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TYPE DISTRIBUTIONS
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� In this note, we study the unicyclic representation introduced in O’Cinneide[21]. First, we
present a counterexample to the conjecture that every PH -representation has an equivalent
unicyclic representation of the same order. Then we show that the conjecture holds if the order of
the PH -representation is 3. We also introduce an algorithm for computing a unicyclic generator
of order 3, which PH -majorizes the original PH -generator, for any PH -generator of order 3. For
the general case, we develop a nonlinear program for computing unicyclic representations for
PH -distributions.
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1. INTRODUCTION

It is well known that the PH -representation of a phase type (PH )
distribution is not unique (Neuts[15,16]). Because of that, finding smaller
and simpler matrix representations for PH -distributions has become an
important theoretical and practical issue. On one hand, it is interesting
to find a PH -representation with the smallest number of phases for a
PH -representation (Asmussen and Bladt[1]; Commault[2]; Commault and
Mocanu[4,5]; Neuts[15]; O’Cinneide[17–21], etc.) This problem is known as the
minimal representation problem of PH -distributions. On the other hand,
it is useful to construct PH -representations with a simple structure for
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PH -distributions (Commault and Chemla[3]; Commault and Mocanu[4,5];
Cumani[7]; Dehon and Latouche[8]; He and Zhang[9–11]; Mocanu and
Commault[14]; O’Cinneide[17,20,21]). The focus of this note is on a simple
PH -representation known as the unicyclic representation.

In Cumani[7], it was shown that every triangular PH -representation has
an ordered Coxian representation of the same order (or a bi-diagonal
PH -representation) (also see Dehon and Latouche[8]). In O’Cinneide[20],
it was shown that any PH -distribution whose Laplace Stieltjes transform
has only real poles has a triangular PH -representation. He and Zhang[9–11]

introduced spectral polynomial algorithms for computing ordered Coxian
representations (Cox[6]) for PH -distributions with only real poles. It was
shown that any symmetric PH -generator is PH -majorized by a Coxian
generator (He and Zhang[9]). Those works apply to PH -distributions whose
Laplace Stieltjes transforms have only real poles. For PH -distributions
whose Laplace Stieltjes transforms have complex poles, Mocanu and
Commault[14] (see also Commault and Mocanu[5]) introduced and studied
sparse representations. Similar to the sparse structure introduced in
Mocanu and Commault[14], the unicyclic representation was introduced
in O’Cinneide[21] as an extension of the Coxian representation. Unlike
the Coxian representations, which are for PH -distributions with only real
poles, the unicyclic representations were proposed for all PH -distributions.
Numerical examples show that many PH -distributions do have a unicyclic
representation. Since the simple structure of the unicyclic PH -generator
may bring in computational advantages in applications, it is worth to
investigate such a class of PH -representations in more detail. We start our
exploration on the unicyclic representation with this note.

It is well known that any PH -representation of order 2 has an
equivalent Coxian representation of order 1 or 2. It is also known that
any PH -representation with a triangular or symmetric PH -generator has
an equivalent Coxian representation of the same or a smaller order.
Since Coxian representation is a special type of unicyclic representation,
a unicyclic representation of the same or a smaller order exists for these
special PH -representations. However, little is known on cases other than
these special ones. For instance, we do not know whether or not a PH -
representation has an equivalent unicyclic representation of the same
order. More generally, we do not know whether or not a PH -distribution
has a unicyclic representation of some order. In this note, we shall provide
answers to some of those questions.

More specifically, section 2 presents a PH -representation of order 6 that
has no equivalent unicyclic representation of the same order. In section
3, we show that there exists a unicyclic generator of order 3, which PH -
majorizes the original PH -generator, for any PH -generator of order 3.
We introduce an algorithm for computing such a unicyclic generator for
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any PH -generator of order 3. Section 4 presents a nonlinear program
for computing equivalent unicyclic representations for PH -distributions.
Section 5 concludes this note.

2. A COUNTEREXAMPLE

Define a continuous time Markov chain with m + 1 states and an
infinitesimal generator (

T −T e
0 0

)
, (2.1)

where the (m + 1)st state is an absorption state, T is a PH -generator of order
m, and e is the column vector with all elements being one. We assume that
states �1, 2, � � � ,m� are transient. Let � be a nonnegative vector of size m
for which the sum of its elements is less than or equal to one. We call the
distribution of the absorption time of the Markov chain to state m + 1, with
initial distribution (�, 1 − �e), a phase type distribution (PH -distribution). We
call the 2-tuple (�, T ) a PH -representation of that PH -distribution. Without
loss of generality, we shall assume that �e = 1 throughout this paper. That
is, we assume that all PH -distributions considered in this note have a zero
mass at zero. We refer to Chapter 2 in Neuts[16] for basic properties of
PH -distributions.

According to O’Cinneide[21], a unicyclic representation (�,U (x)) of a PH -
distribution is a PH -representation for which the PH -generator U (x) is
given as

U (x) =




−x1 x1,2 x1,3 · · · x1,m
x2 −x2 0 · · · 0

0 x3 −x3
. . .

