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Abstract 

We consider tasks where in order to perform them it is sufficient that one member of a group 
will know how to do it. We are interested in the effect of task difficulty, and variability of that 
difficulty, on group performance, and in particular on the marginal contribution of an additional 
number to the performance of groups of different size. We explore the implications of various 
stochastic orders over task difficulty and variability. Some intuitive conjectures are shown to be false. 
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1. Introduction 
Consider a group, consisting of members of 

similar ability, which can perform a task as 
long as at least one of its members can perform 
it. The tasks involved vary in degree of 
difficulty. We are interested in the effect of task 
difficulty, and variability of that difficulty, on 
group performance, and in particular on the 
marginal contribution of an extra group 
member. A similar issue arises in 
multiple-engine searches on the web. 
Apparently a single search engine “picks up” 

only about 16 percent of the relevant 
references (Gordon, M. and P. Pathak, 1999), 
so multiple engines are often used. How is the 
contribution of an extra engine expected to be 
influenced by the difficulty, and inner variety, 
of the search? Other examples include 
problems, tests and challenges given to 
geographically separate groups or ones not 
allowed to communicate so as to preserve 
individual creativity. Various game shows also 
have similar features. While in practice groups 
will not usually consist of members of 
identical ability, our focus on the implications 
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of group size naturally leads to the 
investigation of homogeneous groups. As there 
is no division of labor or cooperation per se, so 
we use the term “group” rather than “team”. 

It stands to reason that very easy tasks can 
be performed by anyone, and thus a 
one-member group or one search engine is 
sufficient for performing such tasks. Very 
difficult tasks are likely to be doable only by 
large groups. Thus the type of tasks where, say, 
adding a fourth member to a group of three is 
likely to be most significant are those of 
intermediate difficulty. Those are the issues of 
most interest to us. But it is not clear whether 
the contribution of an extra member is 
monotone in the variability of task difficulty. 
The main results of this paper (Sections 3 to 5) 
provide answers to such problems under 
several stochastic orders related to the 
variability of task difficulty. The conclusions 
can be used in group size selection as a 
function of task difficulty and degree of 
heterogeneity. 

The rest of the paper is organized as 
follows. In Section 2, the problem of interest is 
defined explicitly. In Sections 3 to 5, the 
impact of the difficulty level on the 
contribution of an extra member is investigated 
under several stochastic orders. The main 
mathematical tools are stochastic comparison 
(Ross (1983), Shaked and Shanthikumar 
(1994), and Stoyan (1983)) and total positivity 
of functions (Karlin (1968)). 

2. Problem Definition 
Consider a group consisting of m members, 

where m is a nonnegative integer. The group is 
formed to perform a task, and it is assumed 

that it can complete the task if at least one of 
its members can do the job. For concreteness, 
we envision a test, in which each task is a 
multiple-choice question administered to a 
group. 

Tasks vary by degree of difficulty. Let X be 
the probability that any particular member 
cannot perform its tasks, or equivalently, with 
probability 1–X the member can perform the 
task. Thus X is a random variable in the 
interval [0,1]. Assume that X has a distribution 
function FX(x) and density function fX(x). 

Assume that the performance of individual 
group members is consistent, in the sense that 
all have an equal probability of success (see 
Note 2.1 for a model where individual 
members perform independently once they are 
selected). The probability that the group of m 
members will be able to perform the task is 
given by, for m≥0, 
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It is readily seen that the sequence {pX(m), 
m≥0} is an increasing concave function of m. 
Define the marginal contribution of the 
(m+1)st member as:  
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We are interested in the sequence {dX(m), 
m≥0}. Since the function dX(m) is convex and 
decreasing in m, the marginal contribution of 
extra group members is decreasing, in 
agreement with intuition. It is easy to see that 
{dX(m), m≥0} is in fact a mixture of geometric 
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distributions and is thus a probability mass 
function, i.e., 0 ( ) 1m Xd m∞

= =∑ , if P{X=1} <1. 
Clearly, thus, a change in X cannot move dX(m) 
in the same direction for all m. 

Our objective is to find how the difficulty 
level of a task effects the magnitude of dX(m) 
for all m≥0. For that purpose, we consider two 
random variables X and Y in [0, 1] representing 
the probabilities that two tasks cannot be 
performed, respectively. We explore the 
relationship between {dX(m), m≥0} and {dY(m), 
m≥0}, given that certain relationship exists 
between X and Y. The relative difficulty level 
of tasks can be modelled by using stochastic 
orders, such as the likelihood ratio order, 
stochastically larger order, convex order, and 
more variable order of random variables. More 
specifically, we are interested in problems such 
as, given that X is smaller than Y in certain 
stochastic order, how many times the sequence 
{dX(m)–dY(m), m≥0} changes its sign. Note 
that a change of sign occurs if the value of 
dX(m)–dY(m) goes from negative (positive) to 
positive (negative). A single sign change in 
response to a change in task variability would 
imply that the benefit of adding a member to a 
small group differs from that of adding a 
member to a large group. 

