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Abstract. In this paper, we study a discrete time queueing system with multiple types of customers and
a first-come-first-served (FCFS) service discipline. Customers arrive according to a semi-Markov arrival
process and the service times of individual customers have PH-distributions. A GI/M/1 type Markov chain
for a generalized age process of batches of customers is introduced. The steady state distribution of the
GI/M/1 type Markov chain is found explicitly and, consequently, the steady state distributions of the age
of the batch in service, the total workload in the system, waiting times, and sojourn times of different
batches and different types of customers are obtained. We show that the generalized age process and a
generalized total workload process have the same steady state distribution. We prove that the waiting times
and sojourn times have PH-distributions and find matrix representations of those PH-distributions. When the
arrival process is a Markov arrival process with marked transitions, we construct a QBD process for the age
process and the total workload process. The steady state distributions of the waiting times and the sojourn
times, both at the batch level and the customer level, are obtained from the steady state distribution of the
QBD process. A number of numerical examples are presented to gain insight into the waiting processes of
different types of customers.
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1. Introduction

Modern communication networks are required to handle different types of data with
drastically different characteristics in burstiness and volume. Modern supply chains of
goods are designed to meet customized demands with different features. Motivated by the
design and performance analysis of these stochastic systems, in this paper, we introduce
and study a class of discrete time queueing models with multiple types of customers.
The focus is on the distributions of waiting times and sojourn times of individual types
of customers.

Because of various applications, the study of discrete time queueing models was
extensive (e.g., Alfa [1], Cinlar [6], Cortizo et al. [8], De Smit [9], Grassmann and
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Jian [14], Van Houdt and Blondia [34–37], Yang and Chaudhry [39], and references
therein). In the classical literature, most of the studies on discrete time queues were
focused on queues with a single type of customers or multiple types of customers with
different service priorities. The arrival processes of customers are usually assumed to be
(independent) Poisson processes. With the introduction of the Markov arrival process
with marked transitions (MMAP[K]) (Asmussen and Koole [4], HE [15,17], HE and
Neuts [21]), complicated queues with multiple types of customers becomes tractable
(HE [16], HE and Alfa [20], Takine [31,32], and Takine and Hasegawa [33], etc.) In this
paper, we use a semi-Markov arrival process with marked transitions, which is more
general than MMAP[K]. We assume no priority among different types of customers. The
queueing model is still tractable mathematically.

Queueing systems with multiple types of customers without priority can be cat-
egorized by the service discipline of individual customers. In HE [16], HE and Alfa
[20], and Takine and Hasegawa [33], queueing systems with a last-come-first-served
service discipline were investigated. By analyzing Markov chains with a tree structure,
results were obtained for performance measures such as busy periods, queue strings,
and waiting times. For the first-come-first-served case, the distributions of waiting times
of individual types of customers can be obtained (HE [15,17] and Takine [31]). But the
queue string (length) process for the first-come-first-served case is difficult to analyze
since one has to keep track of the types of customers in queue. In Takine [31], the
queue length distributions were found by using information about the waiting times.
In general, for the queueing system of interest, unlike the analysis of the waiting times
in some classical queueing systems, there is no information about the queue lengths
to be utilized in the analysis of the waiting times. Fortunately, a Markov chain as-
sociated with the age of the batch of customers in service can be constructed so as
to analyze the waiting times and sojourn times, which is the approach used in this
paper.

Waiting times and sojourn times are among the most important performance mea-
surements of queueing models. The study of waiting times and sojourn times in queues
was extensive (e.g., Asmussen and O’Cinneide [3], Cinlar [6], Cohen [7], De Smit [9],
Grassmann and Jian [14], Neuts [25], Sengupta [28,30], Takine and Hasegawa [33],
etc.) In Grassmann and Jian [14], a method based on Wiener-Hopf factorization was
applied to develop an algorithm for computing the waiting time distribution (for a dis-
crete time queueing model with a single class of customers). Sengupta [28–30] showed
that the waiting time and sojourn time in a continuous time GI/PH/1 queue have matrix
exponential distributions. Asmussen and O’Cinneide [3] extended Sengupta’s results to
a continuous time GI/PH/c queue. Recently, Van Houdt and Blondia [35–37] studied the
waiting times and sojourn times in a discrete time queue with multiple types of customers
(the model studied in Section 5 of this paper). In [37], they constructed a Markov chain
similar to the one used in this paper for the age process and obtained the distributions
of sojourn times from the steady state distribution of the age process. In this paper, we
consider a more general queueing model in discrete time. We construct a generalized
age process, which has no boundary at level zero, and derive the distributions of the
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waiting times and sojourn times from the steady state distribution of the generalized age
process. Furthermore, we show that the distributions of waiting times and sojourn times
for individual types of customers are discrete time PH-distributions.

Matrix analytic methods are the basic tools used in this paper. We refer readers
to Latouche and Ramaswami [23] and Neuts [26,27] for more about the matrix ana-
lytic methods. One of the advantages of such methods is the development of efficient
algorithms for computing performance measures for various stochastic models, by us-
ing the structures of Markov chains of of interest (e.g., the QBD, M/G/1, or GI/M/1
structure). In this paper, we shall construct a GI/M/1 type Markov chain and a QBD
process associated with the age of the batch in service to analyze the waiting times
and sojourn times. In HE [18], an MMAP[K]/SM[K]/1/FCFS qeueueing system is con-
sidered and an M/G/1 type Markov chain associated with the total workload is con-
structed in analysis. By using existing results of these well structured Markov chains,
we are able to obtain detailed results on the distributions of waiting times and sojourn
times.

As mentioned above, the basic idea in this paper was to construct a GI/M/1 type
Markov chain, that is associated with the age of customers in service, to study the wait-
ing times and sojourn times of individual types of customers. The idea was used for
analyzing waiting times in queues in the past. For continuous time queues, Asmussen
and O’Cinneide [3] and Sengupta [28,30] used this idea to find the waiting time dis-
tribution for an SM/PH/1 queue. In [3,28,30], the queueing models have only one type
of customers. Their extension to continuous queueing models with multiple types of
customers is considered in HE [19]. Van Houdt and Blondia [35–37] used the idea to
find the distributions of waiting times of the discrete time MMAP[K]/PH[K]/(1,2) queue.
Compared to the work of Van Houdt and Blondia [35–37], this paper studies a more
general queueing model, provides more details for the steady state distributions of the
age process and the sojourn time distributions, and provides a formal introduction of the
Markov chain associated with the age of the batch in service. The formal construction
of the Markov chain gives insight into the solution approach and sheds light on the
extension to queues with multiple servers.

The rest of the paper is organized as follows. In Section 2, the discrete time
SM[K]/PH[K]/1/FCFS queue is introduced. In Section 3, a generalized age process
is introduced and analyzed. Particularly, the steady state distribution of that process
is found. Based on that steady state distribution, in Section 4, distributions of the age
of the batch in service, the total workload in the system, sojourn times and waiting
times of different types of batches and customers are found. It is shown that these
distributions are PH-distributions. In Section 5, a special queueing model whose ar-
rival process is Markovian is analyzed. More detailed results are obtained for this
case. Numerical examples are presented in Section 6 to gain insight into the meth-
ods developed and the performance of queueing systems. Finally, in Section 7, we
offer a brief discussion on the extension to queues with multiple
servers.
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2. The SM[K]/PH[K/1/FCFS queue

The queueing system of interest has K types of customers, where K is a positive integer.
All customers, regardless of their types, join a single queue and are served by a single
server on a first-come-first-served (FCFS) basis. In the rest of this section, we describe
the customer arrival process, the queueing process, and the service times in detail.

2.1. The customer arrival process

The customer arrival process is a discrete time semi-Markov process with marked tran-
sitions. Customers are distinguished into K types and arrive in batches. To characterize
the batches of customers, we define a set of strings of integers:

ℵ = {Jk: Jk = j1j2 . . . jnk , 1 ≤ ji ≤ K, 1 ≤ i ≤ nk, 1 ≤ k ≤ N} (2.1)

where N is the total number of different strings in set ℵ and nk is the number of cus-
tomers in the k-th batch. We assume that N is finite. For the arrival process, a string
J = j1j2 . . . jn ∈ ℵ represents a batch that has n customers. These n customers are of
types j1, j2, . . ., and jn , respectively. We call J a string representation of that batch. Thus,
there are in total N different types of batches.

Consider a semi-Markov chain {(ξn, τn), n ≥ 0} with ma phases. The variable ξn is
the phase of a semi-Markov chain right after the n-th transition. The variable τn is the
number of periods between the (n −1)-st transition and the n-th transition (i.e., the inter-
transition time). The arrivals of batches of customers are associated with transitions of
the semi-Markov process in the following manner. Let Jn be the string representation of
the batch associated with the n-th transition. That is: a batch Jn arrives at that transition
epoch. Define

P{ξn = j, τn = t, Jn = J | ξn−1 = i} = pJ,i, j (t),

1 ≤ i, j ≤ ma, n ≥ 1, J ∈ ℵ, (2.2)

where t is a positive integer. The variable pJ,i, j (t) is the probability that a batch J arrives
after t periods of time from the arrival of the last batch and the phase of the underlying
semi-Markov process becomes j after the arrival, given that the phase was i. Let Da,J (t)
be an ma × ma matrix with (i, j)-th element pJ,i, j (t). Matrices {Da,J (t), t ≥ 1, J ∈ ℵ}
provide all information about the semi-Markov arrival process with marked transitions.
Define

Da(t) =
∑

J ∈ ℵ
Da,J (t), t ≥ 1; Da,J =

∞∑

t=1

Da,J (t), J ∈ ℵ;

Da =
∑

J ∈ ℵ
Da,J =

∞∑

t=1

Da(t). (2.3)
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The matrix Da is the transition probability matrix of the embedded Markov chain of
the semi-Markov chain {(ξn, τn), n ≥ 0} at transition epochs. We assume that Da is
irreducible. Let θa be the invariant probability vector of the stochastic matrix Da , i.e.,
θaDa =θa and θae = 1, where e is a column vector with all elements being one.

In steady state, the inter-transition time of the semi-Markov process (i.e., the in-
terarrival time of batches) can be calculated as follows:

Eθa (τ ) = θa

( ∞∑

t=1

t Da(t)

)
e. (2.4)

The arrival rate of batches of customers is given as λ = (Eθa (τ ))−1, i.e., the average
number of batches arrived per period. The probability that an arbitrary batch is of the
type J is θaDa,J e for J ∈ ℵ. The arrival rate of type J batches is given by λJ = λθaDa,J e,
i.e., the average number of type J batches arrived per period. The arrival rate of type k
customers is given by

λ(k) =
∑

J ∈ ℵ
N (J, k)λJ , 1 ≤ k ≤ K , (2.5)

where N(J, k) is the number of appearances of the integer k in the string J. Note that
λk is the arrival rate of the batch k, and λ(k) is the arrival rate of type k customers.
Without loss of generality, throughout this paper, we assume that λ, {λJ , J ∈ ℵ}, and
{λk, 1 ≤ k ≤ K} are positive and finite. Results about the arrival rates and equations (2.4)
and (2.5) can be shown by using the classical generating function approach. Details are
omitted. For more about the construction of Markov arrival processes, see HE [15,17],
HE and Neuts [21], Sengupta [30], and Takine [32]. An important special case is the
Markov arrival process with marked transitions (MMAP[K]), which will be introduced
and used in Section 5.