...
...

. . . . . . . . . 0
0 · · · 0 xm −xm



, (2.2)

where x = (x1, x2, � � � , xm , x1,2, � � � , x1,m) with positive elements �x1, x2, � � � ,
xm�, non-negative elements �x1,2, � � � , x1,m�, and x1 > x1,2 + · · · + x1,m . If x1,2 =
· · · = x1,m = 0, U (x) is called a Coxian generator and (�, U (x)) is a Coxian
representation that represents a Coxian distribution. Furthermore, if x1 ≥
x2 ≥ · · · ≥ xm > 0 and x1,2 = · · · = x1,m = 0, U (x) is called an ordered Coxian
generator.

Conjecture 4 in O’Cinneide[21] states “Every phase-type distribution of
order m has a unicyclic representation of order m.” Next, we present a
counterexample to that conjecture. In fact, we shall prove the following
stronger statement.
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Statement 1. Not every PH -representation has a generalized unicyclic
representation (�, U (x, y)) of the same order, where

U (x, y) =




−x1 x1,2 x1,3 · · · x1,m
y2 −x2 0 · · · 0

0 y3 −x3
. . .

...
...

. . . . . . . . . 0
0 · · · 0 ym −xm



, (2.3)

x = (x1, x2, � � � , xm , x1,2, � � � , x1,m) with positive elements �x1, x2, � � � , xm� and
non-negative elements �x1,2, � � � , x1,m�, x1 ≥ x1,2 + · · · + x1,m , y = (y2, � � � , ym),
xi ≥ yi ≥ 0, 2 ≤ i ≤ m, and U (x, y) is a PH -generator.

Consider a PH -generator T of order 6 defined as

T =
(
T1 0
0 T2

)
, where T1 =


−1 0 0. 5

1 −1 0
0 1 −1


 and

T2 =

−1 0 0. 9

1 −1 0
0 1 −1


 . (2.4)

Apparently, for PH -generator T given in equation (2.4), any PH -
distribution (�,T ) is the mixture of two PH -distributions with PH -
generators T1 and T2, respectively. The matrix T has six distinct
eigenvalues �−1. 3969 + 0. 6874i ,−1. 3969 − 0. 6874i ,−0. 2063,−1. 4827 +
0. 8361i ,−1. 4827 − 0. 8361i ,−0. 0345�, where i = √−1. We consider a
PH -distribution (�,T ) with � = (0, 0, 0. 6, 0, 0, 0. 4). It can be shown that
the distribution function of (�,T ) is given by

F (t) = 1 − [(−0. 0847 + 0. 0567i) exp�(−1. 3969 + 0. 6874i)t�

+ (−0. 0847 − 0. 0567i) exp�(−1. 3969 − 0. 6874i)t�

+ 0. 7695 exp�−0. 2063t�]
− [(−0. 0072 + 0. 0043i) exp�(−1. 4827 + 0. 8361i)t�

+ (−0. 0072 − 0. 0043i) exp�(−1. 4827 − 0. 8361i)t�

+ 0. 4145 exp�−0. 0345t�]. (2.5)

According to equation (2.5), the Laplace Stieltjes transform of the
distribution (�,T ) has six distinct poles, which are the eigenvalues of T .
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Suppose that (�, U (x, y)) is a generalized unicyclic representation of
order 6 that is equivalent to (�,T ), i.e., (�, U (x, y)) and (�,T ) represent
the same probability distribution. Then the Laplace Stieltjes transform of
(�, U (x, y)) must have the same six poles. Since the order of U (x, y)
is 6, the six distinct poles of the Laplace Stieltjes transform of (�,T )
must be the eigenvalues of U (x, y). Therefore, U (x, y) and T have the
same eigenvalues. Consequently, the matrices U (x, y) and T have the same
characteristic polynomial, i.e., det(�I − T ) = det(�I − U (x, y)) (Lancaster
and Tismenetsky[12]). By routine calculations, we obtain

det(�I − T ) = [
(� + 1)3 − 0. 5

][
(� + 1)3 − 0. 9

]
= �6 + 6�5 + 15�4 + 18. 6�3 + 10. 8�2 + 1. 8� + 0. 05; (2.6)

det(�I − U (x, y)) = �6 +
(

6∑
i=1

xi

)
�5 +

( ∑
1≤i<j≤6

xixj − x1,2y2

)
�4

+
( ∑

1≤i<j<k≤6

xixj xk − x1,2y2(x3 + x4 + x5 + x6) − x1,3y2y3

)
�3

+ c2(x, y)�2 + c1(x, y)� + c0(x, y),

where c2(x, y), c1(x, y), and c0(x, y) are polynomial functions of x and y.
Comparing the coefficients of �5 and �4 on both sides of the equation
det(�I − T ) = det(�I − U (x, y)), yields

x1 + x2 + x3 + x4 + x5 + x6 = 6;∑
1≤i<j≤6

xixj − x1,2y2 = 15. (2.7)

