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Abstract:  In this paper, we study the total workload process and waiting times in a queueing 
system with multiple types of customers and a first-come-first-served service discipline.  An 
M/G/1 type Markov chain, which is closely related to the total workload in the queueing system, 
is constructed.  A method is developed for computing the steady state distribution of that Markov 
chain.  Using that steady state distribution, the distributions of total workload, batch waiting 
times, and waiting times of individual types of customers are obtained.  Compared to the GI/M/1 
and QBD approaches for waiting times and sojourn times in discrete time queues, the dimension 
of the matrix blocks involved in the M/G/1 approach can be significantly smaller.  
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1.  Introduction 
 
Discrete time queueing systems are of special interest to the performance analysis of 
telecommunications systems and manufacturing systems.  For instance, discrete time queues are 
suitable for analyzing ATM in telecommunications (see Alfa [1], Cortizo, et al. [4], and 
references therein).  Therefore, the study of discrete time queues has attracted great attention 
from researchers and practitioners.   
 
 In this paper, we introduce and study a discrete time queueing model with multiple types 
of customers.  Such a queueing model arises naturally from modern telecommunication networks 
that are required to handle different types of data from telephone service, video conferences, high 
volume file transfer service, high definition TV distribution service, etc.  B-ISDN is such an 
example.  For such systems, different services may have different requirements in terms of delay 
times and loss rates.  To quantify quality of service (QoS) for individual services, there is a need 
to differentiate them and to carry out performance analysis at the individual service level.   
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For queueing models with a last-come-first-served (LCFS) service discipline, the analysis 
of waiting time, queue strings, and busy periods can be carried out through the use of Markov 
chains with a tree structure (e.g., HE amd Alfa [13]).  However, the analysis of the queue strings 
in queueing models with a first-come-first-served (FCFS) service discipline is difficult, since we 
must keep track of the type of each customer in queue.  Nonetheless, significant progress has 
been made for continuous time queueing models with multiple types of customers (e.g., HE [9, 
10], HE and Alfa [13], Takine [23, 24], and Takine and Hasegawa [25])).  The study of discrete 
time queues with multiple types of customers is limited, except for Van Houdt and Blondia [26, 
27, 28].  In this paper, we analyze a discrete time queueing model with a single server, multiple 
types of customers, and a FCFS service discipline.  The focal point is on the waiting times of 
individual types of customers.  As is the situation in the continuous case, by constructing an 
M/G/1 type Markov chain associated with the total workload in the system, we are able to find 
the steady state distribution of the total workload in the system at an arbitrary time.  This enables 
us to find distributions of the waiting times and sojourn times for batches and for individual types 
of customers.   
 

The study of waiting times in queues is extensive (e.g., Alfa [1], Cohen [3], Grassmann 
and Jain [8], Neuts [18], Sengupta [21], Takine [24, 25], and references therein).  For discrete 
time queues, a number of methods have been used to study waiting times.  Grassmann and Jian 
[8] used the Wiener-Hopf factorization method to develop an algorithm for computing the 
distribution of waiting times.  Recently, the matrix analytic methods have been used to study 
discrete time queues (Alfa [1], Van Houdt and Blondia [26, 27, 28], Yang and Chaudhry [30], 
etc.).  Such methods take advantage of the structures of the Markov chains under consideration 
and develop efficient algorithms for computing system performance measures.  The structures of 
interest include the M/G/1 type and GI/M/1 type (Neuts [17, 19]).  In Van Houdt and Blondia 
[26, 27, 28], GI/M/1 type Markov chains and QBD processes were constructed for studying the 
waiting times and sojourn times of discrete time queues with a Markov arrival process with 
marked transitions and PH-distributed service times.  In HE [11], a GI/M/1 Markov chain is 
constructed for waiting times and sojourn times of a discrete time queue with a semi-Markovian 
arrival process and PH-distributed service times.  In HE [12], a GI/M/1 Markov process is 
constructed for waiting times and sojourn times of a continuous time queue with a semi-
Markovian arrival process and PH-distributed service times.  In this paper, the basic tools are 
matrix analytic methods.  We formulate an M/G/1 type Markov chain to obtain the steady state 
distributions of waiting times and sojourn times. 
 

The M/G/1 type Markov chains have been used in the study of various queueing models.  
For instance, the classical M/G/1 queue and its variants, the MAP/G/1 queue and its variants can 
be analyzed efficiently by using an M/G/1 type Markov chain.  The basic theory concerning 
M/G/1 type Markov chains can be found in Gail, et al. [6], Latouche and Ramaswami [15], Neuts 
[17, 19], and Ramaswami [20].  In Takine [22], a continuous time version of the M/G/1 type 
Markov process was introduced and investigated.  As an application, the process was used in the 
study of the total workload and waiting times of a continuous time MAP/G/1 queue.  This paper 
considers an extension of the idea used in [22] from the continuous time case to the discrete time 
case.  The major differences are 1) we consider a discrete time queueing model; 2) we consider a 
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queueing system with multiple types of customers; and 3) the M/G/1 type Markov chain in this 
paper has no boundary at the level zero. 

 
The approach developed in this paper – an M/G/1 approach – is for queues with general 

service times, where the methods (GI/M/1 or QBD) developed in HE [11] and Van Houdt and 
Blondia [26, 27, 28] does not apply.  Even for the MMAP[K]/PH[K]/1 queue, for which all three 
methods apply, the M/G/1 approach has its advantages.  As was pointed by Van Houdt and 
Blondia [28], the dimensions of the matrices involved with the GI/M/1 and QBD approaches can 
be quite large, which increases computation time and space requirement significantly.  The size 
of transition blocks in the M/G/1 approach can be significantly smaller.  
 
