenvalues {m1 = 1, m2 = m3 
= 0}. 

Proof.  See Appendix B.   
Note 3.1  The conditions for the existence of 

a solution to Problem (3.3) can be useful in 
practice.  For instance, if n is even, we must 
have det(A)³0 in order to have a stochastic root.  
This condition is apparently true for any order 
m.  In general, finding conditions for the 
existence of a solution to Problem (1.1) is an 
interesting research issue.  Unfortunately, results 
in Sections 2 and 3 show that simple necessary 
and sufficient conditions may not exist for cases 
with m>3.   

The method used in this section can be 
applied to find all stochastic roots that are 
functions of A.  However, to use this method, we 
must find either all the eigenvalues of B or the 
coefficients of the characteristic polynomial 
(minimal polynomial) of B.  For lower order 
matrix A (m=4, 5, …), it might be possible to do 
so.  Unfortunately, if m is not small (m>5), it 
can be difficult.  Furthermore, for m>5, cases 

with multiple eigenvalues are extremely difficult 
to deal with, since there are many possibilities 
and these can be dealt with only on a case by 
case basis.  Therefore, there is a need to explore 
other methods to find a solution to Problem 
(1.1) if m is not small.   
 
4.  Comments on Computational 
Methods 

As was pointed out at the end of Sections 2 
and 3, the methods used to solve the lower order 
cases cannot be applied to higher order case 
effectively.  Therefore, there is a need to look 
for computational methods that can find one or 
several solutions to Problem (1.1).  Based on our 
numerical experimentations, we briefly discuss 
three numerical methods. 

Taylor Expansion Algorithm  This method 
is based on the Taylor expansion of the function 
z1/n for complex number z and positive real 
number n: 
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Based on equation (4.1), the following 
algorithm can be used for computing a matrix 
sequence {B[k], k³0} for any matrix A.  Let B[0] 
= I and b1 = 1.  For k³1, let  
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Let {l1, l2, …, lm} be all the eigenvalues of 
A, it is well-known that {B[k], k³0} converges if 



and only if the eigenvalues {l1, l2, …, lm} 
satisfy |li – 1| < 1 for 1£i£m.  Denote the limit 
of {B[k], k³0} as B.  It is easy to verify that Be = 
e and B is an nth root of the matrix A. 

The Taylor expansion method can be easily 
implemented to find a root of a stochastic 
matrix.  However, this method has several 
limitations.  First, the convergence region is too 
small.  Second, the limit B may not be a 
stochastic matrix, even when the matrix A has 
an nth stochastic root.  Third, the convergence 
rate of the algorithm is slow and the algorithm is 
instable. 

A Nonlinear Programming Approach  The 
Problem (1.1) can be transformed into nonlinear 
programming problems.  For instance, for a 
positive integer n and AÎAm, we define a 
nonlinear program: 
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where ||×||2 defines an l2 norm on the set of all 
real m´m matrices (see Bhatia [3]).  Apparently, 
we have 0 £ V* £ m2.  It is readily seen that 
Problem (1.1) has a stochastic solution if and 
only if the optimal solution to Problem (4.4) has 
V* = 0.   

Probem (4.4) is a nonlinear program with a 
convex feasible region.  Using existing methods 
for solving nonlinear programming problems 
(Bertsekas [2]), we can solve Problem (4.4) for 
any n and AÎAm.  For instance, the well-known 
feasible decent direction method can be used to 
solve Problem (4.4).  However, solving Problem 
(4.4) can be complicated and time consuming, 
especially when n or m is large.  In fact, it is 
quite often that the solutions given by using 
existing methods are not even close to a real 

solution of Problem (1.1).  The failure can be, at 
least partially, explained as follows.  According 
to Perron-Frobenius theory (Minc [13]), an 
irreducible stochastic matrix B can be 
approximated by eu + O(r), where the row 
vector u is a left eigenvector of B corresponding 
to eigenvalue 1, and r is the absolute value of 
the eigenvalue of B with the second largest 
modulus.  Then Bn can be approximated by eu + 
O(rn).  Suppose that stochastic matrices B1 and 
B2 have approximations eu + O(r1) and eu + 
O(r2), respectively.  If r1<1 and r2<1, then the 
difference between B1

n and B2
n is asymptotically 

O(r1
n–r2

n), which can be significantly smaller 
than the difference between B1 and B2: O(r1–r2).  
Thus, it is possible that both B1

n and B2
n are 

close to A, but only one of them is the solution.  
Thus, unless an algorithm explicitly takes into 
account some special properties of Problem 
(1.1), it may perform poorly.  

