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Abstract

Motivated by various applications in queueing theory, this paper is devoted to the mono-

tonicity and convexity of some functions associated with discrete-time or continuous-time

denumerable Markov chains. For the discrete-time case, conditions for the monotonicity

and convexity of the functions are obtained by using the properties of stochastic domi-

nance and monotone matrix. For the continuous-time case, by using the uniformization

technique, similar results are obtained. As an application, the results are applied to an-

alyze the monotonicity and convexity of functions associated with the queue length of

some queueing systems.
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1. Introduction

In queueing analysis, the queue length of customers is an important performance measure.

Quite often, we are interested in the information on the queue length as a function of time.

For instance, we may like to know how the mean queue length changes as a function of

time or, under what conditions, the mean queue length is a monotone, convex, or concave

function of time. For many queueing models, the queue length process can be described

by a Markov chain. Thus, the study of the queueing process for those queueing models

is equivalent to the study of a Markov chain with a finite or countable (denumerable

infinitely) state space, i.e., a denumerable Markov chain (see Kemeny, Snell, and Knapp

[11]). The objective of this paper is to study the monotonicity, convexity, or concavity of

some functions associated with denumerable Markov chains.

There have been a large number of papers and some books in the literature dealing

with the monotonicity of stochastic processes. For instance, Doorn [4] discussed the

stochastic monotonicity of birth-and-death processes. Stoyan [21] studied the stochastic

monotonicity of Markov processes with applications in queueing theory. By using some

partial orderings defined on a set of matrices, HE [7] studied the monotonicity of the

corresponding rate matrix R for the Markov chain of GI/M/1 type (see Neuts [16]).

Lindvall [13] discussed the problem of the monotonicity and convexity of birth-and-death

processes by using the coupling method. Shanthikumar and Yao [20] studied the strong

stochastic convexity of parameterized random variables.

In queueing theory, there have been a number of papers in the literature dealing

with the monotonicity and convexity of the mean waiting time or the throughput of

queueing systems. For example, Dyer [5] showed that the mean waiting time in the

M/M/c queue is strictly decreasing and convex in c (the number of severs in the system).

Weber [23] extended that result to the GI/G/c queue. Shanthikumar and Yao [19] showed

that the throughput in the M/M/c/K queue is increasing and concave in arrival rate.

Shanthikumar and Yao [20] established the strong stochastic convexity for the mean

waiting time of the GI/G/1 queue. Wang [22] showed that the actual waiting time of the

nth customer in the GI/G/1 queue is stochastically increasing and concave in n in the

sense of the usual stochastically larger order.

For many queueing systems, the queue length process can be characterized by a

discrete-time or continuous-time denumerable Markov chain. For example, the queue

length process in the M/M/c queue can be characterized by a birth-and-death process.
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The queue length process in the M/G/1 or GI/M/c queue can be described by a Markov

chain embedded at the departure epochs or at the arrival epochs (see Cohen [2] or Hsu

[8]), respectively. Unlike the waiting time process, the study of the monotonicity and

convexity of the queue length process is limited. Lindvall [13] showed the monotonicity

and convexity of the mean queue length for the M/M/c queue under certain conditions.

In this paper the monotonicity and convexity of some functions associated with Markov

chains are investigated. Some general conditions for the monotonicity or convexity are

found. Based on these results, conditions for some functions associated with the queue

length of some queueing systems to be monotonic, convex, or concave in time are found.

For convenience, the results of this paper are shown only for Markov chains with a

countable state space, though all results hold for Markov chains with a finite state space.

That explains why the word “denumerable” is used in the title of this paper.

The rest of the paper is organized as follows. In Section 2 we provide the definitions

of stochastic dominance and monotone matrix. Some general conditions for functions

associated with Markov chains to be monotone, convex, or concave are given in Section

3. By using the uniformization technique (see Dijk [3], Gross and Miller [6] or Medhi

[14]), the results are extended to the case of continuous-time Markov chains. In Section

4, the results obtained in Sections 3 are applied to a number of queueing systems such

as the M/M/c, M/G/1, and GI/M/c queues. Conditions for some functions of the queue

length to be monotone, convex, or concave are found. Some comments on future research

are provided in Section 5.

Throughout this the paper, we use Z+ to denote the set of nonnegative integers and

R+ for the set of nonnegative real numbers. We use x(i) to denote the ith component of a

vector x and ai,j to denote the (i, j)th entry of a matrix A. Let < x, y > denote the inner

product of two vectors x and y, i.e., < x, y >=
∑∞

i=0 x(i)y(i). The terms “increasing”

and “decreasing” mean “non-decreasing” and “non-increasing”, respectively.

2. Stochastic Dominance and Monotone Matrix

Let λ = (λ(0), λ(1), . . .) and µ = (µ(0), µ(1), . . .) be two probability distributions defined

on Z+, and P be a stochastic matrix.

Definition 2.1 We say that λ dominates µ, denoted by λ ≥d µ (or equivalently µ ≤d λ),

if
k∑

i=0

λ(i) ≤

k∑

i=0

µ(i), for all k ≥ 0. (1)

3



Note that stochastic dominance of measures is similar to the stochastically larger order

of probability distributions (see Ross [17], Shaked and Shanthikumar [18], or Stoyan [21]).

An equivalent way to define λ ≥d µ is that

< λ, f > ≥ (≤) < µ, f > (2)

holds for all increasing (decreasing) function f(·) defined on Z+, where f(·) has a vector

representation f = (f(0), f(1), · · · ).