2.2. The queueing process

After a batch of customers arrived, all customers join a single queue according to the
order in the batch. All batches are served by a single server on a FCFS basis. Within
each batch, customers are served on their order in the batch. Let q(t) be a string of
integers for the queue in period t, which is obtained after possible service comple-
tion and arrival in period t − 1. If q(t) = j1 j2 . . . jn , then there are n customers in the
system at time t, the customer in service is of type j1, the first customer waiting in
queue is of type j2, . . ., and the last customer waiting in queue is of type jn . These
n customers shall be served in the order j1, j2, . . . , and jn . If a type J batch arrives
next, the queue becomes q(t) + J. If the service is completed next, the queue becomes
j2j3 . . . jn and the server starts serving customer j2. According to HE [17], the service
order of customers within a batch can be specified easily by arranging the integers
in the corresponding string. For instance, if type 1 customers have service priority
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over other customers within a batch J, then the integer 1 is placed ahead of others
in the string J (e.g., J = 1114423). In fact, HE [17] has shown that the string repre-
sentation provides great flexibility with respect to the service order within a batch of
customers.

2.3. Service times

The service times of individual customers have discrete time PH-distributions and are
independent of each other and of the arrival process. For a type k customer, its service
time sk has a PH-distribution with a matrix representation {mk,αk, Tk}, where mk is
the number of phases of the PH-distribution, αk is the initial probability vector, and Tk

is a substochastic matrix. We assume that the service time of any customer is at least
one, i.e., αke = 1, 1 ≤ k ≤ K. See Neuts [26] for more about PH-distribution. Denote by
T0

k = (I − T k)e, where I is the identity matrix. We assume that each matrix representation
of PH-distributions is irreducible, i.e., Tk + T0

kαk is irreducible. The service time of a
batch is the sum of the service time of all customers within the batch. Since the set of
PH-distributions is closed under convolution, the service time sJ of a type J batch also
has a discrete time PH-distribution with a matrix representation {mJ , αJ , TJ}, where,
for J = j1j2 . . . jn ,

m J =
n∑

i=1

m ji ; αJ = (
α j1, 0, . . . , 0

)
;

TJ =





Tj1 T0
j1α j2

Tj2 T0
j2α j3

. . . . . .

Tjn−1 T0
jn−1

α jn

Tjn





, T0
J =





0
...
...
0

T0
jn





. (2.6)

The mean service time of a type k customer is given by E(sk) =αk(I − Tk)–1e.
The mean service time of a type J batch is given by E(sJ ) = ∑|J |

i=1 E(s ji ), where |J |
is the number of integers in the string J . The service rate of a batch J is defined as
µJ = (E(sJ ))−1.

The traffic intensity of the queueing system can be defined in terms of batch arrival
rates and batch service rates:

ρ =
∑

J ∈ ℵ
λJ /µJ =

∑

J ∈ ℵ
λJ

|J |∑

i=1

E
(
s ji

) =
∑

J ∈ ℵ
λJ

K∑

k=1

N (J, k)E(sk)

=
K∑

k=1

∑

J ∈ ℵ
λJ N (J, k)E(sk) =

K∑

k=1

λ(k)/µk . (2.7)
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By Loynes [24], the queueing system is stable if and only if ρ < 1. Therefore,
throughout this paper, we assume ρ < 1 to ensure system stability. We note that many
classical discrete time queueing systems, such as the GI[K]/PH[K]/1 queue, the MMAP
[K]/PH[K]/1 queue and the GI/PH/1 queue, are special cases of the SM[K]/PH[K]/1
queue.

3. Analysis of the generalized age process

3.1. The generalized age process

The basic idea to analyze the sojourn times is originated from the following fundamental
relationship for waiting times in queues. Let wn be the (actual) waiting time of the n-th
batch. Then we have

wn+1 = max
{
0, wn + sJn − τn+1

}
, n ≥ 0, (3.1)

where τn+1 is the length of the time between the n-th batch and the (n + 1)-st batch, Jn

is the type of the n-th batch, and sJn is the service time of the n-th batch. The process
{(wn, ξn), n ≥ 0} is a Markov chain. In fact, {(wn, ξn), n ≥ 0} is a Markov chain with
a block repeating structure. Unfortunately, previous study of such Markov chains (see
Zhao et al. [38]) shows that it is difficult to analyze its steady state distribution or
to develop efficient algorithms for computing relevant performance measures. On the
other hand, with certain conditions on the arrival or the service process, some processes
can be constructed, which are closely related to {wn , n ≥ 0} and are analytically and
numerically tractable. Some examples of such processes are the age process and the total
workload (i.e., the virtual waiting time) process. In this paper, we use the age process
and the total workload process to study sojourn times and waiting times. In HE [18], the
total workload process is used in the study of waiting times.

The system status is observed at integer epochs t = 0, 1, 2, . . .. We define the age
of a batch in time period [t, t + 1), which will be called period t, as the total time the
batch has been in the queueing system, given that the batch is in the system in period t.
The generalized age process {ag(t), t ≥ 0} of the batch in service or to be served next
(if the system is empty) is defined as

ag(t) = wn(t) + sJn(t) − τn(t)+1 + t − ηn(t), (3.2)

where n(t) is the ordinal number of the last batch served in or before period t and ηn(t) is
the departure period of the n(t)-th batch. The values of n(t), wn(t), and ηn(t) are updated
when a departure occurs in period t, where wn(t) can be computed by using equation (3.1).
Figure 1 shows the relationship between these variables.

The process {ag(t), t ≥ 0} evolves as follows. During the service time of a batch,
ag(t) increases its value by one per period of time. At each service completion epoch,
the waiting time of the batch entering service is computed, which is wn + sJn − τn+1

after the n-th departure. If wn + sJn − τn+1 is nonnegative, it is the waiting time of
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Figure 1. Variables ag(t), n(t), ηn(t), wn(t), sJn(t) and τn(t)+1 when ag(t) > 0.

the entering batch or the age of the entering batch in that period, which is the value
of ag(t) in that period. During the service of the (n + 1)-st batch, ag(t) increases its
value by one after each period of service, which will last for sJn+1 periods of time
until the service is completed. For this case, ag(t) is the age of the batch in service. If
wn+sJn − τn+1 is negative, then the next batch to be served has not arrived yet. It will take
–ag(t) = −(wn + sJn − τn+1) periods until the next service is initialized. During a period
in which ag(t) is negative, the queueing system is empty and –ag(t) is the remaining time
of the idle period. In summary, the variable ag(t) records the age of the batch currently
in service if ag(t) ≥ 0 at time t. If ag(t) < 0, –ag(t) records the remaining time of the idle
period. We call ag(t) the generalized age of the batch in service. Equations (3.1) and
(3.2) show that the process {wn , n ≥ 0} is an embedded process of {ag(t), t ≥ 0} at the
departure epochs of batches. A typical sample path of ag(t) is shown in figure 2.

At a departure epoch, the sojourn time of the next batch to be served is computed as,
by equation (3.1), wn + sJn . That is: the process {wn , n ≥ 0} jumps from one departure
epoch to the next. For {ag(t), t ≥ 0}, it takes sJn periods to complete the journey, if
wn + sJn − τn+1 ≥ 0. In each of these sJn periods, the value of ag(t) increases by one.

Figure 2. A sample path of ag(t).
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Based on these analyses, it is easy to see that ag(t) satisfies the following equation:

ag(t + 1) =
{

ag(t) + 1, if service continues at time t + 1;
ag(t) + 1 − τn(t+1)+1, if service completes at time t + 1.

(3.3)

In order to construct a Markov chain associated with ag(t), we introduce some
auxiliary variables related to the phase of the arrival and service processes. We define
a process {Ia(t), t ≥ 0} from the Markov chain {ξn, n ≥ 0} defined in Section 2 as:
Ia(t) = ξn if the n-th batch is the last batch departed in or before period t, i.e., Ia(t) may
change its value only at service completion epochs. Let Is(t) be the phase of the service
in period t (if any) and J(t) be the type of batch in service in period t (if any). If there is
no service in period t, J(t) is the type of the next batch to be served and Is(t) the initial
service phase of the next batch to be served.

Putting these variables together, we obtain a process {(ag(t), Ia(t), J(t), Is(t)), t ≥ 0}.
This process has the so called Markovian property during service periods, since the
service time of any batch is governed by an underlying Markov chain (PH-distribution),
the phase of the arrival process is not changed, and ag(t) increases its value by one. In
a service completion period, the value of Ia(t) is updated according to a Markov chain,
the interarrival time is then determined and the value of ag(t) is updated, the value of
J(t) is determined by a Markov chain and the value of Is(t) is determined by the initial
distribution of the service time. Therefore, the process {(ag(t), Ia(t), J(t), Is(t)), t ≥ 0}
has the Markovian property in service completion periods as well. Hence, {(ag(t), Ia(t),
J(t), Is(t)), t ≥ 0} is a Markov chain. We call ag(t) the level variable that takes integer
values and {Ia(t), J(t), Is(t)} auxiliary variables that take a finite number of values in
the set

{(i, J, j) : 1 ≤ i ≤ ma, J ∈ ℵ, 1 ≤ j ≤ m J }, (3.4)

in which the states are ordered lexicographically. Equation (3.3) shows that the process
{ag(t), t ≥ 0} is skip-free to the right. Thus, {(ag(t), Ia(t), J(t), Is(t)), t ≥ 0} is a Markov
chain of GI/M/1 type with no boundary at the level 0. Denote by

m tot =
N∑

n=1

m Jn ;

α(Jn) = (
0, . . . , 0,αJn , 0, . . . , 0

)
, 1 ≤ n ≤ N ;

Ttot =




TJ1

. . .

TJN



 , T0
tot = (I − Ttot)e =





T0
J1

...

T0
JN



 , (3.5)

where α(Jn) is a row vector of the size mtot, 1 ≤ n ≤ N, Ttot is an mtot×mtot matrix. The
vector α(Jn) is obtained by putting the vector αJn in the positions from

∑n−1
i=1 m Ji + 1

to
∑n

i=1 m Ji and zero in all other positions in a vector of the size mtot. (Note: when
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there is no confusion, we shall frequently write α(J) for the batch J.) The transition
probability matrix of the Markov chain {(ag(t), Ia(t), J(t), Is(t)), t ≥ 0} can be given as
follows:

· · · −2 −1 0 1 2 · · ·

Pg =

...

−2

−1

0

1
...





. . . . . .

· · · 0 I

· · · 0 0 I

· · · A3 A2 A1 A0

· · · A4 A3 A2 A1 A0

...
...

. . . . . . . . . . . . . . .





← level zero, i.e., ag(t) = 0.
(3.6)

where

A0 = I ⊗ Ttot; An =
N∑

i=1

Da,Ji (n) ⊗ (
T0

totα(Ji )
)
, n ≥ 1, (3.7)

where the notation “⊗” is for Kronecker product of matrix. Note that the age of a batch
is zero in the arrival period. The transition probabilities in equation (3.6) can be verified
as follows. For ag(t) = x ≥ 0, using definitions and equation (3.3), we have

P{ag(t + 1) = x + 1, Ia(t + 1) = j ′, J (t + 1) = J ′, Is(t + 1) = i ′

|ag(t) = x, Ia(t) = j, J (t) = J, Is(t) = i}

=
{

(TJ )i,i ′, if j = j ′, J ′ = J ;

0, otherwise.