Since for any positive integer n, An can be 
expressed in terms of {I, A, A2, …, Am-1}, any 
stochastic root B as a function of A can be 
expressed as B = h0I+ h1A+ h2A2+…+ hm-1Am-1.  
Then we can restrict our search to the set of 
stochastic matrices that are function of A so as 
to reduce the number of variables involved in 
the nonlinear program (4.4).  For instance, 
Problem (4.4) can be changed to: 
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The advantage of the nonlinear program 
(4.5) is that the number of variables is reduced 
to m, instead of m2 for (4.4).  The feasible region 



of (4.5) is still convex.  The disadvantage of 
(4.5) is that it may not be able to find a solution 
to Problem (1.1) if all solutions to Problem (1.1) 
are not functions of A.  The performance of this 
method depends heavily on the algorithm 
employed to solve the nonlinear programs. 

Newton’s method  Newton’s method is 
widely used to develop algorithms for 
computing matrix roots (Higham [8] and 
references therein).  For instance, the following 
algorithm can be used for computing a solution 
to Problem (1.1).  Let B[0] = 0 and, for k³1,  

    ( )( )nkBA
n

kBkB ]1[1]1[][ --+-= .    (4.6) 

If the sequence{B[k], k³0} converges to a 
matrix B, by equation (4.6), we must have A = 
Bn.  This approach is easy to be implemented 
and is quite efficient if the sequence does 
converge.  On the other hand, the limit may not 
be a stochastic matrix.  Furthermore, the 
convergence region of this method can be small 
and it depends on m, n, as well as A.  Thus, it is 
difficult to identify the convergence region for 
this algorithm. 
 
Appendix A. Proof of Theorem 
2.1 

Since AÎA2, its Perron-Frobenius 
eigenvalue (the eigenvalue with the largest 
modulus) is one.  Let x be the other eigenvalue 
of A.  Then x must be a real number and |x| £ 1.  
The Jordan canonical form of A can be given as 
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where Q = (qi, j)  is a non-singular real matrix.  
Since the trace of a matrix is invariant for 
similar matrices, we must have Tr(A) = a1,1 + 

a2,2 = 1 + x.  For the second case in equation 
(A.1), x = 1.  Then we must have a1,1 = a2,2 = 1.  
Thus, A = I since AÎA2.  Then A is not similar 

to the matrix 
÷÷
ø

ö
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10
11 .  Therefore, A can only 

have the first Jordan canonical form given in 
equation (A.1). 

 
 Suppose that B satisfying A = Bn is 

stochastic.  Then B must have two real 
eigenvalues {1, m} with x = mn.  The matrix B 
must have a Jordan canonical form 
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where P is a non-singular real matrix.  Since A = 
Bn, we have 11 ),1diag(),1diag( -- = QQPP xx , 
which leads to ),1diag(),1diag( 11 xx QPQP -- = .  
Let L = P-1Q = (li,j).  Then we must have l1,2 = 
l1,2x and   l2,1 = l2,1x.  If x ¹ 1,  l1,2 = l2,1 = 0, 
which implies that l1,2 = l1,2m and l2,1 = l2,1m.  
Then we have  

      B = 11

0
01

0
01 --

÷÷
ø

ö
çç
è

æ
=÷÷

ø

ö
çç
è

æ QQPP
mm

.    (A.3) 

If x =1, A = I.  If n is odd and x =1, m = x1/n 
= 1.  Then equation (A.3) holds.  If n is even and 
x =1, x1/n = ±1.  We first assume that m =1.  
Then equation (A.3) holds.  The case with m = –
1 with be dealt with later.   

Assume (A.3) holds.  Since a1,1 + a2,2 – 1 = 
x, we have m = ±(a1,1 + a2,2 – 1)1/n.  (Note: if n is 
odd, there is only one root m = (a1,1 + a2,2 – 
1)1/n.) 