Definition 2.2 Let pi = (pi,0, pi,1, · · · ) denote the ith row of a stochastic matrix P ,

i ≥ 0. The matrix P is called monotone if pi ≤d pi+1 for i ≥ 0, or equivalently, for i ≥ 0,

k∑

j=0

pi,j ≥
k∑

j=0

pi+1,j for all k ≥ 0. (3)

A monotone matrix has the following useful properties.

Proposition 2.1 Assume that a stochastic matrix P = (pi,j)i,j≥0 is monotone, and λ

and µ are two probability distributions defined on Z+.

(i) If λ ≥d µ, then

λP n ≥d µP n, for all n ≥ 0. (4)

(ii) If λ ≥d µ, and function f(·) defined on Z+ is increasing (decreasing), then

< λP n, f > ≥ (≤) < µP n, f >, for all n ≥ 0. (5)

Proof. It is easy to see that, to prove (i), we only need to show λP ≥d µP . If λ ≥d µ, let

λ′ = λP and µ′ = µP . Then
∑∞

j=0 λ′(j) =
∑∞

j=0

∑∞
i=0 λ(i)pi,j =

∑∞
i=0 λ(i)

∑∞
j=0 pi,j = 1.

Similarly, we have
∑∞

j=0 µ′(j) = 1. Thus, λ′ and µ′ are also probability distributions

defined on Z+. Let ξi(k) =
∑k

j=0 pi,j. In view of the monotonicity of the matrix P , we

know that ξi(k) is decreasing in i for all k ≥ 0. Hence, for k ≥ 0,

k∑
j=0

λ′(j) =
k∑

j=0

∞∑
i=0

λ(i)pi,j =
∞∑
i=0

λ(i)(
k∑

j=0
pi,j) =

∞∑
i=0

λ(i)ξi(k)

≤
∞∑
i=0

µ(i)ξi(k) =
∞∑
i=0

µ(i)(
k∑

j=0
pi,j) =

k∑
j=0

µ′(j).

Thus, λP ≥d µP .

Part (ii) can be shown by part (i) and Eq.(2). 2

Remark 2.1 In definition 2.2, it is possible to define the monotonicity of P as pi ≥d pi+1

for i ≥ 0. Nonetheless, such a definition does not lead to results such as part (i) in
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Proposition 2.1. In fact, if λ ≥d µ, then λP ≤d µP under the new definition. Thus, it

is more difficult to compare {λP n, n ≥ 0} and {µP n, n ≥ 0}. Therefore, we shall not

explore such monotonicity of P in this paper.

Remark 2.2 Stochastic dominance and monotone matrix are related to Markov chain

theory in the following manner. Suppose that the stochastic matrix P is monotone, then

the discrete dominance theory (see Lindvall [13, p.134]) ensures the existence of Markov

chains Y = {Yn, n ≥ 0} and Ỹ = {Ỹn, n ≥ 0} governed by P such that, almost surely,

Yn ≥ Ỹn, for all n ≥ 0,

if the initial distributions λ of Y and µ of Ỹ satisfy: λ ≥d µ.

3. Monotonicity and Convexity

In this section, we investigate the monotonicity and convexity of some functions associated

with Markov chains for both the discrete-time and continuous-time cases. Note that all

Markov chains considered in Sections 3, 4 and 5 have a countable state space. In addition,

we assume that Markov chains are irreducible and aperiodic in discrete-time case and are

irreducible in continuous-time case.

3.1 The discrete-time Markov chain case

Consider a discrete-time Markov chain Y = {Yn, n ≥ 0}. Let P = (pi,j) be the transition

probability matrix of Y.

Let λ be the initial probability distribution of the Markov chain Y. Let Eλ(·) be the

expectation of Y when the initial distribution of Y is λ. Define

hf (i) =

∞∑

j=0

pi,j[f(j) − f(i)], i ≥ 0, (6)

for function f(·) defined on Z+. Let hf = (hf (0), hf (1), · · · ). Then Eq.(6) can be rewrit-

ten as hT
f = PfT − fT , where “T” denote the transpose of vector. It is readily seen that

hf (i) is the mean-drift of the Markov chain Y with respect to function f(·) at the state

i. Thus, we call hf the mean-drift function of Y with respect to f(·).

For Markov chain Y with transition matrix P , it is well known that P{Yn = i} =

(λP n)(i), i ≥ 0. Thus, we have Eλ[f(Yn)] =< λP n, f >. In this paper, we study

the monotonicity and convexity of the function Eλ[f(Yn)] for the Markov chain Y with

an initial distribution λ. The objective is to find conditions under which the function

Eλ[f(Yn)] is increasing, decreasing, convex, or concave in n. For continuous-time Markov
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chain {X(t), t ≥ 0}, we want to find conditions under which the function Eλ[f(X(t))] is

increasing, decreasing, convex, or concave in t. The relationship between the functions

Eλ[f(X(t))] and Eλ[f(Yn)] is given in Section 3.2.

For example, consider an M/M/1 queue (see Section 4.1). The queue length process

X = {X(t), t ≥ 0} is a birth-and-death process. The mean queue length Eλ[X(t)] at

time t is depicted in Figure 1 for different initial distribution λ. Figure 1 shows that

the function Eλ[X(t)] can be monotone, convex, or concave if the initial distribution λ

is chosen properly (Curves 1 and 2). Figure 1 also shows that, in general, the function

Eλ[X(t)] may not be monotone, convex, nor concave (Curve 3). Thus, some conditions

must be imposed on λ to ensure expected properties on Eλ[X(t)].

In general, to ensure monotonicity, convexity, or concavity on the function Eλ[f(Yn)],

certain conditions must be imposed on the transition matrix P , the initial distribution

λ, and the function f(·). The conditions considered in this paper are closely related to

stochastic dominance of measures. Formally, we state the conditions as follows.