 The rest of the paper is organized as follows.  In Section 2, the discrete time 
MMAP[K]/SM[K]/1 queue is introduced.  In Section 3, an M/G/1 type Markov chain associated 
with the total workload is defined and its ergodicity condition is found.  The steady state 
distributions of the Markov chain, the total workload, waiting times, sojourn times of batches of 
customers are given in Section 4.  In Section 5, two special cases – the MMAP[K]/GI[K]/1 queue 
and the MMAP[K]/PH[K]/1 queue – are considered and more detailed results are obtained.  
Finally, in Section 6, numerical examples that provide insight into the performance of the 
queueing models of interest are presented. 
 
 
2.  The Discrete Time MMAP[K]/SM[K]/1/FCFS Queue 
 
The queueing system of interest has K types of customers, where K is a positive integer.  All 
customers, regardless of their type, join a single queue and are served by a single server on a 
first-come-first-served (FCFS) basis.  In the reminder of this section, we describe the customer 
arrival process, the queueing process, and the service process in detail.   
 

The customer arrival process  The customer arrival process is a discrete time Markov 
arrival process with marked transitions (MMAP[K]) (Asmussen and Koole [2], HE [9, 10] and 
HE and Neuts [14]).  Customers are distinguished into K types and arrive in batches.  To 
characterize the batches of customers, we introduce a set of strings of integers denoted by 
 
 À = {J:  J = j1j2Ljn, 1£ ji£K, 1£i£n, n³1}.   (2.1) 
 
For the queueing system, the string J = j1j2Ljn ÎÀ represents a batch with n customers.  These n 
customers are of the types j1, j2, …, and jn, respectively.  Within the batch, the n customers are 
ordered as j1, j2, …, and jn.  We call J a string representation of that batch.   
 
 The system status is observed at integer epochs t = 0, 1, 2, ….  Let Ia(t) be the phase of 
the underlying Markov chain of the arrival process in the time period [t, t+1), which will be 
called period t, and X(t) be the string representation of the batch associated with the transition in 
period t if there is an arrival; otherwise, X(t) = 0.  Then we define  
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where ma is the number of phases of the underlying Markov chain.  The constant dJ,i,j is the 
probability that a batch J arrives in period t+1 and the phase of the underlying Markov chain is j 
in period t+1, given that the phase was i in period t.  Let DJ be an ma´ ma matrix with (i, j)-th 
element dJ, i, j.  Let D0 be an ma´ ma substochastic matrix for no arrival in a period (i.e., X(t) = 0).  
The set of matrices {D0, DJ, JÎÀ} provides all information about the Markov arrival process 
with marked transitions.   
 

Let D be the sum of all matrices in the set {D0, DJ, JÎÀ}.  The matrix D is the transition 
probability matrix of the underlying Markov chain Ia(t).  We assume that D is irreducible and D ¹ 
D0.  Let qa be the (unique) invariant probability vector of the stochastic matrix D, i.e., qaD = qa 
and qae = 1, where e is a column vector with all elements being one.  We note that the 
irreducibility of D implies that the Perron-Frobenius eigenvalue of D0 (i.e., the eigenvalue with 
the largest modulus) is less than one since D ¹ D0.  We refer readers to Gantmacher [7] for more 
about nonnegative matrices. 
 
 In steady state, the total arrival rate of batches of customers is given by l = 1–qaD0e.  Let 
lJ = qaDJe for JÎÀ, i.e., the average arrival rate of batches of the type J.  The arrival rate of type 
k customers is given by  
 
 ,1,),()( KkkJN

J
Jk ££= å

ÀÎ

ll  (2.3) 

 
where N(J, k) is the number of appearances of the integer k in the string J.  Formulas for the 
arrival rates can be derived by using the classical generating function approach (See HE [10] and 
Neuts [17, 19]). 
 

The queueing process  After a batch of customers has arrived, all customers join a single 
queue according to the order in the batch.  All batches are served by a single server on a FCFS 
basis.  Within each batch, customers are served according to their order in the batch.  Let q(t) be 
a string of integers for the queue at period t, which is obtained after possible service completion 
and arrival in period t–1.  Suppose that the services of individual customers in a batch can be 
distinguished.  If q(t) = j1j2Ljn, then there are n customers in the system at time t, the customer in 
service is of type j1, the first customer waiting in queue is of type j2, …, and the last customer 
waiting in queue is of type jn.  These n customers shall be served in the order j1, j2, …, jn.  If a 
batch J = h1h2Lhk arrives next, the queue becomes j1j2Ljnh1h2Lhk.  If the service of customer j1 
is completed next, the queue becomes j2j3Ljn and the server starts serving customer j2.  If 
services are defined for batches only, then the queueing process can be described in terms of 
batches of customers in a similar manner.  According to HE [10], the service order of customers 
within a batch can be specified easily by arranging the integers in the corresponding string.  For 
instance, if type 1 customers have service priority over other customers within a batch J, then the 
integer 1 is placed ahead of others in the string J (e.g., J = 1114423).  In fact, HE [10] has shown 
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that the string representation provides great flexibility in modeling with respect to the service 
order within a batch of customers. 

