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ABSTRACT

In this paper, we study the classification problem of discrete time and continuous
time Markov processes with a tree structure. We first show some useful properties
associated with the fixed points of a nondecreasing mapping. Mainly we find the
conditions for afixed point to be the minimal fixed point by using fixed point theory
and degree theory. We then use these results to identify conditions for Markov
chains of M/G/1 type or GI/M/1 type with a tree structure to be positive recurrent,
null recurrent, or transient. The results are generalized to Markov chains of matrix
M/G/1 type with atree structure. For all these cases, a relationship between a certain
fixed point, the matrix of partial differentiation (Jacobian) associated with the fixed
point, and the classification of the Markov chain with a tree structure is established.
More specifically, we show that the Perron-Frobenius eigenvalue of the matrix of
partial differentiation associated with a certain fixed point provides information for a
complete classification of the Markov chains of interest.

Key words: Markov chains, ergodicity, tree structure, matrix analytic methods, fixed
point theory, degree theory

1. INTRODUCTION

This paper identifies conditions for the classification of Markov chains of M/G/1 type or
GI/M/1 type with a tree structure, i.e., conditions for the Markov chains to be positive recurrent,
null recurrent, or transient. A fixed point approach is utilized to solve the problem. While some
of the classification conditions of Markov chains of M/G/1 type with a tree structure have already



been obtained in HE [11, 12], the results for Markov chains of GI/M/1 type with a tree structure
are all new. Geometric insight into al the classification conditions is gained. In addition, this
paper presents an application of the fixed point theory in the study of Markov chains with some
special structure.

Markov chains of M/G/1 type and GI/M/1 type with a tree structure were introduced in
Takine, Sengupta, and Yeung [22] and Y eung and Sengupta [24] respectively, as generalizations
of the classical Markov chains of M/G/1 type or GI/M/1 type (Neuts [18, 19]). Since the
gueueing processes of some queueing systems with multiple types of customers can be
formulated into such Markov chains, their study attracted considerable attention from researchers
in recent years (Gajrat, et a. [6], HE [10, 11, 12], HE and Alfa[13], Latouche and Ramaswami
[14], Takine, Sengupta, and Y eung [22], Van Houdt and Blondia [23], and Y eung and Sengupta
[24]). Similar Markov chains were also studied by other researchers under the name string
Markov chains (Gajrat, et al. [6] and Malyshev [16, 17]). An interesting problem in this areais
the classification of these Markov chains. While classification conditions have been found for
some of them (Gall, et a. [4, 5], Gajrat, et a. [6], HE [11, 12], and Neuts [18, 19]), others (e.g.,
the GI/M/1 case) are still unsolved. Thus, there is a need for more study on the classification
problem.

According to Foster’s criterion and the mean drift method (Cohen [2] and Fayolle, et al.
[3]), the existence of some special solution to some nonlinear equations or inequalities
determines whether an irreducible Markov chain is positive recurrent, null recurrent, or transient,
where these equations or inequalities are usually determined by the transition probabilities of the
Markov chain. Quite often, finding conditions for the existence of some special solution is used
to solve the classification problem of Markov chains. In this paper, we focus on a nonlinear
equation x = A(X), where A is a nonlinear mapping, and try to identify conditions for the
existence of fixed pointsto that equation in order to solve the classification problem.

For Markov chains of M/G/1 type with a tree structure, the mapping A and the equation x
= A(x) are related to the absorption probabilities of some boundary states of the Markov chain of
interest ([22]). For Markov chains of GI/M/1 type with a tree structure, the mapping A and the
equation x = A(x) are related to the subinvariant measure of the Markov chain of interest (Seneta
[21] and Yeung and Sengupta [24]). In this paper, we take a fixed point approach (Goebel and
Kirk [9]) to study A and the equation x = A(x). Using Brouwer’ s fixed point theorem and degree
theory (Garcia and Zangwill [8] and Lloyd [15]), a relationship between the classification of the
Markov chains with a tree structure, the fixed points of A, and the Perron-Frobenius eigenvalues
of the matrices of partial differentiation (Jacobians) associated with these fixed points is
established. This approach not only produces new results, but also leads to new insight into the
solutions obtained as well as geometric explanations to the classification conditions identified.
In addition, we incorporate matrix analytic methods, the mean drift method, and the subinvariant
measure approach in the solution process (Cohen [2], Fayolle, et a. [3], Latouche and
Ramaswami [14], Neuts[18, 19], and Seneta[21]).



For Markov chains of M/G/1 type with a tree structure (both scalar and matrix cases), HE
[11, 12] proved that the Perron-Frobenius eigenvalue of a nonnegative matrix provides complete
information for their classification. By using a different approach (fixed point theory) in this
paper, the same results are obtained with a much better understanding on how the classification
conditions are formulated. New results and new proofs are obtained as well. For Markov chains
of GI/M/1 type with a tree structure, conditions for a complete classification are obtained for the
first time by utilizing fixed point theory and subinvariant (invariant) measures of Markov chains.
The fixed points of the mapping A play an important role in the construction of the classification
conditions. In fact, without understanding the role played by fixed points, it would be otherwise
difficult to find these classification conditions.

While the main contribution of this paper is about the classification conditions of the
Markov chains of interest, the results about the fixed points of the mapping A are interesting by

their own rights. Usually, in fixed point theory and degree theory, the Jacobian of A is utilized to
find conditions for the existence of a fixed point or to calculate the topological degree. The
determinant or the sign of the determinant of the Jacobian plays a central role. Instead of using
the determinant of the Jacobian, in this paper, we make use of the Perron-Frobenius eigenvalue
and its corresponding eigenvector of the Jacobian at the fixed point to identify other possible
fixed points. This approach is different from other existing methods.

This paper focuses primarily on discrete time Markov processes with a tree structure.
Thus, we shall use “Markov chain” for “discrete time Markov process’ throughout this paper.
But all the results can be extended to continuous time Markov processes of M/G/1 type or
GI/M/1 type with atree structure.

The rest of the paper is organized as follows. In Section 2, the mapping A is introduced
and some useful properties are proved by using fixed point theory and degree theory. Section 3
identifies the classification conditions for Markov chains of M/G/1 type with atree structure. We
choose first to present the results for the M/G/1 type Markov chains with a tree structure because
they are easier to deal with. In Section 4, for Markov chains of matrix M/G/1 type with a tree
structure, classification conditions are identified. Section 5 characterizes the classification
conditions of Markov chains of GI/M/1 type with a tree structure. Finaly, in Section 6, we
summarize the results obtained in this paper.

2. PROPERTIESOF THE MAPPING A : R} ®R/

In this section, we introduce a mapping A that is associated with Markov chains of M/G/1
type or GI/M/1 type with atree structure. We shall focus on the fixed points of A, especially the

minimal fixed point. The mapping A isdefined in ageneral way in this section and will be made
explicit in Sections 3 and 5, where a particular type of Markov chain is under consideration. The
results obtained in this section lay the basis for the analysisin Sections 3 and 5.



We first introduce the domain of the mapping A and a set of strings of integers. Let
RE={X = (X, X2, ..., X)": %30, 1£kEK}, where K is a positive integer and “T” is for the
transpose operation of matrix. It iseasy to seethat R isaconvex cone and is usually called the
nonnegative orthant of the vector space of dimension K (see Rockafellar [20]). In this paper, we
shal primarily work with the mapping A from RS to RS (except Section 4). For any two
(column) vectors x and y in R, we say that x is less than y (denoted as x £ y) if x £ yg for

1£kEK. Foranyy T R, define apolytope RS (y) as:
RX(y)={x: x£y and xTR}}. (2.1)

The interior of R (y) isdefined asint(RX (y)) = {x: x T RX(y) and X < Yk, 1£kEK}.
For K=2, R/ (y) isthe rectangle (polytope) determined by four points { (0, 0), (y1, 0), (0, y2), y =
(y1, Y2)}. Itiseasy to seethat RX (y) isaconvex setforanyy T RX.

Next, we introduce a set of strings of integers. Let A ={J: J=jij2Ljn, 1£ )i £K, 1£ i £n,
n>0}E{0}. Thelength of astring Jin A is defined as the number of integersin the string and is
denoted by |J|, except that J| = 0 if J= 0. The following two operations related to strings in A
are used in this paper.

Addition operation: for J=jiLj, TA and H = ki Lk TA, then J+H =j;Ljk; Lk TA.
Subtraction operation: for J=j:Lj, TA, H=jiLj, TA, i>0, then J-H =j;Lji.. TA, or
for J=j.1Lji TA, H=ji1Lj, TA, >0, then -J+H =ji.1Lj, TA.

In order to define the mapping A, we introduce a set of nonnegative real numbers
associated with stringsin A. For every Jin A and k (1£kEK), a nonnegative real number a(k, J)
isdefined with O £ a(k, J) £ 1. We assume that at least one of {a(k, 0), 1EkEK} is positive. We
also assume that for at least one pair (k, J) with |J| 3 2, a(k, J) > 0. The nonnegative real numbers
{a(k, J), 1£kEK and JTA} are related to transition probabilities of the Markov chains of interest
and more explicit restrictions on { a(k, J), JTA and 1£kEK} shall be imposed in Sections 3 and 5.

Let N(J, k) be the number of times that the integer k appears in the string J, for 1£kEK and
JTA. Then it is easy to see that |J) = N(J, 1) + N@J, 2) + L + NQJ, K). Let

xPox x Lx, =xM0xNO2 L xNOK) forany JT Aand XTRS. A function a, (): R¥®
11772 Jiay 2 K + K +

R+, isdefined asfollows, for 1£kEK,

a (x) © Qa(k,J)x? = a(k, I)xNIIxNCDL_xNOK) - for xTRE.  (2.2)

JTA JTIA



Themapping A: R ® R isdefined as A (x) = (a; (x), a,(x),L,a, (x))" forx T R
It is easy to see that functions { a, (x), 1£kEK} are nondecreasing, nonnegative, and convex in
their domain. Thus, for any x andy in RS with x £y, A(X) £ A(y), i.e, A isnondecreasing.

Let Fix be the set of fixed points of the mapping A, i.e.,
F,.={x: Ax)=x and xTR/)}. (2.3)

The mapping A and its fixed points play a central role in this paper. The fixed points of
A and the Perron-Frobenius eigenvalues of Jacobians at these fixed points provide information
for a classification of Markov chains with a tree structure. Thus, in the rest of this section, we
study the mapping A and its fixed points (if exist), especially its minimal fixed point. The proofs
in the following two sections are complicated. We suggest that readers use the cases with K=1 or
K=2 to gain geometric intuition of the results and proofs.

2.1 Theminimal fixed point X, of A

We begin this subsection by showing the existence of a minimal fixed point in Fix and
finding its relationship with other fixed points of A.