Condition I : P is monotone,

Condition II : λP ≥d λ,

Condition II′ : λ ≥d λP,

Condition III : hf (i) defined in Eq. (6) is decreasing in i,

Condition III′ : hf (i) defined in Eq. (6) is increasing in i.

(7)

The following theorem shows the monotonicity, convexity, and concavity of the func-

tion Eλ[f(Yn)] under the above conditions. The theorem also explains why the above

conditions are utilized in this paper.

Theorem 3.1 Consider an irreducible and aperiodic discrete-time Markov chain Y with

transition matrix P . Let λ be the initial distribution of Y. Function f(·) is defined on

Z+. We assume that Eλ[f(Yn)] is finite for n ≥ 0.

(i) If Conditions I and II in Eq.(7) hold and the function f(·) is increasing, then the

function Eλ[f(Yn)] is increasing in n. If Conditions I and II in Eq.(7) hold and the

function f(·) is decreasing, then the function Eλ[f(Yn)] is decreasing in n.

(ii) If Conditions I and II′ in Eq.(7) hold and the function f(·) is increasing, then the

function Eλ[f(Yn)] is decreasing in n. If Conditions I and II′ in Eq.(7) hold and the

function f(·) is decreasing, then the function Eλ[f(Yn)] is increasing in n.
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(iii) If Conditions I, II and III in Eq.(7) hold, then the function Eλ[f(Yn)] is concave in

n. If Conditions I, II and III′ in Eq.(7) hold, then the function Eλ[f(Yn)] is convex

in n.

(iv) If Conditions I, II′ and III in Eq.(7) hold, then the function Eλ[f(Yn)] is convex in

n. If Conditions I, II′ and III′ in Eq.(7) hold, then the function Eλ[f(Yn)] is concave

in n.

Proof. We only give a proof to (iii). Others can be proved similarly. Since λ and P satisfy

Condition I and Condition II in Eq.(7), by Proposition 2.1 we have λP n+1 ≥d λP n

for all n ≥ 0. In view of the monotonicity of the mean-drift function hf , we obtain

< λP n+1, hf > ≤ < λP n, hf >. Hence, < λP n+2, f > + < λP n, f > ≤ 2 < λP n+1, f >,

that is, Eλ[f(Yn)] is concave in n. 2

Remark 3.1 Assume that f(·) defined on Z+ is increasing. f(·) satisfies Condition III in

Eq.(7) if and only if the function ∆f is excessive (see Çinlar [1, p.204]), where function

∆f is defined by ∆f(i + 1) = f(i + 1) − f(i), i ≥ 0.

In general, it is not straightforward to check the conditions required in Theorem

3.1. Nonetheless, for some interesting special cases, these conditions can be checked (see

Sections 4 and 5 for examples). We also point out that, in Theorem 3.1, the Markov chain

Y does not have to be recurrent. Thus, in later sections, we do not require the Markov

chains to be recurrent nor the queueing models to be stable, unless stated otherwise.

Although the Markov chain Y in Theorem 3.1 is not required to be positive recurrent,

some of the conditions in Eq.(7) have a close relationship with the positive recurrence of

Y. For instance, if Y is positive recurrent, then Condition II implies λ ≤d π, where π is the

steady state distribution of Y. If the mean-drift function hf is negative and decreasing,

then the Markov chain Y is positive recurrent by Foster’s criterion (see Cohen [2]). Such

relationships are useful when we choose the initial distribution λ for our examples in

Sections 4.

3.2 The continuous-time Markov chain case

Based on the above results for discrete-time Markov chains, we can obtain similar results

for continuous-time Markov chains by using the uniformization technique.

Let X = {X(t), t ∈ R+} be a homogeneous and continuous-time Markov chain. Let

Q = (qi,j) be the infinitesimal generator of X. Then Markov process X is said to be
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uniformizable if

sup
i≥0

(−qi,i) < ∞.

If the Markov chain X is uniformizable, then for any ν ≥ sup
i≥0

(−qi,i), we define

P = I +
1

ν
Q, (8)

where I is the identity matrix. Note that P defined by Eq.(8) is a stochastic matrix. We

have (Medhi [14]):

exp{Qt} = e−νt
∞∑

k=0

(νt)k

k!
P k. (9)

To study functions associated with X, we make use of a Markov chain with transition

matrix P given in Eq.(8). We denote the Markov chain as Y. Assume that X and Y have

the same initial distribution λ. Let

g(λ, t) = Eλ[f(X(t)] =< λexp{Qt}, f >= e−νt
∞∑

k=0

(νt)k

k!
< λP k, f > . (10)

Suppose that the function g(λ, t) in Eq.(10) has derivative of order 2. Then by Eq.(8)

and Eq.(9) we can establish the following relationships between X and Y:

g(λ, t) = e−νt
∞∑

n=0

(νt)n

n! Eλ[f(Yn)],

d
dt

g(λ, t) = νe−νt
∞∑

n=0

(νt)n

n! [Eλ[f(Yn+1)] − Eλ[f(Yn)],

d2

dt2
g(λ, t) = ν2e−νt

∞∑
n=0

(νt)n

n! [Eλ[f(Yn+2)] + Eλ[f(Yn)] − 2Eλ[f(Yn+1)]],

(11)

where Eλ[f(Yn)] is defined for the Markov chain Y.