As all elements of x and y are non-negative, the two equalities in
equation (2.7) lead to

36 = (
x1 + x2 + x3 + x4 + x5 + x6

)2
= x2

1 + x2
2 + x2

3 + x2
4 + x2

5 + x2
6 + 2

∑
1≤i<j≤6

xixj

= 1
5

∑
1≤i<j≤6

(x2
i + x2

j ) + 2
∑

1≤i<j≤6

xixj

≥ 12
5

∑
1≤i<j≤6

xixj

= 36 + 12
5
x1,2y2, (2.8)
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which implies that x1 = x2 = x3 = x4 = x5 = x6 = 1 and x1,2y2 = 0. Note that,
in equation (2.8), we use the inequality a2 + b2 ≥ 2ab for any real numbers
a and b, where the equality holds if and only if a = b. If y2 = 0, then
−x1 = −1 is an eigenvalue of U (x, y), which is impossible since −1 is not
an eigenvalues of T . Thus, y2 must be positive, which implies that x1,2 = 0.

Comparing the coefficients of �3 on both sides of the equation
det(�I − T ) = det(�I − U (x, y)), yields x1,3y2y3 = 1. 4. Since 0 < y2 ≤ 1 and
0 ≤ y3 ≤ 1, we have x1,3 = 1.4/(y2y3) ≥ 1.4 > x1 = 1. Thus, U (x, y) is not a
PH -generator. Therefore, the PH -representation (�,T ) has no equivalent
generalized unicyclic representation (�, U (x, y)) of order 6. Consequently,
the PH -representation (�,T ) has no equivalent unicyclic representation
(�, U (x)) of order 6. Note that, since the PH -distribution (�,T ) has
six distinct poles, it cannot have an equivalent (generalized) unicyclic
representation of order 1, 2, 3, 4, or 5.

Remark 1. For a different initial probability vector �, the PH -
representation (�,T ) (where T is given in equation (2.4)) may have
a unicyclic representation of the form (�,U (x)). For instance, if � =
(0, 0, 1, 0, 0, 0), then (�,T ) has a unicyclic representation ((0, 0, 1, 0, 0, 0),
U (x)) with x = (1, 1, 1, 1, 1, 1, 0, 0. 5, 0, 0, 0).

Remark 2. Using the same method, it can be shown that the PH -
representation (�,T ) with � = (0, 0, 0. 6, 0, 0, 0. 4) and

T =
(
T1 T3

0 T2

)
, where T3 =


0. 1 0. 1 0. 1

0 0 0
0 0 0


 (2.9)

and T1 and T2 are given in equation (2.4), does not have a generalized
unicyclic representation of order 6.

Although not all PH -representations have an equivalent unicyclic
representation of the same order, Cumani[7], He and Zhang[9], and
numerical results show that many of them do. Thus, it is interesting and
useful to know how to find unicyclic representations for PH -distributions.
In sections 3 and 4, we develop some algorithms for computing unicyclic
representations.

3. UNICYCLIC REPRESENTATIONS FOR PH-REPRESENTATIONS
OF ORDER 3

It was noted in O’Cinneide[21] that every PH -representation of order
3 has a unicyclic representation of order 3. However, no formal proof
was given there. In addition, no algorithm was introduced for computing
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unicyclic representations. In this section, we give a proof to that claim
and introduce an algorithm for computing unicyclic representations.
The results obtained in this section are stronger in the sense that we find a
unicyclic generator of order 3 that PH -majorizes the original PH -generator.

To find a unicyclic representation for a PH -distribution (�,T ) of
order 3, we first find a unicyclic generator U (x) of order 3 that PH -majorizes
T (denoted as PH (T ) ⊆ PH (U (x))), i.e., for any PH -representation
(�,T ), there exists a probability vector � such that (�,U (x)) and (�,T )
represent the same probability distribution. According to O’Cinneide[17],
U (x) PH -majorizes T if and only if there exists a nonnegative matrix P with
unit row sums such that TP = PU (x). Then the PH -representation (�,T )
has an equivalent unicyclic representation (�P ,U (x)).

Denote by �−�1,−�2,−�3� the eigenvalues of T (counting multiplicity).
We assume that −�3 is the Perron-Frobenius eigenvalue of T , i.e., the
eigenvalue with the largest real part, which is real (see Minc[13]). For any
PH -generator T , �3 is positive. If all eigenvalues are real, we assume that
�1 ≥ �2 ≥ �3. Denote by fT (�) the characteristic polynomial of T . Then we
have

fT (�) = det(�I − T ) = (� + �1)(� + �2)(� + �3) = �3 + a2�2 + a1� + a0,
(3.1)

where

a0 = −det(T ) = �1�2�3;

a1 = t1,1t2,2 + t2,2t3,3 + t3,3t1,1 − t1,2t2,1 − t1,3t3,1 − t2,3t3,2 = �1�2 + �2�3 + �1�3;

a2 = −(t1,1 + t2,2 + t3,3) = �1 + �2 + �3. (3.2)

Note that a0, a1, and a2 are all positive. Also note that if one of �1 and
�2 is not real, the other is not real and the two are conjugate numbers.