 
The service process  We assume that the service process and the arrival process are 

independent.  The service process (of batches) is governed by a semi-Markov chain with ms 

states.  Let hn be the phase of the semi-Markov process after the n-th transition (service).  Let Xn 
the string representation of the n-th batch in service.  Then we assume 

 
 ,,1,,1),(},|,{ ,,1 ÀÎ³££===== - JnmjitciJXtsjP sjiJnnXn n

hh  (2.4) 
 
where sJ is the service time of a batch J and t is a positive integer.  We assume that the service 
time of any batch is at least one.  In equation (2.4), the current service is in the phase i and the 
phase becomes j after the service completion, which is the phase of the next service.  Note that, if 
the queueing system is empty, the phase of the underlying semi-Markov chain remains the same.  
The constant cJ,i,j(t) is the probability that the service time is t and the phase becomes j after the 
completion of the service, given that the current phase is i and the batch in service is of type J.  
Let CJ(t) be an ms´ ms matrix with (i, j)-th element cJ,i,j(t).  The set of matrices {CJ(t), t³1, JÎÀ} 
provides all information about the service process.  For any JÎÀ, we denote 
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 (2.5) 

 
The matrix C is the transition probability matrix of the underlying Markov chain {hn, n³0}, 
which is independent of J (i.e., the type of batch in service has no impact on the environment).  
We assume that C is irreducible.  Let qs be the (unique) invariant probability vector of the 
stochastic matrix C, i.e., qsC = qs and qse = 1.  In steady state, the mean service time of a batch J 
can be calculated as: ( )eå¥

=
=

1, )()(
t JsJ ttCsE

s
qq .  The service rate of batches of the type J is 

given as mJ = ( ) 1
, )( -sE Jsq , i.e., the average number of type J batches that can be served per period 

of time.   
 

The traffic intensity of the queueing system is defined as: 
 
 ./å

ÀÎ

=
J

JJ mlr  (2.6) 

 
According to Loynes [16], the queueing system can reach its steady state if and only if r < 1.  
Therefore, throughout this paper, we assume r < 1.   
 
 In the above definition of the queueing model, the service process is general.  Later in this 
paper, we shall consider some special cases such as the case with independent service times 
(MMAP[K]/GI[K]/1) and the case with PH-distributed service times (MMAP[K]/PH[K]/1). 
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3.  The Generalized Total Workload Process  
 
The basic idea to analyze the waiting times originates from the following fundamental 
relationship for waiting times in queues.  Let wn be the (actual) waiting time of the n-th batch.  
Then we have  
 
 0},,0max{ 11 ³-+= ++ nsww nXnn n

t , (3.1) 
 
where tn+1 is the length of the time between the n-th batch and the (n+1)-st batch, Xn is the string 
representation of the n-th batch, and 

nXs is the service time of the n-th batch.  The process {wn, 
n³0} has a repeating structure, which is difficult to deal with (see Zhao, et al. [29]).  To study the 
waiting times, we construct some processes closely related to {wn, n³0}, which can be dealt with 
under certain conditions on the arrival or the service process.  Some examples of such processes 
are the age process and the total workload (the virtual waiting time) process.  The total workload 
process is used in this paper and the age process is used in HE [11] for the study of waiting times 
and sojourn times. 
 

Based on equation (3.1), we introduce a process vg(t) related to the total workload in the 
queueing system as  

 
 )()( )()( )( tnXtng ttswtv

tn
--+= . (3.2) 

 
where n(t) represents the ordinal number of the last batch arrived in or before period t, and tn(t) is 
the arrival time of the n(t)-th batch.  It is readily seen that n(t), wn(t), Xn(t), 

)( tnXs , and tn(t) update 

their values if a batch arrives in period t.  The relationship between n(t), wn(t), tn(t), 
)( tnXs , and vg(t) 

is shown in Figure 3.1. 
 
 
 
 
 
 
 
 
 

Figure 3.1  Variables vg(t), n(t), tn(t), wn(t), and 
)( tnXs  when vg(t)>0.  

 
 The process {vg(t), t³0} evolves as follows.  At a batch arrival epoch (say the n-th batch), 
the total workload in the queueing system is calculated as wn + 

nXs , which is the value of vg(t) in 
that period.  During the arrival of the next batch, the value of vg(t) decreases by one per period.  If 
vg(t) ³ 0, vg(t) represents the total workload in the queueing system in period t.  If vg(t) < 0, the 
queueing system is empty in period t.  The value –vg(t) indicates how long the current idle period 

Arrival of the 
n(t)-th batch 

t tn(t) 

wn(t) vg(t) 

)( tnXs  
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has been (or the age of that idle period in period t).  When the next batch arrives, the value of 
vg(t) is updated as the total workload in that period and the next cycle begins.  Note that, if vg(t) is 
negative and there is an arrival, then vg(t) jumps upward to the service time of the arrived batch.  
Compared to the process {wn, n³0}, {vg(t), t³0} provides information about the workload at any 
time epoch.  In fact, {wn, n³0} can be considered as an embedded process of {vg(t), t³0} at batch 
arrival epochs.   
 