To demonstrate the complexity of the 
problem of interest we present an example to 
show that, without imposing proper stochastic 
order on X and Y, the sequence {dX(m)–dY(m), 
m≥0} can change its sign many times. 
Example 2.1 We consider two random 
variables X and Y with distributions P{X=0.01} 
= 0.05, P{X=0.02} = 0.1, P{X=0.03} = 0.1, 
P{X=0.04} = 0.1, P{X=0.05} = 0.15, 
P{X=0.5}=0.2, P{X=0.95} = 0.2, and 

P{X=0.995} = 0.1; P{Y=0.02} = 0.1, 
P{Y=0.05} = 0.1, P{Y=0.5} = 0.4, and 
P{Y=0.995} = 0.4, respectively. 

By routine calculations, we have dX(0) = 
0.59355 > dY(0) = 0.395, dX(1) = 0.0763 < dY(1) 
= 0.1087, dX(4) = 0.01488 > dY(4) = 0.01446, 
and dX(41) = 0.001627 < dX(41) = 0.001628. 
Thus, the sign of the sequence {dX(m)–dY(m), 
m≥0} changes at least three times.           ■ 

For two random variables X and Y, if E[f(X)] 
≤ E[f(Y)] holds for any nondecreasing function 
f(x), then we say that X is stochastically 
smaller than Y, denoted as X ≤st Y. We refer 
readers to Shaked and Shanthikumar (1994) 
and Stoyan (1983) for more details about 
stochastic order of random variables. It is easy 
to verify that in Example 2.1 X ≤st Y. Thus, 
stochastic orders stronger than the 
stochastically smaller order are required to 
ensure that {dX(m)–dY(m), m≥0} changes its 
sign only once (or less than a predetermined 
number). 
Note 2.1 A different Conceptualization 
Assume that individuals in a group solve a 
problem independently. Given the probabilities 
that m members cannot perform a task are {x1, 
x2, …, xm}, the conditional probability that the 
group can perform is  

1 21 .mx x x− L            (2.3) 

Then the unconditional probability that a group 
of size m can perform is given as 1–E[X1X2… 
Xm]. If member's abilities are drawn from 
distributions with the same mean, we have 
dX(m) = (E[X1])m(1–E[X1]). Unlike the previous 
model, where the distribution of X1 plays an 
important role in the analysis of {dX(m), m≥0}, 
the mean E[X1] is the only variable that is 
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important in this model. This model is a 
special case of the one defined in (2.1) when 
the value of X is known (i.e., tasks are 
homogeneous in degree of difficulty). In other 
words, in our central model task difficulty 
varies but group member’s abilities are equal, 
while in the model of (2.3) group member's 
abilities vary, but tasks are homogeneous. 
Further discussion on the relationship between 
the two models can be found in Section 3. 

3. Random vs. Deterministic 
Level of Difficulty 
In this section, we consider a random 

variable X defined on [0, 1] and its 
corresponding deterministic level Y ≡ µ = E[X]. 
The comparison of the two models is 
interesting since a) it is well known that X is 
larger than µ under the convex order (Shaked 
and Shanthikumar, 1994), and b) the 
deterministic model is equivalent to the 
alternative model presented in Note 2.1. 

The basic question to be answered in this 
section is how many times dX(m)–dY(m) 
changes its sign. We would like to show that 
dX(m)–dY(m) changes its sign at most once. For 
that purpose, we first prove a monotonicity 
property of the function E[Xt+s(1–Xh)] 
/E[Xt(1–Xh)] with respect to t. By Hölder 
inequality (Chow and Teicher, 1988), we have 
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Inequality (3.2) implies that E[Xt+s(1–Xh)] 

/E[Xt(1–Xh)] may be increasing with respect to 
t, which is proved in the following lemma. 
Denote by p=P{X=1}. 
Lemma 3.1 If P{X=1} + P{X=0} = 1, then 
E[Xt(1–Xh)] = 0 and E[Xt(1–X)] – pt(1–p) = 
–pt(1–p) < 0 for all t>0. If P{X=1} + P{X=0} < 
1, then E[Xt(1–Xh)] > 0 and 
E[Xt+s(1–Xh)]/E[Xt(1–Xh)] is strictly increasing 
in t for all fixed positive s and h. 
Proof. The first part of the lemma is 
straightforward. We show the second part. 
Suppose that t>u. We consider functions 
E[Xt+s(1–Xh)]/E[Xu(1–Xh)] and E[Xu+s(1–Xh)] 
/E[Xt(1–Xh)]. First, we have the following 
calculations: (f(x): the density of X) 
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 (3.3) 