Numerical examples demonstrate that the equivalent unicyclic
representation of the same order may not be unique. Thus, we require
that U (x) and T have the same characteristic polynomial so that we
can find the elements of U (x) explicitly. We also assume that x1,2 = 0.
Because of the constraint x1,2 = 0, the solution found in this section has a
generalized feedback Erlang generator, which is a special unicyclic generator.
By the structure of U (x), the equation det(�I − T ) = det(�I − U (x)) is
equivalent to

a0 = (x1 − x1,3)x2x3;

a1 = x1x2 + x2x3 + x3x1; (3.3)

a2 = x1 + x2 + x3.
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Suppose that x1 is to be determined later. By solving equation (3.3), we
obtain x1,3, x2, and x3 in terms of x1 and �a0, a1, a2� as follows:

x1,3 = −fT (−x1)
a0 − fT (−x1)

x1;

x2 = a2 − x1 + √
(a2 − x1)2 − 4(x2

1 − a2x1 + a1)
2

; (3.4)

x3 = a2 − x1 − √
(a2 − x1)2 − 4(x2

1 − a2x1 + a1)
2

.

For the matrix U (x) to be a PH -generator, we must have x1 > x1,3 ≥ 0,
x2 > 0, and x3 > 0. According to equation (3.4), the following conditions
must be satisfied:

0 < x1;

0 ≤ −fT (−x1);

0 < a2 − x1; (3.5)

0 < x2
1 − a2x1 + a1;

0 ≤ (a2 − x1)2 − 4(x2
1 − a2x1 + a1).

Apparently, if inequalities in equation (3.5) are satisfied, x is non-
negative. Next, we identify conditions on x1 so that all inequalities in
equation (3.5) hold. Denote by

�U = 1
3

(
a2 + 2

√
a2
2 − 3a1

)
;

�0 = 1
3

(
a2 +

√
a2
2 − 3a1

)
; (3.6)

�L =
{
�1, if �1 is real;
�0, otherwise.

Lemma 1. The three constants �L, �0, and �U are positive. We have

i) �U ≥ �0 ≥ �3;
ii) a2 > �U ≥ �L;
iii) f

′
T (−�0) = 0;

iv) �U ≥ �1 ≥ �0 if �1 is real; and
v) f

′
T (−�U ) = a2

2 − 3a1.

Consequently, if �L ≤ x1 ≤ �U , then �x1, x1,3, x2, x3� are non-negative,
x1 > x1,3, x2 ≥ x3 > 0, and U (x) is a PH -generator.
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Proof. In view of (3.2), we have

a2
2 − 3a1 = 1

2

[
(t11 − t2,2)2 + (t2,2 − t3,3)2 + (t3,3 − t1,1)2

]
+ 3(t1,2t2,1 + t2,3t3,2 + t3,1t1,3), (3.7)

which implies that a2
2 − 3a1 is non-negative. Thus, �0 and �U are real and

positive and �U ≥ �0. Since −�3 is the eigenvalue of T with the largest real
part, we have �0 ≥ a2/3 ≥ �3. We have proved i).

Because a1 > 0, it is easy to see that �U < a2. If �1 is real, �2 is also real.
By the definitions in equations (3.2) and (3.6), �U ≥ �1 is equivalent to
(�2 − �3)

2 ≥ 0. Thus, if �1 is real, �U ≥ �1 must be true. If �1 is not real, we
have �U ≥ �0 = �L . Hence, �U ≥ �L holds. We have proved ii).

It is easy to obtain f
′
T (x) = 3x2 + 2a2x + a1. By routine calculations, we

find that f
′
T (x) = 0 is attained at −

(
a2 ±

√
a2
2 − 3a1

)
/3, which implies

f
′
T (−�0) = 0. (3.8)

Consequently, we have iii). Further, equation (3.8) implies that fT (x)
is nondecreasing in (−∞,−�0]. If �1 is real, by routine calculations, it can
be shown that �1 ≥ �0 is equivalent to 3(�1 − �2)(�1 − �3) ≥ 0. Thus, if �1 is
real, �1 ≥ �0 holds. We have proved iv). Part v) can be verified directly.

If �1 is real, then fT (−�L) = 0. If �1 is not real, −�3 is the only real
zero point of fT (x). Then, fT (−�L) ≤ 0 since �L ≥ �3. Therefore, we have
fT (−�L) ≤ 0 for all cases. Since fT (−�L) ≤ 0, fT (x) is nonpositive for x in
[−�U ,−�L]. Thus, the second inequality in equation (3.5) is satisfied, which
implies x1 > x1,3 ≥ 0. As

x2
1 − a2x1 + a1 = a0 − fT (−x1)

x1
;

(a2 − x1)2 − 4
(
x2
1 − a2x1 + a1

) = a2
2 − 3a1 − f

′
T (x)|x=−x1 ,

(3.9)

for x ≤ −�L , we have x2 + a2x + a1 > 0. Since the second expression in
equation (3.9) becomes zero at x1 = �U , that expression is non-negative if
�L ≤ x1 ≤ �U . Therefore, if �L ≤ x1 ≤ �U , then x2 and x3 are real and x2 ≥
x3 > 0. Consequently, U (x) is a PH -generator. This completes the proof of
Lemma 1.

