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ABSTRACT 
 

In this paper, we study the classification problem of discrete time and continuous 
time Markov processes with a tree structure.  We first show some useful properties 
associated with the fixed points of a nondecreasing mapping.  Mainly we find the 
conditions for a fixed point to be the minimal fixed point by using fixed point theory 
and degree theory.  We then use these results to identify conditions for Markov 
chains of M/G/1 type or GI/M/1 type with a tree structure to be positive recurrent, 
null recurrent, or transient.  The results are generalized to Markov chains of matrix 
M/G/1 type with a tree structure.  For all these cases, a relationship between a certain 
fixed point, the matrix of partial differentiation (Jacobian) associated with the fixed 
point, and the classification of the Markov chain with a tree structure is established.  
More specifically, we show that the Perron-Frobenius eigenvalue of the matrix of 
partial differentiation associated with a certain fixed point provides information for a 
complete classification of the Markov chains of interest. 

 
Key words:  Markov chains, ergodicity, tree structure, matrix analytic methods, fixed 
point theory, degree theory 

 
 
 

1.  INTRODUCTION 
 

This paper identifies conditions for the classification of Markov chains of M/G/1 type or 
GI/M/1 type with a tree structure, i.e., conditions for the Markov chains to be positive recurrent, 
null recurrent, or transient.  A fixed point approach is utilized to solve the problem.  While some 
of the classification conditions of Markov chains of M/G/1 type with a tree structure have already 
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been obtained in HE [11, 12], the results for Markov chains of GI/M/1 type with a tree structure 
are all new.  Geometric insight into all the classification conditions is gained.  In addition, this 
paper presents an application of the fixed point theory in the study of Markov chains with some 
special structure. 
 

Markov chains of M/G/1 type and GI/M/1 type with a tree structure were introduced in 
Takine, Sengupta, and Yeung [22] and Yeung and Sengupta [24] respectively, as generalizations 
of the classical Markov chains of M/G/1 type or GI/M/1 type (Neuts [18, 19]).  Since the 
queueing processes of some queueing systems with multiple types of customers can be 
formulated into such Markov chains, their study attracted considerable attention from researchers 
in recent years (Gajrat, et al. [6], HE [10, 11, 12], HE and Alfa [13], Latouche and Ramaswami 
[14], Takine, Sengupta, and Yeung [22], Van Houdt and Blondia [23], and Yeung and Sengupta 
[24]).  Similar Markov chains were also studied by other researchers under the name string 
Markov chains (Gajrat, et al. [6] and Malyshev [16, 17]).  An interesting problem in this area is 
the classification of these Markov chains.  While classification conditions have been found for 
some of them (Gail, et al. [4, 5], Gajrat, et al. [6], HE [11, 12], and Neuts [18, 19]), others (e.g., 
the GI/M/1 case) are still unsolved.  Thus, there is a need for more study on the classification 
problem. 
 
 According to Foster’s criterion and the mean drift method (Cohen [2] and Fayolle, et al. 
[3]), the existence of some special solution to some nonlinear equations or inequalities 
determines whether an irreducible Markov chain is positive recurrent, null recurrent, or transient, 
where these equations or inequalities are usually determined by the transition probabilities of the 
Markov chain.  Quite often, finding conditions for the existence of some special solution is used 
to solve the classification problem of Markov chains.  In this paper, we focus on a nonlinear 
equation x = A(x), where A is a nonlinear mapping, and try to identify conditions for the 
existence of fixed points to that equation in order to solve the classification problem.   
 

For Markov chains of M/G/1 type with a tree structure, the mapping A and the equation x 
= A(x) are related to the absorption probabilities of some boundary states of the Markov chain of 
interest ([22]).  For Markov chains of GI/M/1 type with a tree structure, the mapping A and the 
equation x = A(x) are related to the subinvariant measure of the Markov chain of interest (Seneta 
[21] and Yeung and Sengupta [24]).  In this paper, we take a fixed point approach (Goebel and 
Kirk [9]) to study A and the equation x = A(x).  Using Brouwer’s fixed point theorem and degree 
theory (Garcia and Zangwill [8] and Lloyd [15]), a relationship between the classification of the 
Markov chains with a tree structure, the fixed points of A, and the Perron-Frobenius eigenvalues 
of the matrices of partial differentiation (Jacobians) associated with these fixed points is 
established.  This approach not only produces new results, but also leads to new insight into the 
solutions obtained as well as geometric explanations to the classification conditions identified.  
In addition, we incorporate matrix analytic methods, the mean drift method, and the subinvariant 
measure approach in the solution process (Cohen [2], Fayolle, et al. [3], Latouche and 
Ramaswami [14], Neuts [18, 19], and Seneta [21]).   
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For Markov chains of M/G/1 type with a tree structure (both scalar and matrix cases), HE 
[11, 12] proved that the Perron-Frobenius eigenvalue of a nonnegative matrix provides complete 
information for their classification.  By using a different approach (fixed point theory) in this 
paper, the same results are obtained with a much better understanding on how the classification 
conditions are formulated.  New results and new proofs are obtained as well.  For Markov chains 
of GI/M/1 type with a tree structure, conditions for a complete classification are obtained for the 
first time by utilizing fixed point theory and subinvariant (invariant) measures of Markov chains.  
The fixed points of the mapping A play an important role in the construction of the classification 
conditions.  In fact, without understanding the role played by fixed points, it would be otherwise 
difficult to find these classification conditions. 
 
 While the main contribution of this paper is about the classification conditions of the 
Markov chains of interest, the results about the fixed points of the mapping A are interesting by 
their own rights.  Usually, in fixed point theory and degree theory, the Jacobian of A is utilized to 
find conditions for the existence of a fixed point or to calculate the topological degree.  The 
determinant or the sign of the determinant of the Jacobian plays a central role.  Instead of using 
the determinant of the Jacobian, in this paper, we make use of the Perron-Frobenius eigenvalue 
and its corresponding eigenvector of the Jacobian at the fixed point to identify other possible 
fixed points.  This approach is different from other existing methods. 
 

This paper focuses primarily on discrete time Markov processes with a tree structure.  
Thus, we shall use “Markov chain” for “discrete time Markov process” throughout this paper.  
But all the results can be extended to continuous time Markov processes of M/G/1 type or 
GI/M/1 type with a tree structure.   
 
 The rest of the paper is organized as follows.  In Section 2, the mapping A is introduced 
and some useful properties are proved by using fixed point theory and degree theory.  Section 3 
identifies the classification conditions for Markov chains of M/G/1 type with a tree structure.  We 
choose first to present the results for the M/G/1 type Markov chains with a tree structure because 
they are easier to deal with.  In Section 4, for Markov chains of matrix M/G/1 type with a tree 
structure, classification conditions are identified.  Section 5 characterizes the classification 
conditions of Markov chains of GI/M/1 type with a tree structure.  Finally, in Section 6, we 
summarize the results obtained in this paper. 
 
 

2.   PROPERTIES OF THE MAPPING KK
++ ® RR:A  

 
In this section, we introduce a mapping A that is associated with Markov chains of M/G/1 

type or GI/M/1 type with a tree structure.  We shall focus on the fixed points of A, especially the 
minimal fixed point.  The mapping A is defined in a general way in this section and will be made 
explicit in Sections 3 and 5, where a particular type of Markov chain is under consideration.  The 
results obtained in this section lay the basis for the analysis in Sections 3 and 5.   
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We first introduce the domain of the mapping A and a set of strings of integers.  Let 
K

+R ={x = (x1, x2,  …, xK)T:  xk³0, 1£k£K}, where K is a positive integer and “T” is for the 
transpose operation of matrix.  It is easy to see that K

+R  is a convex cone and is usually called the 
nonnegative orthant of the vector space of dimension K (see Rockafellar [20]).  In this paper, we 
shall primarily work with the mapping A from K

+R  to K
+R  (except Section 4).  For any two 

(column) vectors x and y in K
+R , we say that x is less than y (denoted as x £ y) if xk £ yk for 

1£k£K.  For any y Î K
+R , define a polytope )(yK

+R  as: 
 
 }.and:{)( KK

++ Î£= RR xyxxy  (2.1) 
 

The interior of )(yK
+R  is defined as int( )(yK

+R ) = {x: x Î )(yK
+R  and xk < yk, 1£k£K}.  

For K=2, )(yK
+R  is the rectangle (polytope) determined by four points {(0, 0), (y1, 0), (0, y2), y = 

(y1, y2)}.  It is easy to see that )(yK
+R  is a convex set for any y Î K

+R .  
 

Next, we introduce a set of strings of integers.  Let  À = {J:  J=j1j2Ljn, 1£ ji £K, 1£ i £n, 
n>0}È{0}.  The length of a string J in À is defined as the number of integers in the string and is 
denoted by |J|, except that |J| = 0 if J = 0.  The following two operations related to strings in À 
are used in this paper. 
 

Addition operation: for J = j1Ljn ÎÀ and H = k1Lki ÎÀ, then J+H = j1Ljnk1Lki ÎÀ.    
 Subtraction operation: for J = j1Ljn ÎÀ,  H = jiLjn ÎÀ, i>0, then J–H = j1Lji-1 ÎÀ, or 
     for J = j1Lji ÎÀ,  H = j1Ljn ÎÀ, i>0, then –J+H = ji+1Ljn ÎÀ. 
 
 In order to define the mapping A, we introduce a set of nonnegative real numbers 
associated with strings in À.  For every J in À and k (1£k£K), a nonnegative real number a(k, J) 
is defined with 0 £ a(k, J) £ 1.  We assume that at least one of {a(k, 0), 1£k£K} is positive.  We 
also assume that for at least one pair (k, J) with |J| ³ 2, a(k, J) > 0.  The nonnegative real numbers 
{a(k, J), 1£k£K and JÎÀ} are related to transition probabilities of the Markov chains of interest 
and more explicit restrictions on {a(k, J), JÎÀ and 1£k£K} shall be imposed in Sections 3 and 5. 
 

Let N(J, k) be the number of times that the integer k appears in the string J, for 1£k£K and 
JÎÀ.  Then it is easy to see that |J| = N(J, 1) + N(J, 2) + L + N(J, K).  Let 

),()2,(
2

)1,(
1

)(
||21

KJN
K

JNJN
jjj

J xxxxxx
J

LL =ºx  for any J Î À and xÎ K
+R .  A function )(* ×ka : K

+R ® 

R+, is defined as follows, for 1£k£K,   
 

 .for,),(),()( ),()2,(
2

)1,(
1

)(* K

J

KJN
K

JNJN

J

J
k xxxJkaJkaa +

ÀÎÀÎ

Î=º åå Rxxx L  (2.2) 
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The mapping A: K
+R  ® K

+R  is defined as T**
2

*
1 ))(,),(),(()( xxxx Kaaa L=A  for x Î K

+R .  
It is easy to see that functions { )(* xka , 1£k£K} are nondecreasing, nonnegative, and convex in 
their domain.  Thus, for any x and y in K

+R  with x £ y, A(x) £ A(y), i.e., A  is nondecreasing. 
 