P{ag(t + 1) = x + 1 − s, Ia(t + 1) = j ′, J (t + 1) = J ′, Is(t + 1) = i ′

|ag(t) = x, Ia(t) = j, J (t) = J, Is(t) = i}
= P

{
τn(t+1)+1 = s, ξn(t)+1 = j ′∣∣ξn(t) = j

}

·P{The service of a type J batch is completed in phase i} (3.8)

·P{Initial service phase of a type J ′ batch is i ′}
= (Da,J ′(s)) j, j ′

(
T0

J

)
i
(αJ ′)i ′, s ≥ 1.

Note that, for the second case, ηn(t+1) = t + 1 since there is a service completion
in period t + 1. For ag(t) = x < 0, there is no service. Then ag(t + 1) = ag(t) + 1 with
probability one, and all auxiliary variables remain the same. Thus, we have verified the
transition probability matrix given in equation (3.6).

Apparently, the Markov chain {(ag(t), Ia(t), J(t), Is(t)), t ≥ 0} has rich information
about the age process and idle periods. Further, it is shown in Section 4 that the Markov
chain can provide information about the distributions of sojourn times and waiting times.
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To find the steady state distributions of the age process, sojourn times, and waiting times,
we first find the steady state distribution of the Markov chain {(ag(t), Ia(t), J(t), Is(t)),
t ≥ 0}.

Remark 3.1. The stability analysis of {(ag(t), Ia(t), J(t), Is(t)), t ≥ 0} depends largely
on its irreducibility and the irreducibility of the matrix A (defined in equation (3.9)).
Unfortunately, neither A nor{(ag(t), Ia(t), J(t), Is(t)), t ≥ 0} is guaranteed to be irreducible
under the irreducibility assumptions on the matrices Da and the service time distributions
given in Section 2. For instance, let nmax = max{t: DJ (t) 	= 0, for some J ∈ ℵ}. If nmax <

∞, then these states with ag(t) < –nmax + 1 is not reachable from states with ag(t)
≥ − nmax + 1. Furthermore, it is possible for A and {(ag(t), Ia(t), J(t), Is(t)), t ≥ 0} to
have several closed classes of states or transient states. (This was reported in Van Houdt
and Blondia [35–37]). To analyze the Markov chain, we need to identify the closed
classes of states and remove transient states. Then we concentrate on some irreducible
subsets. Therefore, in the rest of the paper, we shall assume that the Markov chain
{(ag(t), Ia(t), J(t), Is(t)), t ≥ 0} is irreducible and aperiodic.

Remark 3.2. In Van Houdt and Blondia [35], a slightly different approach was used to
introduce the Markov chain {(ag(t), Ia(t), J(t), Is(t)), t ≥ 0}. That approach may lead to a
Markov chain with a fewer number of states in each level. Nonetheless, the improvement
is limited.

3.2. Ergodicity of the generalized age process

As the first step to analyze the Markov chain {(ag(t), Ia(t), J(t), Is(t)), t ≥ 0}, we
show that if the queueing system is stable (i.e., ρ < 1), the Markov chain is ergodic.
Define

A∗(z) =
∞∑

n=0

zn An, z ≥ 0; A = A∗(1) =
∞∑

n=0

An, (3.9)

if the summations are well-defined. Denote by χ (z) the Perron-Frobenius eigenvalue
of the nonnegative matrix A∗(z) (i.e., the eigenvalue with the largest modulus). Let
u(z) and v(z) be the left and right eigenvectors corresponding to χ (z), respectively,
i.e., u(z)A∗(z) = χ(z)u(z) and A∗(z)v(z) = χ (z)v(z). The two vectors u(z) and v(z) are
normalized by u(z)v(z) = 1 and u(z)e = 1. If A is irreducible, it is easy to see that A∗(z)
is irreducible and all the elements of the vectors u(z) and v(z) are positive for z > 0.
According to Neuts [26], the function χ (z) and the vectors u(z) and v(z) can be chosen
as differentiable functions.

Denote by βk the invariant probability vector of Tk + T0
kαk , i.e., βk(Tk + T0

kαk) =
βk , βke = 1, 1 ≤ k ≤ K . Since Tk + T0

kαk is irreducible, every element of the vector βk
is positive (Gantmacher [13]). By Neuts [26], βkT0

k = µk . Denote by β J the invariant
probability vector of TJ + T0

JαJ , for J ∈ ℵ. By βkTk + µkαk =βk , it can be verified,
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for J ∈ ℵ,

β J = µJ

(
β j1

µ j1

,
β j2

µ j2

, . . . ,
β j|J |

µ j|J |

)
,

where µJ =
(

1

µ j1

+ 1

µ j2

+ · · · + 1

µ j|J |

)−1

, (3.10)

and |J | is the number of integers in the string J. Similar to the definition of α(J) in
equation (3.5), we define β(J ) as β(J) = (0, . . . , 0,β J , 0, . . . , 0), which is a row vector
of the size mtot. Denote by

θtot = λ

ρ

N∑

i=1

(
θa Da,Ji

) ⊗
(
β(Ji )

µJi

)
. (3.11)

Lemma 3.1. Assume that A is irreducible. The vector θtot is the invariant probability
vector of A.

Proof. By the definition of the traffic intensity ρ given in equation (2.7), it is easy to
verify that θtote = 1. Note that

A = I ⊗ Ttot +
∞∑

n=1

∑

J ∈ ℵ
Da,J (n) ⊗ (

T0
totα(J )

) = I ⊗ Ttot +
∑

J ∈ ℵ
Da,J ⊗ (

T0
totα(J )

)
.

(3.12)

Then we have the following calculations:

θtot A = λ

ρ

(
N∑

i=1

(
θa Da,Ji

) ⊗
(
β(Ji )

µJi

))(
I ⊗ Ttot +

N∑

j=1

Da,J j ⊗ (
T0

totα(Jj )
)
)

= λ

ρ

N∑

i=1

(
θa Da,Ji

) ⊗
(
β(Ji )Ttot

µJi

)
+ λ

ρ

N∑

i=1

N∑

j=1

(
θa Da,Ji Da,J j

)

⊗
(
β(Ji )

µJi

T0
totα(Jj )

)

= λ

ρ

N∑

i=1

(
θa Da,Ji

) ⊗
(

0, . . . , 0,
β Ji

TJi

µJi

, 0, . . . , 0

)

+ λ

ρ

N∑

j=1

((
N∑

i=1

θa Da,Ji

)
Da,J j

)
⊗ α(Jj )

= λ

ρ

N∑

i=1

(
θa Da,Ji

) ⊗
(

0, . . . , 0,
β Ji

TJi

µJi

+ αJi , 0, . . . , 0

)
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= λ

ρ

N∑

i=1

(
θa Da,Ji

) ⊗
(

0, . . . , 0,
β Ji

TJi + β Ji
T0

Ji
αJi

µJi

, 0, . . . , 0

)

= λ

ρ

N∑

i=1

(
θa Da,Ji

) ⊗
(

0, . . . , 0,
β Ji

µJi

, 0, . . . , 0

)

= λ

ρ

N∑

i=1

(
θa Da,Ji

) ⊗
(
β(Ji )

µJi

)
= θtot. (3.13)

Note that β J T0
J = 1/E(sJ ) = µJ (Neuts [26]) and β J (TJ + T0

JαJ ) =β J . Therefore, θtot

is the invariant probability vector of A. This completes the proof of Lemma 3.1.

Lemma 3.2. Assume that A is irreducible. At z = 1, we have χ (1) = 1 and θtot�nnAne =
χ (1)(1) = 1/ρ. Consequently, χ (1)(1) > 1 if and only if ρ < 1. (Note that χ (1)(1) is the
first derivative of the function χ (z) at z = 1.)

Proof. It is easy to see χ (1) = 1. Furthermore, we have u(1) =θtot (by definition and
Lemma 3.1) and v(1) = e. By u(z)e = 1, we obtain u(1)(z)e = 0. By taking derivatives on
both sides of u(z)A∗(z) = χ (z)u(z), we obtain u(1)(z)A∗(z) + u(z)A∗(1)(z) = χ (1)(z)u(z) +
χ (z)u(1)(z). Letting z = 1 and multiplying e on both sides of the equation, we obtain
u(1)A∗(1)(1)e = χ (1)(1), i.e.,

θtot

( ∞∑

n=0

n An

)
e = χ (1)(1).

Note that θtot(
∑∞

n=0 n An)e is finite since λ > 0. Using equations (3.7) and (3.11), we
have

θtot

∞∑

n=0

n Ane = λ

ρ

(
N∑

i=1

(
θa Da,Ji

) ⊗
(
β(Ji )

µJi

)) (
N∑

j=1

∞∑

n=1

(
nDa,J j (n)e

) ⊗ T0
tot

)

= λ

ρ

N∑

j=1

(
N∑

i=1

(
θa Da,Ji

∞∑

n=1

(
nDa,J j (n)e

)
)

·
(
β Ji

T0
Ji

µJi

))

(3.14)

= λ

ρ

N∑

j=1

( ∞∑

n=1

θa
(
nDa,J j (n)e

)
)

= λ

ρ

∞∑

n=1

θa (nDa(n)e) = λ

ρ
Eθa (τ ) = 1

ρ
.

Note that the definition of λ (equation (2.4)) is used to obtain the last equality. There-
fore, χ (1)(1) = 1/ρ. Then χ (1)(1) > 1 if and only if ρ < 1. This completes the proof of
Lemma 3.2.
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Theorem 3.3. If the Markov chain {(ag(t), Ia(t), J(t), Is(t)), t ≥ 0} is irreducible, it is
positive recurrent if and only if ρ < 1.

Proof. If the Markov chain{(ag(t), Ia(t), J(t), Is(t)), t ≥ 0} is irreducible, by the structure
of the transition probability matrix Pg, the matrix A must be irreducible. Thus, by Lemma
3.2, the vector θtot is the invariant probability vector of A. We use the mean-drift method
(Fayolle et al. [10]) to prove the ergodicity result.

First, if the Markov chain is positive recurrent, we consider a Markov chain with
the following transition probability matrix:

PG I/M/1 =





∑∞
n=1 An A0

∑∞
n=2 An A1 A0

∑∞
n=3 An A2 A1 A0

...
. . . . . . . . . . . .




. (3.15)

Note that PG I/M/1 is the transition probability matrix of the age process to be defined
in Section 4. The Markov chain is obtained by removing the levels {−1, −2, . . .} of
the generalized age process. It is true that, from any level n (>0), the Markov chain
can reach the level zero after, on average, a finite number of transitions. Since PG I/M/1

is an irreducible GI/M/1 type Markov chain, according to Neuts [26], we must have
θtot�nnAne > 1, which is equivalent to ρ < 1 by Lemma 3.2.

Next, we prove the sufficiency of ρ < 1. By Lemma 3.2, ρ < 1 implies χ (1)(1) > 1.
If χ (1)(1) > 1, there exists z such that 0 < z < 1, z is close to 1, and χ (z) < z. Then
A∗(z)v(z) = χ (z)v(z) < zv(z). We define the following (vector form) Lyapunov function
for all the states in the level n:

f(n) =
{

z−nv(z), for n ≥ 0;

−nv(z), for n < 0.
(3.16)

(With an abuse of notation in the definition of f(n), we use “n” to represent all states of
the level n.) It is true that f(n) → ∞ when |n| → ∞, since 0 < z < 1 and every element
of v(z) is positive. Denote by ε1 = mini {(v(z))i } (>0) and ε2 = (z − χ (z))/2(> 0). We
choose n0 such that, for any n ≥ n0,

( ∞∑

i=1

i An+1+i

)
v(z) ≤ ε2v(z). (3.17)
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We choose ε3 = min{1, ε1ε2}/2 (>0). Next, we calculate the mean-drift to level
zero of the Markov chain with respect to the Lyapunov function f(n). If n ≥ n0,

E[f(ag(t + 1)) − f(ag(t)) | ag(t) = n, Ia(t), J (t), Is(t)]

=
(

n+1∑

i=0

zi−n−1 Ai

)
v(z) +

( ∞∑

i=n+2

(i − n − 1)Ai

)
v(z) − z−nv(z)

≤
( ∞∑

i=0

zi Ai

)
z−n−1v(z) + ε2v(z) − z−nv(z) (3.18)

= z−n−1χ (z)v(z) + ε2v(z) − z−nv(z) = −z−n−1
(
z − χ (z) − ε2zn+1

)
v(z)

≤ −z−n−1 (z − χ (z) − ε2) v(z) ≤ −z−n−1ε2ε1e/2 ≤ −ε2ε1e/2 ≤ −ε3e.