Next, for x satisfying equation (3.3), we introduce a matrix P satisfying
TP = PU (x) and Pe = e. For more about the matrix P , we refer to He and
Zhang[9]. Denote by

p1 = −T e/(x1 − x1,3);

p2 = −(x1I + T )T e/((x1 − x1,3)x2); (3.10)

p3 = −(x2I + T )(x1I + T )T e/((x1 − x1,3)x2x3).



474 He and Zhang

It is easy to verify that Tp1 = −x1p1 + x2p2 and Tp2 = −x2p2 + x3p3.
By Cayley-Hamilton Theorem (Lancaster and Tismenetsky[12]), we have
det(�I − U (x))|�=T = 0, which is equivalent to

−x1,3x2x3I + x3(x2I + T )(x1I + T ) + (x2I + T )(x1I + T )T = 0. (3.11)

Equation (3.11) leads to Tp3 = −x3p3 + x1,3p1. Define P = (p1,p2,p3). It
can be shown that TP = PU (x) and Pe = e if and only if P is given by
equation (3.10).

According to Theorem 2 in O’Cinneide[17], finding U (x) such that
U (x) PH -majorizes T is equivalent to finding x1 such that the matrix U (x)
is a PH -generator and the matrix P is non-negative. According to Lemma 1,
if �L ≤ x1 ≤ �U , U (x) is a PH -generator. By Lemma 1 and the expression of
p1 in equation (3.10), p1 is non-negative if �L ≤ x1 ≤ �U . In order to choose
x1 such that p2 and p3 are also non-negative, we define

� = max�−t1,1,−t2,2,−t3,3�. (3.12)

Lemma 2. We have � ≤ �U . If x1 = � = −tk,k , then x2 + ti ,i ≥ 0, for i �= k.
If x1 = �0, then x2 = x1.

Proof. Suppose that −t1,1 ≥ −t2,2 ≥ −t3,3. First note that, by equations
(3.2) and (3.6), �U ≥ −t1,1 is equivalent to

1
3

(
a2 + 2

√
a2
2 − 3a1

)
≥ −t1,1

⇔ 4(a2
2 − 3a1) ≥ (−2t1,1 + t2,2 + t3,3)2

⇔ 3(t2,2 − t3,3)2 + 12(t2,1t1,2 + t1,3t3,1 + t2,3t3,2) ≥ 0. (3.13)

Thus, we have �U ≥ −t1,1. Consequently, we have � ≤ �U .
To prove the second part, for simplicity, we assume that k = 1. By

equation (3.4), we have

x2 =
a2 + t1,1 +

√
(a2 + t1,1)2 − 4(t 21,1 + a2t1,1 + a1)

2

= −t2,2 − t3,3 + √
(t2,2 − t3,3)2 + 4(t1,2t2,1 + t2,3t3,2 + t3,1t1,3)

2

≥ −t2,2 − t3,3 + √
(t2,2 − t3,3)2

2
= max�−t2,2,−t3,3�, (3.14)

which leads to the desired results.
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Lastly, if x1 = �0, we have f
′
T (−x1) = f

′
T (−�0) = 0 by equation (3.8).

Then

x2 =
a2 − �0 +

√
a2
2 − 3a1 − f ′

T (−�0)

2

= 1
2

[
a2 −

a2 +
√
a2
2 − 3a1

3
+

√
a2
2 − 3a1

]

=
a2 +

√
a2
2 − 3a1

3
= �0 = x1. (3.15)

This completes the proof of Lemma 2.

Now, we are ready to choose a value for x1 such that U (x) is a PH -
generator and U (x) PH -majorizes T (i.e., P is non-negative). Denote by

x∗
1 =

{
max��, �1�, if �1 is real;
max��, �0�, otherwise.

(3.16)

Theorem 3.1. If x1 = x∗
1 , where x∗

1 is given in equation (3. 16), we have the
following conclusions:

1) U (x) is a unicyclic generator;
2) P is non-negative;
3) PH (T ) ⊆ PH (U (x)); and
4) (�P ,U (x)) is an equivalent unicyclic representation of PH -representation

(�,T ).

Proof. By definition, it is clear from Lemmas 1 and 2 that �L ≤ x∗
1 ≤ �U

and � ≤ x∗
1 . Therefore, for x1 = x∗

1 , U (x) is a PH -generator. As we have
mentioned, p1 is non-negative. Since x∗

1 ≥ �, x1I + T is non-negative. Thus,
vector p2 is non-negative. In the rest of the proof, we show that, if x1 = x∗

1 ,
the corresponding vector p3 is non-negative. For that purpose, we consider
three cases: a) x∗

1 = �1; b) x∗
1 = �; and c) x∗

1 = �0.