Lemma 2.1 If Fiy is not empty, then RS (y) isinvariant under A for any y TFix. If Fixis not
empty, then there exists aminimal fixed point Xmin 1 Fix such that xmin £ y for any y TFiy.

Proof. If Fix is not empty, we choose any fixed point y T Fiy. Since the mapping A is
nondecreasing, we have A(X) £ A(y) =y for any x TR (y). Therefore, the set RF (y) is
invariant under the mapping A. Thissimple fact is used repeatedly in this paper.

Now, we construct a sequence of points in R/ (y) that converges to the minimal fixed
point in Fiy if Fixisnot empty. Let x[0] = (0,0, ..., 0)",

X[n+1 =A(x[n]), n30. (2.4)

Since the mapping A is nondecreasing, the sequence {x[n], n30} is nondecreasing. For
any fixed point y, it is easy to see that y 3 x[0]. By induction, it can be proved that y 3 x[n] for
n30. Since the polytope R/ (y) is bounded, {x[n], n30} must converge to a point in R (y) .
Denote the limit as Xmin. Then Xmin £ y. Note that (x[1])x = a(k, 0), 1£EkEK, which implies that
Xmin T 0. This completes the proof of Lemma 2.1.



Next, we explore further the relationship between the minimal fixed point Xmin and other
fixed pointsif Fiy isnot empty. For that purpose, we introduce the following nonnegative matrix
ABx) forany x T RX. Forany x T RX and 1£k, j£K, let

a.® (x) © '”ak_(y) = AN, ak,)x' 0P LxM DT xR, (2.5)

i ly=x JTAIO

Let A¥(x) be a K“K matrix with (k, j)th element &% (x). The matrix AD(x) is called
the Jacobian of A at x (i.e., the matrix of partia differentiation). Apparently, every element of
AW(x) is nondecreasing with respect to every element of x. Let sp(A®Y(x)) be the Perron-

Frobenius eigenvalue of the nonnegative matrix AY(x) (i.e., the eigenvalue with the largest
modulus). For more details about nonnegative matrix, we refer to Gantmacher [7].

Lemma 2.2 Assume that Fiy is not empty. Consider any fixed point y T Fix. Assume that
AW(y) is finite and irreducible. If sp(AP(y)) £ 1, then Xmin = Y. For this case, Xmin = Y is the
only fixed point of the mapping A in RX (y) . If sp(A®(y)) > 1, then Xmin £ y and Xmin 1y. For
this case, there are at least two fixed pointsin RX (y). In addition, sp(A®(xmin)) £ 1 is aways
true.

Proof. For any y TFi, we focus on the polytope RX(y), which is invariant under the
continuous mapping A. According to the well-known Brouwer’s fixed point theorem (see
Goebel and Kirk [9]), there is at least one fixed point of A in R (y). Sincey is afixed point,
we would like to know under what conditions there are fixed pointsin RS (y) other thany. It
turns out that the Jacobian AW(y) of A at y provides complete information to that question.

First, we consider the case with sp(AY(y)) < 1. For any x T R (y), we have A®Y(x) £
ALy, If sp(AD(y)) < 1, then sp(AP(x)) < 1 for all x T RN (y). Suppose that there exists a
fixed point x; T RX(y) and x; 1 y. Consider the closed line segment between x; and y: x(t) =
(1-t)x1 + ty, OEtEL. Denoteby a = (ay, a,, ..., ax) the left eigenvector of A®(y) with ae=1 that
corresponds to the eigenvalue sp(A®(y)), where e is the column vector of ones. If A®(y) is

irreducible, then sp(A®(y)) is positive and the vector a is positive (i.e., every element of a is
positive). Let

b(t) = aA (x(t)), O£tE£1L (2.6)

It is easy to verify that b(t) is differentiable for O£tEl, b(0) = ax;, b(1) = ay, and bi(t) =
aAP(x(t)(y-x1). By the mean-value theorem in calculus, we must have b(1) - b(0) =
bt(x)(1-0) for some x between 0 and 1 (O<x<1). That leadsto (note that y=3x;)



a(y -x,) =aA Y (x(x))(y - ;) £ aA V(y)(y - x;) = sp(A D (y))aly - x,). (27)

Sincey —x; 30andy —x1 1 0, we have a(y — x1) > 0. Then equation (2.7) leads to sp(AP(y)) 3
1, which contradicts sp(A®(y)) < 1. Therefore, if sp(AY(y)) < 1, then Xmin = y, which implies
that xmin = y isthe only fixed point in R (y) .

Second, we consider the case with sp(A®(y)) = 1. Since at least one string J with |J| 3 2
has a(k, J) > 0 for some k, we must have A®P(x) £ AY(y) and AP(x) + AW(y) for any interior
point x of RX(y) (i.e., x with xc <y for 1£kEK). Since A®(y) is irreducible, we must have
sp(AY(x)) < sp(AP(y)) = 1 for x such that x < yi for all 1EKEK. Similar to the above case with
sp(AY(y)) < 1, it can be proved that there is no fixed point in the interior of R (y). Now,
suppose that there exists another fixed point z = (i, ..., i, Zi1, ..., Z)" With 1£i<K and z < yi
for i+1£kEK. Then we consider amapping A = (a,,(X), ..., &, (X))" with x, = yi for 1£KEi and z
£ x £ yi for i+1£kEK, i.e., A is a mapping from RS to RX™ with variables {x,, i+1£KEK}.
The vector (yis1, ..., k)" isafixed point of A. The vector (Zs1, ..., )" isafixed point of A in
theinterior of R ((Y,,;,.. Y )') . If we denote

gA A0

A(l) — I,
WEa aj

(2.8)

then the corresponding Jacobian of the mapping A is the matrix A, at the point y. Since AY(y)
is irreducible, we must have sp(As) < sp(A®(y)) = 1. Then by equation (2.7), we know that the
mapping A cannot have any fixed point in int(RS" (Y., Y<)")). This contradicts the

assumption that (zs1, ..., )" is an interior fixed point of A. Therefore, A does not have any
fixed point that islessthan y.

Lastly, we consider the case with sp(A®(y)) > 1. We want to show that there is another
fixed point in R (y). Theideaisto cut an area around y in R/ (y) and show that there is a
fixed point in the remaining area of R (y). The area to be cut from R/ (y) is defined as

{x - xTRN (y), ax > ay - e} for some positive e. Note that the selection of the direction a is
critical for the following proof. Then the area still under consideration is

RX(y,e) = {x: xTRX(y),ax £ ay - e}. (2.9)
It is easy to see that if e is positive and small enough, both R (y,e) and RS (y)-RX (y,e) are

not empty and convex. Figure 2.1 shows the relationship between all the subsets involved and
explains geometrically why this approach works for K=2.



For any X3 in the subset {x - xTRS(y),ax=ay - e} , Which is the common boundary of
the removed area and the remaining area, we introduce the closed line segment x(t) = (1-t)x, +

ty, OEtE1, to link x; and y. Considering the function b(t) defined in equation (2.6) and using the
mean-value theorem, we obtain

ay -aA (x;) =aA? (x))(y - x,)

(2.10)
= (A O (y)aly - x,) + afA @ (x(x)) - A Y (y) |y - x,).

Equation (2.10) and ax; =ay —e leadto

aA(x)=ay-e-(PAYY)-De+alA®y)-AYx)fy-x). (211

We can choose small enough e so that a|A Dy)-A® (x)J£ (sp(A @ (y)) -Da for al
{x: xTRX(y), ax 2 ay - e}, since sp(A®(y))-1>0, a is positive, and A®(,) is continuous at y.
Then equation (2.11) leads to aA(x;) £ ay-e, i.e,A(x,) TR (y,e) for any x; in the border set
{x - x TR (y),ax=ay - e}.

A
(Y1, ¥2)
Y2
a
R+(y, e) v
e
>

Y1

Figure 2.1 The convex set R+"(y, €) when K=2

For any XT R (y,e), consider the closed line segment between x and y: x(t) = (1-t)x +
ty, OEtE1. The projection of x(t) on the direction a is given by ax(t) = (1-t)ax + tay. Then we
have ax(0) = ax £ ay— and ax(1) = ay. Since ax(t) iscontinuousint, it iseasy to see that there
exists t; such that Of t; £1 and ax(t;) = ay-e, i.e, x(t1)) = (1-t1)X + t1y is in the border set
{x: xXTRX(y),ax=ay-e}. Since x £y, we have x £ X(t2), which implies that aA(x) £
aA(x(t)) and AX)TRS (y,e). Therefore, RX (y,e) isinvariant under A. By Brouwer’s fixed



point theorem (see [9]), there must be a fixed point in R/ (y,e). Thus, the minimal fixed point
must bein R (y,e) T RX(y).

Since sp(A®(y)) > 1 for any fixed point y implies that there is another fixed point smaller
than y, we must have sp(A®(Xmin)) £ 1. This completes the proof of Lemma 2.2.

Lemma 2.2 shows that the Perron-Frobenius eigenvalue of AY(x) is always equal to or
less than one at the minimal fixed point (if exists), while it must be larger than 1 at all other fixed
points (if exist). Intuitively, sp(A®(y)) £ 1 at afixed point y implies that A(x) is not increasing
faster than x around the fixed point y at least in the direction a. Since AY(x) is nondecreasing
with respect to each variable x, it is clear that A(x) is not increasing faster than x in R (y).
Since A(0) 3 0, then y is the first point that x catches up with A(x). Therefore, thereis no fixed
point within RS (y). If sp(A®(y)) > 1 at the fixed point y, A(X) is increasing faster than x
around the fixed point y in at least one direction (i.e., @). Thus, A(x) is catching up with x
around y in Rf(y). Since A(0) 3 0, there must be a point within R (y) where A(x) falls
behind x, i.e., there is another fixed point within R (y).

Note: The irreducibility of A®(y) has much to do with the irreducibility of the Markov chains

considered in this paper, though they are not equivalent. Theirreducibility of AX(x) implies that
the corresponding Markov chain can go from one type of node to any other types of nodes.

2.2 A larger fixed point if Sp(A® (Xmin)) < 1

Lemma 2.2 shows that sp(A(y)) > 1 at any fixed point y implies that there is a smaller
fixed point. In this subsection, we show that if sp(A®(y)) < 1 at any fixed point y, then thereisa
larger fixed point. Since the minimal fixed point Xmin iS NONZzero and Xmin is the only possible
fixed point with sp(A®(Xmin)) < 1 (Lemma 2.2), we shall focus on Xmin. We assume that the
Jacobian AW (xmin) isirreducible.