Eq.(11) indicates that, to study functions associated with X, it is sufficient to study

functions associated with Y. More specifically, by Eq.(11), we know that the convex-

ity of the function Eλ[f(Yn)] implies the convexity of the function Eλ[f(X(t))]. Simi-

larly, the monotonicity of the function Eλ[f(Yn)] implies the monotonicity of the function

Eλ[f(X(t))]. Counterparts of conditions in Eq.(7) are given as follows.

Condition Icont : I + Q/ν is monotone,

Condition IIcont : λ(I + Q/ν) ≥d λ,

Condition II′cont : λ ≥d λ(I + Q/ν),

Condition IIIcont : (Qf)(i) =
∞∑

j=0
qi,jf(j) is decreasing in i,

Condition III′cont : (Qf)(i) =
∞∑

j=0
qi,jf(j) is increasing in i.

(12)
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We state the monotonicity, convexity, and concavity of the function Eλ[f(X(t))] in

the following theorem, it can be proved by combining Theorem 3.1 and Eq.(11), we omit

its proof.

Theorem 3.2 Consider a continuous-time Markov chain X with infinitesimal generator

Q. Suppose that X is uniformizable, and let ν ≥ sup
i

(−qi,i). We assume that Markov

chain Y with transition matrix P given by Eq.(8) is irreducible and aperiodic. Suppose

that X and Y have the same initial distribution λ. We assume that Eλ[f(X(t))] is finite

for t ≥ 0.

(i) If Conditions Icont and IIcont in Eq.(12) hold and if the function f(·) defined on Z+ is

increasing, then the function Eλ[f(X(t))] is increasing in t. If Conditions Icont and

IIcont in Eq.(12) hold and if the function f(·) defined on Z+ is decreasing, then the

function Eλ[f(X(t))] is decreasing in t.

(ii) If Conditions Icont and II′cont in Eq.(12) hold and if the function f(·) defined on Z+

is increasing, then the function Eλ[f(X(t))] is decreasing in t. If Conditions Icont

and II′cont in Eq.(12) hold and if the function f(·) defined on Z+ is decreasing, then

the function Eλ[f(X(t))] is increasing in t.

(iii) If Conditions Icont, IIcont and IIIcont in Eq.(12) hold, then the function Eλ[f(X(t))]

is concave in t. If Conditions Icont, IIcont and III′cont in Eq.(12) hold, then the

function Eλ[f(X(t))] is convex in t.

(iv) If Conditions Icont, II′cont and IIIcont in Eq.(12) hold, then the function Eλ[f(X(t))] is

convex in t. If Conditions Icont, II′cont and III′cont in Eq.(12) hold, then the function

Eλ[f(X(t))] is concave in t. 2

4. Applications to Queueing Systems

In this section, we show how the monotonicity and convexity can help us gain insight into

the queue length processes of a number of queueing systems.

4.1 The M/M/1 queue

Consider an M/M/1 queue with an infinite number of waiting rooms, a first-in-first-served

service discipline, arrival rate α, and service rate β (see Cohen [2]). We assume that α > 0

and β > 0. Let X(t) represent the number of customers in the system at time t. It is well
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known that the queue length process X = {X(t), t ∈ R+} is a continuous-time Markov

chain with an infinitesimal generator

Q =




−α α 0 0 0 · · ·

β −(α + β) α 0 0 · · ·

0 β −(α + β) α 0 · · ·

0 0 β −(α + β) α · · ·
...

...
...

. . .
. . .

. . .




. (13)

The Markov chain X with generator Q given by Eq.(13) is a special continuous-time

Markov chain. The Markov chain X is irreducible and its discrete counterpart P defined

by Eq.(8) is irreducible and aperiodic if α > 0 and β > 0. Let ν ≥ α + β and define

ρ = α/β. Conditions in Eq.(12) can be simplified to

Condition M/M/1(I) : (α + β)/ν ≤ 1,

Condition M/M/1(II) : λ(i + 1) ≤ ρλ(i), i ≥ 0,

Condition M/M/1(II′) : λ(i + 1) ≥ ρλ(i), i ≥ 0,

Condition M/M/1(III) : ρ∆f(i + 2) + ∆f(i) ≤ (1 + ρ)∆f(i + 1), i ≥ 0,

Condition M/M/1(III′) : ρ∆f(i + 2) + ∆f(i) ≥ (1 + ρ)∆f(i + 1), i ≥ 0.

(14)

Note that for M/M/1(III) and M/M/1(III′), we assume that ∆f(0) = 0, where ∆f is a

function defined in Remark 3.1.

To interpret the above conditions probabilistically, we use the following generalized

likelihood ratio order defined for nonnegative measures. For two measures λ and µ, we

say λ ≤lr µ if λ(i + 1)µ(i) ≤ λ(i)µ(i + 1) for i ≥ 0. For more about the likelihood ratio

order for random variables see Shaked and Shanthikumar [18]. Let π̂ = (1, ρ, ρ2, · · · )

and π̂−1 = (1, 1/ρ, 1/ρ2, · · · ). If the queueing system is stable (i.e., ρ < 1), π̂ can be

normalized to a probability measure π = (1 − ρ, (1 − ρ)ρ, (1 − ρ)ρ2, · · · ), which is the

steady state distribution of X. If ρ > 1, π̂−1 can be normalized to a probability measure

π−1 = (ρ − 1)(1/ρ, 1/ρ2, 1/ρ3, · · · ).