Note that 0 < z < 1. If n < 0,

E[f(ag(t + 1)) − f(ag(t)) | ag(t) = n, Ia(t), J (t), Is(t)]

= (−n − 1)v(z) − (−n)v(z) = −v(z) ≤ −ε3e. (3.19)

For 0 ≤ n ≤ n0, we have

E[f(ag(t + 1))|ag(t) = n, Ia(t), J (t), Is(t)]

=
(

n+1∑

i=0

zi−n−1 Ai

)
v(z) +

( ∞∑

i=n+2

(i − n − 1)Ai

)
v(z)

≤
( ∞∑

i=0

zi Ai

)
z−n−1v(z) +

( ∞∑

i=0

i Ai

)
v(z)

(3.20)

= z−n−1χ (z)v(z) +
( ∞∑

i=0

i Ai

)
v(z)

≤ z−n−1v(z) +
( ∞∑

i=0

i Ai

)
v(z) ≤ z−n0−1v(z) +

( ∞∑

i=0

i Ai

)
v(z) < ∞.

Note that
∑∞

i=0 i Ai is finite since λ > 0 and all elements of θtot and e are positive.
Therefore, we have shown that, with respect to the Lyapunov function f(n), the mean-drift
away from the level zero is less than –ε3 for all but a finite number of states. Therefore, the
Markov chain is positive recurrent by Foster’s criterion (see Theorem 2.2.3 in Fayolle,
et al. [10]). This completes the proof of Theorem 3.3.
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3.3. The steady state distribution of the generalized age process

We assume that the Markov chain {(ag(t), Ia(t), J(t), Is(t)), t ≥ 0} is irreducible and
aperiodic and ρ < 1 so that the Markov chain is ergodic. Denote by π= (. . . ,π(−1),
π(0),π(1), . . .) the steady state distribution of {(ag(t), Ia(t), J(t),Is(t)), t ≥ 0}, where
π(n) = (. . ., πi,J, j (n), . . .) is a row vector of the size mam tot and

πi,J, j (n) = lim
t→∞ P{ag(t) = n, Ia(t) = i, J (t) = J, Is(t) = j | ag(0), Ia(0), J (0), Is(0)}.

(3.21)

Then we must have π = πPg and πe = 1. Since {(ag(t), Ia(t), J(t),Is(t)), t ≥ 0} has the
so called GI/M/1 structure for nonnegative levels (i.e., ag(t) ≥ 0), it is well known that
its steady state distribution has a matrix geometric solution (Neuts [26]):

π(n) = π(0)Rn, n ≥ 0, (3.22)

where R is an (mamtot) × (mamtot) matrix and is the minimal nonnegative solution to
equation

R =
∞∑

n=0

Rn An. (3.23)

We refer to Gail et al. [11,12] and Neuts [26] for more about the matrix R. Since the
traffic intensity ρ < 1, θtot�nn Ane = 1/ρ > 1. According to Neuts [26], the spectral
radius of the matrix R is less than one, i.e., all eigenvalues of R are within the unit circle.
For {π(0),π(−1), . . .}, we have, for n ≥ 0,

π(−n) = π(−n − 1) +
∞∑

i=0

π(i)An+1+i = π(−n − 1) + π(0)
∞∑

i=0

Ri An+1+i . (3.24)

By induction, we obtain, for n ≥ 1,

π(−n) = π(0) − π(0)
∞∑

s=1

(
s−1∑

t=max{0,s−n}
Rt

)
As . (3.25)

Using the above equations, an explicit expression can be found for π(0).

Theorem 3.4. If the Markov chain {(ag(t), Ia(t), J(t), Is(t)), t ≥ 0} is irreducible and
aperiodic and ρ < 1, then

π(0) = ρθtot(I − R),
∞∑

n = 1

π(−n) = ρθtot

( ∞∑

n=1

n An − (I − R)−1(A − R)

)
, and

∞∑

n=1

π(−n)e = 1 − ρ.
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Proof. Since the Markov chain is ergodic, we must have π(−n) → 0 as n → 0.
Equation (3.25) leads to

π(0) = π(0)
∞∑

s=1

(
s−1∑

t=0

Rt

)
As = π(0)(I − R)−1

∞∑

s=1

(I − Rs)As

= π(0)(I − R)−1(A − R), (3.26)

which yields π(0)(I − R)−1 =π(0)(I − R)−1A. By Lemma 3.1, π(0) = c1θtot(I − R),
where c1 is a constant to be determined. Note that θtot(I − R) ≥ 0 since it can be proved
that θtot ≥ θtot R, since θtot =θtotA and θtot ≥θtotA0. Define π∗

−1(z) = ∑∞
n=1 znπ(−n).

By equation (3.24) and routine calculations, we obtain

π∗
−1(z) = π(0)

(1 − z)

(
I −

∞∑

n=1

(
n−1∑

i=0

zn−1−i Ri

)
An

)
. (3.27)

By l’Hôpital’s Rule and Lemma 3.2, we have

∞∑

n=1

π(−n) = lim
z→1

π∗
−1(z) = π(0)

( ∞∑

n=1

(
n−1∑

i=0

(n − 1 − i)Ri

)
An

)

= c1θtot

( ∞∑

n=1

(I − R)

(
n−1∑

i=0

(n − 1 − i)Ri

)
An

)

= c1θtot

( ∞∑

n=1

(
nI −

n−1∑

i=0

Ri

)
An

)

= c1θtot

( ∞∑

n=1

(nI − (I − R)−1(I − Rn))An

)

= c1θtot

( ∞∑

n=1

n An − (I − R)−1(A − R)

)
. (3.28)

Postmultiplying e on both sides of equation (3.28), yields

π∗
−1(1)e = c1θtot

( ∞∑

n=1

n An − (I − R)−1(A − R)

)
e

= c1

(
θtot

( ∞∑

n=1

n An

)
e − 1

)
= c1

(
1

ρ
− 1

)
. (3.29)

By equation (3.29), 1 =πe =π∗
−1(1)e +π(0)(I − R)−1e = c1(1/ρ − 1) + c1 =

c1/ρ. Thus, c1 = ρ. All results follow directly. This completes the proof of Theorem 3.4.
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The first result in Theorem 3.4 provides explicit solution for the steady state distri-
bution. The last result in Theorem 3.4 says that the probability that the system is empty
is 1 − ρ, which is consistent with intuition. Note that if ag(t) = 0, the batch in service
has just arrived so that the system is not empty.

Remark 3.3. The results obtained in this section may be valid for more general cases.
Recall that nmax = max{t : CJ (t) 	= 0, for some J ∈ ℵ} introduced in Remark 3.1. For
instance, if nmax < ∞ and π(0) can be computed, then equations (3.22) and (3.25) can
be used for computing π= (. . . ,π(−1),π(0),π(1), . . .). For this case, the states with
ag(t) < −nmax +1 are transient states. By equation (3.24) or equation (3.25), if n ≥ nmax,
π(−n) = 0.

4. Age, total workload, sojourn times, and waiting times

In this section, we show how to use the steady state distribution π of the generalized age
process to derive the distributions of age, the total workload, waiting times, and sojourn
times. In this section, we assume that all conditions given in Theorem 3.4 are satisfied.

4.1. Distributions of age and total workload

Let ag be the generic random variable of the generalized age of the batch in service in
an arbitrary period. By equations (3.22) and (3.25), the distribution of ag is obtained
easily as

P{ag = n} =





ρθtot(I − R)

(
I −

∞∑

s=1

(
s−1∑

t=max{0,s−n}
Rt

)
As

)
e, n ≤ −1;

ρθtot(I − R)Rne, n ≥ 0.

(4.1)

Note that the nonnegative part of the distribution of ag is a PH-distribution whose
matrix representation can be constructed in a way similar to that of the sojourn times
(see Section 4.2).

The total workload (virtual waiting time) is defined as the total service time of all
batches waiting plus the remaining service time of the batch in service (if any). Based
on equation (3.1), we introduce the generalized total workload process:

νg(t) = wl(t) + sJl(t) − (t − ζl(t)), (4.2)

where l(t) is the ordinal number of the last batch arrived in or before period t, and ζl(t)

is the arrival time of the l(t)-th batch. It is readily seen that l(t), wl(t), Jl(t), sJl(t) , and ζl(t)

update their values if a batch arrives in period t. The relationship between l(t), wl(t), ζl(t),
sJl(t) , and vg(t) is shown in figure 3. For more details about the process vg(t), see HE
[18].
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Figure 3. Variables vg(t), l(t), ζl(t), wl(t), and sJl(t) , if vg(t) >0.

A typical sample path of vg(t) is shown in figure 4.
The relationship between the generalized age process and the generalized total

workload process is shown in the following lemma. Note that the following lemma
holds for continuous time queueing models as well (see HE [19]).

Lemma 4.1. In a busy cycle (starting from the first service in a busy period and ending
right before the beginning of the next busy period), the number of times ag(t) up-crossing
x equals the number of times that vg(t) down-crossing x, for any real number x.

Proof. First note that vg(t) is always non-increasing, except at batch arrival epochs;
ag(t) is always non-decreasing, except at batch service completion epochs. Next, we
compare the two processes. For each batch, the total workload right after its arrival
epoch (a jump up epoch of vg(t)) equals the sojourn time of that batch (ag(t) just before
its departure). For each batch, its waiting time (vg(t) just before its arrival) equals the age
just before it begins its service (a jump down epoch of ag(t)). Also note (see figure 5),
vg(t) at the end of a busy cycle equals ag(t) at the end of the corresponding busy period.
Thus, if we draw a horizontal line at x, then this line crosses vg(t) and ag(t) for the same
number of times. This completes the proof of Lemma 4.1.

Figure 4. A sample path of vg(t).
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Figure 5. vg(t) and ag(t) in a busy cycle.

Let vg be the generic random variable of the total workload in the queueing sys-
tem in an arbitrary period. From Lemma 4.1, it is clear that vg and ag have the same
distribution.

Corollary 4.2. In steady state, the generalized total workload vg and the generalized
age ag in an arbitrary period have the same distribution, which is given in equation (4.1).