Denote by Xmin+ RS ={y:y = Xmin + X for x TR }. We shall prove that there is another
fixed point (other than Xmin) iN Xmin + R if SP(A® (Xmin)) < 1 and AD(Xmin) is irreducible. The
idea is to identify a subset in Xmin + R/ that contains a fixed point and then to find the fixed
point in the subset. For that purpose, let us consider the function

b,(t) =aA(x,, +td), t30, (2.12)

min

for any direction d TR, which is normalized by ad = 1, where a is the left eigenvector of
AB(xin) corresponding to the eigenvalue sp(A® (xmin)). The vector a is normalized by ae = 1.



The function bq(t) is the projection of the vector A(Xminttd) on the direction a. Since a is
positive, the function bq(t) is well-defined for any directiond in R . It iseasy to verify that

ba(0) = aA(Xmin) = aXmin; (2.13)
btg(t) = aA®P(Xminttd)d, and btg(0) = aAD (Xmin)d = SP(AD (Xmin)) < 1.

Since every element of A®(xmin+td) is a nondecreasing function of t, bty(t) is a nondecreasing
function of t. Thus, by(t) is nondecreasing and convex. We also consider alinear function ly4(t) =
a(Xmin * td) = aXmin + t, for t30. Itisclear that

14(0) = axmin, lta(®) =1, and ltg(0) = 1. (2.14)

The function ly4(t) is the projection of the vector xmin + td on the direction a. Comparing the
functions by(t) and l4(t), we know that they have the samevalueat t = 0. But by(t) is smaller than
l4(t) for small and positive t. If bty(t) isincreasing to infinity ast goes to infinity, then by(t) will
eventually pass l4(t) when t goes to infinity. That implies that there is a finite and unique point
t4>0 such that by(tg) = l4(tq). Note that tqy can be infinite for some direction d. Now, we define

Wy = {Xmin + t4d: d’l\RJrK ,ad=1, bd(td) = Id(td)}
={ Xmin + X: @AXmin+X) = a(Xmin+X) and XT R} }. (2.15)

Apparently, any fixed point in the set xmin + RS must be in the set Wa. Thus, we shall focus on
W, and identify possible fixed point(s) of A in the set W,. Next, we introduce a subset of
R that is associated with W,. Let

Ga ={ Xmin+ X: $y such that Xmin +y TWg and x = ty for some O£tE1}. (2.16)

Intuitively, G, is a convex hull generated by al the pointsin W, and Xmin. In other words, G; is
obtained by cutting the convex cone xmin+ R/ by Wa. We have the following result about Gs.

Lemma 2.3 For any point Xmin + X 1Ga, 8A(XmintX) £ a(Xmin+X). The set G, is convex.

Proof. For any Xmin + X 1Ga, we must have x = td for some dTRX with ad = 1 and some
Oft£ty. By definition, aA(Xminttd) = bg(t) £ l4(t) = @Xmin + t = a(Xmint td).

Note that the function aA(x) is a convex function of x. For any two points Xmin+x and
XmintZ in G5 and 0<I<1,

aA (I (Xmin + X) + (1_ I)(Xmin + Z)) £laA (Xmin + X) + (1_ I)aA (Xmin + Z)
£ Ia(Xmin + X) + (1_ I)a(xmin + Z) (217)
= a[l (Xmin + X) + (1_ I)(Xmin + Z)]

10



Since XmintX and Xmintz arein Wy, it can be shown that, in the direction I (Xmin+X)+(1-1)(Xmint+2),
there is afinite point in W5. Thus, 1(XmintX)+(1=1)(Xmint+2) isin G,. Therefore, G, is a convex
set. This completes the proof of Lemma 2.3.

Lemma 2.4 For any point Xmin + X TWa, either A(XmintX) = (Xmin+ X) = 0 holds or the vector
AXmin +X) — (Xmin + X) is perpendicular to a.

Proof. Suppose that Xmin+ X TWa and A(Xmin+ X)  Xmint X. The vector A(Xmin + X) — Xmint X)
isnot zero. By definition, aAXmin + X) = a(Xmint X) If Xmint X TW,. Then a[A(Xmin + X) = (Xmin
+Xx)] =0, i.e.,, AXmin*+ X) — (Xmin + X) is perpendicular to a. This completes the proof of Lemma
24.

Let S, = {x: ax =0}, i.e, the hyperplane that is perpendicular to a. Notethat S, isa
subspace of the dimension K-1. By Lemma 2.4, A(Xmin + X) iSin the affine set Xpyin + X + §; for
any Xmin+ X TWa.

Lett =inf{ty: dTRX}. Next, we show that t>0, i.€., Xmin iS N0t in Wa and Xpin is not the
limit of any convergent sequencein W.

Lemma25 Theconstant t is positive, i.e., t > 0.

Proof. If t =0, then there exists a sequence {d(n), N30} such that tym ® 0 when n ® ¥. Since
d(n) TRX with ad(n) = 1, the sequence {d(n), N30} must have a convergent subsequence.
Denote the limit as d(¥). Since btgw(0) = sP(A® (Xmin)) < 1, we must have that tyey > 0, which
contradicts the fact that tyn ® 0 when n ® ¥. This completes the proof of Lemma 2.5.

To show that there is afixed point of A in W5, we consider the boundary of W,. Thisisa
typical method used in fixed point theory. Let fWa = {Xmin + X: Xmin + X TW5 With at least one X
=0}, i.e., the boundary set of W,. For convenience, we shall use Wa— Xmin for {X: Xmin + X TWa}
and TWa— Xmin fOr {X: Xmin + X TWg with at least one x, = 0} .

In order to identify a fixed point of the mapping A on W,, we need to know the
topological degree of the mapping A(XmintX)—(XmintX) a the vector zero on the set Wa— Xnmin.
Consider a mapping U: Wa— Xmin ® S, (satisfying certain conditions). We shall denote the
topological degree of the mapping U at the vector zero on the set Wa— Xmin as r(U, Wa—Xmin, 0).
Let U™(0) = {Xx T Wa— Xmin: U(X) = 0}. Then the topological degree of U at the vector zero is
defined as the sum of the signs of the determinants of the Jacobians at the pointsin U™(0), i.e.,

r(U, Wa—Xmin, 0) = & Sign(det(U @ (x))) , (2.18)

xTU 1(0)
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where det(-) is the determinant of a matrix and sign(x) = 1 if x>0, 0 if x=0; -1 if x <0. We refer
to Garcia and Zangwill [8] and Lloyd [15] for more details about the topological degree of a
mapping. In generd, if the topological degree is nonzero, U has at least one zero point in its

domain. Thefollowing lemmaisthe key in identifying the fixed point of the mapping A in Wi.

Let t = sup{ts; dT RS}, which is attained at direction d” and can be infinite. By
definition, we have
Xmin +t*d* = argg"lp{a(xmin + X): Xmin + XTWa} ' (219)
Lemma 2.6 Assumethatt isfinite. Then A(x) has at least one fixed point in Wa. If A(XmintX)—
(XmintX) is nonzero for x in the boundary set {W,— Xmin, the topological degree of the mapping
AXmintX)—(XmintX) at the vector zero on the set Wa— Xmin IS NONzero.

Proof. First, we consider a specia case K=2 (see Figure 2.2). According to Lemma 2.3, G, isa
convex set. Then W, is a convex set (surface) as well. If K=2, the set W, has two points
{XmintX(1,0), XmintX(0.1)}, Where XmintX1,00 = (Xmin, 1+Y1, Xmin, 2) @d Xmin+X(0,1) = (Xmin, 1, Xmin, 2+Y2)
with y;>0 and y,>0. The hyperplane S, has one dimension. Denote by u = (u, Up) the only
nonzero direction in S,. Since au = 0, we must have u;u, < 0. Assume that u; < 0 and u, > 0.
By the definition of Wy, for any Xmintx in W5, we must have A(XmintX) = (XmintX) + Scu for some
real number s,. Suppose that A(Xmin, 1+Y1, Xmin, 2) = (XmintX(1,0) + StU ad A(Xmin, 1, Xmin, 2+Y2) =
(XmintX@©1) + S2U. If 51 or 5, is zero, we already find a new fixed point of the mapping A.
Otherwise, since the set Xmin+ R/ isinvariant under A, itisclear that s, >0and s, < 0. Since A

is a continuous mapping on W,, s must be a continuous function of x. Therefore, there must be
apoint Xmintx on W, such that s, = 0, i.e., A(XmintX) = (XmintX). This completes the proof of the
case K=2.

The key in the above proof is that the mapping A(XmintX)—(XmintX) © Ui(X), which is
well-defined on Wa— Xmin With its image in the subspace S, has atopological degree of 1 or —1 at
the vector zero on the set W5 — Xmin, i.€. 1(Uz, Wa—Xmin, 0) = 1 or —=1. Thus, according to degree
theory, U1 must have a zero point on Wa— Xmin (U1(X) = 0), i.e., A has afixed point on W,. To
extend the results to the general case K>2, the main task is to show that the topological degree of
U; isnonzero (possibly 1 or —1).

For any point Xmin+X in fWa, we denote its projection on the linear line xmntta' as
Xminttxad', Where t, o= ax/(aa'). Consider the vector Xminttxad' — (XmintX) = txa@ — X.
Apparently, the vector txaa' — X isin Si. We introduce a mapping Us(X) = txa@' — X: Wa—Xmin
® S.. Choose a specia direction h = a'/(aa") and z = t;h. Then it is easy to see that t,» =
t/(@aa’) and Ux(2) = t,na' —z = 0. So, z isthe point where a vector penetrates the set Wa—Xmin in
the direction a. Therefore, the mapping U, has one and only one zero point on Wa—Xmin Since G,
isconvex. Since Wa—Xmin IS a connected area, then the topological degree of U at the vector zero
on Wa—Xmin must be either 1 or -1, i.e., r(Uz, Wa—Xmin, 0) = 1 or —=1. Intuitively, the vector a is

12



positive so that TWa—Xmin touches every hyperplane of R. Since the set G, is convex, if x goes

around TWa—Xmin, txa@' — X Will circle the direction a' exactly once. Thus, the topological
degree of U, iseither 1 or —1.

X:
2 X(01)

Xmin:(xmin, 1y Xmin, 2)

Figure 2.2 The set W, when K=2

Now, we go back to the mapping Ui(X) = AXmintX)—(XmintX): Wa—Xmin ® S;. We show
that the mappings U; and U, are homotopic. Consider the homotopy h(l, x) = 1Uy(x) +
(A-DUx(x): [0, 1]” (Wa=Xmin) ® Ss. Itisclear that h(l, x) is continuous and h(0, x) = Ux(x) and
h(1, x) = Uy(x). Also, we claim that h(l, x) has no zero point on [0, 1] (TWa—Xmin). If theclaim
is not true, we consider three cases: 1T(0, 1); 1=0; and 1=1. If 1'T(0, 1), suppose that there
exists (1, X)T(0, 1) (fWa—=Xmin) such that 0 = h(l, x) = IU(x)+(1-1)U(x). Then Uy(x) = —
(/1-1)Uy(x), which leads to

AXmintX) = XmintX — (V1 =1)(t@a' —x). (2.20)

If x T Wa—Xmin, then at least one of the elements of x is zero. Since a is positive and 1 is less
than 1, equation (2.20) implies that A(XmintX) T Xmin+tR/), which contradicts the fact that
A(mintX) T XmintRS. For instance, if x; = 0, then the first element of the vector x —
(V1-1)(t,a"—x) isthefirst element of (1/1 —1)t,a’ , which is negative.