 Let Fix be the set of fixed points of the mapping A, i.e.,   
 
 }and)(:{ K

ix +Î== Rxxxx AF . (2.3) 

 
The mapping A and its fixed points play a central role in this paper.  The fixed points of 

A and the Perron-Frobenius eigenvalues of Jacobians at these fixed points provide information 
for a classification of Markov chains with a tree structure.  Thus, in the rest of this section, we 
study the mapping A and its fixed points (if exist), especially its minimal fixed point.  The proofs 
in the following two sections are complicated.  We suggest that readers use the cases with K=1 or 
K=2 to gain geometric intuition of the results and proofs. 
 
 

2.1  The minimal fixed point xmin of A 
 
We begin this subsection by showing the existence of a minimal fixed point in Fix and 

finding its relationship with other fixed points of A. 
 
Lemma 2.1  If Fix is not empty, then )(yK

+R  is invariant under A for any y ÎFix.  If Fix is not 
empty, then there exists a minimal fixed point xmin ÎFix such that xmin £ y for any y ÎFix.  
 
Proof.  If Fix is not empty, we choose any fixed point y Î Fix.  Since the mapping A is 
nondecreasing, we have A(x) £ A(y) = y for any x Î )(yK

+R .  Therefore, the set )(yK
+R  is 

invariant under the mapping A.  This simple fact is used repeatedly in this paper. 
 

Now, we construct a sequence of points in )(yK
+R  that converges to the minimal fixed 

point in Fix if Fix is not empty.  Let x[0] = (0, 0, …, 0)T,  
 
 .0]),[(]1[ ³=+ nnn xx A  (2.4) 
 

Since the mapping A is nondecreasing, the sequence {x[n], n³0} is nondecreasing.  For 
any fixed point y, it is easy to see that y ³ x[0].  By induction, it can be proved that y ³ x[n] for 
n³0.  Since the polytope )(yK

+R  is bounded, {x[n], n³0} must converge to a point in )(yK
+R .  

Denote the limit as xmin.  Then xmin £ y.  Note that (x[1])k = a(k, 0), 1£k£K, which implies that 
xmin ¹ 0.  This completes the proof of Lemma 2.1. 
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Next, we explore further the relationship between the minimal fixed point xmin and other 
fixed points if Fix is not empty.  For that purpose, we introduce the following nonnegative matrix 
A(1)(x) for any x Î K

+R .  For any x Î K
+R  and 1£k, j£K, let 

 

 .),(),(
)(

)(
0,

),(1),()1,(
1

*
)1*(

, å
¹ÀÎ

-

=

=
¶

¶
º

JJ

KJN
K

jJN
j

JN

j

k
jk xxxJkajJN

y
a

a LL

xy

y
x  (2.5) 

 
Let A(1)(x) be a K´K matrix with (k, j)th element )()1*(

, xjka .  The matrix A(1)(x) is called 

the Jacobian of A at x (i.e., the matrix of partial differentiation).  Apparently, every element of 
A(1)(x) is nondecreasing with respect to every element of x.  Let sp(A(1)(x)) be the Perron-
Frobenius eigenvalue of the nonnegative matrix A(1)(x) (i.e., the eigenvalue with the largest 
modulus).  For more details about nonnegative matrix, we refer to Gantmacher [7]. 
 
Lemma 2.2  Assume that Fix is not empty.  Consider any fixed point y Î Fix.  Assume that 
A(1)(y) is finite and irreducible.  If sp(A(1)(y)) £ 1, then xmin = y.  For this case, xmin = y is the 
only fixed point of the mapping A in )(yK

+R .  If sp(A(1)(y)) > 1, then xmin £ y and xmin ¹ y.  For 
this case, there are at least two fixed points in )(yK

+R .  In addition, sp(A(1)(xmin)) £ 1 is always 
true. 
 
Proof.  For any y ÎFix, we focus on the polytope )(yK

+R , which is invariant under the 
continuous mapping A.  According to the well-known Brouwer’s fixed point theorem (see 
Goebel and Kirk [9]), there is at least one fixed point of A in )(yK

+R .  Since y is a fixed point, 
we would like to know under what conditions there are fixed points in )(yK

+R  other than y.  It 
turns out that the Jacobian A(1)(y) of A at y provides complete information to that question. 
 
 First, we consider the case with sp(A(1)(y)) < 1.  For any x Î )(yK

+R , we have A(1)(x) £ 
A(1)(y).  If sp(A(1)(y)) < 1, then sp(A(1)(x)) < 1 for all x Î )(yK

+R .  Suppose that there exists a 
fixed point x1 Î )(yK

+R  and x1 ¹ y.  Consider the closed line segment between x1 and y:  x(t) = 
(1–t)x1 + ty, 0£t£1.  Denote by a = (a1, a2, …, aK) the left eigenvector of A(1)(y) with ae=1 that 
corresponds to the eigenvalue sp(A(1)(y)), where e is the column vector of ones.  If A(1)(y) is 
irreducible, then sp(A(1)(y)) is positive and the vector a is positive (i.e., every element of a is 
positive).  Let  
 
 .10)),(()( ££= ttt xAab  (2.6) 
 
It is easy to verify that b(t) is differentiable for 0£t£1, b(0) = ax1, b(1) = ay, and b¢(t) = 
aA(1)(x(t))(y-x1).  By the mean-value theorem in calculus, we must have b(1) - b(0) = 
b¢(x)(1-0) for some x between 0 and 1 (0<x<1).  That leads to (note that y³x1) 
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 )())(())(()))((()( 1
)1(

1
)1(

1
)1(

1 xyyxyyxyxxy -=-£-=- aaaa AAA spx . (2.7) 
 
Since y – x1 ³ 0 and y – x1 ¹ 0, we have a(y – x1) > 0.  Then equation (2.7) leads to sp(A(1)(y)) ³ 
1, which contradicts sp(A(1)(y)) < 1.  Therefore, if sp(A(1)(y)) < 1, then xmin = y, which implies 
that xmin = y is the only fixed point in )(yK

+R . 
 
 Second, we consider the case with sp(A(1)(y)) = 1.  Since at least one string J with |J| ³ 2 
has a(k, J) > 0 for some k, we must have A(1)(x) £ A(1)(y) and A(1)(x) ¹ A(1)(y) for any interior 
point x of )(yK

+R  (i.e., x with  xk < yk for 1£k£K).  Since A(1)(y) is irreducible, we must have 
sp(A(1)(x)) < sp(A(1)(y)) = 1 for x such that xk < yk for all 1£k£K.   Similar to the above case with 
sp(A(1)(y)) < 1, it can be proved that there is no fixed point in the interior of )(yK

+R .  Now, 
suppose that there exists another fixed point z = (y1, …, yi, zi+1, …, zK)T with 1£i<K and zk < yk 
for i+1£k£K.  Then we consider a mapping A = T**

1 ))(...,),(( xx Ki aa +  with xk = yk for 1£k£i and zk 
£ xk £ yk for i+1£k£K, i.e., A is a mapping from iK -

+R  to iK -
+R  with variables {xk, i+1£k£K}.  

The vector (yi+1, …, yK)T is a fixed point of A.  The vector (zi+1, …, zK)T is a fixed point of A in 
the interior of )),...,(( T

1 Ki
iK yy +

-
+R .  If we denote  

 

 ,)(
43

21)1(
÷÷
ø

ö
çç
è

æ
=

AA
AA

yA  (2.8) 

 
then the corresponding Jacobian of the mapping A is the matrix A4 at the point y.  Since A(1)(y) 
is irreducible, we must have sp(A4) < sp(A(1)(y)) = 1.  Then by equation (2.7), we know that the 
mapping A cannot have any fixed point in int( )),...,(( T

1 Ki
iK yy +

-
+R ).  This contradicts the 

assumption that (zi+1, …, zK)T is an interior fixed point of A.  Therefore, A does not have any 
fixed point that is less than y.  
 
 Lastly, we consider the case with sp(A(1)(y)) > 1.  We want to show that there is another 
fixed point in )(yK

+R .  The idea is to cut an area around y in )(yK
+R  and show that there is a 

fixed point in the remaining area of )(yK
+R .  The area to be cut from )(yK

+R  is defined as 
{ }e->Î + yxyxx aa),(: KR  for some positive e.  Note that the selection of the direction a is 
critical for the following proof.  Then the area still under consideration is 
 
 { }ee -£Î= ++ yxyxxy aa),(:),( KK RR . (2.9) 
 
It is easy to see that if e is positive and small enough, both ),( eyK

+R  and )(yK
+R – ),( eyK

+R  are 
not empty and convex.  Figure 2.1 shows the relationship between all the subsets involved and 
explains geometrically why this approach works for K=2. 
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For any x1 in the subset { }e-=Î + yxyxx aa),(: KR , which is the common boundary of 
the removed area and the remaining area, we introduce the closed line segment x(t) = (1–t)x1 + 
ty, 0£t£1, to link x1 and y.  Considering the function b(t) defined in equation (2.6) and using the 
mean-value theorem, we obtain  
 

 [ ] ).()())(()())((

)))((()(

1
)1()1(

1
)1(

1
)1(

1

xyyxxyy                       
xyxxy

--+-=

-=-

AAA

AA

x

x

aa

aaa

sp
 (2.10) 

 
Equation (2.10) and ax1 = ay – e  lead to  
 
 [ ] )())(()()1))((()( 1

)1()1()1(
1 xyxyyyx --+---= xee AAAA aaa sp . (2.11) 

 
We can choose small enough e so that [ ] aa )1))((()()( )1()1()1( -£- yxy AAA sp  for all 

{ }e-³Î + yxyxx aa),(: KR , since sp(A(1)(y))–1>0, a is positive, and A(1)(.) is continuous at y.  
Then equation (2.11) leads to aA(x1) £  ay–e, i.e., ),()( 1 eyx K

+ÎRA  for any x1 in the border set 
{ }e-=Î + yxyxx aa),(: KR .   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For any xÎ ),( eyK
+R , consider the closed line segment between x and y:  x(t) = (1–t)x + 

ty, 0£t£1.  The projection of x(t) on the direction a is given by ax(t) = (1–t)ax + tay.  Then we 
have ax(0) = ax £ ay–e and ax(1) = ay.  Since ax(t) is continuous in t, it is easy to see that there 
exists t1 such that 0£ t1 £1 and ax(t1) = ay–e, i.e., x(t1) = (1–t1)x + t1y is in the border set 
{ }e-=Î + yxyxx aa),(: KR .  Since x £ y, we have x £ x(t1), which implies that aA(x) £ 
aA(x(t1)) and A(x)Î ),( eyK

+R .  Therefore, ),( eyK
+R  is invariant under A.  By Brouwer’s fixed 

Figure 2.1  The convex set R+
K(y, e) when K=2 

e 

y1 

y2 

(y1, y2) 

R+
K(y, e) 

a 
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point theorem (see [9]), there must be a fixed point in ),( eyK
+R .  Thus, the minimal fixed point 

must be in ),( eyK
+R  Ì )(yK

+R .   
 