For case a), in view of equation (3.3), it is clear that U (x) is an ordered
Coxian generator with x1 = �1, x2 = �2, x3 = �3, x1,3 = 0. By Cayley-Hamilton
Theorem (Lancaster and Tismenetsky[12]) and �1 ≥ �2 ≥ �3,p3 is a Perron-
Frobenius eigenvector of T and is non-negative (see Property 4.1 in He and
Zhang[9]).

For case b), without loss of generality, we assume that x1 = x∗
1 =

−t1,1. Then the matrix x1I + T is non-negative. By Theorem 3.1, we have
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x2 ≥ −t2,2 and x2 ≥ −t3,3. Then all elements of the matrix x2I + T are non-
negative, except the element in the (1, 1)-th position. That implies that
elements of the second and the third rows of the matrix (x2I + T )(x1I + T )
are non-negative. By routine calculations, we have

(x2I + T )(x1I + T )

=

 t1,2t2,1 + t1,3t3,1 t1,2(x2 + t2,2) + t1,3t3,2 t1,3(x2 + t3,3) + t1,2t2,3

∗ ∗ ∗
∗ ∗ ∗


 .

(3.17)

Thus, the first row of the matrix (x2I + T )(x1I + T ) is non-negative.
Therefore, the matrix (x2I + T )(x1I + T ) is non-negative. Consequently,
−(x2I + T )(x1I + T )T e is a non-negative vector. Since p3 = −(x2I + T )
(x1I + T )T e/((x1 − x1,3)x2x3), we have shown that p3 is non-negative.

For case c), we know that x1 > �. By Lemma 2, x2 = x1 > �. That
implies that the matrices x2I + T and (x2I + T )(x1I + T ) are non-negative.
Therefore, p3 is non-negative.

In summary, if x1 = x∗
1 ,U (x) is a unicyclic generator and P is non-

negative. Other results follow immediately. This completes the proof of
Theorem 3.1.

We summarize the procedure for computing an equivalent unicyclic
representation for a PH -representation (�,T ) of order 3 as follows.

1. Find �a0, a1, a2� and �−�1,−�2,−�3� for T .
2. Compute �0 and � by equations (3.6) and (3.12).
3. Compute x∗

1 and �x1,3, x2, x3� by equations (3.16) and (3.4).
4. Compute the matrix P by equation (3.10) and � = �P .

Then (�, U (x)) is an equivalent unicyclic representation of (�,T ).
In He and Zhang[9], it was shown that, if all the eigenvalues of T are

real, it is possible that T is PH -majorized by an ordered Coxian generator
(i.e., x1,2 = x1,3 = 0). As a byproduct, we find a necessary and sufficient
condition for T to be PH -majorized by an ordered Coxian generator.

Property 3.1. A PH -generator T of order 3 is PH -majorized by an
ordered Coxian generator U (x) with x = (�1, �2, �3, 0, 0) if and only if
�−�1,−�2,−�3� are all real and max��1, �2, �3� ≥ �, where

� = max
k=1,2,3

{∑3
i=1

∑3
j=1 tk,i ti ,j

− ∑3
i=1 tk,i

}
, (3.18)

with the convenience (
∑3

i=1

∑3
j=1 tk,i ti ,j)(−

∑3
j=1 tk,j)

−1 = −∞ if
∑3

j=1 tk,j = 0.
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Proof. First note that the vector −T e is non-negative. Since

3∑
i=1

3∑
j=1

tk,i ti ,j = tk,k
3∑

j=1

tk,j +
∑
i �=k

tk,i

(
3∑

j=1

ti ,j

)
, (3.19)

we have � ≤ �. By the definition of T , max�−(tk,1 + tk,2 + tk,3), k = 1, 2, 3� >
0, which implies � ≥ 0. It is easy to see that for any x ≥ �,−(xI + T )T e ≥
0. If all eigenvalues are real, by Property 4.1 in He and Zhang[9], p3

is nonnegative if x = (�1, �2, �3, 0, 0) and �1 ≥ �2 ≥ �3. Since p1 is non-
negative, we only need to show that p2 is non-negative. Since x1 = �1 ≥ �,
p2 = −(x1I + T )T e/((x1 − x1,3)x2) is non-negative. Therefore, PH (T ) ⊆
PH (U (x)).

On the other hand, if PH (T ) ⊆ PH (U (x)), according to
O’Cinneide[17], the corresponding matrix P must be nonnegative.
By Property 5.1 in He and Zhang[9], the matrix P is non-negative if
x = (�1, �2, �3, 0, 0) and �1 ≥ �2 ≥ �3. Consequently, p2 is non-negative,
which implies max��1, �2, �3� = �1 = x1 ≥ �. This completes the proof of
Property 3.1.