If 1 =0, h(0, x) is nonzero since Uy(X) is nonzero on TWa—Xmin. If 1 = 1, h(1, X) is
nonzero since Uy(X) is nonzero on Wa—Xmin; Otherwise, we have found a larger fixed point of A
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on the boundary set. Therefore, we have proved that the homotopy h(l, x) is nonzero on
[0, 1]” (fWa—Xmin) if A isnonzero on W,.

According to degree theory, U(x) and U,(x) must have the same topological degree at the
vector zero on Wa—Xmin (With their image in S,), i.e., r(Uz, Wa—Xmin, 0) = r(U1, Wa—Xmin, 0) * 0.
Then the mapping U has at least one zero point on Wa—Xmin. Since A(XmintX) = XmintX + U1(X)
for x TWa, it is clear that A has at least one fixed point on W,. This completes the proof of
Lemma 2.6.

Intuitively, the mapping A becomes zero at every point in W4 in the one-dimensional
subspace {ta, ¥< t < ¥}. The mapping A becomes zero in the subspace S, at a point in Wy
where the mapping U1 becomes zero. Since the product space SiA{ta, —¥< t < ¥} isthe whole
space, we know that A becomes zero in xmin+ R at that point in Wa.

Lemma 2.7 Assume that A®(xyin) is irreducible. Then sp(A®(xmin)) < 1 if and only if there
exists another fixed point z TFiy such that z 3 Xminand z  Xnin.

Proof. Itiseasy to seethat the conclusions hold if K=1. Next, we consider cases with K>1.

If there exists a fixed point z TFiy such that z 3 Xmin and Z 1 Xpin, then we consider the
closed line segment x(t) = (14)Xmin + tz, OEtEL and b(t) = VA(X(t)), where v is a nonnegative
vector to be determined. By the mean-value theorem, we have v(z-Xmin) = b(1) — b(0) = bt(x) =
VAD(X(X))(z-Xmin) for some x between 0 and 1. Choose v to be the eigenvector of AY(x(x))
corresponding to the eigenvalue sp(AP(x(x))). The matrix AY(x(x)) is irreducible since
ADx(x)) 3 AP(xmin). Then v is positive, which implies that sp(AP(x(x))) = 1. If y isin the
interior of R/ (z), then we have sp(A®(Xmin)) < sP(AD(x(x))) = 1. Otherwise, some of the
components of z equal their corresponding components in Xmin. This case can be dealt with in a
way similar to the sp(A®(Xmin)) = 1 casein Lemma 2.2.

Now, assume that Sp(A®(xmin)) < 1. We consider the set Xmin + R . We distinguish two

cases: 1)t <¥;and 2) t =¥. First, suppose that t < ¥. By Lemma 2.6, A must have a fixed
point larger than Xmin.

Second, suppose that t* = ¥. Then there must be some direction d such that bg(t) =
aA(Xmin+td) < @Xmin + t for al t > 0. That implies that btg(t) = aA®(Xmin+td)d < 1 for al t>0.
Since A®(xmin) is irreducible, such a direction d must have at least one zero component.
Supposethat d = (d, ..., d, O, ..., 0) with positive {dy, ..., d}. Since a is positive, AP (Xmin+td)
is independent of dy, ..., and di. Then A(XmintX) isalinear mapping with respect to {xy, ..., x}.
Then we have
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: :
s=(1-A)" 1 5 (2.22)
; G4

e

where | is the identity matrix. The matrix | — A, is invertible since sp(A;) £ SP(AD( Xmin)) < 1.
Now, we consider a new mapping A; with variables {x.1, ..., X<} only, obtained by replacing
{x1, ..., x} in {a,;(X), ...,a, (X)} with the right hand side of equation (2.22). Apparently, the
Perron-Frobenius eigenvalue of the Jacobian of A; a Xnin iS less than one and every element of
the Jacobian is an increasing function with respect to every variable {X1, ..., Xx}. Thus, A;
must have a fixed point larger than {Xmini+1, ..., Xmink}. (Note that the induction method is

utilized here.) Therefore, A must have afixed point larger than Xmin. This completes the proof
LemmaZ2.7.

Summarizing the results in this section, we obtain the following relationship between the
Perron-Frobenius eigenvalue at a particular fixed point and other fixed points.

Theorem 2.8 Assume that Fix is not empty. Consider any fixed point y TFi. If AB(y) is
irreducible, then

1) sp(A®(y)) < 1if and only if there exists alarger fixed point of A, i.e, $ z TFi,z3y and
z1y,andy isthe minimal fixed point;

2) sp(AP(y)) = 1if and only if y isthe only fixed point of A;

3) sp(AP(y)) > 1if and only if there exists a smaller fixed point of A, i.e, $z TFix, Z£Y
andz1y;

Proof. Obviousfrom Lemmas2.1to0 2.7.

3. MARKOV CHAINSOF M/G/1TYPE WITH A TREE STRUCTURE

From now on, we shall view each string JTA asanodein a K-ary tree. In the K-ary tree,
each node J has a parent node and K children {J+1, J+2, ..., J+K}, except that the root node J =
0 that has no parent node. The node J+k is called atype k node. The following Markov chain
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{Cn, n30} of M/G/1 type with a tree structure was introduced in Takine, et a. [22]. The
transition probabilities of the Markov chain are given as:

P{C., =J+H|C =J+K =a(k,H), for ITAHTAILEKEK; (3.1)
P{C.,=H|C, =0 =b(H), for HTA '

From the definition, it is clear that in one transition, the Markov chain can move from the
current node to its parent node or any descendent node of its parent node. The transition
probabilities depend only on the type of the current node. By the law of total probability, we
must have

Qak,Jd)=1 1£kEK; QbU)=1 (3.2)

JTA JTA

Such a Markov chain {C,, n30} is called a Markov chain of M/G/1 type with a tree
structure. We are interested in the classification of this type of Markov chains. Recall that eisa
column vector of ones.

Theorem 3.1 (Theorem 3.2, HE [11]) Assume that the Markov chain {C,,, n20} isirreducible
K
and aperiodic, § b(J)N(J, j) <¥, and the matrix AY(e) is irreducible. Then the Markov

JTA j=1
chainis

1) positive recurrent if and only if sp(A®(e)) < 1, i.e,, there is afixed point of A that is
larger than g

2) null recurrent if and only if sp(A®(e)) = 1, i.e., eisthe only fixed point of A;

3) transient if and only if sp(A®(e)) > 1, i.e, thereis a fixed point of A that is smaller
thane.

Note. In HE [11], the matrix A®Y(e) was constructed by using the mean-drift method. But the
results in HE [11] do not show the relationship between the classification conditions and the
existence of the fixed point(s) of A. We also note that, by equation (3.2), e T RS isaways a

fixed point of the mapping A. For this case, the classification conditions are explicit in terms of
the original system parameters because e is a natural and explicit fixed point of A. According to
equation (2.5), the (k, j)th element of A®(e) can be interpreted as the mean number of
appearances of the integer j in a transition starting from a type k node. Theorem 3.1 indicates
that if the mean drift away from the root node (which is measured by sp(A®(e))) is large enough,
the Markov chain becomes transient.

Proof. We use Theorem 3.2 in HE [11] and Theorem 2.8 in this paper to prove the theorem.

The proof of part 1) is the same as that of Theorem 3.2 in HE [11]. The main tool used in this
part of the proof is the mean-drift method (Cohen [2] and Fayolle, et a. [3]). By Theorem 2.8,
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the condition sp(AY(e)) < 1 is equivalent to the existence of another fixed point of A that is
larger than e. Part 2) is obtained from part 1) and part 3). Next, we prove part 3).

According to Takine, et a. [22] (dso see HE [12]), the minimal fixed point Xmin equals
the vector G = (Gy, L, G)', where the element Gy is the probability that the Markov chain will
eventually reach its parent node from the current type k node. Apparently, at least one of these
{Gy, L, Gk} islessthan oneif the Markov chainistransient, i.e., G £ eand G * e. According to
Theorem 2.8, sp(AM(G)) £ 1 is always true, which is consistent with Corollary 3.3 in HE [12].
If sp(AY(€)) > 1, G = Xmin £ eand Xmin T € Thus, some of {Gy, G, ..., G} areless than one.
Therefore, the Markov chain is transient. On the other hand, if the Markov chain is transient,
Xmin = G < e holds in the sense that Gx < 1 for 1£KEK, since the Markov chain is irreducible.
According to Theorem 2.8, we must have sp(A(l)(e)) > 1. This completes the proof of Theorem
3.1

According to Theorem 3.1, there are two ways to classify a Markov chain of M/G/1 type
with a tree structure. The first one is to utilize the fixed point e and calculate the Perron-
Frobenius eigenvalue sp(A®(e)). The second approach is to find another fixed point y that is
larger (smaller) than e. If alarger (smaller) fixed point y can be found, with some additional
conditions, the Markov chain is positive recurrent (transient).

Note: Recently, we learned that Theorem 3.1 (or Theorem 3.2 in HE [11]) can be obtained
partially from a classical result in the theory about multi type branching processes. According to
the result (see Theorem 2, pp 186, Athreya and Ney [1]), the Markov chain of interest is recurrent
if and only if sp(A®(e)) £ 1 and the Markov chain is transient if and only if sp(A®(e)) > 1. But
the classical results do not distinguish the positive recurrent and null recurrent cases and do not
offer geometric insight into the classification conditions. Furthermore, it seems unlikely that the
classical results can be applied to the matrix case (Section 4) or the GI/M/1 case (Section 5).

4. GENERALIZATION TO MARKOV CHAINSOF MATRIX
M/G/1TYPE WITH A TREE STRUCTURE

In this section, we generalize the results obtained in Sections 2 and 3 to Markov chains of
matrix M/G/1 type with a tree structure. As shall be shown, there is a fundamental difference
between the matrix case and the scalar case. Thus, the generaization is not straightforward.
Therefore, we shall only generalize Lemmas 2.1 and 2.2 and the main results in Section 3 to the
matrix case.