Since sp(A(1)(y)) > 1 for any fixed point y implies that there is another fixed point smaller 

than y, we must have sp(A(1)(xmin)) £ 1.  This completes the proof of Lemma 2.2. 
 
 Lemma 2.2 shows that the Perron-Frobenius eigenvalue of A(1)(x) is always equal to or 
less than one at the minimal fixed point (if exists), while it must be larger than 1 at all other fixed 
points (if exist).  Intuitively, sp(A(1)(y)) £ 1 at a fixed point y implies that A(x) is not increasing 
faster than x around the fixed point y at least in the direction a.  Since A(1)(x) is nondecreasing 
with respect to each variable xk, it is clear that A(x) is not increasing faster than x in )(yK

+R .  
Since A(0) ³ 0, then y is the first point that x catches up with A(x).  Therefore, there is no fixed 
point within )(yK

+R .  If sp(A(1)(y)) > 1 at the fixed point y, A(x) is increasing faster than x 
around the fixed point y in at least one direction (i.e., a).  Thus, A(x) is catching up with x 
around y in )(yK

+R .  Since A(0) ³ 0, there must be a point within )(yK
+R  where A(x) falls 

behind x, i.e., there is another fixed point within )(yK
+R . 

 
Note:  The irreducibility of A(1)(y) has much to do with the irreducibility of the Markov chains 
considered in this paper, though they are not equivalent.  The irreducibility of A(1)(x) implies that 
the corresponding Markov chain can go from one type of node to any other types of nodes.   
 
 

2.2  A larger fixed point if sp(A(1)(xmin)) < 1 
 

Lemma 2.2 shows that sp(A(1)(y)) > 1 at any fixed point y implies that there is a smaller 
fixed point.  In this subsection, we show that if sp(A(1)(y)) < 1 at any fixed point y, then there is a 
larger fixed point.  Since the minimal fixed point xmin is nonzero and xmin is the only possible 
fixed point with sp(A(1)(xmin)) < 1 (Lemma 2.2), we shall focus on xmin.  We assume that the 
Jacobian A(1)(xmin) is irreducible. 
 
 Denote by xmin

 + K
+R  = {y: y = xmin + x for x Î K

+R }.  We shall prove that there is another 
fixed point (other than xmin) in xmin

 + K
+R  if sp(A(1)(xmin)) < 1 and A(1)(xmin) is irreducible.  The 

idea is to identify a subset in xmin
 + K

+R  that contains a fixed point and then to find the fixed 
point in the subset.  For that purpose, let us consider the function  
 
 ,0),()( min ³+= ttt dxd Aab  (2.12) 

 
for any direction d Î K

+R , which is normalized by ad = 1, where a is the left eigenvector of 
A(1)(xmin) corresponding to the eigenvalue sp(A(1)(xmin)).  The vector a is normalized by ae = 1.  
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The function bd(t) is the projection of the vector A(xmin+td) on the direction a.  Since a is 
positive, the function bd(t) is well-defined for any direction d in K

+R .  It is easy to verify that  
 
 bd(0) =  aA(xmin) = axmin;  (2.13) 
    b¢d(t) =  aA(1)(xmin+td)d,  and b¢d(0) =  aA(1)(xmin)d = sp(A(1)(xmin)) < 1.   
 
Since every element of A(1)(xmin+td) is a nondecreasing function of t, b¢d(t) is a nondecreasing 
function of t.  Thus, bd(t) is nondecreasing and convex.  We also consider a linear function ld(t) = 
a(xmin + td) = axmin + t, for t³0.  It is clear that 
 
 ld(0) = axmin,    l¢d(t) = 1,    and    l¢d(0) = 1.   (2.14) 
   
The function ld(t) is the projection of the vector xmin + td on the direction a.  Comparing the 
functions bd(t) and ld(t), we know that they have the same value at t = 0.  But bd(t) is smaller than 
ld(t) for small and positive t.  If b¢d(t) is increasing to infinity as t goes to infinity, then bd(t) will 
eventually pass ld(t) when t goes to infinity.  That implies that there is a finite and unique point 
td>0 such that bd(td) = ld(td).  Note that td can be infinite for some direction d.  Now, we define 
 
 Wa = {xmin + tdd:  dÎ K

+R , ad = 1, bd(td) = ld(td)} 
                              = { xmin + x:  aA(xmin+x) = a(xmin+x) and xÎ K

+R }. (2.15) 
 
Apparently, any fixed point in the set xmin + K

+R  must be in the set Wa.  Thus, we shall focus on 
Wa and identify possible fixed point(s) of A in the set Wa.  Next, we introduce a subset of 

K
+R that is associated with Wa.  Let 

 
 Ga = { xmin + x:  $ y such that xmin + y ÎWa and x = ty for some 0£t£1}.  (2.16)  
 
Intuitively, Ga is a convex hull generated by all the points in Wa and xmin.  In other words, Ga is 
obtained by cutting the convex cone xmin

 + K
+R  by Wa.  We have the following result about Ga. 

 
Lemma 2.3  For any point xmin + x ÎGa, aA(xmin+x) £ a(xmin+x).  The set Ga is convex.   
 
Proof.  For any xmin + x ÎGa, we must have x = td for some dÎ K

+R  with ad = 1 and some 
0£t£td.  By definition, aA(xmin+td) = bd(t) £ ld(t) = axmin + t = a(xmin+ td).   
 

Note that the function aA(x) is a convex function of x.  For any two points xmin+x and 
xmin+z in Ga and 0<l<1,  
 

 
[ ].))(1()(

)()1()(
)()1()()))(1()((

minmin

minmin

minminminmin

zxxx                                                         
zxxx                                                         

zxxxzxxx

+-++=
+-++£

+-++£+-++
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llll

a
aa

aaa AAA
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Since xmin+x and xmin+z are in Wa, it can be shown that, in the direction l(xmin+x)+(1–l)(xmin+z), 
there is a finite point in Wa.  Thus, l(xmin+x)+(1–l)(xmin+z) is in Ga.  Therefore, Ga is a convex 
set.  This completes the proof of Lemma 2.3. 
 
Lemma 2.4  For any point xmin

 + x ÎWa, either A(xmin+x) - (xmin+ x) = 0 holds or the vector 
A(xmin

 +x) – (xmin
 + x) is perpendicular to a. 

 
Proof.  Suppose that xmin

 + x ÎWa and A(xmin
 + x) ¹ xmin+ x.  The vector A(xmin

 + x) – (xmin+ x) 
is not zero.  By definition, aA(xmin

 + x) = a(xmin+ x) if xmin+ x ÎWa.  Then a[A(xmin
 + x) – (xmin

 

+ x)] = 0, i.e., A(xmin
 + x) – (xmin

 + x) is perpendicular to a.  This completes the proof of Lemma 
2.4. 
 
 Let Sa = {x:  ax = 0}, i.e., the hyperplane that is perpendicular to a.  Note that Sa is a 
subspace of the dimension K–1.  By Lemma 2.4, A(xmin

 + x) is in the affine set xmin
 + x + Sa for 

any xmin
 + x ÎWa.   

 
Let t = inf{td: dÎ K

+R }.  Next, we show that t>0, i.e., xmin is not in Wa and xmin is not the 
limit of any convergent sequence in Wa. 
 
Lemma 2.5  The constant t is positive, i.e., t > 0. 
 
Proof.  If t = 0, then there exists a sequence {d(n), n³0} such that td(n) ® 0 when n ® ¥.  Since 
d(n) Î K

+R  with ad(n) = 1, the sequence {d(n), n³0} must have a convergent subsequence.  
Denote the limit as d(¥).  Since b¢d(¥)(0) =  sp(A(1)(xmin)) < 1, we must have that td(¥) > 0, which 
contradicts the fact that td(n) ® 0 when n ® ¥.  This completes the proof of Lemma 2.5. 
 

To show that there is a fixed point of A in Wa, we consider the boundary of Wa.  This is a 
typical method used in fixed point theory.  Let ¶Wa = {xmin + x:  xmin + x ÎWa with at least one xk 
= 0}, i.e., the boundary set of Wa.  For convenience, we shall use Wa– xmin for {x:  xmin + x ÎWa} 
and ¶Wa– xmin for {x:  xmin + x ÎWa with at least one xk = 0}.   

 
In order to identify a fixed point of the mapping A on Wa, we need to know the 

topological degree of the mapping A(xmin+x)–(xmin+x) at the vector zero on the set Wa– xmin.  
Consider a mapping U: Wa– xmin ® Sa (satisfying certain conditions).  We shall denote the 
topological degree of the mapping U at the vector zero on the set Wa– xmin as r(U, Wa–xmin, 0).  
Let U-1(0) = {x Î Wa– xmin: U(x) = 0}.  Then the topological degree of U at the vector zero is 
defined as the sum of the signs of the determinants of the Jacobians at the points in U-1(0), i.e.,  

 
 r(U, Wa–xmin, 0) = å

-Î )0(

)1(

1

)))((det(
U

Usign
x

x , (2.18) 
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where det(·) is the determinant of a matrix and sign(x) = 1 if x>0, 0 if x=0; –1 if x <0.  We refer 
to Garcia and Zangwill [8] and Lloyd [15] for more details about the topological degree of a 
mapping. In general, if the topological degree is nonzero, U has at least one zero point in its 
domain.  The following lemma is the key in identifying the fixed point of the mapping A in Wa. 

 
 Let t* = sup{td: dÎ K

+R }, which is attained at direction d* and can be infinite.  By 
definition, we have  
 
  }:)(sup{arg minmin

**
min aa WÎ++=+ xxxxdx t . (2.19) 

 
Lemma 2.6  Assume that t* is finite.  Then A(x) has at least one fixed point in Wa. If A(xmin+x)–
(xmin+x) is nonzero for x in the boundary set ¶Wa– xmin, the topological degree of the mapping 
A(xmin+x)–(xmin+x) at the vector zero on the set Wa– xmin is nonzero. 
 