Proposition 4.1 Condition M/M/1(I) in Eq.(14) is satisfied for all ν ≥ α+β. Condition

M/M/1(II) in Eq.(14) holds if and only if λ ≤lr π̂. Condition M/M/1(II′) in Eq.(14) holds

if and only if λ ≥lr π̂. Condition M/M/1(III) in Eq.(14) holds if and only if ∆2f ≤lr π̂−1,

where function ∆2f is defined by ∆2f(i + 1) = ∆f(i + 1) − ∆f(i) for i ≥ 0. Condition

M/M/1(III′) in Eq.(14) holds if and only if ∆2f ≥lr π̂−1.
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Proof. It is clear that the first conclusion holds. The second and third conclusions

hold by the definition of generalized likelihood ratio order defined above. The last two

conclusions are true since, by Eq.(14), ρ∆2f(i + 2) ≤ (≥)∆2f(i + 1) for i ≥ 0. 2

Using Proposition 4.1, it is easy to check the conditions for the monotonicity and con-

vexity of the function Eλ[f(X(t))]. For Condition M/M/1(II) or M/M/1(II′) in Eq.(14),

we consider the following initial distributions.

λ̂1 = (1, 0, 0, . . .),

λ̂2 = (0.3, 0.2, 0.1, 0.1, 0.1, 0.1, 0.1, 0, . . .),

λ̂3 = (0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0, . . .),

λ̂4 = ( 1−ρ
1−ρ3 , (1−ρ)ρ

1−ρ3 , (1−ρ)ρ2

1−ρ3 , 0, . . .), ρ < 1,

λ̂5 = (1 − ρ, (1 − ρ)ρ, (1 − ρ)ρ2, . . .), ρ < 1,

λ̂6 = (0, 0, 0, 1 − ρ, (1 − ρ)ρ, (1 − ρ)ρ2, . . .), ρ < 1,

λ̂7 = (0, 0, 0.01, 0.09, 0.19, 0.24, 0.47, 0, . . .),

λ̂8 = (0, 0, 0, 0, 0, 0.01, 0.09, 0.19, 0.24, 0.47, 0, . . .),

λ̂9 = (0, 0, 0, 0, 0, 0, 0, 0, 0.01, 0.09, 0.19, 0.24, 0.47, 0, . . .).

(15)

By Proposition 4.1, it can be verified that λ̂1 satisfies Condition M/M/1(II) in Eq.(14)

for all ρ ≥ 0; λ̂2 and λ̂3 satisfy Condition M/M/1(II) if ρ ≥ 1; λ̂4 and λ̂5 satisfy Condition

M/M/1(II) if ρ < 1; λ̂5 and λ̂6 satisfy Condition M/M/1(II′) in Eq.(14) if ρ < 1; λ̂7, λ̂8

and λ̂9 satisfy neither Condition M/M/1(II) nor Condition M/M/1(II′).

For Condition M/M/1(III) in Eq.(14), we consider the function f(i) = ik, i ≥ 0, where

k = 1, 2, · · · . By Proposition 4.1, if k = 1, Condition M/M/1(III) holds for all ρ > 0; if

k = 2, Condition M/M/1(III) holds for ρ ≤ 1
2 , Condition M/M/1(III′) in Eq.(14) holds

for ρ ≥ 1; if k = 3, Condition M/M/1(III) holds for ρ ≤ 1
6 , Condition M/M/1(III′) in

Eq.(14) holds for ρ ≥ 1; and if k = 4, Condition M/M/1(III) holds if ρ ≤ 1/14, Condition

M/M/1(III′) in Eq.(14) holds for ρ ≥ 1. Details for cases with k > 4 are omitted.

For the above initial distributions and function f(·), the monotonicity, convexity, and

concavity of the function Eλ[f(X(t))] can be obtained immediately from Theorem 3.2.

Details are given as follows.

Case 1. Suppose that f(i) = i, i ≥ 0. The mean queue length E
λ̂1

[X(t)] is increasing

and concave in t. In addition, if ρ ≥ 1, then E
λ̂2

[X(t)] is increasing and concave in

t. Figure 2 depicts the two functions E
λ̂1

[X(t)] and E
λ̂2

[X(t)] for ρ = 1 (Curves 1
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and 2), we can get similar Curves for ρ = 1.05, and ρ = 1.35. Note that the queues

are unstable for ρ=1, 1.05, and 1.35.

Case 2. Suppose that f(i) = i, i ≥ 0, and ρ < 1. Then the mean queue length

E
λ̂5

[X(t)] is equal to a constant ρ/(1 − ρ); E
λ̂6

[X(t)] is decreasing and convex

in t. Since λ̂7 doesn’t satisfy Condition M/M/1(II) nor Condition M/M/1(II)′ in

Eq.(14), E
λ̂7

[X(t)] does not have the monotonicity and convexity (Curve 3 in Figure

1).

Case 3. Suppose that f(i) = i4, i ≥ 0, and ρ = 0.8 > 1/14. λ̂1 satisfies Condition

M/M/1(II) and λ̂6 satisfy Condition M/M/1(II′). But f(·) doesn’t satisfy Condi-

tion M/M/1(III), E
λ̂1

[(X(t))4] and E
λ̂6

[(X(t))4] do not have the monotonicity and

convexity (Curves 1 and 2 in Figure 3). However, if ρ ≤ 1/14, then E
λ̂1

[(X(t))4] is

increasing and concave and E
λ̂6

[(X(t))4] is decreasing and convex.

Case 4. The functions E
λ̂8

[(X(t))4] and E
λ̂9

[(X(t))4] are not monotone, convex, nor

concave (Curves 3 and 4 in Figure 3).

Remark 4.1 We like to point out that similar results can be obtained for the M/M/c(c ≥

1) queue with an infinite number of waiting rooms, a first-in first-out service discipline

and c parallel servers. The only necessary change in Proposition 4.1 is that the vector

π̂ = (π̂(0), π̂(1), · · · ) is changed to

π̂(i) =
1

(min{i, c})!cmax{0,i−c}
· ρi, i ≥ 0. (16)

Details are omitted.