4.1 Propertiesof themapping A: M* ® M*

Let My, be the set of all m” m substochastic matrices (i.e., for XTM, Xefe), wheremisa
positive integer. For X TMy, 1£KEK, let
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0
.. (4.2)
:

Let M be the set of al such X, i.e, M\ = My My ¥4” My, the cross-product of K
number of My, If m=1, itisclear that M* = R (e). If m=1,x=(0, 0, ..., 0)" is the smallest
vector and x = e is the largest in R (). If m>1, X = 0 is till the smallest element in M.
However, thereis no single largest element in M. Let

MX (@D ={X: XTM, and X is stochastic (i.e., Xxe = €) for 1£kEK}. (4.2
M) and M5 (1) aretwo convex sets. The product of matrices is defined as follows:

X =X LX, X, for XTMX, J=jj, L jyiyTA. (4.3)

TRt 2" h
Note that the order of the multiplication mattersin the matrix case.

Let {A(k, J), JTA and 1£kEK} be a set of m™m matrices in M. The matrices { Ak, J),
1£kEK and JTA} satisfy

A Ak Je=e 1EKEK. (4.4)

JTA

Then the mapping A: MX ® M isdefined as follows:

A (X) = QAK DNXD, for XTMK, 1£K £ K;

2 A (X)0 (4.5)
AX)=¢ I =
EAL(X),

For any X in M with matrices { Xy, Xz, ..., X} and Y in M with matrices{ Y3, Yz, ...,
Yy}, if Xc £ Y for 1£KEK, then we say X £ Y. It is easy to see that the mappings { A (X),
1£kEK} are continuous and nondecreasing, i.e., for any X and Y in M with X £Y, A(X) £
A(Y). The set of fixed points Fixm of the mapping A in M isdefined as

Fim ={X: A(X)=X and XTM}. (4.6)
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Note that Fix m includes only stochastic and substochastic fixed points, which is different from Fi,
defined in Section 2. Due to condition (4.4), both M (1) and M are invariant under the
continuous mapping A. By Brouwer’s fixed point theorem, A has at least one stochastic fixed
point. Thus, Fixm is not empty. We denote by Xmin the minimal fixed point (if exists) in Fixm.
Next, we show the relationship between the minimal fixed point and other fixed points. Let
M (X) ={Y: YTM" and YEX}.

Lemma 4.1 Assume equation (4.4) holds. Then M " isinvariant under the mapping A and Fixm
is not empty. If XT Fixm, the subset M X (X) isinvariant under the mapping A. In addition, the
subset M < (1) isinvariant under the mapping A. Thus, the mapping A has at least one stochastic
fixed point.

Proof. The conclusions are obtained by the monotonicity of the mapping A and equation (4.4).
This completes the proof of Lemma4.1.

The minimal nonnegative fixed point of A can be computed by using the following
iterative method: let X[0] have Xy = O (zero matrix), 1EKEK, and X[n+1] = A(X[n]), n31. Then
the sequence { X[n], N30} converges monotonically to Xnin. A stochastic fixed point of A in
M, (1) can be calculated by using the following iterative method: let X[0] have X = ee'/m,
1£kEK, and X[n+1] = A(X[n]), n31. Then, if the sequence { X[n], n20} converges, it converges
to a stochastic fixed point of A.

Lemma 4.2 There exists aminimal fixed point Xmin such that Xmin « £ Xk, 1EKEK, for any fixed
point X = (X1, X2', ..o, Xk )' T Fixm , i.€., Xmin £ X.

Proof. The proof issimilar to that of Lemma2.1. This completes the proof.

Similar to equation (2.5), we define the following matrices.

N(O,k,X)=0, 1EKEK,JTA XTMS;
[9]-1

NI,k X)=dg; gl + éd{jn:k}x LX, ,1£kEK,JTA J10XTM,;; (47)
n=1

j|J|Xj|J|71
AL (X)= A AKIING, [,X), LEk jEK,XTME,

JTA J10

where d;; is an indicator function. The function N(J, k, X) is similar to N(J, k) for m=1. We
assume that all the summations in equation (4.7) are finite. Define an mK”mK matrix AY(X)
with its (k, j)th block Ak(}) (X). We cal AD(X) the differentiation matrix of A at X.

Apparently, every element of AY(X) is nondecreasing with respect to every element of X. Note
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that AY (X) is different from the a7 (x) even when m=1. The two definitions are consistent
onlyifm=landx =e.

Lemma 4.3 Consider any stochastic fixed point Y T Fixm. Assume that AY(Y) isirreducible.
If sp(AP(Y)) £ 1, Xmin = Y. In this case, Xmin =Y is the only fixed point of the mapping A in
MK (Y) (and M), If sp(AD(Y)) > 1, Xpmin £ Y and Xpmin 2 Y. In this case, the mapping A has
at least two fixed pointsin M < (Y) (and M5).

Proof. The proof issimilar to that of Lemma2.2. If sp(AY(Y)) < 1, suppose that there exists at
least one other fixed point in M (Y). We denote that fixed point as X. Then we have the
following calculations.

(4.0 - A ()= éA(k,J)(x(J) ~y0k

= a Ak J) x LX, (in‘Yin)an.l'—Yheg-

JTA J10

(4.8)

Since the mapping A is nondecreasing and X £ Y T MX and Y is stochastic (i.e., Yse = €,
1£kEK), we have, for 1EKEK,

iy "
(A -AMe= & AkINiAX, LX, (xjn-an)eZ
JTA J10 In—
® o i |J$1 0
§A.a A(k"]){d{jpm} ad“ -y X, X, g(xj -Y, )e: (4.9)
JIA ] I

' Q_)Ox T Qlox

Il
iy

Ak(? (X)(Xj - Yj )e-

Let a = (ay, @y, ..., ax) be the eigenvector of AY(Y) corresponding to the eigenvalue
sp(AY(Y)). The vector a is normalized by ae=1, where ay is a vector of the size m, 1£kEK.
Every element of the vector a is positive since AY(Y) isirreducible. Equation (4.9) leads to

0<&a, (K- A00k=Aa, aAk‘”(xxY X,)e

£ é(aA O(v)) (¥, - X,)e=aA O (Y)(Y - X)e (4.10)

j=1

Uo<a(Y - X)ef sp(A P (Y)a(Y - X)e
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The last inequality in equation (4.10) implies that sp(A®(Y)) 3 1, which contradicts
sp(AD(Y)) < 1. Therefore, Y isthe only fixed point in M¥ (Y) and Xmin =Y. Since Y can be
any stochastic fixed point in Fixm, then Fixm, has only one element.

If sp(AY(Y)) = 1, suppose that there is another fixed point X. If X is an interior point of
MK (Y), then ADX) £ AD(Y), ADX) 1 AB(Y), and the vector (Y; — X))e is nonzero and
positive. Then the inequalities in equation (4.10) becomes strict, which leads to sp(A®(Y)) > 1.
Therefore, there is no fixed point in the interior of M (Y). Thisimplies that there is no fixed
point in theinterior of M. If X;e = Yie for somei, then X; = Y; since X; £ Y. Applying the same

method used in Lemma 2.2 in dealing with the case with sp(A®(Y)) = 1, it can be proved that
thereisno fixed point X that issmaller than'Y.

If sp(AD(Y)) > 1, define MK (Y, £e) ={X: aXef 1-e, XTMKX(Y)} and MX (Y, =¢)
={X: aXe=1-e, XTMX(Y)}. Itiseasy to seethat both M (Y,£e) and MX(Y,=¢) are
convex sets. We would like to show that, if e is small enough, the subset M (Y, £e) is

invariant under the mapping A. The geometric intuition of this proof is similar to that of Lemma
2.2. Forany X TM X (Y, =e), by equation (4.9), we have

aA(X)e-aA(Y)e=aAP (X)X -Y)e
=aA D (Y)(X - Y)e+ala @(X)-AOY)X - Y)e (4.11)
= sp(A D (Y))a(X - Y)e+ala O (X) - A D (V)| - V)e

Note that Y is afixed point with Ye = e, 1£kEK, and aYe —aXe =1-aXe =e. Equation (4.11)
leads to

aA (X)e=1-sp(A ¥ (Y)) a(Y - X)e+alA @ (X) -A@(Y)|X - Y)e

ei-e-[pa®v)-1k+ap®m-avoofy-x0e ¢

Since AY(X) is continuous in X and every element of a is positive, we can choose small enough
e such that

ala @ () - AD(X)|£ [soa @ (v)) - 1l (413)

for any X TMX(Y,=¢e). Equations (4.12) and (4.13) lead to aA(X)e £ 1-e for any X
TMS(Y,=¢e),ie, AX)TMS(Y,£e) for any X TMX(Y,=¢e). For any XTMX(Y,£e),
consider the closed line segment X(t) = (1-t)X + tY, O£tEL. Similar to the proof of Lemma 2.2,
it can be shown that there exists t; such that OEt£1, X(t;) TMX (Y, =€) and X £ X(t;). This

implies that A(X) £ A(X(t1)) TM (Y, £e). Thus, we have shown that the subset M (Y, £¢)
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isinvariant under the mapping A. Therefore, there is afixed pointin M* (Y, £e), which is not
stochastic. Thus, the minimal fixed point isnot equal to Y. This completes the proof.

Note: The proof of Lemma 4.3 seems simpler than that of Lemma 2.2, but it works only when a
stochastic fixed point Y is considered.

4.2 Markov chainsof matrix M/G/1 typewith atreestructure

Now, we consider a Markov chain {(C,, hy), n30}, where C, takes values in A and h,
takes integer values from 1 to m. The random variable hy, isan auxiliary variable. The transition
probabilities of the Markov chain are given as, for Jand H in A, 1£kEK,

P{C. . =J+H,h ,=]|C,=J+kh, =i} =(AKk,H))
P{le = H 'hn+1 = J |Cn = O’hn = I} = (B(H))

i 1ELJEM
o (4.14)
1£i, ] £m,

K
where matrices { A(k, J), JTA, 1£kEK} satisfy equation (4.4) and matrices { B(J), JTA} satisfy
é B(J)e=e. Then {(C,, hy), n30} is called a Markov chain of matrix M/G/1 type with a tree

JTA

structure, which was introduced in Takine, et al. [22].

According to Theorem 3.2 in HE [12], the classification of such Markov chains is
determined completely by the Perron-Frobenius eigenvalue of A®(Y) of any stochastic fixed
point Y of the mapping A. The results are summarized in the following theorem.

Theorem 4.4 (Theorem 3.2, HE [12]) Assume that {(C,, hy), n30} isirreducible and aperiodic,
K

S &BI)N(J,k,Y) < ¥, and the matrix AD(Y) isirreducible for a stochastic fixed point Y of

A kel

the mapping A. Then the Markov chainis

1) positive recurrent if and only if sp(A®(Y)) < 1;

2) null recurrent if and only if sp(AY(Y)) = 1;

3) transient if and only if sp(A®(Y)) > 1, i.e, there exists another fixed point of the
mapping A that issmallerthan'Y.