Proof.  First, we consider a special case K=2 (see Figure 2.2).  According to Lemma 2.3, Ga is a 
convex set.  Then Wa is a convex set (surface) as well.  If K=2, the set ¶Wa has two points 
{xmin+x(1,0), xmin+x(0,1)}, where xmin+x(1,0) = (xmin, 1+y1, xmin, 2) and xmin+x(0,1) = (xmin, 1, xmin, 2+y2)  
with y1>0 and y2>0.  The hyperplane Sa has one dimension.  Denote by u = (u1, u2) the only 
nonzero direction in Sa.  Since au = 0, we must have u1u2 < 0.  Assume that u1 < 0 and u2 > 0.  
By the definition of Wa, for any xmin+x in Wa, we must have A(xmin+x) = (xmin+x) + sxu for some 
real number sx.  Suppose that A(xmin, 1+y1, xmin, 2) = (xmin+x(1,0)) + s1u and A(xmin, 1, xmin, 2+y2) = 
(xmin+x(0,1)) + s2u.  If s1 or s2 is zero, we already find a new fixed point of the mapping A.  
Otherwise, since the set xmin

 + K
+R  is invariant under A, it is clear that s1 > 0 and s2 < 0.  Since A 

is a continuous mapping on Wa, sx must be a continuous function of x.  Therefore, there must be 
a point xmin+x on Wa such that sx = 0, i.e., A(xmin+x) = (xmin+x).  This completes the proof of the 
case K=2.   
 

The key in the above proof is that the mapping A(xmin+x)–(xmin+x) º U1(x), which is 
well-defined on Wa– xmin with its image in the subspace Sa, has a topological degree of 1 or –1 at 
the vector zero on the set Wa – xmin, i.e. r(U1, Wa–xmin, 0) = 1 or –1.  Thus, according to degree 
theory, U1 must have a zero point on Wa– xmin (U1(x) = 0), i.e., A has a fixed point on Wa.  To 
extend the results to the general case K>2, the main task is to show that the topological degree of 
U1 is nonzero (possibly 1 or –1). 
 

For any point xmin+x in ¶Wa, we denote its projection on the linear line xmin+taT as 
xmin+tx,aaT, where tx,a= ax/(aaT).  Consider the vector xmin+tx,aaT – (xmin+x) = tx,aaT – x.  
Apparently, the vector tx,aaT – x is in Sa.  We introduce a mapping U2(x) = tx,aaT – x:  Wa–xmin  
® Sa.  Choose a special direction h = aT/(aaT) and z = thh.  Then it is easy to see that tz,a = 
th/(aaT) and U2(z) = tz,aaT – z = 0.  So, z is the point where a vector penetrates the set Wa–xmin in 
the direction a.  Therefore, the mapping U2 has one and only one zero point on Wa–xmin since Ga 
is convex.  Since Wa–xmin is a connected area, then the topological degree of U2 at the vector zero 
on Wa–xmin must be either 1 or –1, i.e., r(U2, Wa–xmin, 0) = 1 or –1.  Intuitively, the vector a is 
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positive so that ¶Wa–xmin touches every hyperplane of K
+R .  Since the set Ga is convex, if x goes 

around ¶Wa–xmin, tx,aaT – x will circle the direction aT exactly once.  Thus, the topological 
degree of U2 is either 1 or –1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Now, we go back to the mapping U1(x) = A(xmin+x)–(xmin+x): Wa–xmin

 ® Sa.  We show 
that the mappings U1 and U2 are homotopic.  Consider the homotopy h(l, x) = lU1(x) +           
(1–l)U2(x):  [0, 1]´(Wa–xmin) ® Sa.  It is clear that h(l, x) is continuous and h(0, x) = U2(x) and 
h(1, x) = U1(x).  Also, we claim that h(l, x) has no zero point on [0, 1]´(¶Wa–xmin).  If the claim 
is not true, we consider three cases: lÎ(0, 1); l=0; and l=1.  If lÎ(0, 1), suppose that there 
exists (l, x)Î(0, 1)´(¶Wa–xmin) such that 0 = h(l, x) = lU1(x)+(1–l)U2(x).  Then U1(x) = –  
(1/l–1)U2(x), which leads to 
 
 A(xmin+x) = xmin+x – (1/l –1)(txaT – x).        (2.20) 
 
If x Î ¶Wa–xmin, then at least one of the elements of x is zero.  Since a is positive and l is less 
than 1, equation (2.20) implies that A(xmin+x) Ï xmin+ K

+R , which contradicts the fact that 
A(xmin+x) Î xmin+ K

+R .  For instance, if x1 = 0, then the first element of the vector x –           
(1/l–1)(txaT – x) is the first element of –(1/l –1)txaT , which is negative.   
 

If l = 0, h(0, x) is nonzero since U2(x) is nonzero on ¶Wa–xmin.  If l = 1, h(1, x) is 
nonzero since U1(x) is nonzero on ¶Wa–xmin; otherwise, we have found a larger fixed point of A 

Figure 2.2  The set Wa when K=2 

x1 

x2 

xmin=(xmin, 1, xmin, 2) 

a 

x(1,0) 

x(0,1) 

Wa 

u 

–u 

Ga 
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on the boundary set.  Therefore, we have proved that the homotopy h(l, x) is nonzero on           
[0, 1]´(¶Wa–xmin) if A is nonzero on ¶Wa.   
 

According to degree theory, U1(x) and U2(x) must have the same topological degree at the 
vector zero on Wa–xmin (with their image in Sa), i.e., r(U2, Wa–xmin, 0) = r(U1, Wa–xmin, 0) ¹ 0.  
Then the mapping U1 has at least one zero point on Wa–xmin.  Since A(xmin+x) = xmin+x + U1(x) 
for x ÎWa, it is clear that A has at least one fixed point on Wa.  This completes the proof of 
Lemma 2.6. 
 
 Intuitively, the mapping A becomes zero at every point in Wa in the one-dimensional 
subspace {ta, –¥< t < ¥}.  The mapping A becomes zero in the subspace Sa at a point in Wa 
where the mapping U1 becomes zero.  Since the product space SaÅ{ta, –¥< t < ¥} is the whole 
space, we know that A becomes zero in xmin+ K

+R  at that point in Wa.    
 
Lemma 2.7  Assume that A(1)(xmin) is irreducible.  Then sp(A(1)(xmin)) < 1 if and only if there 
exists another fixed point z ÎFix such that z ³ xmin and z ¹ xmin. 
 
Proof.  It is easy to see that the conclusions hold if K=1.  Next, we consider cases with K>1.   
 

If there exists a fixed point z ÎFix such that z ³ xmin and z ¹ xmin, then we consider the 
closed line segment x(t) = (1–t)xmin + tz, 0£t£1 and b(t) = vA(x(t)), where v is a nonnegative 
vector to be determined.  By the mean-value theorem, we have v(z-xmin) = b(1) – b(0) = b¢(x) = 
vA(1)(x(x))(z-xmin) for some x between 0 and 1.  Choose v to be the eigenvector of A(1)(x(x)) 
corresponding to the eigenvalue sp(A(1)(x(x))).  The matrix A(1)(x(x)) is irreducible since 
A(1)(x(x)) ³ A(1)(xmin).  Then v is positive, which implies that sp(A(1)(x(x))) = 1.  If y is in the 
interior of )(zK

+R , then we have sp(A(1)(xmin)) < sp(A(1)(x(x))) = 1.  Otherwise, some of the 
components of z equal their corresponding components in xmin.  This case can be dealt with in a 
way similar to the sp(A(1)(xmin)) = 1 case in Lemma 2.2.    
 
 Now, assume that sp(A(1)(xmin)) < 1.  We consider the set xmin + K

+R .  We distinguish two 
cases: 1) t* < ¥; and 2) t* = ¥.  First, suppose that t* < ¥.  By Lemma 2.6, A must have a fixed 
point larger than xmin.   
 

Second, suppose that t* = ¥.  Then there must be some direction d such that bd(t) =  
aA(xmin+td) < axmin

 + t for all t > 0.  That implies that b¢d(t) =  aA(1)(xmin+td)d < 1 for all t>0.  
Since A(1)(xmin) is irreducible, such a direction d must have at least one zero component.  
Suppose that d = (d1, …, di, 0, …, 0) with positive {d1, …, di}.  Since a is positive, A(1)(xmin+td) 
is independent of d1, …, and di.  Then A(xmin+x) is a linear mapping with respect to {x1, …, xi}.  
Then we have  
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See equation (2.8) for the definition of A1.  At any fixed point x of A, we must have  
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where I is the identity matrix.  The matrix I – A1 is invertible since sp(A1) £ sp(A(1)( xmin)) < 1.  
Now, we consider a new mapping A1 with variables {xi+1, …, xK} only, obtained by replacing 
{x1, …, xi} in )}(...,),({ **

1 xx Ki aa +  with the right hand side of equation (2.22).  Apparently, the 
Perron-Frobenius eigenvalue of the Jacobian of A1 at xmin is less than one and every element of 
the Jacobian is an increasing function with respect to every variable {xi+1, …, xK}.  Thus, A1 
must have a fixed point larger than {xmin,i+1, …, xmin,K}.  (Note that the induction method is 
utilized here.)  Therefore, A must have a fixed point larger than xmin.  This completes the proof 
Lemma 2.7. 
 
 Summarizing the results in this section, we obtain the following relationship between the 
Perron-Frobenius eigenvalue at a particular fixed point and other fixed points. 
 
Theorem 2.8  Assume that Fix is not empty.  Consider any fixed point y ÎFix.  If A(1)(y) is 
irreducible, then 

 
1) sp(A(1)(y)) < 1 if and only if there exists a larger fixed point of A, i.e., $ z ÎFix , z ³ y and 

z ¹ y, and y is the minimal fixed point; 
2) sp(A(1)(y)) = 1 if and only if y is the only fixed point of A; 
3) sp(A(1)(y)) > 1 if and only if there exists a smaller fixed point of A, i.e., $ z ÎFix , z £ y 

and z ¹ y; 
 
Proof.  Obvious from Lemmas 2.1 to 2.7. 
 
 
 

3.  MARKOV CHAINS OF M/G/1 TYPE WITH A TREE STRUCTURE 
 

From now on, we shall view each string JÎÀ as a node in a K-ary tree.  In the K-ary tree, 
each node J has a parent node and K children {J+1, J+2, …, J+K}, except that the root node J = 
0 that has no parent node.  The node J+k is called a type k node.  The following Markov chain 
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{Cn, n³0} of M/G/1 type with a tree structure was introduced in Takine, et al. [22].  The 
transition probabilities of the Markov chain are given as: 
 

 
.for),(}0|{

;1,,for),,(}|{

1

1

ÀÎ===
££ÀÎÀÎ=+=+=

+

+

HHbCHCP
KkHJHkakJCHJCP

nn

nn  (3.1) 

 
From the definition, it is clear that in one transition, the Markov chain can move from the 

current node to its parent node or any descendent node of its parent node.  The transition 
probabilities depend only on the type of the current node.  By the law of total probability, we 
must have 
 
 .1)(;1,1),( =££= åå

ÀÎÀÎ JJ
JbKkJka  (3.2) 

 
 Such a Markov chain {Cn, n³0} is called a Markov chain of M/G/1 type with a tree 
structure.  We are interested in the classification of this type of Markov chains.  Recall that e is a 
column vector of ones.   
 