 In order to construct a Markov chain related to {vg(t), t³0}, we introduce the following 
auxiliary variables.  We define a process {Is(t), t³0} from the Markov chain {hn, n³0} as 
follows: Is(t) = hn if the n-th batch is the last one arrived in or before period t.  Thus, Is(t) is 
constant between two consecutive batch arrivals.  Recall that X(t) is the batch that arrived in 
period t.  If there is no arrival in period t, then X(t) = 0.  Then equation (3.2) leads to  
 

 
ïî

ï
í
ì
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=-
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;0)(if,1)(
)1(

)( tXstv
tXtv

tv
tXg

g
g         

                            
 (3.3) 

 
Note that s0 = 0 in equation (3.3).  Since the arrival process is governed by a Markov chain, the 
process {(vg(t), Ia(t), Is(t)), t³0} has the Markovian property during no arrival periods.  The phase 
change in the service process is determined by the Markov chain {hn, n³0}.  The service time of 
the batches depends on the Markov chain {hn, n³0} as well.  Thus, the process {(vg(t), Ia(t), Is(t)), 
t³0} has the Markovian property in batch arrival periods.  Therefore, the process {(vg(t), Ia(t), 
Is(t)), t³0} is a Markov chain.  Since the value of vg(t) can decrease at most by one per period, 
vg(t) has the skip-free to the left property.  Therefore, {(vg(t), Ia(t), Is(t)), t³0} is a Markov chain 
of M/G/1 type with no boundary at the level zero.  The variables vg(t), Ia(t), and Is(t) take integer 
values and their ranges are: –¥<vg(t)<¥, 1£Ia(t)£ma, and 1£Is(t)£ms.  A typical sample path of 
vg(t) is shown in Figure 3.2.   
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
Figure 3.2   A sample path of vg(t)  

 
The transition probability matrix of {(vg(t), Ia(t), Is(t)), t³0} is given as 

t 

Service times of batches that just arrived 

vg(t) 

System idle 
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where 
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where the notation “Ä” is for Kronecker product of matrix (see Gantmacher [7]).  Note that the 
value of vg(t) determines the level of the Markov chain.  Also note that the Perron-Frobenius 
eigenvalue of A0 is equal to the Perron-Frobenius eigenvalue of D0, which is less than one.  The 
transition probabilities in Pg can be verified as follows:  
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 We shall use the steady state distribution of the Markov chain {(vg(t), Ia(t), Is(t)), t³0} to 
find the distributions of waiting times.  For that purpose, we show that such a steady state 
distribution exists if the queueing system is stable, i.e., r < 1.  First, we prove the following 
properties associated with the transition blocks in Pg.  Define 
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if the summations are well-defined.  By definition (3.5), we have 
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Remark 3.1  Before proceeding, we like to discuss the irreducibility of the matrix A and the 
Markov chain {(vg(t), Ia(t), Is(t)), t³0}, since the steady state analysis of the queueing system 
depends largely on the assumption that A and {(vg(t), Ia(t), Is(t)), t³0} are irreducible.  
Unfortunately, neither A nor {(vg(t), Ia(t), Is(t)), t³0} is guaranteed to be irreducible under the 
irreducibility assumptions on the matrices D and C made in Section 2.  For instance, let  
 
 { }ÀÎ¹= JtCtn J somefor,0)(:maxmax   . (3.9) 
 
It is possible that nmax = ¥.  If nmax = 1, then these states with vg(t) ³ 2 are not reachable from 
states with vg(t) £ 1.  Furthermore, it is possible for A and {(vg(t), Ia(t), Is(t)), t³0} to have several 
closed classes of states.  For example, if  
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for which the matrix D is irreducible and aperiodic and C is irreducible, the matrix A has two 
closed subsets {(1, 1), (2, 2)} and {(1, 2), (2, 1)}.  To analyze the Markov chain, we must 
identify the closed classes of states and remove transient states.  Then we concentrate on the 
irreducible subsets.  Therefore, in this paper, we shall assume that all transient states have been 
removed and the Markov chain {(vg(t), Ia(t), Is(t)), t³0} is irreducible and aperiodic. 
 

Denote by c(z) the Perron-Frobenius eigenvalue of the nonnegative matrix A*(z).  Let u(z) 
and v(z) be the left and right eigenvectors corresponding to c(z), respectively.  The two vectors 
u(z) and v(z) are normalized by u(z)v(z) = 1 and u(z)e = 1.  If A is irreducible, then A*(z) is 
irreducible and all the elements of the vectors u(z) and v(z) are positive for z>0.  According to 
Neuts [17], the function c(z) and the vectors u(z) and v(z) can be chosen as differentiable 
functions. 
 
Lemma 3.1  Assume that A is irreducible.  The vector qaÄqs is the invariant probability vector of 
A.  At z=1, we have c(1) = 1 and (qaÄqs)SnnAne = c(1)(1) = r.  Consequently, c(1)(1) < 1 if and 
only if r < 1.  (Note that c(1)(1) is the first derivative of the function c(z) at z=1.) 
 
Proof.  From the expression of A in equation (3.8), it is easy to verify that the vector qaÄqs is the 
invariant probability vector of the stochastic matrix A.  It is also easy to see c(1) = 1.  
Furthermore, we have u(1) = qaÄqs and v(1) = e.  By u(z)e = 1, we have u(1)(z)e = 0.  By taking 
derivatives on both sides of u(z)A*(z) = c(z)u(z), we obtain u(1)(z)A*(z) + u(z)A*(1)(z) = c(1)(z)u(z) 
+ c(z)u(1)(z).  Letting z=1 and multiplying e on both sides of the equation, we obtain u(1)A*(1)(1)e 

= c(1)(1), i.e., ( ) e÷
ø

ö
ç
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nsa nAqqc , which can be evaluated as 
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Therefore, c(1)(1) = r.  Then c(1)(1) < 1 if and only if r < 1.  This completes the proof of Lemma 
3.1.   ð 
 

Denote by G an (mams)´(mams) matrix that is the minimal nonnegative solution to  
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We refer to Latouche and Ramaswami [15] and Neuts [17, 19] for more about the matrix G.  Let 
g be the (unique) invariant probability vector of G if G is stochastic.  
 