Since Q is non-singular, i.e., det(Q) =  
q1,1q2,2 – q1,2q2,1 ¹ 0, it is easy to obtain  
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Expanding the first equation in (A.1), we 
obtain,  
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It is easy to verify that a1,1 – a2,2 = (1–
x)(q1,1q2,2 + q1,2q2,1)/(q1,1q2,2 – q1,2q2,1).  
Similarly, we can expand equation (A.3) to 
obtain b1,1 + b2,2 = 1+ m and b1,1 – b2,2 = (1–
m)(q1,1q2,2 + q1,2q2,1)/(q1,1q2,2 – q1,2q2,1).  
Combining these results yields, if x<1,  
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if x=1, A = I and B = I (recall the assumption 
m = 1).  Expressions in equation (A.6) lead to 
the following expressions:  (if n is odd, the sign 
“±” is read as “+”.) 
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Now, we consider the case with m = –1.  If n 
is even, x = 1 and m = –1, then B = 

1)1,1diag( -- PP , which implies that Tr(B) = 0.  
Since B is stochastic, we must have B = J = 
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ø

ö
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10  and A= I.   

To prove Theorem 2.1, we consider the 
following three cases: Case #1: a1,1=a2,2=1;  
Case #2:  n is even; and Case #3: n is odd.  

Case #1.  If a1,1=a2,2=1, the matrix A = I is 
the identity matrix.  Then B = I is the unique 
solution if n is odd.  If n is even, there are 
exactly two stochastic roots: I and J.  Conditions 
in a) and b) in Theorem 2.1 are satisfied for all 
positive n since Tr(A) = 2.   

Case #2.  Suppose that n is even.  If A = Bn 
has a stochastic solution, by equation (A.7), we 
must have Tr(A) = a1,1+a2,2³1.  On the other 
hand, if Tr(A) = a1,1+a2,2³1, it is easy to see that 
the two solutions given by equation (A.7) 
satisfying A = Bn (with b1,2 = 1–b1,1 and b2,1 = 1–
b2,2).  Now, we need to verify that B given by 
(A.7) is a stochastic matrix.  To do so, we only 
need to prove that 0 £ b1,1 £ 1 and 0 £ b2,2 £ 1.   

First, we read “±” as “+” in (A.7).  That b1,1 
and b2,2 are nonnegative is obtained immediately 
from a1,1+a2,2³1.  Furthermore, that b1,1 £ 1 (and 
b2,2 £ 1) is proved as follows: 
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The last inequality in (A.8) holds since 
1£a1,1+a2,2 £ 2.  Therefore, this solution is 
always stochastic.  By equation (A.7), it is easy 



to see that Tr(B) ³ 1 (because we choose the 
nonnegative nth root of a1,1+a2,2–1).   

Second, we read “±” as “–” in (A.7).  By 
(A.7), it is easy to verify that b1,1 £ 1 and b2,2 £ 
1.  To find when b1,1³0 and b2,2³0, we have the 
following calculations: 
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which leads to the condition given in equation 
(2.4).  For this solution, it can be verified that 
Tr(B) £ 1.   

Case #3.  Suppose that n is an odd number 
(>2).  If a solution to A = Bn exists, then we 
must have b1,1³0 and b2,2³0.  We read “±” in 
(A.7) as “+” only.  By the first expression in 
equation (A.7), we must have 
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which leads to the conditions in (2.1).  
Apparently, the solution is unique.   

On the other hand, suppose that conditions in 
equation (2.1) are satisfied.  Then it can be 
verified that (A.7) gives a stochastic solution to 
equation A = Bn.  This completes the proof of 
Theorem 2.1. 
 
Appendix B. Proof of Theorem 
3.2 

In the proof, we consider three cases 
separately: (Tr(A)–1)2 < 4det(A), (Tr(A)–1)2 > 
4det(A), and (Tr(A)–1)2 = 4det(A).  

First, we assume (Tr(A)–1)2 < 4det(A).  Then 
A has 3 different eigenvalues: l1 = 1, l2 = reiq, 
and l3 = re–iq.  The B has three different 
eigenvalues given in equation (3.15) for some k 
(0£k£n-1).  By equation (3.5), the coefficient of 
the characteristic polynomial of B can be 
calculated.  By equation (3.9), the matrix B can 
be calculated if the denominator in equation 
(3.9) is not zero.  Since all eigenvalues of A are 
different, the denominator in equation (3.9) 
cannot be zero.  Otherwise, equations (3.7) and 
(3.9) imply that the minimum polynomial of A 
has a degree 2 or less, which is impossible since 
all three eigenvalues of A are different.  
Therefore, for each k (0£k£n-1), a solution B to 
Problem (3.3) can be computed by equation 
(3.9).  The matrix B is real and Be=e since the 
sum of the coefficient of I, A, and A2 in equation 
(3.9) is one.   