Theorem 3.1  (Theorem 3.2, HE [11]) Assume that the Markov chain {Cn, n³0} is irreducible 

and aperiodic, ¥<åå
ÀÎ =J

K

j
jJNJb

1

),()( , and the matrix A(1)(e) is irreducible.  Then the Markov 

chain is 
 

1) positive recurrent if and only if sp(A(1)(e)) < 1, i.e., there is a fixed point of A  that is 
larger than e; 

2) null recurrent if and only if sp(A(1)(e)) = 1, i.e., e is the only fixed point of A; 
3) transient if and only if sp(A(1)(e)) > 1, i.e., there is a fixed point of A that is smaller 

than e. 
 
Note.  In HE [11], the matrix A(1)(e) was constructed by using the mean-drift method.  But the 
results in HE [11] do not show the relationship between the classification conditions and the 
existence of the fixed point(s) of A.  We also note that, by equation (3.2), e Î K

+R  is always a 
fixed point of the mapping A.  For this case, the classification conditions are explicit in terms of 
the original system parameters because e is a natural and explicit fixed point of A.  According to 
equation (2.5), the (k, j)th element of A(1)(e) can be interpreted as the mean number of 
appearances of the integer j in a transition starting from a type k node.  Theorem 3.1 indicates 
that if the mean drift away from the root node (which is measured by sp(A(1)(e))) is large enough, 
the Markov chain becomes transient.   
 
Proof.  We use Theorem 3.2 in HE [11] and Theorem 2.8 in this paper to prove the theorem.  
The proof of part 1) is the same as that of Theorem 3.2 in HE [11].  The main tool used in this 
part of the proof is the mean-drift method (Cohen [2] and Fayolle, et al. [3]).  By Theorem 2.8, 
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the condition sp(A(1)(e)) < 1 is equivalent to the existence of another fixed point of A  that is 
larger than e.  Part 2) is obtained from part 1) and part 3).  Next, we prove part 3). 
 
 According to Takine, et al. [22] (also see HE [12]), the minimal fixed point xmin equals 
the vector G = (G1, L, GK)T, where the element Gk is the probability that the Markov chain will 
eventually reach its parent node from the current type k node.  Apparently, at least one of these 
{G1, L, GK} is less than one if the Markov chain is transient, i.e., G £ e and G ¹ e.  According to 
Theorem 2.8, sp(A(1)(G)) £ 1 is always true, which is consistent with Corollary 3.3 in HE [12].  
If sp(A(1)(e)) > 1, G = xmin £ e and xmin ¹ e.    Thus, some of {G1, G2, …, GK} are less than one.  
Therefore, the Markov chain is transient.  On the other hand, if the Markov chain is transient, 
xmin = G < e holds in the sense that Gk < 1 for 1£k£K, since the Markov chain is irreducible.  
According to Theorem 2.8, we must have sp(A(1)(e)) > 1.  This completes the proof of Theorem 
3.1. 
 
 According to Theorem 3.1, there are two ways to classify a Markov chain of M/G/1 type 
with a tree structure.  The first one is to utilize the fixed point e and calculate the Perron-
Frobenius eigenvalue sp(A(1)(e)).  The second approach is to find another fixed point y that is 
larger (smaller) than e.  If a larger (smaller) fixed point y can be found, with some additional 
conditions, the Markov chain is positive recurrent (transient). 
 
Note:  Recently, we learned that Theorem 3.1 (or Theorem 3.2 in HE [11]) can be obtained 
partially from a classical result in the theory about multi type branching processes.  According to 
the result (see Theorem 2, pp 186, Athreya and Ney [1]), the Markov chain of interest is recurrent 
if and only if sp(A(1)(e)) £ 1 and the Markov chain is transient if and only if sp(A(1)(e)) > 1.  But 
the classical results do not distinguish the positive recurrent and null recurrent cases and do not 
offer geometric insight into the classification conditions.  Furthermore, it seems unlikely that the 
classical results can be applied to the matrix case (Section 4) or the GI/M/1 case (Section 5). 
 
 

4. GENERALIZATION TO MARKOV CHAINS OF MATRIX  
M/G/1 TYPE WITH A TREE STRUCTURE 

 
In this section, we generalize the results obtained in Sections 2 and 3 to Markov chains of 

matrix M/G/1 type with a tree structure.  As shall be shown, there is a fundamental difference 
between the matrix case and the scalar case.  Thus, the generalization is not straightforward.  
Therefore, we shall only generalize Lemmas 2.1 and 2.2 and the main results in Section 3 to the 
matrix case.   
 
 

4.1  Properties of the mapping A:  K
mM  ®  K

mM  
 

Let Mm be the set of all m´m substochastic matrices (i.e., for XÎMm, Xe£e), where m is a 
positive integer.  For Xk ÎMm, 1£k£K, let  
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Let K

mM  be the set of all such X, i.e., K
mM  = Mm´Mm´¼´Mm, the cross-product of K 

number of Mm.  If m=1, it is clear that K
mM  = )(eK

+R .  If m=1, x = (0, 0, …, 0)T is the smallest 
vector and x = e is the largest in )(eK

+R .  If m>1, X = 0 is still the smallest element in K
mM .  

However, there is no single largest element in K
mM .  Let  

 
 )1(K

mM  = {X:  XÎ K
mM , and Xk is stochastic (i.e., Xke = e) for 1£k£K}.   (4.2) 

 
K

mM  and )1(K
mM  are two convex sets.  The product of matrices is defined as follows: 

 
 ÀÎ=Î= -- ||1||21

)( ,for,
121|||| JJ

K
mjjjj

J jjjjJXXXX
JJ

LL MXX . (4.3) 

 
Note that the order of the multiplication matters in the matrix case.   
 
 Let {A(k, J), JÎÀ and 1£k£K} be a set of m´m matrices in Mm.  The matrices {A(k, J), 
1£k£K and JÎÀ} satisfy 
 
 .1,),( KkJkA

J
££=å

ÀÎ

ee  (4.4) 

 
Then the mapping A: K

mM  ® K
mM  is defined as follows: 
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 (4.5) 

 
For any X in K

mM  with matrices {X1, X2, …, XK} and Y in K
mM  with matrices {Y1, Y2, …, 

YK}, if Xk £ Yk for 1£k£K, then we say X £ Y.  It is easy to see that the mappings { ),(* XkA  
1£k£K} are continuous and nondecreasing, i.e., for any X and Y in K

mM  with X £ Y, A(X) £ 

A(Y).  The set of fixed points Fix,m of the mapping A in K
mM  is defined as 

 
 }and)(:{,

K
mmix MÎ== XXXX AF . (4.6) 
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Note that Fix,m includes only stochastic and substochastic fixed points, which is different from Fix 
defined in Section 2.  Due to condition (4.4), both )1(K

mM  and K
mM  are invariant under the 

continuous mapping A.  By Brouwer’s fixed point theorem, A has at least one stochastic fixed 
point.  Thus, Fix,m is not empty.  We denote by Xmin the minimal fixed point (if exists) in Fix,m.  
Next, we show the relationship between the minimal fixed point and other fixed points.  Let 

)(XK
mM  = {Y:  YÎ K

mM  and Y£X}.   
 
Lemma 4.1  Assume equation (4.4) holds.  Then K

mM  is invariant under the mapping A and Fix,m 
is not empty.  If XÎ Fix,m, the subset )(XK

mM  is invariant under the mapping A.  In addition, the 
subset )1(K

mM  is invariant under the mapping A.  Thus, the mapping A has at least one stochastic 
fixed point. 
 
Proof.  The conclusions are obtained by the monotonicity of the mapping A and equation (4.4).  
This completes the proof of Lemma 4.1. 
 
 The minimal nonnegative fixed point of A can be computed by using the following 
iterative method: let X[0] have Xk = 0 (zero matrix), 1£k£K, and X[n+1] = A(X[n]), n³1.  Then 
the sequence {X[n], n³0} converges monotonically to Xmin.  A stochastic fixed point of A in 

)1(K
mM  can be calculated by using the following iterative method: let X[0] have Xk = eeT/m, 

1£k£K, and X[n+1] = A(X[n]), n³1.  Then, if the sequence {X[n], n³0} converges, it converges 
to a stochastic fixed point of A.   
 
Lemma 4.2  There exists a minimal fixed point Xmin such that Xmin, k £ Xk, 1£k£K, for any fixed 
point X = (X1

T, X2
T, …, XK

T)T Î Fix,m , i.e., Xmin £ X. 
 
Proof.  The proof is similar to that of Lemma 2.1.  This completes the proof. 
 

Similar to equation (2.5), we define the following matrices. 
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where d{.}  is an indicator function.  The function N(J, k, X) is similar to N(J, k) for m=1.  We 
assume that all the summations in equation (4.7) are finite.  Define an mK´mK matrix A(1)(X) 

with its (k, j)th block )()1*(
, XjkA .  We call A(1)(X) the differentiation matrix of A at X.  

Apparently, every element of A(1)(X) is nondecreasing with respect to every element of X.  Note 
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that )()1*(
, XjkA  is different from the )()1*(

, xjka  even when m=1.  The two definitions are consistent 
only if m=1 and x = e.   
 
Lemma 4.3  Consider any stochastic fixed point Y Î Fix,m.  Assume that A(1)(Y) is irreducible.  
If sp(A(1)(Y)) £ 1, Xmin = Y.  In this case, Xmin =Y is the only fixed point of the mapping A in 

)(YK
mM  (and K

mM ).  If sp(A(1)(Y)) > 1, Xmin £ Y and Xmin ¹ Y.  In this case, the mapping A has 
at least two fixed points in )(YK

mM  (and K
mM ). 

 
Proof.  The proof is similar to that of Lemma 2.2.   If sp(A(1)(Y)) < 1, suppose that there exists at 
least one other fixed point in )(YK

mM .  We denote that fixed point as X.  Then we have the 
following calculations. 
 