Theorem 3.2  If the Markov chain {(vg(t), Ia(t), Is(t)), t³0} is irreducible, it is positive recurrent if 
and only if r < 1.   
 
Proof.  It is easy to see from the structure of the transition matrix Pg (see equation (3.4)) that A 
must be irreducible if the Markov chain is irreducible.  Therefore, by Lemma 3.1, the vector 
qaÄqs is the invariant probability vector of A.   
 

We use the mean-drift method to prove the theorem.  First, we prove the necessity of the 
condition r < 1.  Note that the level of states of the Markov chain is determined by the value of 
vg(t).  We consider the levels with positive vg(t).  The transitions among these levels are the same 
as a classical M/G/1 type Markov chain.  If the Markov chain {(vg(t), Ia(t), Is(t)), t³0} is positive 
recurrent, then the mean first passage time from any positive level to the level zero must be 
finite.  By Neuts [17], we must have c(1)(1) < 1.  Therefore, we must have r < 1.  For 
completeness, we give the following proof based on the mean drift method.   
 
 Let v be the (column vector) mean first passage time from the level n to the level n–1, for 
n³1.  The vector v is independent of the level n (>0) because of the M/G/1 structure.  Since the 
Markov chain is positive recurrent, every element of v is positive and finite.  By conditioning on 
the first transition, the following equation can be established for v:   
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By equation (3.13), the Perron-Frobenius eigenvalue of the matrix å å
¥

=

-

=1

1

0n

n

i

i
n GA  must be less than 

one.  Since the Markov chain is positive recurrent, G is a stochastic matrix.  It can be shown that 
I–G+eg is invertible.  By routine calculations, we obtain 
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Premultiplying qaÄqs on both sides of equation (3.14), we obtain 
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Postmultiplying the right eigenvector corresponding to the Perron-Frobenius eigenvalue of 

å å
¥

=

-

=1

1

0n

n

i

i
n GA  on both sides of equation (3.15), we find that (qaÄqs)SnnAne < 1, which implies 

c(1)(1) < 1.  Therefore, by Lemma 3.1, we must have r < 1.   
 
 Now, we assume r < 1.  By Lemma 3.1, we have c(1)(1) < 1.  Thus, we have c(z) < z for 
some z > 1 and close to one.  Then we have A*(z)v(z) = c(z)v(z) < zv(z).  Since the Perron-
Frobenius eigenvalue of A0 is less than one (because the Perron-Frobenius eigenvalue of D0 is 
less than one), the matrix I–A0 is invertible.  Every element of the vector (I–A0)-1v(z) is finite and 
positive.  With z and v(z), we define a (vector) Lyapunov function (test-function) as follows: for 
states in the level n, 
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nzz
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v
                 v

f  (3.16) 

 
(Note: Here we abuse the notation a bit; we use “n” to represent all states in the level n.)  Since 
A*(z) is irreducible, every element of the vector v(z) is positive.  Therefore, f(n) ® ¥, |n| ® ¥.  
Let e1 = z–c(z) (>0) and e2 = e1min{1, min{(v(z))i}}.  We choose n0 large enough so that, for 
n>n0,  
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1
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The mean-drift to level zero is calculated as follows.  For n³1,  
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For –n < –n0, we have 
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We also have, for –n0 £ n £ 0,  
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Thus, the mean-drifts away from level zero, with respect to the Lyapunov function given in 
equation (3.16), are all less than –e2, except for a finite number of states.  Therefore, the Markov 
process is positive recurrent by Foster's criterion (see Theorem 2.2.3 in Fayolle, et al. [5]).  This 
completes the proof of Theorem 3.2. ð 
 
 
4.  Steady State Distributions  
 
In this section, we consider the stationary distribution of {(vg(t), Ia(t), Is(t)), t³0} under r < 1 and 
the irreducibility conditions made in Theorem 3.2.  Denote by p = ( …, p(–1), p(0), p(1), …) the 
steady state distribution of {(vg(t), Ia(t), Is(t)), t³0}, i.e., pPg = p, pe = 1, where p(n) = (…, pi, j(n), 
…) is a row vector of the size mams, and  
 
 )}0(),0(),0(|)(,)(,)({lim)(, sagsagtji IIvjtIitIntvPn ====

¥®
p  (4.1) 

 
 We further assume that the Markov chain {(vg(t), Ia(t), Is(t)), t³0} is aperiodic so that the 
steady state distribution (invariant probability measure) p is unique.  First, we find {p(0), p(–1), 
p(–2), …} in terms of p(0).  By pPg = p, we have 0)()1( Ann -=-- pp , for n³0, which leads to 
 
  p(–n) =  p(0)(A0)n   for   n³0.   (4.2) 
 
Thus, to find p, we only need to concentrate on {p(0), p(1), p(2), …}.  In fact, we can construct 
another Markov chain, which is related to the (actual) workload process, to find {p(0), p(1), p(2), 
…}.  The construction of that Markov chain is given as follows.  By pPg = p, we have 
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 Denote by 1
0

0
))(0()(]0,( -

¥
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-=-=-¥ å AIi
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ppp .  Note that the matrix (I–A0)-1 is finite and 

nonnegative.  Then the probability vector (p(–¥, 0], p(1),  p(2), …) is the steady state 
distribution of the following transition probability matrix 
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 For the Markov chain {(vg(t), Ia(t), Is(t)), t³0}, if we only observe the process when vg(t) ³ 
0, we obtain a process {(v(t), Ia(t), Is(t)), t³0}, where v(t) is the (actual) total workload in the 
system.  It is easy to see that {(v(t), Ia(t), Is(t)), t³0} is an M/G/1 type Markov chain and its 
transition probability matrix is given by equation (4.4).  Note that, to obtain the steady state 
waiting time distributions, we can directly consider the Markov chain {(v(t), Ia(t), Is(t)), t³0}.  By 
considering the Markov chain {(vg(t), Ia(t), Is(t)), t³0}, however, we get more information about 
the queueing process, especially about the idle periods.   
 