To prove the lemma, it is sufficient to show 
that E[Xt+s(1–Xh)]/E[Xu(1–Xh)] > E[Xu+s(1–Xh)] 
/E[Xt(1–Xh)], which is equivalent to (by 
equation (3.3)) 
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 (3.4) 

Since t>u, (xs– ys)((x/y) t-u–1) > 0. Therefore, 
the integral in equation (3.4) is positive. This 
completes the proof of Lemma 3.1.          ■ 

Let η(t) = E[Xt]–µt. Next we show that the 
function η(t) is unimodal in [1, ∞). 
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Lemma 3.2 Assume that P{X=1}+P{X=0} < 1. 
The function η(t) is negative in (0,1) and 
positive in (1, ∞) with η(0) = η(1) = 0. The 
function η(t) is unimodal in the interval [1, ∞), 
i.e., η(t) is increasing and then decreasing in 
[1, ∞). The function η(t) is unimodal in the 
interval [0, 1], i.e., η(t) is decreasing and then 
increasing in [0, 1].  
Proof. By Jensen’s inequality (Chow and 
Teicher, 1988), the first part of the lemma is 
obtained immediately. Note that η(t) is 
increasing at t=1. If η(t) is not unimodal in [1, 
∞), then there exist t1 and t2 such that: 1< t1< t2, 
η(t1) is a local maximum and η(t2) a local 
minimum. Choose δ, s1 and s2 such that 1< s1< 
t1< s1+δ < s2 < t2 < s2 + δ, and η(s1) = η(s1+δ) 
and η(s2) = η(s2+δ). From η(s1) = η(s1+δ), we 
obtain 

 
1 1 1 1

1 1

[ ] [ ]
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A similar equation can be established at s2. 
Then we have 
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2 1
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[ (1 )] .
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δ
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−
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Now, we consider s1+ε, s1+δ+ε, s2+ε, and 
s2+δ+ε,. We choose ε and δ small enough so 
that η(s1+ε) > η(s1+δ+ε) and s1+ε < t1 < 
s1+δ+ε, since t1 is a maximum point, and 
η(s2+ε) < η(s2+δ+ε) and s2+ε < t2 < s2+δ+ε, 
since t2 is a minimum point. Then we must 
have 

 1 1[ (1 )] (1 )s sE X Xε εδ δµ µ+ +− > −  (3.7) 

   2 2[ (1 )] (1 )s sE X Xε εδ δµ µ+ +− < −  

Then we have 
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which contradicts the result obtained in 
Lemma 3.1. 

Similarly, it can be also shown that η(t) is 
negative and unimodal in (0, 1). This 
completes the proof of Lemma 3.2.          ■ 

The implications of the above results on the 
original problem can be summarized as follows. 
Since η(t) is unimodal in [1, ∞), we have, for 
t>s, if η(s) > η(s+1), then η(t) > η(t+1). Since 
dX(t)–dY(t) = η(t)–η(t+1), we have, if dX(s) > 
dY(s), then dX(t) > dY(t) for t>s.  Note that 
dX(1)–dY(1) = η(1)–η(2) = –η(2) < 0 and there 
exists at least one point t>1 such that dX(t)–dY(t) 
= η(t)–η(t+1) > 0. Therefore, the functions 
dX(t) and dY(t) have exactly one intersection in 
[1, ∞). Since dX(0)–dY(0) = η(0)−η(1) = 0, the 
sequence dX(m)–dY(m) changes its sign exactly 
once. Some interesting special cases are given 
as follows. 
Example 3.1 In this example, we assume that 
X has a uniform distribution on [0,1] and Y = 
0.5. It is easy to verify that g(t) = E[Xt]–E[Yt] = 
1/(t+1) – 0.5t for t ≥ 0. By Jensen's inequality, 
the function g(t) is nonnegative, i.e., E[Xt] ≥ 
(E[X])t = (E[Y])t. According to Lemma 3.2, g(t) 
is unimodal. Therefore, dX(m)–dY(m) changes 
its sign only once.                      ■ 
Example 3.2 In this example, we assume that 
Y ≡ µ and X is define as: P{X=µ+ε} = 
P{X=µ–ε} = 0.5, where 0≤µ−ε≤µ+ε≤1, and µ, 
ε ≥1. For this case, g(t)=0.5[(µ+ε)t + (µ –ε)t] – 
µt. Again, by Jensen’s inequality, the function 
g(t) is nonnegative for t≥0. By Lemma 5.2, g(t) 
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is unimodal in [1, ∞] and dX(m)–dY(m) changes 
its sign only once.                           ■ 