 
( ) ( )

( ) .),(

),()()(

0:

||

1

)()(**

111||å å

å

¹ÀÎ =

ÀÎ

þ
ý
ü

î
í
ì

-=

-=-

-+
JJ

J

n
jjjjjj

J

JJ
kk

YYYXXXJkA

JkAAA

nnnnJ
e                             

eYXeYX

LL

 (4.8) 

 
Since the mapping A is nondecreasing and X £ Y Î K

mM  and Y is stochastic (i.e., Yke = e, 
1£k£K), we have, for 1£k£K,  
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Let a = (a1, a2, …, aK) be the eigenvector of A(1)(Y) corresponding to the eigenvalue 

sp(A(1)(Y)).  The vector a is normalized by ae=1, where ak is a vector of the size m, 1£k£K.  
Every element of the vector a is positive since A(1)(Y) is irreducible.  Equation (4.9) leads to  
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The last inequality in equation (4.10) implies that sp(A(1)(Y)) ³ 1, which contradicts 
sp(A(1)(Y)) < 1.  Therefore, Y is the only fixed point in )(YK

mM  and Xmin = Y.  Since Y can be 
any stochastic fixed point in Fix,m, then Fix,m has only one element. 
 
 If sp(A(1)(Y)) = 1, suppose that there is another fixed point X.  If X is an interior point of 

)(YK
mM , then A(1)(X) £ A(1)(Y), A(1)(X) ¹ A(1)(Y), and the vector (Yi – Xi)e is nonzero and 

positive.  Then the inequalities in equation (4.10) becomes strict, which leads to sp(A(1)(Y)) > 1.  
Therefore, there is no fixed point in the interior of )(YK

mM .  This implies that there is no fixed 
point in the interior of K

mM .  If Xie = Yie for some i, then Xi = Yi since Xi £ Yi.  Applying the same 
method used in Lemma 2.2 in dealing with the case with sp(A(1)(Y)) = 1, it can be proved that 
there is no fixed point X that is smaller than Y. 
 
 If sp(A(1)(Y)) > 1, define ),( e£YK

mM  = {X:  aXe £ 1-e, XÎ )(YK
mM } and ),( e=YK

mM  
= {X:  aXe =1-e, XÎ )(YK

mM }.  It is easy to see that both ),( e£YK
mM  and ),( e=YK

mM  are 
convex sets.  We would like to show that, if e is small enough, the subset ),( e£YK

mM  is 
invariant under the mapping A.  The geometric intuition of this proof is similar to that of Lemma 
2.2.  For any X Î ),( e=YK

mM , by equation (4.9), we have 
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Note that Y is a fixed point with Yke = e, 1£k£K, and aYe – aXe =1-aXe = e.  Equation (4.11) 
leads to  
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Since A(1)(X) is continuous in X and every element of a is positive, we can choose small enough 
e such that  
 
 [ ] [ ]aa 1))(()()( )1()1()1( -£- YXY AAA sp  (4.13) 
 
for any X Î ),( e=YK

mM .  Equations (4.12) and (4.13) lead to aA(X)e £ 1-e for any X 
Î ),( e=YK

mM , i.e., ),()( e£Î YX K
mMA  for any X Î ),( e=YK

mM .  For any XÎ ),( e£YK
mM , 

consider the closed line segment X(t) = (1–t)X + tY, 0£t£1.  Similar to the proof of Lemma 2.2, 
it can be shown that there exists t1 such that 0£t1£1, X(t1) Î ),( e=YK

mM  and X £ X(t1).  This 
implies that A(X) £ A(X(t1)) Î ),( e£YK

mM .  Thus, we have shown that the subset ),( e£YK
mM  
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is invariant under the mapping A.  Therefore, there is a fixed point in ),( e£YK
mM , which is not 

stochastic.  Thus, the minimal fixed point is not equal to Y.  This completes the proof.  
 
Note:  The proof of Lemma 4.3 seems simpler than that of Lemma 2.2, but it works only when a 
stochastic fixed point Y is considered.  
 
 

4.2  Markov chains of matrix M/G/1 type with a tree structure 
 

Now, we consider a Markov chain {(Cn, hn), n³0}, where Cn takes values in À and hn 
takes integer values from 1 to m.  The random variable hn is an auxiliary variable.  The transition 
probabilities of the Markov chain are given as, for J and H in À, 1£k£K,  
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where matrices {A(k, J), JÎÀ, 1£k£K} satisfy equation (4.4) and matrices {B(J), JÎÀ} satisfy 
å

ÀÎ

=
J

JB ee)( .  Then {(Cn, hn), n³0} is called a Markov chain of matrix M/G/1 type with a tree 

structure, which was introduced in Takine, et al. [22]. 
 
 According to Theorem 3.2 in HE [12], the classification of such Markov chains is 
determined completely by the Perron-Frobenius eigenvalue of A(1)(Y) of any stochastic fixed 
point Y of the mapping A.  The results are summarized in the following theorem. 
 
Theorem 4.4 (Theorem 3.2, HE [12]) Assume that {(Cn, hn), n³0} is irreducible and aperiodic, 

¥<åå
ÀÎ =J

K

k
kJNJB

1
),,()( Y , and the matrix A(1)(Y) is irreducible for a stochastic fixed point Y of 

the mapping A.  Then the Markov chain is   
 

1) positive recurrent if and only if sp(A(1)(Y)) < 1; 
2) null recurrent if and only if sp(A(1)(Y)) = 1; 
3) transient if and only if sp(A(1)(Y)) > 1, i.e., there exists another fixed point of the 

mapping A  that is smaller than Y. 
 
Proof.  The matrix A(1)(Y) was first constructed in HE [12] by using the mean-drift method.  The 
matrix A(1)(Y) was denoted as P(Y) in HE [12].  Thus, this theorem is equivalent to Theorem 3.2 
in HE [12].  Therefore, we refer to Theorem 3.2 in HE [12] for a proof.  We like to point out that 
by using Lemmas 4.1, 4.2, and 4.3, an alternative and shorter proof of part 3) can be obtained in a 
way similar to the proof of part 3) of Theorem 3.1.  Details are omitted.  This completes the 
proof of Theorem 4.4. 
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 For the matrix M/G/1 case (m>1), there is no natural and explicit fixed point in K
mM  to 

provide information about the ergodicity of the Markov chain.  Thus, we need to find a stochastic 
fixed point in a smaller subset )1(K

mM  - the set of stochastic matrices first.  Then information 
about the classification problem can be recovered. 
 

Similar to the scalar case, the minimal fixed point Xmin can be interpreted as the 
probability of the first passage from a node to its parent node (see Takine, et al. [22]).  Usually, 
the minimal fixed point Xmin is denoted as G with m´m matrices {G1, …, GK} in matrix analytic 
methods.  Lemma 4.3 implies that sp(A(1)(G)) £ 1, a result that was proved first in HE [12].  This 
property of G distinguishes it from other (possible) fixed points. 
 
 Theorem 4.4 can be used to find stability conditions for various queueing models.  For 
instance, we consider a discrete time queueing system with multiple types of customers and a 
last-come-first-served general preemptive resume (LCFS-GPR) service discipline.  In general, 
this queueing system is not work-conserving.  Thus, the usual traffic intensity fails to provide 
information about system stability.  Under some conditions, the queueing process of this model 
can be formulated as an M/G/1 type Markov chain with a tree structure.  Then Theorem 4.4 can 
be used to find whether or not such a queueing system is stable.  Theorem 4.4 can also used to 
find whether or not the queueing model considered in HE and Alfa [13] and the communication 
system considered in Van Houdt and Blondia [23] are stable.  Details are omitted.  
 
 

5.  MARKOV CHAINS of GI/M/1 TYPE WITH A TREE STRUCTURE 
  

In this section, we consider a Markov chain of GI/M/1 type with a tree structure {Cn, 
n³0} that was introduced in Yeung and Sengupta [24].  We only consider the scalar case.  Thus, 
we shall use notation introduced in Section 2 as well as the results obtained in Section 2.  The 
Markov chain {Cn, n³0} is defined on À.  The transition probabilities of the Markov chain are 
given as: 
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Note that the probabilistic interpretations of the nonnegative numbers {a(k, J), b(J), JÎÀ, 

1£k£K} are different from that of Section 3.  From the definition, it is clear that in one transition, 
the Markov chain can move from the current node to one of its children or any node that is an 
immediate child of an ancestor of the current node.  The transition probabilities depend on the 
type of the targeted node.  If J = j1Ljn, denote by f(J, i) = jn-i+1Ljn, for 1£i£n, and f(J, 0) = 0, i.e., 
f(J, i) is the sub-string of J consisting of the last i numbers of J.  By the law of total probability, 
we have   
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Note that at least one of {a(k, 0), 1£k£K} is positive.  An example of the transition structure of a 
GI/M/1 type Markov chain with a tree structure is shown in Figure 5.1 for K=2.   
 
 
 
 
 
 
 
 
 
 
 

Figure 5.1   Nodes reachable in one transition from the node J=21.   
 

Figure 5.1 shows all nodes reachable in one transition from the node J=21:  node 0 with 
probability b(21), 1 with a(1, 21), 2 with a(2, 21), 21 with a(1, 1), 22 with a(2, 1), 211 with 
a(1,0), and 212 with a(2, 0).   
 
 Let us call the node J a level |J| node.  It is clear that, in one transition, a Markov chain of 
M/G/1 type can move away from the root node for any arbitrary number of levels, but it can only 
move one level closer to the root node.  On the contrary, in one transition, a Markov chain of 
GI/M/1 type can move several levels closer to the root node, but it can only move one level away 
from the root node.  Also for the GI/M/1 case, the transition probabilities {a(k, 0), 1£k£K} are 
the same for any (current) node.   
 
 Because of the above difference between the M/G/1 and GI/M/1 cases, the analyses of the 
two types of Markov chains are dramatically different (Neuts [18, 19], Takine, et al. [22], and 
Yeung and Sengupta [24]).  That difference extends to the fixed points of the mapping A defined 
in Section 2.  For the M/G/1 case, e is always a fixed point, which leads to information for the 
classification problem.  But e is not, in general, a fixed point for the GI/M/1 case if m>1.  Thus, 
to find classification conditions, we need to identify a fixed point of A (possibly different from 
the minimal fixed point) first.  
 
 

5.1  A fixed point with elements summing to one 
 

Let  
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It is easy to see that K
1=S+,R  and K

1£S+,R  are convex sets.  An example of the sets K
1=S+,R  and K

1£S+,R  
are shown in Figure 5.2 for K=2.   
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.2  The sets K
1=S+,R   and K

1£S+,R   for K=2.   
 
 

We first focus on the subset K
1=S+,R .  We show that the subset K

1=S+,R  is invariant under A 
for the GI/M/1 case.  
 