 Denote by å
¥

=

+-¥=
1

* )(]0,()(
n

n nzz ppp .  From equation (4.4), it is easy to obtain the 

following equation for p*(z): 
 
 )()1](0,())()(( *** zAzzAzIz --¥=- pp . (4.5) 
 
Theorem 4.1  If the Markov chain {(vg(t), Ia(t), Is(t)), t³0} is irreducible and aperiodic and r < 1, 
then p*(1) = qaÄqs and p(–¥, 0] = (1–r)g,  p(0) = (1–r)g(I–A0), where g is the invariant 
probability vector of G.   
 
Proof.  Letting z goes to 1 on both sides of equation (4.5), we obtain p*(1)(I–A) = 0.  Since p*(1) 
is a probability vector, it must be the invariant probability vector of A.  By Lemma 3.1, p*(1) = 
qaÄqs.   
 
 Dividing both sides of equation (4.5) by z –1 and multiplying both sides by e, yields  
 

 
1
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z

zAzIzzA ee pp . (4.6) 

 
Letting z go to 1 on both sides of equation (4.6) and using l’Hôpital’s Rule, by Lemma 3.1, we 
obtain 
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 Consider the embedded Markov chain P0 at the epochs the Markov chain {(v(t), Ia(t), 
Is(t)), t³0} enters the level zero.  Then we must have p(–¥, 0] = p(–¥, 0]P0.  By conditioning on 
the first transition from the level zero, we obtain 
 

 GGAP
n

n
n == å

¥

=0
0 . (4.8) 

 
Therefore, we must have p(–¥, 0] = cg, where c is a constant.  Since p(–¥, 0]e = 1–r, then c = 
1–r.  This completes the proof of Theorem 4.1.   ð 
 
 Once p(–¥, 0] is found, other vectors {p(1), p(2), …} can be computed by a stable 
recursion developed in Ramaswami [20]: for n³1,  
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where å
¥

=

-=
nj

nj
jn GAA  for n³1.   

 
Remark 4.1  The results obtained in Theorem 4.1 and the above algorithm may be valid for the 
more general case.  For instance, if nmax = 1 (defined in equation (3.9)), the Markov chain {(vg(t), 
Ia(t), Is(t)), t³0} is reducible.  However, if p(0) can be obtained, then {p(1), p(2), …} can be 
computed by using equation (4.9).  For this case, An = 0 for n³2.  Equation (4.9) gives p(n) = 0 
for n³2.   
 
 Now, we return to the total workload and the waiting time of an arbitrary batch.  Let vg be 
the generic random variable for the total workload in the system in steady state, w be the generic 
random variable for the waiting time of an arbitrary batch (i.e., the waiting time of the first 
customer in the batch), wJ be the generic random variable for the waiting time of an arbitrary 
batch J, d be the generic random variable for the sojourn time of an arbitrary batch (the total time 
the whole batch is in the system), and dJ be the generic random variable for the sojourn time of an 
arbitrary batch J.  We also denote by Ia the generic random variable of the underlying Markov 
chain of the arrival process in steady state and by Is the generic random variable of the service 
process in steady state. 
 



 15

Theorem 4.2  If the queueing system is stable and the Markov chain {(vg(t), Ia(t), Is(t)), t³0} is 
irreducible and aperiodic, the distributions of the total workload, waiting times, and sojourn 
times are given by: 
 
 ¥<<¥-== nnnvP g ,)(}{ ep . (4.10) 
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Proof.  Equation (4.10) is obvious.  Recall that, if vg<0, the queueing system is empty in that 
period and the system has been idle for –vg periods of time.  

 
Equation (3.2) shows that the waiting time of a batch is the (generalized) total workload 

right before its arrival.  Therefore, the distribution of waiting time wJ of an arbitrary batch of type 
J can be obtained by conditioning on the arrival of a batch J at an arbitrary time, which can be 
obtained as follows, for n³1, 
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which leads to the second expression in equation (4.12).  If n=0, we have {wJ = 0} = {vg £ 1 | 
Batch J batch arrives next}, which leads to the first expression in equation (4.12). 
 
 The distribution of w can be obtained similarly.  The distributions of the sojourn times are 
obtained as the convolution of the distributions of waiting time and service time by taking the 
phase of the service process into consideration.  This completes the proof of Theorem 4.2.  ð 
 

Note that the computation of the moments of the waiting times can be done by using 
existing formulas for the M/G/1 type Markov chains (see Neuts [17, 19]).  Details are omitted.  
The computation of the waiting time distribution of an arbitrary type k customer can be a little bit 
involved, since the service times of customers in a batch may not be independent.  In other 
words, if the service time is defined at the batch level, the waiting time distribution of a type k 
customer cannot be found explicitly.  Nonetheless, if more information on the service process is 
available, it might be possible to find the distribution of waiting times of individual types of 
customers.  An example is given in Section 5. 