Remark 3. The unicyclic representation of a PH -representation of
order 3 may not be unique. For instance, if � ≥ �1, we choose x1 = �.
Numerically, an equivalent unicyclic representation can be obtained for
x1 = �. Furthermore, define xU = max{x1 : −(x2I + T )(x1I + T )T e is non-
negative}. Then any x1 in the interval [x∗

1 , xU ] corresponds to an equivalent
unicyclic representation.

Example 1. Consider four PH -generators T1, T2, T3, and T4 given in
equation (3.20).

T1 =



−5 1 1. 2
3. 8 −4 0
0. 1 1 −1. 5


 , T2 =




−5 0. 1 2. 5
1. 4 −1. 5 0
0. 1 1. 3 −1. 5


 ,

T3 =



−5 0 1. 2
3. 8 −4 0
0. 1 3 −3. 5


 , T4 =




−5 1 1. 2
3. 8 −4 0
0. 1 3 −3. 5


 .

(3.20)

For T1, all eigenvalues are real, �1 = 6. 2755, and � = 5. For this case,
x∗
1 = �1 = 6. 2755. For T2, all eigenvalues are real, �1 = 4. 6703, and � = 5.
For this case, x∗

1 = � = 5. For T3, two eigenvalues are not real, �0 = 4. 6509,
and � = 5. For this case, x∗

1 = � = 5. For T4, two eigenvalues are not
real, �0 = 5. 3919, and � = 5. For this case, x∗

1 = �0 = 5. 3919. This example
shows that all four cases considered in Theorem 3.1 may occur.



478 He and Zhang

In the next example, we give a geometric explanation to the
construction of the unicyclic PH -generator U (x).

Example 2. We consider T2 defined in equation (3.20). By using the
algorithm, we find T2P = PU (x) and Pe = e with x = (5, 2.1245, 0.8755,
0, 1.7124). Let Q = P−1. Then QT2 = U (x)Q . Let �q1,q2,q3� be the
first, second, and third rows of Q , respectively. Then the polytope
conv�q1,q2,q3� is called a PH -invariant polytope under T2 corresponding
to U (x). Let e1 = (1, 0, 0), e2 = (0, 1, 0), and e3 = (0, 0, 1). Then
conv�e1, e2, e3� is the probability vector polytope. Geometrically, PH (T2) ⊆
PH (U (x)) is equivalent to conv�e1, e2, e3� ⊆ conv�q1,q2,q3�, as shown in
Figure 1.

If we choose z1 = �1 = 4. 6703, z2 = �2 = 2. 8741, and z3 = �3 = 0. 4556,
then the corresponding U (z) is an ordered Coxian generator with z =
(4. 6703, 2. 8741, 0. 4556, 0, 0). Using equation (3.10), we find matrix W for
WT2 = U (z)W and W e = e. Let �w1,w2,w3� be the first, second, and third
rows of W . Then the polytope conv�w1,w2,w3� is a PH -invariant polytope
under T2 corresponding to U (z). The polytope �w1,w2,w3� is plotted
in Figure 1. Apparently, conv�e1, e2, e3� �⊂ conv�w1,w2,w3�, i.e., PH (T2) �⊂
PH (U (z)). According to Figure 1, for some PH -representation (�,T2) (e.g.,
� = e2 and � = e3), it has an equivalent Coxian representation of order 3.
For some other PH -representation (�,T2) (e.g., � = e1), there exists no
equivalent Coxian representation of order 3.

FIGURE 1 PH -invariant polytopes for Example 2.
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4. AN NLP APPROACH FOR COMPUTING UNICYCLIC
REPRESENTATIONS

In this section, we introduce an algorithm for computing unicyclic
representations for a PH -representation (�,T ) of order m. A nonlinear
program approach is taken. The algorithm is based on the following
property.

Property 4.1. a) For any PH -generator T , if there exists x such that TP =
PU (x), where U (x) is a PH -generator of order m and P is a non-negative
matrix with unit row sums, then we have PH (T ) ⊆ PH (U (x)). b) For any
PH -representation (�,T ), if there exists x such that TP = PU (x), where
U (x) is a PH -generator of order m, P has unit row sums, and � = �P
is non-negative, then (�, U (x)) is an equivalent unicyclic representation
of (�,T ).

Proof. The results can be obtained by Theorem 2 in O’Cinneide[17]. This
completes the proof of Property 4.1.

Now, we introduce the following nonlinear program

min
(x,P )

{ N∑
i=2

x1,i

}
s. t . TP = PU (x);

x1 − x1,2 − · · · − x1,N > 0;

�P ≥ 0, Pe = e, x ≥ 0,

(4.1)

where x = (x1, x2, � � � , xN , x1,2, � � �, x1,N ), P is an m × N matrix, and N is a
positive integer.

If nonlinear program (4.1) has a solution (x,P ), then U (x) is a PH -
generator and (�P ,U (x)) is an equivalent unicyclic representation of
(�,T ). If nonlinear program (4.1) does not have a solution, we choose
a different N and solve the nonlinear program again. If we want to find
a U (x) such that U (x) PH -majorizes T , we replace the constraint �P ≥ 0
by P ≥ 0 in equation (4.1).