Denote by a(t) the age of the batch in service at an arbitrary time. The process
a(t) can be obtained by only observing the generalized age process ag(t) when ag(t) ≥ 0.
It is easy to see that {(a(t), Ia(t),J(t), Is(t)), t ≥ 0} is a Markov chain with a transi-
tion probability matrix PG I/M/1 given by equation (3.16), which is of the GI/M/1 type.
Using Lemmas 3.1 and 3.2 and Neuts condition, it can be shown that the Markov
chain {(a(t), Ia(t), J(t), Is(t)), t ≥ 0} is ergodic if and only if ρ < 1. The steady state
distribution (πa(0), πa(1), . . . ,πa(n), . . .) of {(a(t), Ia(t), J(t), Is(t)), t ≥ 0} can be ob-
tained as the conditional distribution of {(ag(t), Ia(t), J(t), Is(t)), t ≥ 0}, given that ag(t)
≥ 0:

πa(n) =
( ∞∑

i=0

π(i)

)−1

π(n) = θtot(I − R)Rn, n ≥ 0. (4.3)

To study the age process of the batch in service and the sojourn times, one can
concentrate on {(a(t), Ia(t), J(t), Is(t)), t ≥ 0}. In fact, this approach was taken by Van
Houdt and Blondia [35] while studying the sojourn times (i.e., delay times) in the discrete
time MMAP[K]/PH[K]/1 queue.

4.2. Distributions of sojourn times

We define the sojourn time of an arbitrary batch (an arbitrary type J batch or an
arbitrary type k customer) as the time between its arrival and its service comple-
tion (of all customers in the batch or that type k customer). Let d be the generic
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random variable for the sojourn time of an arbitrary batch in steady state. Let dJ be
the generic random variable for the sojourn time of a type J batch in steady state. Let
d(k) be the generic random variable for the sojourn time of a type k customer in steady
state.

We introduce some extra notation first. We decompose the vector T0
tot into vectors

{T0
tot,J : J ∈ ℵ}, where T0

tot,J is obtained by setting all elements in T0
tot to zero, except

these corresponding to the batch J (i.e., T0
J ). Apparently, we have T0

tot =
∑

J ∈ ℵ T0
tot,J .

We construct column vectors {T0
tot,(k): 1 ≤ k ≤ K} by putting the vector T0

k into a column
vector of the size mtot on these places corresponding to the service of a type k customer.
That is: if we divide T0

tot,(k) into (columns) vectors {T0
tot,(k)(1, J1, j1), . . . , T0

tot,(k)(i, Jn ,
jt ), . . . , T0

tot,(k)(ma , JN , j|JN |)}, then these vectors are zero except T0
tot,(k)(i, Jn , jt ) = T0

k if
jt = k.

Lemma 4.3. θtot(e ⊗ T0
tot) = λ/ρ,θtot(e ⊗ T0

tot,J ) = λJ /ρ, andθtot(e ⊗ T0
tot,(k)) = λ(k)/ρ.

Proof. By definition,

θtot(e ⊗ T0
tot) = λ

ρ

(
N∑

i=1

(θa Da,Ji ) ⊗
(
β(Ji )

µJi

))
(
e ⊗ T0

tot

)

= λ

ρ

N∑

i=1

(θa Da,Ji e)
(
β Ji

T0
Ji

)

µJi

= λ

ρ

N∑

i=1

θa Da,Ji e = λ

ρ
. (4.4)

Similarly, it can be shown that θtot(e ⊗ T0
tot,J ) = λJ /ρ, and θtot(e ⊗ T0

tot,(k)) = λ(k)/ρ.

By Lemma 4.3, λ/ρ, λJ /ρ, and λ(k)/ρ can be interpreted as the average service
completion rates of arbitrary batches, type J batches, and type k customers, respectively,
given that the server is busy. For instance, the service completion rate of an arbitrary
batch can be calculated as:

∑∞
n=0 πa(n)(e ⊗ T0

tot) =θtot(e ⊗ T0
tot) = λ/ρ, where {πa(0),

πa(1), . . .} is given in equation (4.3).
Consider the sojourn time of an arbitrary type J batch. Conditioning on the service

completion of a batch (customer), in steady state, we have, for n ≥ 1,

P{dJ = n} = P{ag(t) = n − 1|Departure of type J batch occurs next}
= P{ag(t) = n − 1, Departure of type J batch occurs next}

P{ Departure of type J batch occurs next}
= 1

λJ

∑

Ia(t),J (t),Is (t)

P{ag(t) = n − 1, Ia(t), J (t), Is(t),

Departure of type J batch occurs next}
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= 1

λJ

∑

Ia(t),J (t),Is (t)

P{ag(t) = n − 1, Ia(t), J (t), Is(t)}

·P{Departure of type J batch occurs next |Ia(t), J (t), Is(t)}
= 1

λJ
π(n − 1)

(
e ⊗ T0

tot,J

) = ρ

λJ
θtot(I − R)Rn−1

(
e ⊗ T0

tot,J

)
. (4.5)

Note that in equation (4.5), we used the fact that the departure rate of type J batches
equals the arrival rate of type J batches. Similarly, we have, for 1 ≤ k ≤ K and n ≥ 1,

P{d = n} = 1

λ
π(n − 1)

(
e ⊗ T0

tot

) = ρ

λ
θtot(I − R)Rn−1

(
e ⊗ T0

tot

)
;

P
{
d(k) = n

} = 1

λ(k)
π(n − 1)

(
e ⊗ T0

tot,(k)

) = ρ

λ(k)
θtot(I − R)Rn−1

(
e ⊗ T0

tot,(k)

)
. (4.6)

Note that in equation (4.6), we used the fact that the arrival rate of batches (type
k customers) equals the service completion rate of batches (type k customers). By
Lemma 4.3, it is easy to verify that the distributions given in equations (4.5) and (4.6)
are proper probability distributions. Equations (4.5) and (4.6) indicate that the sojourn
times have matrix geometric distributions. In Asmussen and O’Cinneide [3] and Sen-
gupta [30], it was shown that the waiting time of an arbitrary customer and the sojourn
times have continuous time PH-distributions for the continuous time GI/PH/c queue.
These results can be extended to our queueing model.

Theorem 4.4. In steady state, for an arbitrary batch, the random variable d has a PH-
distribution with a matrix representation

{
md,all = mam tot, αd,all = ρ

λ
θtot(I − R)�d,all, Td,all = (�d,all)

−1 R�d,all

}
, (4.7)

where �d,all = diag(δd,all), δd,all = (I − R)−1(e ⊗ T0
tot), and diag(δd,all) is a square matrix

whose diagonal elements are from the vector δd,all and all other elements are zero. For
an arbitrary batch J ∈ ℵ, the random variable dJ has a PH-distribution with a matrix
representation

{
md,J = mam tot, αd,J = ρ

λJ
θtot(I − R)�d,J , Td,J = (�d,J )−1 R�d,J

}
, (4.8)

where �d,J = diag(δd,J ) and δd,J = (I − R)−1(e ⊗ T0
tot,J ). For an arbitrary type k cus-

tomer, 1 ≤ k ≤ K, the random variable d(k) has a PH-distribution with a matrix represen-
tation

{
md,(k) = mam tot, αd,(k) = ρ

λ(k)
θtot(I − R)�d,(k), Td,(k) = (�d,(k))

−1 R�d,(k)

}
,

(4.9)

where �d,(k) = diag(δd,(k)) and δd,(k) = (I − R)−1(e ⊗ T0
tot,(k)).
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Proof. We only give details for the sojourn time of an arbitrary type J batch. First,
we show that the matrix representation given in equation (4.8) is for a discrete time
PH-distribution. For that purpose, we only need to verify that �d,J is invertible and the
vector and the matrix in equation (4.8) are substochastic. According to Chapter 2 in
Neuts [26], the elements of the matrix I + R + R2 + · · · = (I − R)−1 are the numbers of
times that age of the batch in service is positive before it becomes zero. Thus, the vector
(I − R)−1(e ⊗ T0

tot,J ) is related to the probabilities that there will be a type J service
completion (which is positive). Thus, every element of (I − R)−1(e ⊗ T0

tot,J ) is positive.
Then the matrix �d,J is invertible. It is easy to see that the vector and the matrix in
equation (4.8) are nonnegative. By Lemma 4.3 and routine calculations, we have

ρ

λJ
θtot(I − R)�d,J e = ρ

λJ
θtot

(
e ⊗ T0

tot,J

) = 1;

(�d,J )−1 R�d,J e = e − (�d,J )−1
(
e ⊗ T0

tot,J

) ≤ e. (4.10)

Therefore, the matrix representation given in (4.8) is for a discrete time PH-distribution.
Second, we show that the PH-distribution is the same as that of the random variable
dJ given in equation (4.5) by following calculations: for n ≥ 1,

P{dJ = n} = ρ

λJ
πa(n − 1)

(
e ⊗ T0

tot,J

) = ρ

λ
θtot(I − R)Rn−1

(
e ⊗ T0

tot,J

)

= ρ

λJ
θtot(I − R)�d,J ((�d,J )−1 R�d,J )n−1(�d,J )−1

(
e ⊗ T0

tot,J

)

= ρ

λJ
θtot(I − R)�d,J ((�d,J )−1 R�d,J )n−1(e − (�d,J )−1 R�d,J e).

(4.11)

This proves the conclusion for the sojourn time of an arbitrary type J batch. The
other two cases can be shown similarly. This completes the proof of Theorem 4.4.

4.3. Distributions of waiting times

In this section, we use the fact that the waiting time of a batch equals ag(t) just before
that batch enters the server to find the distributions of waiting times and sojourn times
of batches and individual types of customers. We focus on the waiting time wJ of an
arbitrary type J batch. By definition, we have

P{wJ = 0} = P{νg ≤ 1|An arrival of type J batch occurs next}
= P{νg ≤ 1, An arrival of type J batch occurs next}

P{An arrival of type J batch occurs next}
= 1

λJ
P{ag ≤ 0 after a departure and a type J batch arrives}

(4.12)
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= 1

λJ

∞∑

n=0

∞∑

t=n+1

π(n)
(
Da,J (t)e ⊗ T0

tot

)

= 1

λJ
ρθtot(I − R)

∞∑

t=1

t−1∑

n=0

Rn
(
Da,J (t)e ⊗ T0

tot

)

= ρ

λJ
θtot

∞∑

t=1

(I − Rt )
(
Da,J (t)e ⊗ T0

tot

) = 1 − ρ

λJ
θtot RJ e,

where RJ = ∑∞
t=1 Rt (Da,J (t) ⊗ T0

totα(J )) and we used θtot(Da,J e ⊗ T0
tot) = λJ /ρ in the

last equality, which can be proved as

θtot
(
Da,J e ⊗ T0

tot

) = λ

ρ

(
N∑

i=1

(θa Da,Ji Da,J e)

(
β Ji

T0
Ji

µJi

))

= λ

ρ

N∑

i=1

θa Da,Ji Da,J e = λ

ρ
θa Da,J e = λJ

ρ
. (4.13)

Similarly, we have, for n ≥ 1,

P{wJ = n} = 1

λJ

∞∑

t=1

π(n − 1 + t)
(
Da,J (t)e ⊗ T0

tot

) = ρ

λJ
θtot(I − R)Rn−1 RJ e.

(4.14)

It is easy to verify that the probabilities given in equations (4.12) and (4.14) consti-
tute a proper probability distribution. From equations (4.12) and (4.14), it can be shown
that wJ has a PH-distribution and its matrix representation can be constructed explicitly.

Theorem 4.5. In steady state, the random variable wJ has a PH-distribution with a
matrix representation

{
mw,J = mam tot,αw,J = ρ

λJ
θtot(I − R)�w,J , Tw,J = (�w,J )−1 R�w,J

}
, (4.15)

where �w,J = diag(δw,J ) and δw,J = (I − R)−1 RJ e. Note that αw,J e = 1 − P{wJ =
0} = ρθtot RJ e/λJ . For the waiting time w of an arbitrary batch, it has a PH-distribution
with a matrix representation

{
mw,all = mam tot, αw,all = ρ

λ
θtot(I − R)�w,all, Tw,all = (

�w,all
)−1

R�w,all

}
,

(4.16)

where �w,all = diag(δw,all) and δw,all = (I − R)−1(R − A0)e. Note that αw,alle =
ρθtot (R − A0)e/λ.