 
To end this section, we point out that there is a close relation between the age process of 

the batch in service and the total workload process.  We define the age of a batch in period t as 
the total time the batch has been in the queueing system, given that the batch is in the system in 
period t.  The generalized age process {ag(t), t³0} of the batch in service or to be served next (if 
the system is empty) is defined as 

 
 )(1)()( )(

)( tntnXtng ttswta
tn

-+-+= +t , (4.16) 
 
where n(t) is the ordinal number of the last batch served in or before period t and tn(t) is the 
departure period of the n(t)-th batch.  The values of n(t), wn(t), and tn(t) are updated if a departure 
occurs in period t, where wn(t) can be computed by using equation (3.1).  According to Corollary 
4.2 in HE [11], ag(t) and vg(t) have the same steady-state distribution.  Thus, equation (4.10) can 
be used for computing the steady state distribution of the age of the batch in service at an 
arbitrary time as well. 
 
 
5.  The Discrete Time MMAP[K]/GI[K]/1 Queue  
 
For the discrete time MMAP[K]/GI[K]/1 queue, the service times of individual customers are 
independent with general distributions, i.e., ms = 1.  Consequently, the service times of batches 
are independent as well.  Denote by sk the service time of a type k customer.  Then the service 
rate of type k customers is given by m(k) = 1/(E(sk)). The service time of a batch J = j1j2Ljn is 

å
=

=
n

i
jJ i

ss
1

 with mean å
=

=
n

i
jJ i

sEsE
1

)()( .  By definition (2.6), we have  
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Thus, for the MMAP[K]/GI[K]/1 queue, definition (2.6) for the traffic intensity is consistent with 
the classical definition. 
 
 The distribution of the total workload and the waiting time of batches can be calculated 
by using formulas (4.10) and (4.11).  For this special case, we are able to compute the waiting 
times of individual types of customers.  Let w(k) be the generic random variable for the waiting 
time of an arbitrary type k customer.  Based on equation (4.11), we have, for n³0 and 1£k£K,  
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where d{.} is the indicator function.  Let d(k) be the generic random variable for the sojourn time 
of an arbitrary type k customer.  Note that, for the definition of d(k), we assume that a customer 
leaves the system immediately after its service.  We have, for n³1 and 1£k£K,  
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 An important special case is the discrete time MMAP[K]/PH[K]/1 queue, where the 
service times of individual customers are independent and have PH-distributions with matrix 
representations {(mk, ak, Tk), 1£k£K}, where mk is the number of phases of the PH-distribution, 
ak is the initial probability vector, and Tk is a substochastic matrix.  We assume that the service 
time of any customer is at least one (i.e., ake = 1, 1£k£K).  See Neuts [17] for more about PH-
distribution.  Denote by Tk

0 = (I–Tk)e.  Since PH-distributions are closed under convolution, the 
service time of a batch J also has a discrete time PH-distribution with a matrix representation 
{mJ, aJ, TJ}, where, for J = j1j2… jn,  
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 According to Neuts [17], the distributions of service times are given by 
 
 .,1,)( 01 ÀÎ³= - JtTtC J
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JJJ Ta  (5.5) 

 
 The matrix blocks of the transition matrix of {(vg(t), Ia(t), Is(t)), t³0} (see equation (3.5)) 
can be computed easily by  
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 The steady state distributions of waiting times can be computed accordingly by using 
formulas provided in Sections 3 and 4.  Note that for this case, A = D.  So A is irreducible if and 
only if D is irreducible.   
 

We point out that for the discrete time MMAP[K]/PH[K]/1 queue, since both the arrival 
process and the service process are governed by Markov chains, a QBD process can be 
introduced to describe the total workload process and the age process of the batch in service.  
That approach was used in HE [11] and Van Houdt and Blondia [28].  The advantage of the 
QBD approach is that the steady state distribution of the QBD process has a matrix geometric 
distribution, which is easy to compute.  On the other hand, as was pointed out by Van Houdt and 
Blondia [28], the dimension of the matrix blocks involved can be quite large for the QBD 
approach, which is  
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That number can be significantly larger than ma - the dimension of the blocks for the M/G/1 type 
Markov chain developed in this paper.  Even if we consider the computation of PH-distributions 
used in constructing matrices {An, n³0} (see equation (5.6)), the largest dimension of matrices 
involved with the M/G/1 type Markov chain is max{ma, mJ, JÎÀ}, which can be significantly 
smaller than the number in equation (5.7). Therefore, the M/G/1 approach can play an important 
role in the analysis of the waiting times and sojourn times for the MMAP[K]/PH[K]/1 case.  
More discussion on this issue is given in Section 6. 
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6.  Numerical Examples 
 
In this section, we outline a scheme for computing distributions of waiting times and sojourn 
times and briefly discuss three numerical examples.  First, we summarize the steps for computing 
performance measures in the following examples. 
 

1) Compute vectors qa and qs, the arrival rates {lJ, JÎÀ}, arrival rates {mJ, JÎÀ}, 
and r (by equation (2.6)).  

2) Compute transition blocks {A0, A1, A2, …} by equation (3.5).   
3) Compute the matrix G by equation (3.12) and the vector g.   
4) Compute the vector p(–¥, 0] and p(0) by Theorem 4.1. 
5) Compute vectors {p(0), p(–1), p(–2), …} by equation (4.2). 
6) Compute vectors {p(1), p(2), …} by the recursion given in equation (4.9). 
7) Determine distributions of the total workload, waiting times, and sojourn times by 

formulas given in Corollary 4.2 or equations (5.2) and (5.3). 
 