Proof. The matrix AY(Y) was first constructed in HE [12] by using the mean-drift method. The
matrix AY(Y) was denoted as P(Y) in HE [12]. Thus, this theorem is equivalent to Theorem 3.2
in HE [12]. Therefore, we refer to Theorem 3.2 in HE [12] for a proof. We like to point out that
by using Lemmas 4.1, 4.2, and 4.3, an alternative and shorter proof of part 3) can be obtained in a
way similar to the proof of part 3) of Theorem 3.1. Details are omitted. This completes the
proof of Theorem 4.4.
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For the matrix M/G/1 case (m>1), there is no natural and explicit fixed point in M to

provide information about the ergodicity of the Markov chain. Thus, we need to find a stochastic
fixed point in a smaller subset M < (1) - the set of stochastic matrices first. Then information

about the classification problem can be recovered.

Similar to the scalar case, the minima fixed point Xmin can be interpreted as the
probability of the first passage from a node to its parent node (see Takine, et al. [22]). Usualy,
the minimal fixed point Xnmin is denoted as G with m™ m matrices { G, ..., Gk} in matrix analytic
methods. Lemma 4.3 impliesthat sp(A®(G)) £ 1, aresult that was proved first in HE [12]. This
property of G distinguishesit from other (possible) fixed points.

Theorem 4.4 can be used to find stability conditions for various queueing models. For
instance, we consider a discrete time queueing system with multiple types of customers and a
last-come-first-served general preemptive resume (LCFS-GPR) service discipline. In general,
this gqueueing system is not work-conserving. Thus, the usual traffic intensity fails to provide
information about system stability. Under some conditions, the queueing process of this model
can be formulated as an M/G/1 type Markov chain with a tree structure. Then Theorem 4.4 can
be used to find whether or not such a queueing system is stable. Theorem 4.4 can also used to
find whether or not the queueing model considered in HE and Alfa [13] and the communication
system considered in Van Houdt and Blondia[23] are stable. Details are omitted.

5. MARKOV CHAINS of GI/M/ITYPE WITH A TREE STRUCTURE

In this section, we consider a Markov chain of GI/M/1 type with a tree structure {C,
n30} that was introduced in Yeung and Sengupta [24]. We only consider the scalar case. Thus,
we shall use notation introduced in Section 2 as well as the results obtained in Section 2. The
Markov chain {C,, n30} is defined on A. The transition probabilities of the Markov chain are
given as.

PC,.,=J+k|C,=J+H}=a(k,H), for J30,H30,1£kEK; (5.1)
P{C.., =0|C, =J}=b(J), for J30. '
Note that the probabilistic interpretations of the nonnegative numbers {a(k, J), b(J), JTA,
1£kEK} are different from that of Section 3. From the definition, it is clear that in one transition,
the Markov chain can move from the current node to one of its children or any node that is an
immediate child of an ancestor of the current node. The transition probabilities depend on the
type of the targeted node. If J=j;L j,, denote by f(J, i) = jni+1l-jn, for 1£i£n, and f(J, 0) =0, i.e,,
f(J, 1) is the sub-string of J consisting of the last i numbers of J. By the law of total probability,
we have

J
A

b(J)+a§a(k,f(J,i)):L for any JTA. (5.2)

i=0 k=1
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Note that at least one of {a(k, 0), 1EkEK} is positive. An example of the transition structure of a
GI/M/1 type Markov chain with atree structure is shown in Figure 5.1 for K=2.

0 /v 211

2o

2 \‘ 212

22

Figure5.1 Nodes reachable in one transition from the node J=21.

Figure 5.1 shows all nodes reachable in one transition from the node J=21: node 0 with
probability b(21), 1 with a(1, 21), 2 with a(2, 21), 21 with a(1, 1), 22 with a(2, 1), 211 with
a(1,0), and 212 with a(2, 0).

Let us call the node J alevel |J| node. It isclear that, in one transition, a Markov chain of
M/G/1 type can move away from the root node for any arbitrary number of levels, but it can only
move one level closer to the root node. On the contrary, in one transition, a Markov chain of
GI/M/1 type can move severa levels closer to the root node, but it can only move one level away
from the root node. Also for the GI/M/1 case, the transition probabilities {a(k, 0), 1EKEK} are
the same for any (current) node.

Because of the above difference between the M/G/1 and GI/M/1 cases, the analyses of the
two types of Markov chains are dramatically different (Neuts [18, 19], Takine, et a. [22], and
Y eung and Sengupta [24]). That difference extends to the fixed points of the mapping A defined
in Section 2. For the M/G/1 case, e is aways a fixed point, which leads to information for the
classification problem. But eis not, in general, a fixed point for the GI/M/1 case if m>1. Thus,
to find classification conditions, we need to identify a fixed point of A (possibly different from
the minimal fixed point) first.

5.1 A fixed point with elements summingto one

Let

K e
X: ax £1L,xTRK g (5.3
i=1

—)—\—}

1 5 =«
R+Ks=1 =X éxi =1 x1 ng and R+K,sg1 =
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Itiseasy to seethat R/, and R/, areconvex sets. Anexample of the sets R/, and R/,

+,S=1
are shown in Figure 5.2 for K=2.

X2A

1
RK+,S=1

K
R™+ se1

!

0 1

Figure5.2 Thesets R, and R/, for K=2.

We first focus on the subset R,"s_,. We show that the subset R/'s_, isinvariant under A
for the GI/M/1 case.

Lemma 5.1 If equation (5.2) holds and lim max {b(J)} =0, the subset R)._, is invariant

n®¥ JTA: |J|=n 5=l

under A. Thus, there exists at least one fixed point of A in the subset R/_,. The subset R,

+,S=1"

isaso invariant under A. Thus, the minimal fixed point Xmin of A isin Rfsﬂ. Any fixed point

in Rfszl islarger than or equal to the minimal fixed point.

Proof. First, we show that the subset R/s_, isinvariant under A. For any x T R/;_,, we need

to prove that A(x) T Rfszl. That is equivalent to proving that for any nonnegative vector x with

K K
éxk =1, éa; (x) =1 holds. First, we assume that the transition probability a(k, J) = O for any

k=1 k=1
string J with |J[>N, where N is a positive integer. By equation (5.2), we have, for any JTA and
1£j£EK,

b(J) =b(] +J)+ga(k,j +J). (5.9

k=1

If a(k, J) = 0 for any string J with |J>N, then b(J) = 0 for |J] 3 N. We rewrite the sum of the
vector A(x) in the following way.

25



28 ()= A8 § o Izt 6ol
aa=aaakIx’=a a icaak)xy
k=1 8

k=1 JTA n=0 JTA:|J]=n T€ k=1 g (5.5)
NC;l [} ‘Iaé (J)u o iag 0 (J)U .
=a a wa(kﬂx a icaalk,J)xy
n=0 JTA:|3]=n T€ k=1 g JTA|31=N T€ k=1 g g
_N61 o \lﬁé 0 (J)l;l o \!5&5 (J)
=a a icaakd)xVy+ a iactaak,j+JI)x;yx
n=0 JTA:|3]=n T€ k=1 g E; JTAJIEN-1T j=1€ k=1 g
NO_l o \Ia é 0 (J)u o \I (}g (J)
=a a itaakJd)xVy+ a iab(I)x;yx
n=0 JTA:|]=n T€ k=1 g E; JTAPEN-1T j=1 g
No_l o 1&% é (_]) [o] (@)
=a a itaalk, J) X ab(I)x+,
n=0 JTA:|]=n T€ k=1 g JTAJJ|=N-1
in which we have used x;+ X+...+ X« = 1. Now, we move to level N-1, N-2, ..., and carry out
the following calculations:
8 [E¥ 6.oml, 3 ‘Iéae o U
aax=a a itaalkJ)x"y a ia¢b(] +J)+aa(k j+3)7X;yX
k n=0 JTA:|3]=nT€ k=1 g g JTA -2Tj=1€ ?)/ (5.6)
N2 o I S o 1 5 .
=a a icaak J) 0y fab(J)x X
n=0 JTA: Jl=n T k=1 JTAJ=N-2T j= g
_ NC;Z o I@ IC<> (J) o 3 — _ (}g _
=a a icaak, J) X ab(I)x™ =L =g a(k,0) +b(0) =1.
n=0 JTA:|J|=n T€ k=1 g g JTAJ|=N-2 k=1

Therefore, the subset Rfs _, isinvariant under the mapping A. Since R s Isconvex and A is
continuous, A has at least one fixed pointin R/, .

For the general case, we prove the result by taking N to infinity. Since {a(k, J), JTA,
1£kEK} and x are al nonnegative, by the monotone conver gence theorem, we have

K . K K é u
aa=adakdx?=ge QakxV+ Qak,)xVy
k=1 k=1 JTA k=1 BITA |JIEN JTA|J]>N 1]
(5.7)
méa Qa(k J)x“)g
N®¥ k:1§JTA:|J|£N , 5

By equations (5.6) and (5.7), we have

26



) ..
ég Bk 0% b - éb(J)x<J>§
JIAJIE

Qo
m *

¥

=~

11

iy
q —\—)

k=1 g JTAPEN JTA|J|=N

(5.8)
é u
=1-limg QbI)xP§31- limé max {b(J)}“-
i

BITA DI=N N®¥@JIA|J| N

Equation (5.8) also shows that aak (X) £1. Thus, the subset R -1 ISinvariant under A. By

k=1

Brouwer’ s fixed point theorem, A has at least one fixed point in R Py

For any nonzero point x in R s XI(Xe+ X+ + Xg) isin RS o1+ SINCE X1+ Xot...+ X< £
1, we have x £ x/(Xi+ Xo+...+ x¢). It is then easy to see that A(X) £ AX/(Xa+ Xo+...+ X)) T
RS T RS- Thus, the subset R/, isinvariant under A. It is apparent that the minimal

fixed point isin R 'se1 and the fixed point in RS 's-; islarger than or equal to the minimal fixed
point. This completes the proof of Lemma4.1.

According to Theorem 2.8, any fixed point in RS ‘s Pprovides information about the

minimal fixed solutions in the subset R/,,. Thus, we need to find afixed point in R/;_,. For

that purpose, we propose the following simple computational procedure. Let x[0] = €/K, and

x[n+1] = A(x[n]) for n30. Then the sequence {x[n], N30} must have a convergent subsequence

since the subset Rfszl is bounded and tight. If the sequence {x[n], n30} converges, we denote
K

the limit asy’, which isafixed point with &y, =1 and y" = A(y"). Thefixed pointy" playsan

k=1
important rolein classifying Markov chains of GI/M/1 type with atree structure.

For later use, we prove the following interesting result.