Proof. The proof is similar to that of Theorem 4.4.
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The sojourn time dJ of a type J batch is the sum of its waiting time and its service
time, i.e., dJ = wJ + sJ . Thus, we can find the distribution of dJ by using wJ and sJ .
Since both wJ and sJ have PH-distributions, their sum has a PH-distribution whose
matrix representation can be constructed easily from that of wJ and sJ :

md(w),J = mam tot + m J ;

αd(w),J =
(

ρ

λJ
θtot(I − R)�w,J ,

(
1 − ρ

λJ
θtot RJ e

)
αJ

)
; (4.17)

Td(w),J =
(

(�w,J )−1 R�w,J (I − (�w,J )−1 R�w,J )eαJ

0 TJ

)
.

The construction of the above matrix representation is straightforward. Therefore,
once the matrices R and RJ are obtained, the distributions of the waiting times and
sojourn times can be computed. The distribution of the waiting time of an arbitrary type
k customer is the sum of the waiting times of its corresponding batch and the service
times of all customers in the same batch who are served first. Therefore, the waiting time
of an arbitrary type k customer has a PH-distribution. By a similar argument, the sojourn
time of an arbitrary type k customer has a PH-distribution. We do not intend to present
all the details. Instead, we give two general formulas for computing the distributions of
waiting times and sojourn times of individual types of customers. Let w(k) be the generic
random variable for the waiting time of a type k customer in steady state. For 1 ≤ k ≤ K,
we have

P
{
w(k) = n

} =
∑

J ∈ ℵ

λJ

λ(k)

|J |∑

t=1

P
{
wJ + s j1 + s j2 + · · · + s jt−1 = n

}
δ{ jt =k}, n ≥ 0;

(4.18)

P
{
d(k) = n

} =
∑

J ∈ ℵ

λJ

λ(k)

|J |∑

t=1

P
{
wJ + s j1 + s j2 + · · · + s jt = n

}
δ{ jt =k}, n ≥ 1.

where δ{.} is the indicator function, i.e., δ{ j=k} = 1 if j = k; 0, otherwise.
To end this section, we show the consistency of the results obtained in this section

and that of Section 4.2. More specifically, we show that the distributions of the sojourn
times obtained in Section 4.2 is consistent with that of wJ + sJ , where the distribution
of wJ is given in this section. By equations (4.6), (4.12), and (4.14), we need to prove,
for n ≥ 1,

P{dJ = n} = ρ

λJ
θtot(I − R)Rn−1

(
e ⊗ T0

tot,J

) = P{wJ + sJ = n}

=
(

1 − ρ

λJ
θtot RJ e

) (
αJ T n−1

J T0
J

)

+
n−1∑

t=1

ρ

λJ
θtot(I − R)Rn−1−t RJ e

(
αJ T t−1

J T0
J

)
. (4.19)
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To show equation (4.19), by definitions (3.5) and (3.7), first note

(Da,J ′(t) ⊗ T0
totα(J ′))

(
e ⊗ T0

tot,J

) = 0, if J 	= J ′;

RJ
(
e ⊗ T0,t−1

tot,J

) = RJ e
(
αJ T t−1

J T0
J

)
, t ≥ 1. (4.20)

where the vector T0,n
tot,J is obtained by replacing T0

J in the vector T0
tot,J by (TJ )nT0

J . By
equation (4.20) and induction, it can be shown that

(
Da,J (t)e ⊗ T0

tot

) (
αJ T0

J

) = (
Da,J (t) ⊗ T0

totα(J )
)(

e ⊗ T0
tot,J

)
;

(4.21)

Rn
(
e ⊗ T0

tot,J

) =
n∑

t=1

Rn−t RJ
(
e ⊗ T0,t−1

tot,J

) + e ⊗ T0,n
tot,J , n ≥ 1,

For n = 1 in equation (4.19), we have

P{wJ + sJ = 1} = P{wJ = 0}P{sJ = 1}
= ρ

λJ
θtot

∞∑

t=1

(I − Rt )
(
Da,J (t)e ⊗ T0

tot

) (
αJ T0

J

)

= ρ

λJ
θtot

∞∑

t=1

(I − Rt )
(
Da,J (t) ⊗ T0

totα(J )
) (

e ⊗ T0
tot,J

)

= ρ

λJ
θtot

∞∑

t=1

(I − Rt )

(
∑

J ′ ∈ ℵ
Da,J ′(t) ⊗ T0

totα(J ′)

)
(
e ⊗ T0

tot,J

)

= ρ

λJ
θtot

∞∑

t=1

(I − Rt )At
(
e ⊗ T0

tot,J

) = ρ

λJ
θtot(A − R)

(
e ⊗ T0

tot,J

)

= ρ

λJ
θtot(I − R)

(
e ⊗ T0

tot,J

) = P{dJ = 1}. (4.22)

For n ≥ 2, we have

P{wJ + sJ = n} = ρ

λJ
θtot(I − R)

n−1∑

t=1

Rn−1−t RJ e
(
αJ T t−1

J T0
J

)

+ ρ

λJ
θtot

∞∑

t=1

(I − Rt )(Da,J (t)e ⊗ T0
tot)

(
αJ T n−1

J T0
J

)

= ρ

λJ
θtot(I − R)

n−1∑

t=1

Rn−1−t RJ e
(
αJ T t−1

J T0
J

)

+ ρ

λJ
θtot(A − R)

(
e ⊗ T0,n−1

tot,J

)
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= ρ

λJ
θtot(I − R)

n−1∑

t=1

Rn−1−t RJ
(
e ⊗ T0,t−1

tot,J

)

+ ρ

λJ
θtot(I − R)

(
e ⊗ T0,n−1

tot,J

)

= ρ

λJ
θtot(I − R)Rn−1

(
e ⊗ T0

tot,J

) = P{dJ = n}. (4.23)

Therefore, the results obtained in Section 4.2 and this section are consistent. Note
that in Sengupta [28], the consistency between d and w + s was not shown (see Remark
7 in [28]). That issue (for the continuous case) is resolved in HE [19].

5. The discrete time MMAP[K]/PH[K]/1 Queue

In this section, we consider the discrete time MMAP[K]/PH[K]/1 queue, a special case
of the model introduced in Section 2. This queueing system has a batch Markov ar-
rival process with matrix representation {D0, DJ , J ∈ ℵ}, where D0 and DJ are ma × ma

substochastic matrices. The matrix DJ is the (matrix) arrival rate of type J batches.
For more about MMAP[K], see Asmussen and Koole [4], HE [15,17], and HE and
Neuts [21]. The relationship between the two sets of parameters of the arrival pro-
cess is: Da,J (t) = Dt−1

0 DJ , for J ∈ ℵ, t ≥ 1. Let D = D0 + �J DJ , i.e., the transi-
tion probability matrix of the underlying Markov chain of the arrival process. We
assume that D is irreducible and D 	= D0. Denote by θ the invariant probability vec-
tor of the stochastic matrix D. It is easy to see θa =θ(I − D0)/λ, where λ =θ(I −
D0)e =θ�J DJ e. In addition, we have λJ =θDJ e. We assume that λ and {λJ , J ∈ ℵ} are
all positive.

For this queueing system, both the arrival and service processes are governed by
Markov chains. By utilizing detailed information about these Markov chains, a QBD
process can be introduced to describe the age process of the batch in service and the
total workload process. This method was used in Van Houdt and Blondia [37]. In this
section, we link the QBD process to the total workload process and obtain more detailed
results on the steady state distributions.

5.1. The Markov chain {(r(t), Ia(t), J(t), Is(t)), t ≥ 0}

We construct a fictitious process r(t) that increases with service (like the age process) and
decreases with arrival (like the total workload process) alternatively. If the process is in a
service leg in period t and the service continues into period t + 1, then r(t + 1) = r(t) + 1.
If the process is in a service leg and a service is completed in period t, then the process
switches to an arrival leg in period t + 1 and r(t + 1) = r(t). If the process is in an arrival
leg in period t and there is no arrival in period t, then r(t + 1) = max{0, r(t) − 1}. If
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the process is in an arrival leg and there is a batch arrival in period t, then the process
switches to a service leg in period t + 1 and r(t + 1) = r(t).

We compare the processes {r(t), t ≥ 0} and {wn , n ≥ 0}. For {wn , n ≥ 0}, the
process jumps from an arrival epoch to the next: max{0, wn + sJn − τn+1}. For {r(t),
t ≥ 0}, it takes two legs to go from an arrival epoch to the next. The first leg is the
service leg of the length sJn and the second leg is the arrival leg of the length τn+1.
During the service leg,r(t) increases its value by one in each period. At the end of
this leg, the value of r(t) becomes wn + sJn . During the arrival leg, r(t) decreases its
value by one in each period (if nonnegative). At the end of this leg, the value of r(t)
becomes wn+1 = max{0, wn + sJn − τn+1} and the next cycle begins. Since the arrival
and service legs are considered separately, unlike the generalized age process introduced
in Section 3, the time t for r(t) is not for the real operating time of the queueing system.

Auxiliary variables {Ia(t), J(t),Is(t)} are defined as follows. During a service leg,
the phase of the arrival process Ia(t) remains constant, which is the initial phase of the
next arrival leg. During an arrival leg, the phase of the service process (J(t), Is(t)) takes
value zero. The initial phase of the next service leg is determined by the initial phase
distribution of the next PH-service time. Therefore, the set of values of {Ia(t), J(t), Is(t)}
is extended from equation (3.4) to

{(i, 0) : 1 ≤ i ≤ ma} ∪ {(i, Jn, j) : 1 ≤ i ≤ ma, 1 ≤ j ≤ m jn , 1 ≤ n ≤ N }.
(5.1)

Note that if r(t) = 0, there is no service in the system and (J(t), Is(t)) takes value zero.
Since both the arrival process and the service times are governed by Markov chains,

it is easy to see that {(r(t), Ia(t), J(t), Is(t)), t ≥ 0} is a Markov chain. It is readily seen
that {r(t), t ≥ 0} is skip-free to both left and right. Therefore, {(r(t), Ia(t), J(t), Is(t)),
t ≥ 0} is a quasi-birth-and-death (QBD) process. A typical sample path of r(t) is shown
in figure 6. When r(t) = 0, there is no customer in the system. Thus, if r(t) = 0, there is
no service. The transition probability matrix of the Markov chain {(r(t), Ia(t), J(t), Is(t)),

Figure 6. A sample path of r(t).
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t ≥ 0} is given by

PQBD =





D0 Ã0

Ã2 A1 A0

A2 A1 A0

. . . . . . . . .




, (5.2)

where

A0 =
(

0 0

0 I ⊗ Ttot

)
, A1 =

(
0

∑N
i=1 DJi ⊗ α(Ji )

I ⊗ T0
tot 0

)
, A2 =

(
D0 0

0 0

)
,

Ã2 =
(

D0

0

)
, Ã0 =

(
0

N∑

i=1

DJi ⊗ α(Ji )

)
, (5.3)

and A0, A1, and A2 are (ma(1+mtot)) × (ma(1+mtot)) matrices. The vectors{α(Ji ), 1 ≤ i ≤
N} were defined in Section 3. For the Markov chain {(r(t), Ia(t), J(t), Is(t)), t ≥ 0} with
transition probability matrix PQBD, r(t) represents the total workload if (J(t), Is(t)) = 0
and r(t) − 1 represents the age of the batch in service if (J(t), Is(t)) 	= 0. First, we show
that the Markov chain {(r(t), Ia(t), J(t), Is(t)), t ≥ 0} is ergodic if the queueing system is
stable. Denote by

θtot,a = 1

ρ

∑

J ∈ ℵ
(θDJ ) ⊗

(
β(J )

µJ

)
;

(5.4)

θQBD =
(
θ,

∑
J ∈ ℵ

(
θDJ

)⊗(β(J )
µJ

))

(1 + ρ)
= (θ, ρθtot,a)

(1 + ρ)
.