Lemma 5.1  If equation (5.2) holds and 0)}({maxlim

||:
=

=ÀÎ¥®
Jb

nJJn
, the subset K

1=S+,R  is invariant 

under A.  Thus, there exists at least one fixed point of A in the subset K
1=S+,R .  The subset K

1£S+,R  
is also invariant under A.  Thus, the minimal fixed point xmin of A is in K

1£S+,R .  Any fixed point 
in K

1=S+,R  is larger than or equal to the minimal fixed point.  
 
Proof.  First, we show that the subset K

1=S+,R  is invariant under A.  For any x Î K
1=S+,R , we need 

to prove that A(x) Î K
1=S+,R .  That is equivalent to proving that for any nonnegative vector x with 
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ka x  holds.  First, we assume that the transition probability a(k, J) = 0 for any 

string J with |J|>N, where N is a positive integer.  By equation (5.2), we have, for any JÎÀ and 
1£j£K,  
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If a(k, J) = 0 for any string J with |J|>N, then b(J) = 0 for |J| ³ N.  We rewrite the sum of the 
vector A(x) in the following way. 
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in which we have used x1+ x2+…+ xK = 1.  Now, we move to level N-1, N–2, …, and carry out 
the following calculations: 
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Therefore, the subset K

1=S+,R  is invariant under the mapping A.  Since K
1=S+,R  is convex and A is 

continuous, A has at least one fixed point in K
1=S+,R .   

 
 For the general case, we prove the result by taking N to infinity.  Since {a(k, J), JÎÀ, 
1£k£K} and x are all nonnegative, by the monotone convergence theorem, we have 
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By equations (5.6) and (5.7), we have 
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Equation (5.8) also shows that 1)(
1

* £å
=

K

k
ka x .  Thus, the subset K

1=S+,R  is invariant under A.  By 

Brouwer’s fixed point theorem, A has at least one fixed point in K
1=S+,R .   

 
 For any nonzero point x in K

1£S+,R , x/(x1+ x2+…+ xK) is in K
1=S+,R .  Since x1+ x2+…+ xK £ 

1, we have x £ x/(x1+ x2+…+ xK).  It is then easy to see that A(x) £ A(x/(x1+ x2+…+ xK)) Î 
K

1=S+,R  Ì K
1£S+,R .  Thus, the subset K

1£S+,R  is invariant under A.  It is apparent that the minimal 
fixed point is in K

1£S+,R  and the fixed point in K
1=S+,R  is larger than or equal to the minimal fixed 

point.  This completes the proof of Lemma 4.1.   
 
 According to Theorem 2.8, any fixed point in K

1=S+,R  provides information about the 
minimal fixed solutions in the subset K

1£S+,R .  Thus, we need to find a fixed point in K
1=S+,R .  For 

that purpose, we propose the following simple computational procedure.  Let x[0] = e/K, and 
x[n+1] = A(x[n]) for n³0.  Then the sequence {x[n], n³0} must have a convergent subsequence 
since the subset K

1=S+,R  is bounded and tight.  If the sequence {x[n], n³0} converges, we denote 

the limit as y*, which is a fixed point with 1
1

* =å
=

K

k
ky  and y* = A(y*).  The fixed point y* plays an 

important role in classifying Markov chains of GI/M/1 type with a tree structure.  
 
 For later use, we prove the following interesting result. 
 
Lemma 5.2  For {a(k, J), b(J), JÎÀ, 1£k£K} satisfying equation (5.2),  0)}({maxlim

||:
=

=ÀÎ¥®
Jb

nJJn
, 

and any xÎ K
1=S+,R , we have  

 

 .,),()(
0: 1

)( ÀÎ+= å å
¹ÀÎ =

JJHkaJb
HH

K

k

Hx  (5.9) 

 

Proof.  By equation (5.4), å
=

+++=
K

k
JjkaJjbJb

1
),()()( , for JÎÀ and 1£j£K.  For any x Î 

K
1=S+,R  and JÎÀ, we have  
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Note that we used the assumption 0)}({maxlim

||:
=

=ÀÎ¥®
Jb

nJJn
 in equation (5.10).  This completes the 

proof of Lemma 5.2. 
 
Note:  Lemma 5.1 can be obtained from Lemma 5.2.  Letting J=0 in equation (5.9) and adding 
{a(k, 0), 1£k£K} on both sides of equation (5.9), it is easy to see that A(x) is in K

1=S+,R  for any x 
Î K

1=S+,R .  Thus, the set K
1=S+,R  is invariant under the mapping A.  Therefore, A has a fixed point 

in K
1=S+,R .   

 
 

5.2  Classification of Markov chains of GI/M/1 type with a tree structure 
 

We denote the minimal fixed point of the mapping A as R = (R1, R2, …, RK)T, i.e., R = 
xmin.  According to Yeung and Sengupta [24], Rk is the mean number of visits to the node J+k, 
before the Markov chain returns to the node J, given that the Markov chain was initially in the 
node J.  Such an interpretation of R is obtained from the GI/M/1 structure of the Markov chain.  
In addition, R(W) can be interpreted as the mean number of visits to the node J+W (JÎÀ, WÎÀ, 
and W¹0), before the Markov chain returns to the node J, given that the Markov chain was 
initially in the node J.  
 
 To prove the main result of this section, we shall use the subinvariant (invariant) 
measures of Markov chains.  Next, we introduce subinvariant and invariant measures of the 
Markov chains of GI/M/1 type with a tree structure.  We refer to Chapter 5 of Seneta [21] for 
some classical results about the (sub)invariant measures of Markov chains.   
 

A measure p = {p(J): 0 £ p(J) < ¥ for JÎÀ} is a subinvariant measure of the Markov 
chain {Cn, n³0} if å

ÀÎ

+³+
H

HkaHJkJ ),()()( pp  for all JÎÀ and 1£k£K, and 

å
ÀÎ

³
J

JbJ )()()0( pp .  If å
ÀÎ

+=+
H

HkaHJkJ ),()()( pp  for all JÎÀ and 1£k£K, and 
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å
ÀÎ

=
J

JbJ )()()0( pp , the measure p is called an invariant measure.  If å
ÀÎJ

J )(p  is finite for a 

(sub)invariant measure p, then p is called a finite (sub)invariant measure. 
 
According to Theorem 5.3 in Seneta [21], if the Markov chain {Cn, n³0} is irreducible, 

p(R) = {pR(J) = R(J), JÎÀ} is a subinvariant measure (note that pR(0) = R(0) = 1).  The measure 
p(R) is the minimal subinvariant measure, i.e., for any subinvariant measure p of {Cn, n³0} with 
p(0) = 1, we must have p(J) ³ pR(J) for all JÎÀ.  We first show the following relationship 
between the (sub)invariant measures and the fixed point(s) of the mapping A. 
 
Lemma 5.3  Assume that the Markov chain {Cn, n³0} is irreducible and aperiodic, 

0)}({maxlim
||:

=
=ÀÎ¥®

Jb
nJJn

, and A(1)(y*) is irreducible.  If sp(A(1)(y*)) > 1, then p(R) is a finite 

invariant measure.  If sp(A(1)(y*)) = 1, then p(R) is an infinite invariant measure.   If sp(A(1)(y*)) 
< 1, then p(R) is a subinvariant measure but not an invariant measure.  In this case, let z be the 
fixed point of A that is larger than R, then p(z) = {p(J) = z(J), JÎÀ} is an infinite invariant 
measure.   
 
Proof.  If sp(A(1)(y*)) > 1, by Theorem 2.8, we have R £ y* and R ¹ y*.  For the measure p(R), it 
is easy to verify that å

ÀÎ

+=+
H

HkaHJkJ ),()()( RR pp  holds for all JÎÀ and 1£k£K.  We only 

need to show .)()0(1 )(å
ÀÎ

==
J

JJb RRp   Let r = R1+R2+ …+RK.  Then 0<r<1 and R/r is in the 

subset K
1=S+,R .  By Lemma 5.2, we have 
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Thus, p(R) is an invariant measure.  Since r<1, ¥<-== åå

ÀÎÀÎ

)1/(1)( )( rJ
J

J

J
RRp .  Therefore, 

p(R) is a finite invariant measure. 
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 If sp(A(1)(y*)) = 1, R = y* is the only fixed point of the mapping A.  Again, for the 
measure p(R), it is easy to see that å

ÀÎ

+=+
H

HkaHJkJ ),()()( RR pp  holds for all JÎÀ and 

1£k£K.  To show å
ÀÎ

==
J

JJb )()()0(1 RRp , we introduce another Markov chain {Ct,n, n³0} for 

0<t£1 as follows:   
 

 
.for),()0()1()(

;1and0,for),,(),(
;1for),0,()0,(

ÀÎ+-=
££¹ÀÎ=

££=

JJtbbtJb
KkJJJktaJka

Kkkaka

t

t

t

      
          
             

 (5.12) 

 
The Markov chain {Ct,n, n³0} is irreducible and aperiodic.  Since the transition 

probability from any node J (¹0) to the node 0 is bt(J) > (1-t)b(0)>0, the Markov chain {Ct,n, 
n³0} is positive recurrent for 0<t<1.  Consider the mapping At associated with transition 
probabilities {at(k, J), JÎÀ and 1£k£K} defined by equation (2.2).  For any xÎ K

1£S+,R , we have 
At(x) £ A(x) Î K

1£S+,R  (note that 0<t£1).  Thus, the set K
1£S+,R  is invariant under the mapping At.  

By Brouwer’s fixed point theorem, the mapping At has a fixed point in the subset K
1£S+,R , denoted 

as Rt.  Since the Markov chain is positive recurrent for 0<t<1, by Theorem 5,3 in Seneta [20], 
p(Rt) = { )(J

tRp  = Rt
(J), JÎÀ} is a finite invariant measure, which implies that  

.)()0(1 )(å
ÀÎ

==
J

J
tt Jb

t
RRp   Since Rt is the minimal fixed point of At, we can use equation (2.4) 

to obtain it.  Then it is easy to see that Rt is nondecreasing in t.  This further implies that Rt 
converges to R when t goes to 1.  Therefore, we have 
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 Using equation (2.2) and equation (2.5), we can find the differentiations of Rt with 
respect to t as: 
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It is clear that sp(A(1)(Rt)) converges to sp(A(1)(R)) = 1.  Thus, the sum of the left hand side of 
equation (5.14) (that is d(Rt,1)/dt +…+ d(Rt,K)/dt) goes to infinity when t increases to 1.  Then we 
have, by the l’Hospital’s Rule, 
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Since Rt is nondecreasing in t, it is easy to see that å

ÀÎJ

J
tJbt )()( R converges 

monotonically to å
ÀÎJ

JJb )()( R  as t increases to 1.  Combining equations (5.13) and (5.15), we 

have proved that å
ÀÎ

==
J

JJb )()()0(1 RRp , which implies that p(R) is an infinite invariant 

measure if sp(A(1)(y*)) = 1. 
 