Next example actually generalizes the 
results in Lemma 3.2. 
Example 3.3 Consider a random variable X 
defined on [0, 1]. Let 

 
,           ;
,         otherwise,X

X a X b
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µ
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    (3.9) 

where µX = E[X] and a and b are so chosen that 
0 ≤ a ≤ b ≤ 1 and E[Y] = µX. Intuitively, X is 
more variable than Y. First, we have the 
following calculations: 
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where Z is a random variable defined on [0, 
a]∪[b, 1] with density function 
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It can be verified that E[Z] = µX. By 

Lemmas 3.1 and 3.2, E[Zt]–(µX)t is unimodal in 

t in [1, ∞). By equation (3.11), E[Xt–Yt] is 

unimodal in [1, ∞]. Thus, dX(m)–dY(m) changes 

its sign at most once. 
A specific example is given as follows. Let 

X be a uniform distribution in [0, 1], a=0.25, 
and b=0.75. Then the function 

1 1
1

[ ]

1 (0.75) (0.25)(0.5)
1 1

t t

t t
t

E X Y

t t

+ +
+

−

−
= − −
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is unimodal in [1, ∞], which is not 
straightforward to verify directly.          ■ 

4. Effect Under the Likelihood 
Ratio Order 
In this section, we consider the effect under 

the likelihood ratio order. For two independent 
random variables X and Y, if the ratio fX(x)/fY(x) 
is non-increasing over the union of the 
supports of X and Y, then X is said to be 
smaller than Y in the likelihood ratio order, 
denoted as X ≤lr Y. 

Since X ≤lr Y, we have E[Xm] ≤ E[Ym] and 
pX(m) ≥ pY(m) for all m ≥ 0. That is, the 
distribution {dX(m), m≥0} is stochastically 
smaller than {dY(m), m≥0}. (Note: With a 
slight abuse of notation, we shall say that the 
distributions {dX(m), m≥0} and {dY(m), m≥0} 
are stochastically ordered, though stochastic 
orders are defined for random variables.) That 
implies that a group with ability 1–X has a 
larger chance to solve a problem than a group 
with ability 1–Y, regardless of the group size. 
Further properties of {dX(m)–dY(m), m≥0} can 
be obtained from Lemma 4.1. For 
mathematical convenience, we extend the 
function dX(m) to dX(t) for all real nonnegative 
t, i.e., 

 ( ) [ (1 )].t
Xd t E X X= −      (4.1) 

Since X takes values in [0,1], the function 
dX(t) is finite, continuous, and non-increasing 
for t ≥ 0. 
Lemma 4.1 Assume that X ≤lr Y and X ≠ Y. 



GERCHAK and HE 

JOURNAL OF SYSTEMS SCIENCE AND SYSTEMS ENGINEERING / Vol. 13, No. 1, March, 2004 7 

Then the function dX(t)–dY(t) changes its sign 
exactly once for all t ≥ 0. In fact, if dX(t0) = 
dY(t0) at some positive t0, then we have 

0

0

[ (1 )]

           [ (1 )],  0 ;
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Proof. Since X ≤lr Y and X ≠ Y, we have dX(0) 
> dY(0). If dX(t) ≥ dY(t) for all t ≥ 0, then dX(m) 
≥ dY(m) for all m ≥ 1, and dX(0) > dY(0), which 
contradicts the fact that both {dX(m), m≥0} and 
{dY(m), m≥0} are proper probability 
distributions. Therefore, dX(t)–dY(t) must 
change its sign at least once for t ≥ 0. Next, we 
show that dX(t)–dY(t) can change its sign at 
most once. 

Suppose that dX(t)–dY(t) changes its sign at 
t0. We have dX(t0)=dX(t0). Let 
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The function wX(x) is nonnegative and is a 
density function in the interval [0,1]. Suppose 
WX is a random variable with density function 
wX(x). Similarly, we define a function wY(x) 
and its corresponding random variable wY for 
the random variable Y. By definition (4.3) and 
the definition of t0, we have  
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By equation (4.4) and the assumption X ≤lr 
Y, we have WX ≤lr WY and WX ≠ WY. Since the 
function xs is increasing in x for x>0 and s>0, 
we have 
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Equation (4.5) is obtained from equation (4.4) 
and the fact dX(t0) = dY(t0). 