4.2 The M/G/1 queue

Consider an M/G/1 queue where customers arrive according to a Poisson process with

parameter α(α > 0), the service times are i.i.d. random variables and follow a gen-

eral distribution G(·). We further assume that the mean and second moment of ser-

vice times exist, and the mean and variance of service times are denoted by E[S] and

Var[S] = E[S2]− (E[S])2, respectively. Assume that service times are independent of the

interarrival times and customers are served according to the order of their arrival (see

Cohen [2]). Let Yn denote the number of customers left in the system right after the nth

customer departs from the system. Then Y = {Yn, n ≥ 0} is a discrete-time Markov

12



chain, for which the transition probability matrix P is given by

P =




a0 a1 a2 a3 a4 · · ·

a0 a1 a2 a3 a4 · · ·

0 a0 a1 a2 a3 · · ·

0 0 a0 a1 a2 · · ·
...

. . .
. . .

. . .
. . .

. . .




, (17)

where ak =
∫ ∞
0

(αx)k

k! e−αxdG(x) for k ≥ 0. It is easy to see that the Markov chain Y is

aperiodic and irreducible if α > 0. Let ρ = αE[S] =
∑∞

k=1 kak. For the M/G/1 queue,

conditions in Eq.(7) can be further simplified to:

Condition M/G/1(I) :
∞∑

j=k+1

aj ≤
∞∑

j=k

aj, k ≥ 0,

Condition M/G/1(II) :
k+1∑
j=1

λ(j)(
k+1−j∑

i=0
ai) + λ(0)

k∑
i=0

ai ≤
k∑

j=0
λ(j), k ≥ 0,

Condition M/G/1(II′) :
k+1∑
j=1

λ(j)(
k+1−j∑

i=0
ai) + λ(0)

k∑
i=0

ai ≥
k∑

j=0
λ(j), k ≥ 0,

Condition M/G/1(III) : f(0) ≤ f(1),
∞∑

j=0
aj∆f(k + j) ≤ ∆f(k + 1), k ≥ 1.

(18)

First, it is clear that matrix P is always monotone, that is, Condition M/G/1(I)

in Eq.(18) always holds for the M/G/1 queue. Second, by routine calculations, it is

easy to verify that λ = (1, 0, 0, · · · ) and λ = (a2
0/(1 − a1), a0(1 − a0)/(1 − a1), (1 −

a0 − a1)/(1 − a1), 0, · · · ) satisfy Condition M/G/1(II) in Eq.(18). It can also be verified

that λ = (0, 0, 0, π0, π1, π2, . . .) satisfies Condition M/G/1(II′) in Eq.(18), where π =

(π0, π1, π2, . . .) is the steady state distribution of the Markov chain Y if ρ < 1. Third, it

can be shown that Condition M/G/1(III) in Eq.(18) always holds for f(i) = i, since the

mean-drift function hf is given by (ρ, ρ − 1, ρ − 1, . . .). Condition M/G/1(III) in Eq.(18)

holds for f(i) = i2 if ρ ≤ 1; and for f(i) = i3 if 2ρ + ρ2(1+Var[S]) ≤ 2.

For the queueing system, the mean queue length Eλ[Yn] (i.e., f(i) = i) is increasing

and concave in n if λ = (1, 0, 0, . . .) or λ = (a2
0/(1 − a1), a0(1 − a0)/(1 − a1), (1 − a0 −

a1)/(1 − a1), 0, . . .). For λ = (0, 0, 0, π0 , π1, π2, . . .), if the queueing system is stable,

the mean queue length Eλ[Yn] is decreasing and convex in n. Furthermore, for higher

moments of the queue length, Eλ[Y 2
n ] (i.e., f(i) = i2) is increasing and concave in n if

λ = (1, 0, 0, . . .) or λ = (a2
0/(1 − a1), a0(1 − a0)/(1 − a1), (1 − a0 − a1)/(1 − a1), 0, . . .)

and ρ ≤ 1; Eλ[Y 3
n ] (i.e., f(i) = i3) is increasing and concave in n if λ = (1, 0, 0, . . .) or

λ = (a2
0/(1−a1), a0(1−a0)/(1−a1), (1−a0−a1)/(1−a1), 0, . . .) and 2ρ+ρ2(1+Var[S]) ≤ 2.
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Remark 4.2 Note that, for f(i) = i2, the condition for the mean-drift function hf to be

decreasing is ρ ≤ 1 for the M/G/1 case. For the M/M/1 case, that condition is ρ ≤ 1
2 .

The reason is that we only consider the queue length at departure epochs for the M/G/1

case, while the queue length at an arbitrary time is considered for the M/M/1 case.

Remark 4.3 Condition III′ in Eq.(7) does not hold for f(i) = ik, k ≥ 1, in the M/G/1

queue, since f(0) ≥ f(1) is not satisfied in this case.

4.3. The GI/M/1 queue

Consider a GI/M/1 queue. Assume that the interarrival times are i.i.d. random vari-

ables, where the common distribution is A(·) and the mean interarrival time equals

α−1 =
∫ ∞
0 tdA(t). The service times are independent exponential random variables with

parameter β(β > 0). Assume that service times are independent of interarrival times,

and customers are served in according to their order of arrival (see Cohen [2]). Let Yn

denote the number of customers seen by the nth customer at its arrival epoch. Then

{Yn, n ≥ 0} is a discrete-time Markov chain with a transition probability matrix P given

by

P =




b̂0 b0 0 . . .

b̂1 b1 b0 0 . . .

b̂2 b2 b1 b0 0 . . .

b̂3 b3 b2 b1 b0
. . .