Most of the above steps can be done in a straightforward manner except the computation 
of the matrix G and vectors {p(1), p(2), …}.  Nonetheless, for the computation of G and {p(1), 
p(2), …}, efficient algorithms are available in the literature (Neuts [19] and Ramaswami [20]).  
 
Example 6.1  Consider an MMAP[2]/PH[2]/1 queueing with following system parameters: 
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 (6.1) 

 
This queueing system has a light traffic with r = 0.5139.  For this queueing system, a type 

1 customer is mostly likely to be followed by type 2 customers.  Since type 1 customers have a 
slower service rate, it is expected that type 2 customers face longer waiting time than type 1 
customers, which is shown in Table 6.1.  The distributions of waiting times and sojourn times are 
given in Table 6.1. 
 
 
 
 
 
 
 
 
 



 20

Table 6.1  Distributions of waiting times and sojourn times 
 

n 0 1 2 3 4 5 6 7 … 
P{v=n} 0.4861 0.3340 0.1025 0.0431 0.0186 0.0083 0.0038 0.0017 … 
P{w=n} 0.8125 0.1063 0.0451 0.0196 0.0088 0.0040 0.0018 0.0008 … 
P{w1=n} 0.8557 0.0849 0.0338 0.0140 0.0062 0.0028 0.0012 0.0006 … 
P{w2=n} 0.8006 0.1122 0.0482 0.0211 0.0095 0.0043 0.0020 0.0009 … 
P{d=n} 0 0.6695 0.1895 0.0792 0.0338 0.0151 0.0068 0.0031 … 
P{d1=n} 0 0.5134 0.2563 0.1228 0.0575 0.0267 0.0123 0.0057 … 
P{d2=n} 0 0.7125 0.1711 0.0671 0.0272 0.0119 0.0053 0.0024 … 

 
 It is interesting to see that P{v=0} = 0.4861 = 1 – r, which is much smaller than 
P{w=0}=0.8125.  In fact, for many numerical examples, P{v=0}+P{v=1} » P{w=0}.  The reason 
is that, for discrete queues, an arrival and a departure can occur simultaneously.  Therefore, if the 
total workload is one, the waiting time of the next arrival is actually zero.  Next, we examine a 
queueing system in heavy traffic. 
 
Example 6.2  Consider an MMAP[5]/PH[5]/1 queue with following system parameters: K = 5, 
ma = 3,  
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The traffic intensity of this queueing system is r = 0.9304.  The distributions of waiting times are 
given in Table 6.2. 
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Table 6.2  Distributions of waiting times  
 

n 0 1 2 3 4 5 6 7 … 
P{w=n} 0.1585 0.0348 0.0286 0.0263 0.0250 0.0240 0.0231 0.0222 … 
P{w1=n} 0.1852 0.0404 0.0294 0.0262 0.0246 0.0235 0.0224 0.0215 … 
P{w2=n} 0.1864 0.0414 0.0294 0.0261 0.0245 0.0234 0.0224 0.0214 … 
P{w3=n} 0.1333 0.0293 0.0278 0.0264 0.0254 0.0245 0.0237 0.0229 … 
P{w4=n} 0.1427 0.0308 0.0280 0.0264 0.0253 0.0244 0.0235 0.0227 … 
P{w5=n} 0.1177 0.0268 0.0273 0.0263 0.0255 0.0247 0.0240 0.0232 … 

 
Some observations can be made from Table 6.2.  First, compared to Example 6.1, the 

distributions have a heavier tail.  That is, the waiting times are much longer than that of Example 
6.1.  Second, the waiting times of the five types of customers are significantly different.  For 
example, P{w5=0}=0.1177, which significantly smaller than P{w1=0}=0.1852.  Thus, in a 
queueing system, the waiting times of different types of customers can be dramatically different.  
Similar conclusions can be drawn for the sojourn times.  For this example, the size of the matrix 
blocks in computation is 3.  If the QBD approach or the GI/M/1 approach (HE [11] and Van 
Houdt and Blondia [28]) is used, the size of the matrix blocks in computation is 27 or 24, which 
is significantly larger.   
 
Example 6.3  Consider an MMAP[2]/PH[2]/1 queueing with three types of batches J1 = 1, J2 = 2, 
and  J3 = 12 and  following system parameters: K = 2, ma = 2,  
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The traffic intensity of this queueing system is r = 0.774.  By using equation (5.2), the 
distributions of waiting times of the two types of customers can be computed and the results are 
given in Table 6.3. 
 

Table 6.3  Distributions of waiting times  
 

n 0 1 2 3 4 5 6 7 … 
P{w1=n} 0.4422 0.1051 0.0804 0.0643 0.0522 0.0428 0.0352 0.0292 … 
P{w2=n} 0.5176 0.0915 0.0682 0.0548 0.0448 0.0369 0.0306 0.0254 … 
P{w12=n} 0.2914 0.1322 0.1048 0.0833 0.0670 0.0544 0.0446 0.0367 … 
P{w(1)=n} 0.3819 0.1159 0.0902 0.0719 0.0581 0.0474 0.0390 0.0322 … 
P{w(2)=n} 0.2070 0.1415 0.1168 0.0955 0.0773 0.0626 0.0510 0.0417 … 

 
 Note that the wJ is the waiting time of an arbitrary batch J and w(i) is the waiting time of 
an arbitrary type i customer, i = 1, 2.  Table 6.3 shows that the waiting times of type 2 customers 
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are significantly longer than that of type 1 customers, because many type 2 customers are served 
after a type 1 customer.  Thus, the order of service in a batch can have significant effect on the 
queueing processes of different types of customers.    
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