Lemma 5.2 For {a(k, J), b(J), JTA, 1£kEK} satisfying equation (5.2), i lim TT?X {b(J)} =0,

and any xTR/,_,, we have

K
b()= § xMQalkH+J), JTA (5.9)

HTA H20 k=1

K
Proof. By equation (5.4), b(J) =b(j +J)+Qa(k, j +J), for JTA and 1£j£K. For any x T

k=1
R ., and JTA, we have
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= = * (5.10)

s 6 s 6 & S 6
=aaxxpbli+j+d)+raaaxxaki+j+d)+aaxakj+Jd)

i=1 j=1 i=1 j=1 k=1 j=1 k=1

S x(H)aEaa(kH+J)—

HTA H0 ekl

Note that we used the assumption I|m max {b(J)} =0 in equation (5.10). This completes the

®¥ JTA |J|=n
proof of Lemmab.2.

Note: Lemma 5.1 can be obtained from Lemma 5.2. Letting J=0 in equation (5.9) and adding
{a(k, 0), 1£kEK} on both sides of equation (5.9), it is easy to see that A(x) isin R* s forany x

T R/.,. Thus, theset R/, isinvariant under the mapping A. Therefore, A has afixed point
inRS.,.

5.2 Classification of Markov chainsof GI/M/1 typewith atreestructure

We denote the minimal fixed point of the mapping A asR = (R, Ry, ..., RJ)", i.e, R =
Xmin- According to Yeung and Sengupta [24], R« is the mean number of visits to the node J+k,
before the Markov chain returns to the node J, given that the Markov chain was initially in the
node J. Such an interpretation of R is obtained from the GI/M/1 structure of the Markov chain.
In addition, R™) can be interpreted as the mean number of visits to the node J+W (JTA, WTA,
and W20), before the Markov chain returns to the node J, given that the Markov chain was
initially in the node J.

To prove the main result of this section, we shall use the subinvariant (invariant)
measures of Markov chains. Next, we introduce subinvariant and invariant measures of the
Markov chains of GI/M/1 type with a tree structure. We refer to Chapter 5 of Seneta [21] for
some classical results about the (sub)invariant measures of Markov chains.

A measure p = {p(J): 0 £ p(J) < ¥ for JTA} is a subinvariant measure of the Markov
chan {C, n30} if p(J+k)s3 ap(J +H)a(k,H) for al JITA and 1£kfK, and

HTA
P03 3p)b). If pd+k)= dp+H)ak,H) for al JTA and 1£kEK, and
JTA HTA
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p(0) = ép(J)b(J), the measure p is called an invariant measure. |If ép(J) is finite for a
JTA JTA
(sub)invariant measure p, then p is called afinite (sub)invariant measure.

According to Theorem 5.3 in Seneta [21], if the Markov chain {C,, n30} is irreducible,
p(R) = {pr(d) = RY, JTAY} is a subinvariant measure (note that pr(0) = R® = 1). The measure
p(R) is the minimal subinvariant measure, i.e., for any subinvariant measure p of {C,, n30} with
p(0) = 1, we must have p(J) 3 pr(J) for al JTA. We first show the following relationship
between the (sub)invariant measures and the fixed point(s) of the mapping A.

Lemma 53 Assume that the Markov chain {C, n30} is irreducible and aperiodic,
lim max {b(J)} =0, and AP(Y") is irreducible. If sp(AP(y")) > 1, then p(R) is a finite

n®¥ JTA: |J|=n

invariant measure. 1f sp(AY(y")) = 1, then p(R) is an infinite invariant measure.  1f sp(A®(y"))
< 1, then p(R) is a subinvariant measure but not an invariant measure. In this case, let z be the
fixed point of A that is larger than R, then p(z) = {p(J) = Z, JTA} is an infinite invariant
measure.

Proof. If sp(A®P(y")) > 1, by Theorem 2.8, wehave R £y  and R 1 y". For the measure p(R), it
is easy to verify that p, (J +k) = apR(J +H)a(k,H) holdsfor al JTA and 1£kEK. We only
HTA
need to show 1=p,(0) = b(J)R™. Letr = Ri+Ry+ ...+R¢. Then O<r<1 and R/r isin the
A
subset R,s.,. By Lemma5.2, we have

K
ar:()bJd) = ARVbJ)=aRY & RIN™Qak,H+J)

JTA JTA JTA HTA'H10 k=1

(5.11)
o & é [} J J )
=acaalk, J)— aR™(R/r)":
JTAE k=1 03,,3,TA leo J,+3,=1
K K ; _ N] 3
- 8 Aak )Ry é%éa(k,J)9R<J>§[1 wn g
JTAE k=1 )] n=1 JTAE k=1 g 1-1/r )
K
- L atgaka? R(J)(l wn9)
r =1 788 k1
K K 5 A
:iééééa(k HRY - &k {ak ) ¥RiND
r-1 JTAR k=1 JTAE k=1 [’} ﬂ
g 19
=c—i(r-1)=1
o _1ﬂ( )

Thus, p(R) is an invariant measure. Since r<1, Qp.(J) = R =1/(1-r) <¥. Therefore,
A A
p(R) is afinite invariant measure.
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If sp(AY(y)) =1, R =y’ is the only fixed point of the mapping A. Again, for the
measure p(R), it is easy to see that po(J +k) = p(J + H)a(k,H) holds for all JTA and
HIA

1£kEK. To show 1=p,(0) = §b(J)R™, we introduce another Markov chain {Cy,, n30} for
A
O<tf£1 asfollows:

a, (k,0) = a(k,0), for 1£KEK;
a (k,J)=ta(k,J), for JTA J210 and 1EKEK; (5.12)
b (J) = (L-t)b(0) +tb(J), for JTA

The Markov chain {C;, n30} is irreducible and aperiodic. Since the transition
probability from any node J (*0) to the node 0 is by(J) > (1-t)b(0)>0, the Markov chain {C;,
n30} is positive recurrent for O<t<l. Consider the mapping A: associated with transition
probabilities { a(k, J), JTA and 1£kEK} defined by equation (2.2). For any xT R/,,, we have
AlX) £ AX) T R, (notethat 0<tE1). Thus, the set R/, isinvariant under the mapping A..
By Brouwer’s fixed point theorem, the mapping A; has afixed point in the subset Rfsﬂ, denoted

as R;. Since the Markov chain is positive recurrent for O<t<1, by Theorem 5,3 in Seneta [20],

p(R) = {pg () = RY, JTA} is a finite invariant measure, which implies that

1=pg (0) = Qb (IR,". Since Riisthe minimal fixed point of A;, we can use equation (2.4)
JTA

to obtain it. Then it is easy to see that R; is nondecreasing in t. This further implies that R;

convergesto R whent goesto 1. Therefore, we have

1=pg (0)= AR,
JIA
=ta bR, +(1-t)b(O)QR,"” (5.13)

JTA JIA

SEPOIR + (- 00O T,

Using equation (2.2) and equation (2.5), we can find the differentiations of R; with
respect tot as:

2 dR, 0 2 RO 0
£ : Ana!
¢ M +=(|-At‘1’(Rt))'lg M - (5.14)
¢ R 7 ¢ ARVa(K,):
e dt i/ JTA,J10 [1]

30



It is clear that sp(AY(R,)) converges to sp(AP(R)) = 1. Thus, the sum of the left hand side of
equation (5.14) (that is d(R;1)/dt +...+ d(Rk)/dt) goes to infinity when t increasesto 1. Then we
have, by the I’ Hospital’ s Rule,

lim(1-t)b(0) L - - b(0) PO -y (515
et 1-(RytL+Ry) d(R,+L+R,)| ¥ ' '
dt .

Since R; is nondecreasing in t, it is easy to see that téb(J)Rt“) converges

JiA

monotonically to b(J)R™ ast increases to 1. Combining equations (5.13) and (5.15), we
JTA

have proved that 1=p.(0)= §b(J)R™ , which implies that p(R) is an infinite invariant

JIA

measure if sp(AD(y")) = 1.

Lastly, if sp(A®(y")) < 1, R = y" and there exists another larger fixed point z of the
mapping A. Similar to the sp(A®(y") > 1 case, it can be proved that p(z) is an infinite invariant

measure (by utilizing the point z/(zi+...+z) T Rfszl). For the measure p(R), it is easy to see

that pR(J+k):épR(J+H)a(k,H) holds for al JITA and 1£kEK, and

HTA

bR < b(I)z? =1=p,(0). Therefore, p(R) is a subinvariant measure but not an
JiA JiA
invariant measure.

This completes the proof of Lemma5.3.

Now, we state and prove the main result for the Markov chain of GI/M/1 type with atree
structure.

Theorem 5.4 Assume that the Markov chain of GI/M/1 type with atree structure { C,,, n30} is
irreducible and aperiodic, lim max {b(J)} = 0, and the matrix AP(y") isirreducible. Then the

n®¥ JTA |J|=n
Markov chainis

1) positive recurrent if and only if sp(A®(y")) > 1, i.e,, there exists a fixed point of A
that issmaller thany;

2) null recurrent if and only if sp(A®(y")) =1, i.e,y istheonly fixed point of A;

3) transient if sp(AY(y")) <1, i.e,y isthe smallest fixed point and there exists another
larger fixed point of A.

Proof. We shall prove part 1) and part 3). Part 2) is obtained from part 1), part 3), and Theorem
2.8.
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First, we prove part 1). If the Markov chain is positive recurrent, according to Theorems

5.3 and 5.5 in Seneta [20] and by the GI/M/1 structure, p(R) is a finite invariant measure. Then

we must haver = Ri+Ry+...+R¢ < 1and §b(J)R™ =1. Furthermore, R isafixed point of A.
JTA

Then, y" is not the minimal fixed point. According to Theorem 2.8, sp(A®(y")) > 1. On the

other hand, if sp(A®(y")) > 1, according to Lemma 5.3, the measure p(R) is a finite invariant

measure. Thus, the Markov chain is positive recurrent. Infact, {p(J) = (1—r)R(3) for JTA} isthe
stationary distribution of the Markov chain.

Now, we prove part 3). If sp(AY(y")) < 1, according to Theorem 2.8, A has two fixed
points: y and another z, wherey” £ zandy’ 1 z. Let z = 21+ z+...+ z. Then z>1 holds.
According to Lemma 5.3, we have two subinvariant measures. p(R) and p(z). SinceR 1 z, p(R)
and p(z) are two different subinvariant measures, i.e., p(R) =t p(z) does not hold for any positive
t. By Theorem 5.4 in Seneta [21], a Markov chain (irreducible and aperiodic) is transient if and
only if it has at least two different subinvariant measures. Thus, the Markov chain of interest
must be transient. On the other hand, if the Markov chain is transient, then by Lemma5.5 and its
corollary in Seneta[21], p(R) is a subinvariant measure but not an invariant measure. According
to Lemma 5.3, sp(A®(y")) must be smaller than 1. By Theorem 2.8, this is equivalent to the
existence of afixed point that is larger thany . This completes the proof of Theorem 5.4.