...
...

...
. . .

. . .
. . .




, (19)

where bk =
∫ ∞
0 e−βt (βt)k

k! dA(t) and b̂k = 1 −
∑k

i=0 bi, k ≥ 0. It is easy to verify that

the Markov chain Y is irreducible and aperiodic if β > 0. Conditions in Eq.(7) can be

simplified to

Condition GI/M/1(I) :
i+1∑
j=k

bi+1−j ≤
i+2∑
j=k

bi+2−j, 1 ≤ k ≤ i + 1, i ≥ 0,

Condition GI/M/1(II) :
∞∑

i=k

λ(i)b̂i−k ≤ λ(k), k ≥ 0,

Condition GI/M/1(II′) :
∞∑

i=k

λ(i)b̂i−k ≥ λ(k), k ≥ 0,

Condition GI/M/1(III) :
k+2∑
j=1

bk+2−j∆f(j) ≤ ∆f(k + 1), k ≥ 0.

(20)

Similar to the M/G/1 queue, Condition GI/M/1(I) in Eq.(20) always holds for the

GI/M/1 queue. For the initial distribution λ, it can be verified that λ = (1, 0, 0, . . .),
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λ = ( b̂1
1−b̂0−b̂1

, 1−b̂0
1−b̂0−b̂1

, 0, . . . , ), and λ = ( 1−r
1−r3 , (1−r)r

1−r3 , (1−r)r2

1−r3 , 0, . . .) satisfy Condition

GI/M/1(II) in Eq.(20), where r is the unique root of the equation s = A∗(β − βs) that

is inside the circle |s| = 1, and A∗(s) =
∫ ∞
0 e−stdA(t). The vector λ = (0, 0, 1 − r, (1 −

r)r, (1− r)r2, . . .) satisfies Condition GI/M/1(II′) in Eq.(20). For Condition GI/M/1(III)

in Eq.(20), it always holds for f(i) = i. For f(i) = i2, Condition GI/M/1(III) in Eq.(20)

holds if 3b0+b1 ≤ 1. For f(i) = i3, Condition GI/M/1(III) in Eq.(20) holds if 7b0+b1 < 1

and 19b0 + 7b1 + b2 ≤ 7.

For the queue length at arrival epochs, it is easy to see that Eλ[Yn] is increasing and

concave if λ = (1, 0, 0, . . .), λ = ( b̂1
1−b̂0−b̂1

, 1−b̂0
1−b̂0−b̂1

, 0, . . . , ), or λ = ( 1−r
1−r3 , (1−r)r

1−r3 , (1−r)r2

1−r3 , 0, . . .).

For those λ, Eλ[Y 2
n ] is increasing and concave if 3b0 + b1 ≤ 1 and Eλ[Y 3

n ] is increasing

and concave if bi, i ≥ 0, satisfy 7b0 + b1 < 1 and 19b0 + 7b1 + b2 ≤ 7. Eλ[Yn] is decreasing

and convex if λ = (0, 0, 1 − r, (1 − r)r, (1 − r)r2, . . .).

The results of the monotonicity and convexity of functions associated with queue

length for the GI/M/1 queue can be generalized to the GI/M/c(c ≥ 1) queue in a straight-

forward manner, though formulas can be much more involved.

Remark 4.4 Condition III′ in Eq.(7) does not hold for f(i) = i, in the GI/M/1 queue,

since b0 + b1 ≤ 1 always holds.

4.4 A queueing system with batch service

Consider a single-server processor sharing queueing system in which the the interarrival

times are i.i.d. random variables, where the common distribution is A(·). Let τn denote

the arrival epoch of the nth customer, Q(t) be the number of customers in the system

at time t, and Yn ≡ Q(τn−) denotes the number of customers seen by the nth customer

at its arrival epoch. We assume that if Yn = i, the arrival of the next customer causes

all customers leaving the system (so that the queue becomes empty) with probability

σi (0 < σi < 1), i = 0, 1, · · · . We call such a customer a negative customer. Thus, the

queueing system becomes empty if a service is completed or a negative customer arrives.

The service times are i.i.d. exponential random variables with parameter β (β > 0).

Assume that service times are independent of interarrival times. Then {Yn, n ≥ 0} is a

discrete-time Markov chain. The transition probability matrix P of Y = {Yn, n ≥ 0} is

15



given by

P =




1 − θ0 θ0 0 0 0 · · ·

1 − θ1 0 θ1 0 0 · · ·

1 − θ2 0 0 θ2 0
. . .

1 − θ3 0 0 0 θ3
. . .

...
...

...
. . .

. . .
. . .




, (21)

where θi = (1 − σi)
∫ ∞
0 e−βtdA(t), 0 < θi < 1, i ≥ 0. The Markov chain Y is aperiodic

and irreducible. Conditions in Eq.(7) can be further simplified to

Condition Batch(I) : θi ≤ θi+1, i ≥ 0,

Condition Batch(II) :
∞∑

i=k

λ(i)θi ≥
∞∑

i=k+1

λ(i), k ≥ 0,

Condition Batch(II′) :
∞∑

i=k

λ(i)θi ≤
∞∑

i=k+1

λ(i), k ≥ 0,

Condition Batch(III) : θi+1f(i + 2) − θif(i + 1) ≤ ∆f(i + 1)

+(θi+1 − θi)f(0), i ≥ 0,

Condition Batch(III′) : θi+1f(i + 2) − θif(i + 1) ≥ ∆f(i + 1)

+(θi+1 − θi)f(0), i ≥ 0.