Remark 4. If m = 3, by using the algorithm developed in section 3, we
can find an equivalent unicyclic representation without solving (4.1). If T
is triangular or symmetric, then T is PH -majorized by an ordered Coxian
generator that can be found without solving (4.1) (see He and Zhang[9]).
Unfortunately, for a general case with m > 3, we need the nonlinear
program to find x for a unicyclic PH -generator (if exists).
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Next, we propose an algorithm for computing an equivalent unicyclic
representation of a PH -representation (�,T ). Denote by N0 a positive
integer.

Step 1: Set N = 1.
Step 2: Solve nonlinear program (4.1).
Step 3: If (4.1) has a solution, go to Step 4. Otherwise, set N =: N + 1. If

N > N0, go to Step 5; otherwise, go to Step 2.
Step 4: An equivalent unicyclic representation (�P ,U (x)) of order N has

been found.
Step 5: No solution in the range N ≤ N0 is found. The program is

terminated.

Note that, since we do not know whether or not (�,T ) has an
equivalent unicyclic representation (of any order), we need to introduce
N0 to terminate the program.

Example 3. Consider a PH -representation (�,T ) of order 4 with � =
(0. 2, 0, 0, 0. 8) and

T =
( −1 0

0 T1

)
, where T1 =


 −1 0 0. 5

1 −1 0
0 1 −1


 . (4.2)

Using the method in section 2, it can be shown that the PH -
representation (�,T ) does not have an equivalent unicyclic representation
order 4. By using the above algorithm, we find an equivalent unicyclic
representation (�, U (x)) of order 5, where

� = (0. 1765, 0. 0560, 0. 1824, 0. 1623, 0. 4228);

U (x) =




−1. 4642 0 0 0. 1109 0. 2203
1. 4642 −1. 4642 0 0 0

0 1. 4642 −1. 4642 0 0
0 0 1. 4642 −1. 4642 0
0 0 0 0. 3038 −0. 3038


 . (4.3)

Example 4. Consider the PH -generator T given in equation (4.4). We
are interested in finding an equivalent unicyclic representation (�, U (x))
of order 4 for PH -distribution (�,T ). By using the above algorithm, it is
found that x = (3. 5219, 3. 5219, 3. 5219, 0. 4343, 0, 0. 0557, 1. 0307) and P is
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given in equation (4.4).

T =




−4 0 0 2
1 −4 0 2. 7
0 1. 5 −2 0
0. 1 0 0. 9 −1


 and

P =



0. 8212 −0. 1115 0. 0582 0. 2321
0. 1232 0. 2164 −0. 0029 0. 6633
0. 2053 0. 1412 0. 1532 0. 5003

0 0. 0758 0. 0872 0. 8371


 .

(4.4)

Since the matrix P is not nonnegative, PH (T ) ⊆ PH (U (x)) is not true.
For instance, if � = (1, 0, 0, 0), (�P , U (x)) is not a PH -representation.

However, the PH -representation ((1, 0, 0, 0),T ) actually has an
equivalent unicyclic representation of order 4, which can be obtained as
follows. Applying the above algorithm with the constraint �P ≥ 0 being
replaced by P ≥ 0, we obtain

U (z) =




−4 0 0. 1215 1. 3749
3. 2523 −3. 2523 0 0

0 3. 2523 −3. 2523 0
0 0 0. 4955 −0. 4955


 ;

P =




0. 7989 0. 0000 0. 0491 0. 1520
0. 1198 0. 2456 0. 0098 0. 6247
0. 1997 0. 1781 0. 1819 0. 4403
0. 0000 0. 0786 0. 1046 0. 8156


 .

(4.5)

Apparently, U (z) is a PH -generator. Since P is non-negative, we have
PH (T ) ⊆ PH (U (z)). Consequently, ((1, 0, 0, 0), T ) has an equivalent
unicyclic representation ((0.7989, 0, 0.0491, 0.1520), U (z)).

Similar to Example 2, geometrically, to find a U (x) that PH -majorizes
T is equivalent to finding a PH -invariant polytope under T that includes
the probability vector polytope.

5. DISCUSSION

To end this note, we would like to point out that, since not all
PH -representations have an equivalent unicyclic representation of the
same order, it is interesting to identify classes of PH -representations that
have an equivalent unicyclic representation of the same order. Section 3
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showed that the class of PH -representations of order 3 (i.e., m = 3) has
that property. In Cumani[7], Dehon and Latouche[8], He and Zhang[9],
and O’Cinneide[19], it has been shown that PH -representations with a
triangular or symmetric PH -generator have an equivalent ordered Coxian
representation of the same or a smaller order, which is a special form of
the unicyclic representation. Those results indicate that more work can be
done in this direction. Future research topics include finding necessary
and sufficient conditions for a PH -representation to have an equivalent
unicyclic representation of the same order, proving or disproving that every
PH -distribution has a unicyclic representation of some order, and etc. It is
even more interesting to address those issues for the generalized unicyclic
representation defined in equation (2.3).
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