It is easy to verify that both θtot,a and θQBD are probability vectors. Let A = A0 +A1 +A2.
Then

A =
(

D0
∑N

i=1 DJi ⊗ α(Ji )

I ⊗ T0
tot I ⊗ Ttot

)
. (5.5)

Theorem 5.1. Assume that the Markov chain {(r(t), Ia(t), J(t), Is(t)), t ≥ 0} is irre-
ducible and aperiodic. The vector θQBD is the invariant probability vector of A and
θQBDA2e−θQBDA0e = (1 − ρ)/(1 + ρ). The Markov chain is positive recurrent if and
only if ρ <1.
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Proof. By routine calculations, we have, for θQBDA,

(1 + ρ)−1

(
θD0 +

N∑

i=1

(
θDJi

)
(
β Ji

T0
Ji

µJi

))
= (1 + ρ)−1

(
θD0 +

N∑

i=1

θDJi

)

= (1 + ρ)−1 θ, (5.6)

and

(1 + ρ)−1

(
θ

N∑

i=1

DJi ⊗ α(Ji ) +
N∑

i=1

(θDJi ) ⊗
(
β(Ji )Ttot

µJi

))

= (1 + ρ)−1

(
N∑

i=1

(
θDJi

) ⊗
(

0, . . . , 0,αJi + β Ji
TJi

µJi

, 0, . . . , 0

))

= (1 + ρ)−1

(
N∑

i=1

(
θDJi

) ⊗
(

0, . . . , 0,
β Ji

µJi

, 0, . . . , 0

))

= (1 + ρ)−1

(
N∑

i=1

(
θDJi

) ⊗
(
β(Ji )

µJi

))
= ρ

1 + ρ
θtot. (5.7)

Equations (5.6) and (5.7) imply θQBDA =θQBD, i.e., θQBD is the invariant probability
vector of A. By routine calculations,

θQBD A2e = (1 + ρ)−1θD0e = (1 + ρ)−1(1 − λ);

θQBD A0e = (1 + ρ)−1

(
N∑

i=1

(θDJi ) ⊗
(
β(Ji )

µJi

))
(
e ⊗ (

e − T0
tot

))

= (1 + ρ)−1
N∑

i=1

(θDJi e)
(
β Ji

(
e − T0

Ji

))

µJi

= (1 + ρ)−1(ρ − λ). (5.8)

Therefore, θQBDA2e−θQBDA0e = (1−ρ)/(1+ρ) and θQBDA2e >θQBDA0e if and
only if ρ < 1. According to Neuts condition (Neuts [26]), the QBD process {(r(t), Ia(t),
J(t), Is(t)), t ≥ 0} is positive recurrent if and only if θQBDA0e < θQBDA2e. Therefore,
the QBD process is positive recurrent if and only if ρ < 1. This completes the proof of
Theorem 5.1.

5.2. Steady state distributions

If the Markov chain {(r(t), Ia(t), J(t), Is(t)), t ≥ 0} is ergodic, its steady state distri-
bution has a matrix geometric form and can be found by routine methods. Denote by
π= (π(0),π(1), π(2), . . .) the stationary distribution of {(r(t), Ia(t), J(t), Is(t)), t ≥ 0},
i.e., π = πPQBD and πe = 1, where π(n) = (πi,J, j (n)) is a row vector of the size
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ma(mtot + 1), n ≥ 0. Let R be an (ma(mtot + 1)) × (ma(mtot + 1)) matrix that is the
minimal nonnegative solution to

R = A0 + R A1 + R2 A2. (5.9)

We refer to Bini and Meini [5], Latouche and Ramaswami [22,23] and Neuts [26] for
more about the matrix R. Since the Markov chain is positive recurrent, the spectral radius
of R is less than one, which implies that the matrix I − R is invertible. By the structure
of the matrix A0 (equation (5.3)), the matrix R also has a special structure

R =
(

0 0
Rν Ra

)
, (5.10)

where Rν and Ra are the minimal nonnegative solutions to the equations:

Rν = Ra
(
I ⊗ T0

tot

) + Ra Rv D0;
(5.11)

Ra = I ⊗ Ttot + Rv

∑

J ∈ ℵ
DJ ⊗ α(J ).

Apparently, the spectral radius of the matrix Raequals the spectral radius of R and is less
than one. According to Neuts [26], {π(0),π(1), . . .} has a matrix geometric distribution

π(n) = π(1)Rn−1, n ≥ 1, (5.12)

where π(0) and π(1) satisfy equations:

(π(0),π(1)) = (π(0),π(1))

(
D0 Ã0

Ã2 A1 + R A2

)
;

π(0)e + π(1)(I − R)−1e = 1. (5.13)

Theorem 5.2. If the queueing system is stable and the Markov chain {(r(t), Ia(t), J(t),
Is(t)), t ≥ 0} is irreducible and aperiodic, the vectors π(0) and π(1) are given explicitly
as

π(0) = θQBD(I − R) Ã2 = 1

1 + ρ
(θ − ρθtot,a Rv)D0;

π(1) = θQBD(I − R)

(
I − D0 0

0 I

)

=
(

1

1 + ρ
(θ − ρθtot,a Rv)(I − D0),

ρ

1 + ρ
θtot,a(I − Ra)

)
. (5.14)
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Proof. By rewriting equalities in equation (5.13), we obtain

(π(0), 0) = (π(0), 0)A2 + π(1)A2;

π(1) = (π(0), 0)A1 + π(1)(A1 + R A2). (5.15)

Note π(0) is extended to (π(0), 0) by adding mamtot zeros. Let u = (π(0), 0) + π(1).
We first show u =θQBD(I − R). By equation (5.15) and (π(0), 0)R = 0, we find that u
satisfies equation u = u(A1 + (I + R)A2), which leads to u = u(I − R)−1[A1 − R A1 +
A2 − R2 A2] = u(I − R)−1(A − R). Therefore, the vector u(I − R)−1 satisfies equation:
u(I − R)−1 = u(I − R)−1A, which implies u(I − R)−1 = cθQBD, where c is a constant.
Thus, u = cθQBD(I − R). By the second equality in equation (5.13), we must have
u(I − R)−1e = 1. Thus, we must have c = 1. Therefore, u =θQBD(I − R). By equation
(5.13), we have

π(0) = π(1) Ã2(I − D0)−1 or (π(0), 0) = π(1)

(
D0(I − D0)−1 0

0 0

)
. (5.16)

Combining u =θQBD(I − R) and equation (5.16), yields,

θQBD(I − R) = π(1)

(
D0(I − D0)−1 0

0 0

)
+ π(1) = π(1)

(
(I − D0)−1 0

0 I

)
,

(5.17)

which leads to the expressions for π(1) and π(0) in equation (5.14). This completes the
proof of Theorem 5.2.

For later use, we divide vectors {π(0),π(1), . . .} in the following way: π(n) =
(πv(n),πa(n)), n ≥ 1, where πv(n) is a vector of dimension ma and πa(n) is a vector of
dimension mamtot. By equation (5.12) and Theorem 5.2, we obtain, for
n ≥ 2,

(πv(n),πa(n)) = π(1)Rn−1 = ρ

1 + ρ

(
θtot,a(I − Ra)Rn−2

a Rv, θtot,a(I − Ra)Rn−1
a

)
.

(5.18)

5.3. Age process, distributions of waiting times and sojourn times

If we observe the process r(t) only at its increasing legs, the excised process is related
to the age process of an arbitrary batch in service. Recall that r(t) − 1 represents the age
of the batch in service if (J(t), Is(t)) 	= 0. The steady state distribution of the age process
is given in the following proposition.
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Proposition 5.3. Denote by π̄a = (π̄a(0), π̄a(1), . . .) the steady state distribution of the
age process. Then

π̄a(n) = θtot,a(I − Ra)Rn
a , n ≥ 0. (5.19)

The distributions of the age of the batch in service and the total workload are the same,
i.e., P{a = n} = P{v = n} = π̄a(n)e, for n ≥ 0.

Proof. By definition, we must have

π̄a =
( ∞∑

n=1

πa(n)e

)−1

(πa(1),πa(2), . . .). (5.20)

Equation (5.19) is obtained immediately from equations (5.14) and (5.18). The
distributions of the age of the batch in service and the total workload are the same. This
completes the proof of Proposition 5.3.

By using equations (5.9) and (5.14) and the relationship between the two sets of
parameters of the batch arrival process Da,J (t) = Dt−1

0 DJ , f or J ∈ ℵ, t ≥ 1, it can
be shown that the matrix Ra equals R defined in equation (3.23) and θtot,a equals θtot

defined in equation (3.11). Similar to Sections 4.2 and 4.3, the distributions of sojourn
times and waiting times of batches and individual customers can be obtained from
π̄a = (π̄a(0), π̄a(1), . . .). The matrix representations of these PH-distributions can be
constructed by replacing R by Ra and θtot by θtot,a in Theorems 4.2 and 4.3. Details are
omitted.

5.4. Workload process, distributions of waiting times and sojourn times

In this section, we use the total workload process to find the distributions of waiting
times and sojourn times. If we observe the process r(t) only in decreasing legs, the
excised process represents the total workload process. The steady state distribution of
this excised process is given by

π̄v =
( ∞∑

n=0

πv(n)e

)−1

(πv(0),πv(1), . . .). (5.21)

By equations (5.14) and (5.15) and routine calculations, we obtain the following
results.
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Proposition 5.4. Denote by π̄v = (π̄v(0), π̄v(1), . . .) the steady state distribution of
the total workload process. Then

π̄v(n) =






(θ − ρθtot,a Rv)D0, n = 0;
(θ − ρθtot,a Rv)(I − D0), n = 1;
ρθtot,a(I − Ra)Rn−2

a Rv, n ≥ 2.

(5.22)

Based on the total workload process, the distributions of the waiting times of an
arbitrary batch and an arbitrary customer are given, respectively, as follows, for J ∈ ℵ,
1 ≤ k ≤ K,

P{v = n} = π̄v(n)e, n ≥ 0. (5.23)

P{w = n} =






1

λ
(π̄ν(0) + π̄ν(1)) (I − D0)e = 1 − ρ

λ
θtot Rv(I − D0)e, n = 0;

1

λ
π̄ν(n + 1)(I − D0)e = ρ

λ
θtot(I − Ra)Rn−1

a Rv(I − D0)e, n ≥ 1.

(5.24)

P{wJ = n} =






1

λJ
(π̄ν(0) + π̄ν(1)) DJ e = 1 − ρ

λJ
θtot Rν DJ e, n = 0;

1

λJ
π̄ν(n + 1)DJ e = ρ

λJ
θtot(I − Ra)Rn−1

a Rν DJ e, n ≥ 1.

(5.25)

Note that we used λ =θ(I − D0)e and λJ =θDJ e in equations (5.24) and (5.25), re-
spectively. It is easy to verify that the distributions given in equations (5.23), (5.24),
and (5.25) are proper probability distributions. Based on Proposition 5.4 and equations
(5.23), (5.24), and (5.25), the matrix representations of these PH-distributions can be
constructed.