(22)

Thus, Condition Batch(I) in Eq.(22) holds if and only if the sequence {θi, i ≥ 0}

is increasing in i. For Condition Batch(II) in Eq.(22), it holds if λ(i + 1) ≤ λ(i)θi, for

all i ≥ 0. By the definition of generalized likelihood ratio order defined in Section 4.1,

Condition Batch(II) in Eq.(22) holds if λ ≤lr µ, where µ = (µ(0), µ(1), . . .) is a measure

defined on Z+, and µ(i) = µ(0)
∏i−1

j=0 θj, i ≥ 1. The measure µ can be normalized

to a probability measure by taking µ(0) = (1 +
∑∞

i=1

∏i−1
j=0 θj)

−1
. Similarly, Condition

Batch(II′) in Eq.(22) holds if λ ≥lr µ. The following measures also satisfy Condition

Batch(II) in Eq.(22): λ = (1, 0, 0, . . .) and λ = ( 1−θ1

1−θ1+θ0
, θ0

1−θ1+θ0
, 0, . . . , ). For Condition

Batch(III) in Eq.(22), it is satisfied for f(i) = i if

(i + 2)θi+1 ≤ (i + 1)θi + 1, i ≥ 0; (23)

and is satisfied for f(i) = i2 if

(i + 2)2θi+1 ≤ (i + 1)2θi + 2i + 1, i ≥ 0; (24)

and is satisfied for f(i) = i3 if

(i + 2)3θi+1 ≤ (i + 1)3θi + 3i2 + 3i + 1, i ≥ 0. (25)
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Similarly, we can get the corresponding conditions under which Condition Batch(III ′) in

Eq.(22) holds.

Then Eλ[Yn] is increasing and concave if λ = ( 1−θ1

1−θ1+θ0
, θ0

1−θ1+θ0
, 0, . . . , ), {θi} is increas-

ing in i and Eq.(23) holds. Eλ[Y 2
n ] is increasing and concave if λ = ( 1−θ1

1−θ1+θ0
, θ0

1−θ1+θ0
, 0, . . . , ),

{θi} is increasing in i and Eq.(24) holds. Eλ[Y 3
n ] is increasing and concave if λ =

( 1−θ1

1−θ1+θ0
, θ0

1−θ1+θ0
, 0, . . . , ), {θi} is increasing in i and Eq.(25) holds.

In the literature the Markov chain with transition matrix given by Eq.(21) was called

to be a backward recurrent time chain (see Meyn and Tweedie [15, p.64]).

5. Concluding Remarks and Future Research

In this paper, we studied the monotonicity and convexity of some functions associated

with denumerable Markov chains. For the discrete-time case, we obtained conditions for

the monotonicity, convexity, and concavity. By using uniformization technique, similar

results were obtained for the continuous-time case.

It is interesting to identify explicit conditions for Markov chains with general transition

matrix, since the expressions of the conditions described in Eq.(7) cannot be checked easily

in applications in this case. In what follows, we provide an example to illustrate that it is

possible to find explicit conditions under which the functions associated with a Markov

chain have monotonicity and convexity, where its transition matrix has a different form

comparing with those discussed in Section 4 in this paper.

Consider a Markov chain Y = {Yn, n ≥ 0} with a countable state space Z+ and a

transition probability matrix P given by

P =




p + pµ(0) pµ(1) pµ(2) pµ(3) · · ·

pµ(0) p + pµ(1) pµ(2) pµ(3) · · ·

pµ(0) pµ(1) p + pµ(2) pµ(3)
. . .

...
...

...
. . .

. . .




= pI + p(e · µ), (26)

where 0 < p ≤ 1, p = 1 − p, e = (1, 1, 1, . . .)T , and µ = (µ(0), µ(1), µ(2), . . .) is a

probability distribution defined on Z+, and e is a column vector whose elements all

equal one. The process Y with transition matrix given by Eq.(26) is called the discrete

autoregressive process of order 1 (DAR(1)) (see Hwang, Choi and Kim [9] or Hwang and

Sohraby [10]).

By routine calculations, it can be verified that Condition I in Eq.(7) holds for all p
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and µ. For other conditions, we have

Condition II in Eq.(7) holds if and only if µ ≥d λ,

Condition II′ in Eq.(7) holds if and only if λ ≥d µ,

Condition III in Eq.(7) holds if and only if function f(·) defined on Z+ is increasing,

Condition III′ in Eq.(7) holds if and only if function f(·) defined on Z+ is decreasing.

By Theorem 3.1, we have

(i) if µ ≥d λ and function f(·) defined on Z+ is increasing, then the function Eλ[f(Yn)]

is increasing and concave in n;

(ii) if µ ≥d λ and function f(·) defined on Z+ is decreasing, then the function

Eλ[f(Yn)] is decreasing and convex in n;

(iii) if λ ≥d µ and function f(·) defined on Z+ is increasing, then the function

Eλ[f(Yn)] is decreasing and convex in n;

(iv) if λ ≥d µ and function f(·) defined on Z+ is decreasing, then the function

Eλ[f(Yn)] is increasing and concave in n.

The future research is in the monotonicity and convexity of some functions associ-

ated with parallel queueing systems with correlated arrival processes to different queues

described by Li and Xu [12], the main difficulty in analyzing those systems is that the

presence of correlation makes the explicit computation of joint performance measure ei-

ther intractable or computationally intensive.
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Figure 1. The mean queue length curves for an M/M/1 queue with ρ = 0.8.

Figure 2. The mean queue length curves for an M/M/1 queues with ρ = 1.
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Figure 3. The fourth moment of queue length curves for an M/M/1 queue with ρ = 0.8.
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