Theorem 5.4 finds applications in queueing theory. For example, we consider a
GI/G[K]/L/LCFS preemptive repeat queue. In that queue, customers arrive in the queueing
system according to a renewal process. When a customer arrives, it is marked as a type k
customer with probability py, 1EKEK. For a type k customer, its service time s has a general
distribution, 1£kEK. All customersjoin asingle queue. The service discipline for all customers
is last-come-first-served preemptive repeat. The queueing process in this system can be
formulated as a GI/M/1 type Markov chain with a tree structure. Then Theorem 5.4 can be used
to find whether or not the queueing system is stable. Details are omitted.

To classify a Markov chain of GI/M/1 type with a tree structure, according to Theorem
5.4, we need to find the fixed point y first. That requires significant computational efforts.

Next, we identify a sufficient condition for transience. Let Ay ={...jn...joj1: 1£jnEK, n31}. For
J= ]n]ZIl 1 Ay, let

a,(n) = éa(k, f(J,n)),n30. (5.16)

Intuitively, JTAy is a path from j; at “infinity” to the root node 0. By definition, { &, (n), n 3 0}
is a probability distribution for any JTAy. Let

r(J) = gnélJ (n), JTA; r. = ngx{r(J)}. (5.17)

n=0
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Theorem 5.5 Assume that Markov chain of GI/M/1 type with a tree structure {C,, n30} is
irreducible and aperiodic. If rpx <1, then the Markov chainistransient.

Proof. See Appendix.

Intuitively, the condition rp < 1 ensures that in each transition, the Markov chain tends
to move away from the root node. The condition rya < 1 is not necessary for transience of the
Markov chain. Compared to Theorem 5.4, Theorem 5.5 can be easily implemented. For
instance, we consider a GI/M/1 type Markov chain with K=2 and transition probabilities:

a(1,00=03, a(2,0)=05  b(0)=0.2;
a(1,1) =005 a2, 1)=005 b(1)=0.1;
a(1,2=01, a2 2) =0, b(2) = 0.1;
a(1,11) =005, a(2,11)=0.05 b(11) =0;
a(1,12) =005, a(2,12)=0.05 b(12)=0;
a(1,21)=01, a(2,21)=0, b(21)=0;
a(1,22) =01, a(2,22)=0, b(22)=0.

It can be calculated that rim = 0.3 < 1. Therefore, the Markov chain is transient.

Theorems 5.4 and 5.5 characterize the classification conditions of Markov chains of
GI/M/1 type with atree structure. The two theorems lead to better understanding of such Markov
chains and to possible directions for future research.

K

Note: We assume Iggﬁrpzag {b(J)} =0 to ensure that there is a fixed point in the subset R, .

If lim max {b(J)} > 0, there exists a sequence of strings {J(n), n31} such that b(J(n)) > b(¥) >

n®¥ JTA: |J|=n
0. Intuitively, that means the Markov chain can return to the root node from a “remote” node in
one transition. Thus, the Markov chain should be positive recurrent. In fact, thisistrue for some
specia cases such as the case with K=1 or the case with b(J) > b(¥) > 0 for al string J.

However, a genera treatment of the case with I|®rQ , TrL]%l( {b(J)} >0 can be very complicated.

Weleaveit for future research.

6. SUMMARY AND DISCUSSIONS

In this paper, we have shown some useful properties associated with some fixed points of
the nonlinear mapping A. Fixed point theory and degree theory were utilized to establish a
relationship between the fixed points, the matrices of partial differentiation (Jacobian) at the
fixed points, and the minima fixed point of A. These properties were then used to find
classification conditions for Markov chains of M/G/1 type and GI/M/1 type with a tree structure.
It was shown that the Perron-Frobenius eigenvalue of the differentiation matrix A®(x) of any
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special fixed point x and the fixed point x itself provide information for a complete classification
of the Markov chains of interest.

More specifically, the classification problem of interest was divided into four
subproblems: 1) the classification of Markov chains of M/G/1 type with a tree structure; 2) the
classification of Markov chains of matrix M/G/1 type with atree structure; 3) the classification of
Markov chains of GI/M/1 type with atree structure; and 4) the classification of Markov chains of
matrix GI/M/1 type with a tree structure. For case 1), explicit classification conditions were
found. The reason for the explicit conditions is that a fixed point e of the mapping A is readily
obtained. Unfortunately, no such an explicit fixed point exists for the other three cases. Thus no
explicit classification condition was found for these cases. Nonetheless, for cases 2) and 3), we
were able to prove that a fixed point exists in certain subsets. Then explicit conditions were
found in terms of that fixed point. For case 4), no fixed point has been identified in general.
Thus, the classification problem of Markov chains of matrix GI/M/1 type with a tree structure is
still open for future research. The results obtained in this paper indicate that identifying a fixed
point might be the key to solve the problem. Generalizations to the matrix cases are challenging
problems, especially for the matrix GI/M/1 case. But they are interesting future topics.

APPENDIX The proof of Theorem 5.5

According to aclassical result (see Cohen [2] and Fayolle, et al. [3]), the Markov chain of
interest is transient if and only if there exists a non-constant and bounded solution { h(J), JTA}
that satisfies

J
o

h(J) = b(J)h(0) + g '

k=1 n=0

a(k, f(J3,n)h(J - f(I,n)+k), for ITA J10. (A1)

Next, we construct such a solution {h(J), JTA} if rma < 1. Let h(0) = 0. Define the
following transformsfor z= (z, z, ..., ) TRX(y"):

h'(z,k) © Qh(J +k)zO™, for 1EKEK;

h'(z)°h (zD)+L+h (z,K) = § h(3)z". (A-2)

JTA

Combining equations (A.1) and (A.2), we have



I

hz)= Egéa(k f(J,n)h(J - f(J,n)+k)z 0,0
10€ k=1 n
|‘J)

JTA D 1 !ZJ
_ o & S (f(3,n) I-f(@J n))(..j
= a ga ak, f(J,n)z h(J - f(J,n)+Kk)z e (A.3)
JTA: 3208 k=1 n=0 7
K 16 u
= éié Qak, 3)zPh(H +k)zH™
k=1 Zx @J,HTA J+H10 0
6 1 € 2 [@)) (H +k)
=a—éa a(k,J)z"’h(H +k)z -a(k, O)h(k)zku
k=1 Z §J,HTA i
5 1
= A=la,@h" @K - akOhK)z]

~
Il

IS
N

=~

Let h(k)=1 for 1£kEK and h(J+k)=w(J) for 1£kEK for adl JTA. Define, for z=(z, 2, ...,
z) TRE(Y'):

W (2) © w(d)z;

JTIA

K . (A.4)
a (z)°aak(z) A Qak )z = At ak )% © §a(0)2".
k=1 JTA JTAC k=1 /] JTA
Then equation (A.3) leadsto
e . 5 o0 . -
s’ (2) - tA z, W (2) = 40). (A.5)
e k=1 AU

Since sp(A®(y)) < 1, by Lemma 2.2, there is no fixed point in RX(y") except y .

K -1

Therefore, we can find w'(z) by w'(z) = a(O)ea (2) - gazk ﬂ forzT RN(y') andz1y'.
] k=1 O]

We shall use this expression to prove that {w(J), JTA} are bounded. First, we rewrite (A.5) as

follows.

e1 %52 o
~ gL~ k7l ~
. a0 g k=1 @] a(o £ o 0

i (Z): ( ) € e au o ( ) aC(J)Z(J)+. (A6)
p ” N 2 ” p ”
e &o _0UE . go _O0U € &o (QUesTA g
d-cazc-gea (-cazg e-taz-
e €Eka1 @dye k=1 @U € ekt ay

Part of equation (A.6) is evaluated as follows.
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e &8 _ 06U € s o0 €¥ak  oUs 28 oU
e1-§a2k+g ga ( )'§a2k+Q =eataz - uga (Z)‘Qazk*(}
e k=1 QU e k=1 @Ay §n=oe k=1 @ ge k=1 @Ay
€xel o'l ek 0
-edtaz;- o @-ataz’ (A7)
gn=0€k=1 4 n=1€k=1 @
=a (z)géz”)ﬂ Az"=30- § z gl aa(J - f(J, n))-
eJTA U J1A J20 JTA J10 n=0
Then equations (A.6) and (A.7) lead to
< 3 .
1= {30 - & z“’g 1- A0 - (M) HEQ c(3)z”?
T JTA J10 n=0 QEEJTA g (A 8)
] 5 '
=a(0)c(0) + az“) 1a(0)c(J) - a gl aaH - f(H,i))(iJC(F)lJ
JTA T H,FTAH+F=JH10 i=0 /] E;
AP CR) U
= a(0)c(0) + az”) ia(0)c(d) - gl— aacf(f(J,n), |)) c(J - £(J,N)y.
JTA T n=1 i=0 g
According to equation (A.6), we choose {c(J), J T A} in the following manner
1= a(0)c(0);
B 1@
a(0)c(J) = gl— aa(f(f(J n, |)) c(J - f(J,n)) (A.9)
n=1 i=0
13
= ab(f(J n))c(Jd - f(J,n))
n=1

Therefore, al {c(J), JTA} are positive. Then equation (A.6) leadsto

"
w ()= 30t AL E A = a0f 820 % & o)
gn=0€k=1 @ [EJITA /] € JTA ge JTA (A.lO)
- 20827} ac(f(J )y
JTA Tn=0 g
Next, we prove that there exists M (>0) such that for any JTAy and n>0
A c(f(3,1) =c(0) +c(jy) + C(izjy) + o+ Clinins L i) <M (A.11)
i=0
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Note that 4(0) = &(0) . Again, by equation (A.9), we have, for any J T Ay,

max{c(J - f(J,i))} g
c(f(J,n)) = L&Ln 50 ab(f(J 1))
max{c(J - (30D} ¥
20 a(t Da, (t)

B max{c(J - f(J, '))}a $ 6 0-Aa (t)g
TR qj :
max{c(J - (3,0}, x

= 20) gﬂta ;) -1+ a(O)—

@-rm)
a(0)

(A.12)

£ max{c(J - £(J, |))}g1- 2
[/}

g (L= M)t _
£ 1_W3 rzn%X{C(J f(3,0))}

g (A-ro)d o B L-r)0
H ST g() &30

1
a(0)’

0
g

@a-r..)

0 <1. Thus, we must have, for any JTA and 1£kEK,
a

where 0<1-

h(J +k) = w(J) = 5(0)g0(f (3.)

£ 5(0)c(0)§1- §1- %ZO
/]

_ &0
1-r .

(A.13)

M.

Thus, we have found a set of non-constant and bounded {h(J), JTA} for equation (A.1).
Therefore, the Markov chain istransient. This completes the proof of Theorem 5.5.
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