Theorem 5.5. The total workload at an arbitrary time (or the age of the batch in service)
has a PH-distribution with matrix representation

mν = mam tot + 2;

αν = ((θ − ρθtot,a Rν)(I − D0)e, ρθtot,a Rνe, 0);

Tν =




0 0 0

0 0 (θtot,a Rνe)−1θtot,a(I − Ra)�ν

0 0 (�ν)−1 Ra�ν



 , (5.26)
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where �ν = diag(δν) and δν = (I − Ra)−1 Rνe. The waiting time of an arbitrary batch
has a PH-distribution with matrix representation
{

mw,all = mam tot; αw,all = ρ

λ
θtot,a(I − Ra)�w,all; Tw,all = (�w,all)

−1 Ra�w,all

}
,

(5.27)

where �w,all = diag(δw,all) and δw,all = (I − Ra)−1 Rν(I − D0)e. The waiting time of
an arbitrary type J batch has PH-distribution with matrix representation
{

mw,J = mam tot; αw,J = ρ

λJ
θtot,a(I − Ra)�w,J ; Tw,J = (�w,J )−1 Ra�w,J

}
,

(5.28)

where �w,J = diag(δw,J ) and δw,J = (I − Ra)−1 Rν DJ e.

Proof. The proofs of (5.27) and (5.28) are similar to that of Theorem 4.4. The distri-
bution of the total workload is given explicitly as

P{v = n} =






(θ − ρθtot,a Rν)D0e, n = 0;

(θ − ρθtot,a Rν)(I − D0)e, n = 1;

(ρθtot,a Rνe)
θtot,a(I − Ra)Rn−2

a Rνe
θtot,a Rνe

, n ≥ 2.

(5.29)

Apparently, the above distribution is the mixture of two discrete time PH-distributions,
which is a discrete time PH-distribution as well. The matrix representation of the mixture
is obtained easily from the matrix representations of the two PH-distributions. Details
are omitted. This completes the proof of Theorem 5.5.

Once the distributions of waiting times are obtained, the distributions of sojourn
times can be found. For example, the sojourn time of an arbitrary type J batch has a
PH-distribution with matrix representation

md(w),J = mam tot + m J ;

αd(w),J = 1

λJ
(ρθtot,a(I − Ra)�w,J , (θ − ρθtot,a Rν)DJ eαJ );

Td(w),J =
(

(�w,J )−1 Ra�w,J (I − (�w,J )−1 Ra�w,J )eαJ

0 TJ

)
. (5.30)

Furthermore, the waiting times and the sojourn times of individual types of cus-
tomers have PH-distributions. Details are omitted.

In HE [18], an M/G/1 type Markov chain was introduced for studying the total
workload process and the waiting times. Compared to that approach, the QBD process
approach has some advantages in computation. For instance, the steady state distribution
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has a matrix geometric form and the computation of the matrix R can be done efficiently.
On the other hand, the dimension of the matrices involved in the QBD approach can
be as large as mamtot, compared to ma for the M/G/1 approach. Therefore, if there are
many different types of customers or batches involved, the M/G/1 approach may be more
efficient than the QBD approach.

6. Numerical analysis

In this section, we present a few numerical examples to demonstrate the implementabil-
ity of the methods developed in this paper and to demonstrate the performances of
different types of customers in a single server queueing system. First, we summarize
the computational steps for the GI/M/1 case:

1. Compute transition blocks {A0, A1, A2, . . .} by definition (3.7).

2. Compute θa, arrival rates {λJ , J ∈ ℵ}, service rates {µJ , J ∈ ℵ}, and ρ.

3. Compute βk,β J , and θtot by (3.11).

4. Compute the matrix R by equation (3.23).

5. Compute the vector π(0) by Theorem 3.4.

6. Construct PH-distributions by Theorems 4.4 and 4.5.

Example 6.1. Consider the simplest model: the Geo/Geo/1 queue. The interarrival times
have a common geometric distribution with ma = 1, D0 = (0.8), and D1 = (0.2). The ser-
vice times have a common geometric distribution with ms = 1, α1 = (1), and T1 = (0.2).
Then the waiting time (total workload) and the sojourn time have PH-distributions with
matrix representations:

mw,1 = 1, αw,1 = (1/16), Tw,1 = (1/4);

md(w),1 = 2, αd(w),1 = (1/16, 15/16), Td(w),1 =
(

1/4 3/4
0 1/5

)
; (6.1)

md,1 = 1, αd,1 = (1), Td,1 = (1/4) .

respectively. Note that the matrix representation {md(w),1,αd(w),1, Td(w),1} of the sojourn
time obtained from wJ + sJ can be reduced to {md,1, αd,1, Td,1} since αd(w),1Td(w),1 =
0.25αd(w),1.

Example 6.2. Consider an MMAP[4]/PH[4]/1 queue with following system parameters:
K = 4, ma = 3, m1 = 1,α1 = (1), T1 = (0.1);

m2 = 4, α2 = (0.1, 0.1, 0.7, 0.1), T2 =





0 0.2 0 0

0.1 0.1 0 0

0 0.1 0.5 0.1

0.4 0 0 0




;
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m3 = 2, α3 = (0.1, 0.9), T3 =
(

0.5 0.1
0.6 0

)
;

m4 = 2, α4 = (1, 0), T4 =
(

0 0.8

0.5 0.1

)
;

D0 =




0.1 0.3 0

0.2 0.4 0.1

0.1 0 0.6



 , D1 =




0 0 0

0 0 0

0 0 0.3



 , D2 =




0.1 0.1 0

0 0 0

0 0 0



 ,

D3 =




0.05 0.35 0

0.1 0 0

0 0 0



 , D4 =




0 0 0

0.1 0.1 0

0 0 0



 . (6.2)

The traffic intensity of this queueing system is ρ = 0.833. The distributions of waiting
times are given in Table 1.

It is interesting to see that type 1 batches have a waiting time that is significantly
shorter than other types of batches. In fact, the sojourn times of type 1 batches are also
significantly shorter than other types of batches. From the construction of the arrival
process, it is clear that once the arrival process is in phase three, it stays there for a
(relatively) long time. During that time, only type 1 batches arrive and their service
times are short. On the other hand, once the arrival process is in phase 1 or 2, it stays
there for a while with types 2, 3, and 4 batches. The service times of these types of
batches are longer than that of type 1. Therefore, type 1 batches have a shorter waiting
and sojourn time.

The matrix representations of the waiting times and sojourn times can be found
for this example. But the dimension of the matrices is 27. Therefore, those matrix
representations are not presented.

Table 1
Distributions of waiting times.

n 0 1 2 3 4 5 6 7 . . .

P{ν = n} 0.1670 0.0912 0.0543 0.0449 0.0383 0.0359 0.0334 0.0313 . . .

P{w = n} 0.2432 0.0544 0.0456 0.0391 0.0367 0.0342 0.0320 0.0299 . . .

P{w1 = n} 0.4067 0.0521 0.0366 0.0324 0.0301 0.0281 0.0262 0.0246 . . .

P{w2 = n} 0.1833 0.0546 0.0484 0.0462 0.0423 0.0399 0.0371 0.0348 . . .

P{w3 = n} 0.1768 0.0551 0.0491 0.0466 0.0428 0.0402 0.0374 0.0351 . . .

P{w4 = n} 0.1595 0.0564 0.0508 0.0477 0.0439 0.0411 0.0382 0.0358 . . .
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Example 6.3. Consider an MMAP[2]/PH[2]/1 queue with following system parameters:
K = 2, ma = 2, N = 3,

D0 =
(

0.7 0
0.2 0.5

)
, D1 =

(
0 0.2
0 0

)
, D2 =

(
0 0.1
0 0.1

)
, D112 =

(
0 0
0 0.2

)
;

m1 = 2, α1 = (0.9, 0.1), T1 =
(

0.2 0.4
0 0.1

)
;

m2 = 2, α2 = (0.9, 0.1), T2 =
(

0.1 0
0.1 0.4

)
. (6.3)

In this example, there are three types of batches: J1 = 1, J2 = 2, and J3 = 112. The traffic
intensity of this queueing system is ρ = 0.8162. The distributions of waiting times w(1)

and w(2) of type 1 and type 2 customers can be computed by using equation (4.17) and
results are given in Table 2.

Table 2 shows that the waiting times of type 2 customers are significantly longer
than that of type 1 customers. Next, we change the service order of in the batch J3 = 112
to J3 = 121. The distributions of waiting times of type 1 and type 2 customers are given
in Table 3.

It is interesting to see that the waiting times of both types of customers are proba-
bilistically shorter. Table 3 shows that the waiting times of type 2 customers are compa-
rable to that of type 1 customers. Thus, a (single) change in the service order can change
the queueing processes of different types of customers significantly. This demonstrates
the necessity to conduct queueing analysis at the level of individual types of customers.

Table 2
Distributions of waiting times w(1) and w(2) when J3 = 112.

n 0 1 2 3 4 5 6 7 . . .

P{w(1) = n} 0.1640 0.6950 0.0739 0.0620 0.0559 0.0510 0.0467 0.0424 . . .

P{w(2) = n} 0.1192 0.0276 0.0457 0.0693 0.0698 0.0603 0.0537 0.0491 . . .

Table 3
Distributions of waiting times w(1) and w(2) when J3 = 121.

n 0 1 2 3 4 5 6 7 . . .

P{w(1) = n} 0.2727 0.0828 0.1059 0.0919 0.0763 0.0627 0.0515 0.0425 . . .

P{w(2) = n} 0.2070 0.1415 0.1168 0.0955 0.0773 0.0626 0.0510 0.0417 . . .
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7. Discussion on the SM[K]/PH[K]/c case

The method used in this paper can be used to analyze the discrete time SM[K]/PH[K]/c
queue, where customers are served by c servers, as was demonstrated in Van Houdt and
Blondia [36,37]. Let wn,k be the workload of the k-th server after the arrival of the n-th
batch, 1 ≤ k ≤ c. Denote by wn = (wn,1, . . . , wn,c). The construction of the corresponding
Markov chain is based on the following basic relationship for the batch waiting times:

wn+1 = O
(
(wn,1 + sJn − τn+1)+,(wn,2 − τn+1)+, . . . , (wn,c − τn+1)+

)
, n ≥ 0,

(7.1)

where x+ = max{0, x} and O(y) is an operation to reorder the elements of the vector
y in nondecreasing order. Then wn,1 is the waiting time of the nth batch. Note that,
in equation (7.1), we assumed that all customers in a batch are served by one server.
If the service discipline is first-come-first-served (FCFS), we consider the age of the
“youngest” batch in service in any period. If the service discipline is first-come-first-out
(FCFO), we consider the age of the “youngest” batch or the “oldest” batch in service
in any period. It is easy to see that the age process ag(t) constructed in such a way
has the skip free to the right property. We choose variables for the arrival process and
services in a way similar to that of Section 3 and put them into a vector x(t). Then the
process {(ag(t), x(t)), t ≥ 0} is a GI/M/1 type Markov chain. This construction is similar
to the construction in Asmussen and O’Cinneide [3] for the continuous time GI/PH/c
queue.

The above discussion demonstrates that it is possible to analyze the waiting times
and sojourn times of batches and customers for the discrete time SM[K]/PH[K]/c queue.
However, the state space becomes extremely complicated, especially the organization
of the level zero. Thus, it is not straightforward to obtain explicit results. We leave this
problem to future research.
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