 Lastly, if sp(A(1)(y*)) < 1, R = y* and there exists another larger fixed point z of the 
mapping A.  Similar to the sp(A(1)(y*)) > 1 case, it can be proved that p(z) is an infinite invariant 
measure (by utilizing the point z/(z1+…+zK) Î K

1=S+,R ).  For the measure p(R), it is easy to see 
that å

ÀÎ

+=+
H

HkaHJkJ ),()()( RR pp  holds for all JÎÀ and 1£k£K, and 

)0(1)()( )()(
RzR p==< åå

ÀÎÀÎ J

J

J

J JbJb .  Therefore, p(R) is a subinvariant measure but not an 

invariant measure. 
 
 This completes the proof of Lemma 5.3. 
 
 Now, we state and prove the main result for the Markov chain of GI/M/1 type with a tree 
structure. 
 
Theorem 5.4  Assume that the Markov chain of GI/M/1 type with a tree structure {Cn, n³0} is 
irreducible and aperiodic, 0)}({maxlim

||:
=

=ÀÎ¥®
Jb

nJJn
, and the matrix A(1)(y*) is irreducible.  Then the 

Markov chain is  
 

1) positive recurrent if and only if sp(A(1)(y*)) > 1, i.e., there exists a fixed point of A 

that is smaller than y*; 
2) null recurrent if and only if sp(A(1)(y*)) = 1, i.e., y* is the only fixed point of A; 
3) transient if sp(A(1)(y*)) < 1, i.e., y* is the smallest fixed point and there exists another 

larger fixed point of A. 
 
Proof.  We shall prove part 1) and part 3).  Part 2) is obtained from part 1), part 3), and Theorem 
2.8. 
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First, we prove part 1).  If the Markov chain is positive recurrent, according to Theorems 

5.3 and 5.5 in Seneta [20] and by the GI/M/1 structure, p(R) is a finite invariant measure.  Then 
we must have r = R1+R2+…+RK < 1 and 1)( )( =å

ÀÎJ

JJb R .  Furthermore, R is a fixed point of A.  

Then, y* is not the minimal fixed point.  According to Theorem 2.8, sp(A(1)(y*)) > 1.  On the 
other hand, if sp(A(1)(y*)) > 1, according to Lemma 5.3, the measure p(R) is a finite invariant 
measure.  Thus, the Markov chain is positive recurrent.  In fact, {p(J) = (1-r)R(J) for JÎÀ} is the 
stationary distribution of the Markov chain.   
 
 Now, we prove part 3).  If sp(A(1)(y*)) < 1, according to Theorem 2.8, A has two fixed 
points: y* and another z, where y* £ z and y* ¹ z.  Let z = z1+ z2+…+ zK.  Then z>1 holds.  
According to Lemma 5.3, we have two subinvariant measures: p(R) and p(z).  Since R ¹ z, p(R) 
and p(z) are two different subinvariant measures, i.e., p(R) = t p(z) does not hold for any positive 
t.  By Theorem 5.4 in Seneta [21], a Markov chain (irreducible and aperiodic) is transient if and 
only if it has at least two different subinvariant measures.  Thus, the Markov chain of interest 
must be transient.  On the other hand, if the Markov chain is transient, then by Lemma 5.5 and its 
corollary in Seneta [21], p(R) is a subinvariant measure but not an invariant measure.  According 
to Lemma 5.3, sp(A(1)(y*)) must be smaller than 1.  By Theorem 2.8, this is equivalent to the 
existence of a fixed point that is larger than y*.  This completes the proof of Theorem 5.4. 
 

Theorem 5.4 finds applications in queueing theory.  For example, we consider a 
GI/G[K]/1/LCFS preemptive repeat queue.  In that queue, customers arrive in the queueing 
system according to a renewal process.  When a customer arrives, it is marked as a type k 
customer with probability pk, 1£k£K.  For a type k customer, its service time sk has a general 
distribution, 1£k£K.  All customers join a single queue.  The service discipline for all customers 
is last-come-first-served preemptive repeat.  The queueing process in this system can be 
formulated as a GI/M/1 type Markov chain with a tree structure.  Then Theorem 5.4 can be used 
to find whether or not the queueing system is stable.  Details are omitted.  
 
 To classify a Markov chain of GI/M/1 type with a tree structure, according to Theorem 
5.4, we need to find the fixed point y* first.  That requires significant computational efforts.  
Next, we identify a sufficient condition for transience.  Let À¥ = {…jn…j2j1: 1£jn£K, n³1}.  For 
J= …jn…j2j1 Î À¥, let  
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Intuitively, JÎÀ¥ is a path from j1 at “infinity” to the root node 0.  By definition, { }0),(ˆ ³nnaJ  
is a probability distribution for any JÎÀ¥.  Let  
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Theorem 5.5  Assume that Markov chain of GI/M/1 type with a tree structure {Cn, n³0} is 
irreducible and aperiodic.  If rmax < 1, then the Markov chain is transient. 
 
Proof.  See Appendix.   
 

Intuitively, the condition rmax < 1 ensures that in each transition, the Markov chain tends 
to move away from the root node.  The condition rmax < 1 is not necessary for transience of the 
Markov chain.  Compared to Theorem 5.4, Theorem 5.5 can be easily implemented.  For 
instance, we consider a GI/M/1 type Markov chain with K=2 and transition probabilities:  

 
a(1, 0) = 0.3,        a(2, 0) = 0.5,        b(0) = 0.2;  
a(1, 1) = 0.05,      a(2, 1) = 0.05,      b(1) = 0.1; 
a(1, 2) = 0.1,        a(2, 2) = 0,           b(2) = 0.1; 
a(1, 11) = 0.05,    a(2, 11) = 0.05,    b(11) = 0; 
a(1, 12) = 0.05,    a(2, 12) = 0.05,    b(12) = 0; 
a(1, 21) = 0.1,      a(2, 21) = 0,         b(21) = 0; 
a(1, 22) = 0.1,      a(2, 22) = 0,         b(22) = 0. 

 
It can be calculated that rmax  = 0.3 < 1.  Therefore, the Markov chain is transient.   
 

Theorems 5.4 and 5.5 characterize the classification conditions of Markov chains of 
GI/M/1 type with a tree structure.  The two theorems lead to better understanding of such Markov 
chains and to possible directions for future research. 
 
Note:  We assume 0)}({maxlim

||:
=

=ÀÎ¥®
Jb

nJJn
 to ensure that there is a fixed point in the subset K

1=S+,R .  

If 0)}({maxlim
||:

>
=ÀÎ¥®

Jb
nJJn

, there exists a sequence of strings {J(n), n³1} such that b(J(n)) > b(¥) > 

0.  Intuitively, that means the Markov chain can return to the root node from a “remote” node in 
one transition.  Thus, the Markov chain should be positive recurrent.  In fact, this is true for some 
special cases such as the case with K=1 or the case with b(J) > b(¥) > 0 for all string J.  
However, a general treatment of the case with 0)}({maxlim

||:
>

=ÀÎ¥®
Jb

nJJn
 can be very complicated.  

We leave it for future research. 
 
 

6.  SUMMARY AND DISCUSSIONS 
 

In this paper, we have shown some useful properties associated with some fixed points of 
the nonlinear mapping A.  Fixed point theory and degree theory were utilized to establish a 
relationship between the fixed points, the matrices of partial differentiation (Jacobian) at the 
fixed points, and the minimal fixed point of A.  These properties were then used to find 
classification conditions for Markov chains of M/G/1 type and GI/M/1 type with a tree structure.  
It was shown that the Perron-Frobenius eigenvalue of the differentiation matrix A(1)(x) of any 
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special fixed point x and the fixed point x itself provide information for a complete classification 
of the Markov chains of interest.   
 
 More specifically, the classification problem of interest was divided into four 
subproblems: 1) the classification of Markov chains of M/G/1 type with a tree structure; 2) the 
classification of Markov chains of matrix M/G/1 type with a tree structure; 3) the classification of 
Markov chains of GI/M/1 type with a tree structure; and 4) the classification of Markov chains of 
matrix GI/M/1 type with a tree structure.  For case 1), explicit classification conditions were 
found.  The reason for the explicit conditions is that a fixed point e of the mapping A is readily 
obtained. Unfortunately, no such an explicit fixed point exists for the other three cases.  Thus no 
explicit classification condition was found for these cases.  Nonetheless, for cases 2) and 3), we 
were able to prove that a fixed point exists in certain subsets.  Then explicit conditions were 
found in terms of that fixed point.  For case 4), no fixed point has been identified in general.  
Thus, the classification problem of Markov chains of matrix GI/M/1 type with a tree structure is 
still open for future research.  The results obtained in this paper indicate that identifying a fixed 
point might be the key to solve the problem.  Generalizations to the matrix cases are challenging 
problems, especially for the matrix GI/M/1 case.  But they are interesting future topics. 
 
 

APPENDIX    The proof of Theorem 5.5 
 

According to a classical result (see Cohen [2] and Fayolle, et al. [3]), the Markov chain of 
interest is transient if and only if there exists a non-constant and bounded solution {h(J), JÎÀ} 
that satisfies 
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Next, we construct such a solution {h(J), JÎÀ} if rmax < 1.  Let h(0) = 0.  Define the 

following transforms for z = (z1, z2, …, zK)T Î )( *yK
+R : 
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Combining equations (A.1) and (A.2), we have  
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Let h(k)=1 for 1£k£K and h(J+k)=w(J) for 1£k£K  for all JÎÀ.  Define, for z = (z1, z2, …, 

zK)T Î )( *yK
+R : 
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Then equation (A.3) leads to  
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Since sp(A(1)(y*)) < 1, by Lemma 2.2, there is no fixed point in )( *yK

+R  except y*.  

Therefore, we can find w*(z) by 
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We shall use this expression to prove that {w(J), JÎÀ} are bounded.  First, we rewrite (A.5) as 
follows. 
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Part of equation (A.6) is evaluated as follows. 
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Then equations (A.6) and (A.7) lead to 
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According to equation (A.6), we choose {c(J), J Î À} in the following manner: 
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Therefore, all {c(J), JÎÀ} are positive.  Then equation (A.6) leads to 
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 Next, we prove that there exists M (>0) such that for any JÎÀ¥ and n>0, 
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Note that )0(~)0(ˆ aa = .  Again, by equation (A.9), we have, for any J Î À¥,  
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Thus, we have found a set of non-constant and bounded {h(J), JÎÀ} for equation (A.1).  
Therefore, the Markov chain is transient.  This completes the proof of Theorem 5.5. 
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