Second, we assume (Tr(A)–1)2 > 4det(A).  
This case is more complex than the first one.  
For this case, the matrix A has three real 
eigenvalues: l1=1 ³ l2 > l3.  If l2 =1, the matrix 
A must be reducible.  Otherwise, if A is 
irreducible, the eigenvalue one has an algebraic 
multiplicity one (Minc [13]).  If A is reducible, 
then 
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The Problem (3.3) is reduced to a root 
problem with m=2, which can be solved by 
applying results from Section 2 (where m=2).  
We omit the details.  Next, we assume l1=1 > l2 
> l3.  It is easy to see that the eigenvalues of B 
must be different real numbers.  There are 
following four cases to be dealt with. 



1) If (Tr(A)–1)2 > 4det(A) and n is odd, 
the matrix B has three different eigenvalues 
given by m1 = 1, m2 = (l2)1/n,  and  m3 = (l3)1/n.  
The matrix B can be computed by equation 
(3.9), which is the unique solution to Problem 
(3.3) (Note that A has three different 
eigenvalues).   

2) If (Tr(A)–1)2 > 4det(A), n is even, and 
det(A) < 0, there is no solution to Problem (3.3).  
Otherwise, det(A) = (det(B))n ³ 0, a 
contradiction.   

3) If (Tr(A)–1)2 > 4det(A), n is even, 
det(A) ³ 0, and Tr(A) < 1, we must have l3 < 0.  
Then m3 is a complex number since n is even, 
which contradicts to the fact that m3 is real.  
Therefore, there is no solution to Problem (3.3).   

4) If (Tr(A)–1)2 > 4det(A), n is even, 
det(A) ³ 0, and Tr(A) ³ 1, then l1=1 > l2 > l3 > 
0.  There are four sets of eigenvalues of B: {1, 
m2 = (l2)1/n, m3 = (l3)1/n}, {1, m2 = –(l2)1/n, m3 = 
(l3)1/n}, {1, m2 = (l2)1/n, m3 = –(l3)1/n}, and {1, m2 
= –(l2)1/n, m3 = –(l3)1/n}.  Each set of 
eigenvalues corresponds to a solution to 
Problem (3.3).  All the solutions can be 
computed by equation (3.9).  

Finally, we assume (Tr(A)–1)2 = 4det(A).  
For this case, 1 = l1 ³ l2 = l3 = a.  If l2 = 1, we 
must have Tr(A) = 3, which implies A = I.  The 
only solution to Problem (3.3) that is a function 
of A is A=I itself.  But there can be other 
solutions that are not functions of A (see 
equation (3.1) for an example).  If 1 = l1 > l2 = 
l3 = a, we consider two cases based on the form 
of the Jordan block corresponding to the 
eigenvalue a.  Suppose that the matrix A has a 
Jordan canonical form 
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If a ¹ 0, then B must have a Jordan 
canonical form  
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where m2 = m3 is a real number.  Thus, if n is 
odd, there is only one solution to Problem (3.3) 
with {m1 = 1, m2 = m3 = a1/n}.  Since the minimal 
polynomial of A has a degree of 3, cn,1c2n,2 – 
cn,2c2n,1 ¹ 0 for n>2 or b1b2 – b0 ¹ 0 for n=2.  
Then the matrix B can be calculated by equation 
(3.9).  If n is even and a>0, there are possibly 
two solutions to Problem (3.3) with eigenvalues 
{m1=1, m2 = m3 = |a|1/n} and {m1=1, m2 = m3 = –
|a|1/n}.  Again, since the minimal polynomial of 
A has a degree of 3, we can use equation (3.9) to 
compute B.  If n is even and a<0, there is no 
solution to Problem (3.3).   

If equation (B.3) holds with a = 0, there is 
no solution to Problem (3.3) that is function of A 
since  
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Suppose that the matrix A has a Jordan 
canonical form 
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If a¹0, there are possibly n sets of 
eigenvalues of B given in (3.16).  For each set of 
eigenvalues, the minimum polynomial of A has 



a degree of 2.  Thus, the matrix B can be 
computed by using equation (3.10).   

If a=0, there are infinitely many solutions to 
Problem (3.3) that are not functions of A.  
Equation (3.2) presents some examples of such 
solutions.  For this case, B = A is a solution to 
Problem (3.3) with eigenvalues {m1 = 1, m2 = m3 
= 0}, which can be verified by using equation 
(3.11).  This completes the proof of Theorem 
3.2. 
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