Since equation (4.2) holds for any t0 
satisfying dX(t0) = dY(t0), there can be at most 
one such point t0. Thus, the function dX(t)–dY(t) 
changes its sign at t0 and only at t0. Therefore, 
the function dX(t)–dY(t) changes its sign exactly 
once for all t ≥ 0. This completes the proof of 
Lemma 4.1.                           ■ 

Since dX(t)–dY(t) changes its sign exactly 
once, the sequence {dX(m)–dY(m), m≥0} 
changes its sign exactly once. If m ≤ t0, dX(m) ≥ 
dY(m); otherwise dX(m) ≤ dY(m). Thus we have 
shown that the sequence {dX(m)–dY(m), m≥0} 
changes its sign exactly once if X ≤lr Y and X ≠ 
Y. 

For the group size problem, the 
implications of the above analysis can be 
summarized as follows. If a task is easier, it is 
more likely for a group to solve the problem 
(i.e., {dX(m), m≥0} ≥st {dY(m), m≥0}, which is 
intuitive. The marginal contribution of an 
additional group member for an easier task is: 
a) larger if the group is small; and, b) smaller if 
the group is large. 

5. Effect Under the “More 
Variable” Stochastic Order 
Consider two independent random 

variables X and Y with the same mean E[X] = 
E[Y], having distribution function F(x) and G(x) 
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with density functions f(x) and g(x), 
respectively. We say that X is more variable 
than Y, denoted as X ≥var Y, if the function 
f(x)–g(x) changes its sign exactly twice with 
sign sequence {+, –, +}. In fact, X ≥var Y is a 
condition for X ≥c Y (Stoyan, 1983). In this 
section, we show that if X ≥var Y and X ≠ Y, 
then dX(m)–dY(m) changes its sign exactly 
twice. By definition, we have 

 1

0

( ) ( )

(1 )( ( ) ( )) .

X Y

m

d m d m

x x f x g x dx

−

= − −∫
   (5.1) 

According to a result in Karlin (1968), if 
the function xm(1–x) is totally positive, than the 
number of sign changes of dX(m)–dY(m) is not 
larger than the number of sign changes of 
f(x)–g(x). Next, we use that result to determine 
the number of sign changes of dX(m)–dY(m). A 
function K(x, y) is said to be totally positive if 
for any positive integer r, for all x1< x2<...< xr 
and y1< y2<...< yr, 

1 1 1

1

( , ) ( , )
det 0,

( , ) ( , )

r

r r r

K x y K x y

K x y K x y

 
  ≥ 
 
 

L

M M M

L

 (5.2) 

where det(.) is for the determinant of a matrix. 
Lemma 5.1 Let K(m, x) = xm(1–x) for m≥0 and 
0≤x≤1. The function K(m, x) is totally positive. 
Proof. For x1< x2<...< xr and m1< m2<...< mr, 

1 1 1 1

1

1 1

1

1 1 1

1

1

1

1
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=

 
 =  
 
 

 
  = −∏   

   
 

 = −∏ 
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L

L

M M M
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(5.3) 

where A is a generalized Vandermond matrix. 
The positivity of det(A) is well known (see 
Polya and Szego (1976), Problem 48). 
Therefore, the function K(m, x) is totally 
positive.  This completes the proof of 
Lemma 5.1                           ■ 

By equation (5.1) and Lemma 5.1, we have 
the following interesting result. 
Theorem 5.2 If X ≥var Y and X ≠ Y, then 
dX(m)–dY(m) changes its sign exactly twice in 
the form {+, –, +}. Consequently, {dX(m), 
m≥0}} ≥c {dY(m), m≥0}. 
Proof. Since X ≥varY, f(x)–g(x) changes its sign 
exactly twice. By a basic property of totally 
positive functions - the variation diminishing 
property - and equation (5.1), the function 
dX(m)–dY(m) changes its sign at most twice. If 
dX(m)–dY(m) changes its sign only once, then 
{dX(m), m≥0} is stochastically larger than 
{dY(m), m≥0}. Since E[X] = E[Y], that implies 
that dX(m) = dY(m), for all m, which leads to 
X=Y. But X=Y contradicts the assumption X 
≠Y. Therefore, dX(m)–dY(m) changes its sign 
exactly twice, which implies {dX(m), m≥0} ≥c 
{dY(m), m≥0}. This completes the proof of 
Theorem 5.2.                          ■ 

There are many examples for which 
f(x)–g(x) changes its sign exactly twice (see 
Karlin 1968). Thus, Theorem 5.2 can be quite 
useful. 
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