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� In this paper, we develop two spectral polynomial algorithms for computing bi-diagonal
representations of matrix-exponential distributions and phase type (PH) distributions. The
algorithms only use information about the spectrum of the original representation and,
consequently, are efficient and easy to implement. For PH-representations with only real
eigenvalues, some conditions are identified for the bi-diagonal representations to be ordered
Coxian representations. It is shown that every PH-representation with a symmetric PH-generator
has an equivalent ordered Coxian representation of the same or a smaller order. An upper bound
of the PH-order of a PH-distribution with a triangular or symmetric PH-generator is obtained.
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1. INTRODUCTION

Phase type distributions (PH-distribution) were introduced by Neuts[32]

as the probability distribution of the absorption time of a finite state
Markov process. PH-distributions possess the so-called partial memoryless
property, since a phase variable can be used to keep track of the state of
the underlying Markov process. PH-distributions can approximate any non-
negative probability distributions. Stochastic models with PH-distributions
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are usually analytically and numerically tractable. Because of these
properties, PH-distributions have been widely used in stochastic modeling.
For instance, PH-distributions are used in queueing theory and reliability
theory to model random variables such as service times, customer
interarrival times and component life times. General references on
the theory and applications of PH-distributions can be found in Alfa
and Chakravarthy[2], Asmussen[3], Chakravarthy and Alfa[9], Commault
and Mocanu[14], Latouche and Ramaswami[23], Latouche and Taylor[24,25],
Neuts[33], and O’Cinneide[40].

For more effective and efficient use of PH-distributions in science and
engineering, a number of studies on PH-distributions have been carried
out in the past. One of these studies investigated the determination of the
minimal number of phases for a given PH-distribution, which is known as
the minimal PH-representation problem. This problem is important for the
practical use of PH-distributions since a smaller representation may lead to
shorter computational time and higher accuracy in parameter estimation
and in performance analysis.

Soon after the introduction of PH-distributions, several researchers
explored the basic properties of PH-distributions (Cumani[16]; Dehon and
Latouche[17]; Neuts[32,33]). Cumani[16] showed that any PH-representation
with a triangular PH-generator can be reduced to a PH-representation
with a bi-diagonal PH-generator of the same or a smaller order. He
demonstrated for the first time that the PH-representation of a PH-
distribution can be drastically simplified, which has great significance for
practical applications. Dehon and Latouche[17] established a relationship
between mixtures of exponential distributions and polytopes of probability
measures, which can be useful in the theoretical study of PH-distributions.
In the late 1980’s and early 1990’s, more studies on the characterization of
PH-distributions were carried out (Aldous and Shepp[1]; Asmussen[4]; Botta
et al.[8]; Commault and Chemla[11]; Maier[26]; Maier and O’Cinneide[27];
Neuts[34]; and O’Cinneide[35–39]). By taking a martingale approach,
Aldous and Shepp[1] found a lower bound for the PH-order of a PH-
distribution in terms of its coefficient of variation. O’Cinneide[36]

developed a fundamental characterization theorem for PH-distributions.
He also introduced the concepts of PH-simplicity and PH-majorization
(Refs.[35,38]), which are useful tools in the study of PH-distributions. In
all of his publications on PH-distributions, O’Cinneide showed that
Coxian representations are important in providing counterexamples
and in determining the minimal triangular representation. In the
late 1990’s and early in this century, the study of PH-distributions
advanced from focusing on a few explicitly defined problems to a
greater variety of investigations. The main attention shifted from the
minimal representation problem to specially structured PH-representations
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including the triangular, bi-diagonal, monocyclic, and unicyclic PH-
representations (Commault[10]; Commault and Chemla[12]; Commault
and Mocanu[13,14]; Mocanu and Commault[31]; O’Cinneide[40]; Telek[44];
and Yao[45]). Asmussen and Bladt[5] introduced matrix-exponential
distributions, a class of probability distributions larger than the class of
PH-distributions. They completely resolved the minimal representation
problem of this class of probability distributions. Commault and
Mocanu[14] and O’Cinneide[40] provided surveys on the current status
of the study on PH-distributions. They recommended more studies on
problems related to the minimal representations of PH-distributions.
Commault and Mocanu[14] also proved the equivalence between the
minimal PH-representation problem and a fundamental representation
problem in control theory. Therefore, the minimal PH-representation
problem is a problem of wide interest in stochastic modeling, statistics,
and control theory.

Today, the minimal PH-representation problem has evolved into
an area of study on problems such as finding simpler, smaller, and
specially structured PH-representations. A number of theoretical results
have been obtained, particularly on sparse representations of PH-
distributions. However, there has been no systematic study on algorithms
for computing sparse representations for PH-distributions or matrix-
exponential distributions. The goal of this paper is to develop some
algorithms that can be used to find bi-diagonal representations for
PH-representations and matrix-exponential representations.

Finding simpler or smaller representations for a matrix-exponential
representation (�,T ,u) (Asmussen and Bladt[5]) has much to do with
solving the equation TP = PS for matrices S and P , which are related to
PH-majorization. It is well understood now that S can take many forms. The
most interesting form of S is the bi-diagonal form. Among the bi-diagonal
representations, the Coxian representation (Cox[15] and O’Cinneide[35])
and the generalized Erlang representation are of particular importance
(Commault and Mocanu[14] and O’Cinneide[40]). We generalize the
concept of PH-majorization introduced by O’Cinneide[35] and explore the
relationship TP = PS further when S is bi-diagonal. An explicit connection
between spectral polynomials of T and the matrix P is established in this
paper. Based on that relationship, algorithms are developed for computing
the matrix P for bi-diagonal S and, consequently, for finding a new
equivalent representation of (�,T ,u). The new representation may not be
a PH-representation even if (�,T ,u) is a PH-representation, but it is always
a matrix-exponential representation. In addition, the spectral polynomial
approach is useful for theoretical studies. For instance, in this paper, we
show that every PH-representation with a symmetric PH-generator has an
ordered Coxian representation of the same or a smaller order. We also
show that every PH-representation of order 3 with only real eigenvalues has
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an equivalent ordered Coxian representation of order 4 or a smaller order.
A sufficient condition is identified for two matrix-exponential distributions
with only real eigenvalues to be ordered according to the stochastically
larger order.

The minimal PH-representation problem is closely related to the
identifiability problem of functions of Markov processes (Blackwell and
Koopmans[7]; Ito et al.[21]; and Ryden[42]). Identifiability of functions
of Markov processes is mainly concerned with the relationship of two
hidden processes. Ryden[42] showed that the equivalence of two PH-
representations is a special case of the identifiability problem. Ito et al.[21]

and Ryden[42] identified a set of necessary and sufficient conditions for
two PH-representations to be equivalent. That condition can be useful in
the study of the minimal representation problem of PH-distributions. The
relationship between PH-generators obtained in this paper is a special case
of that obtained by Ito et al.[21].

The main contribution of this paper is the introduction of two
spectral polynomial algorithms for computing bi-diagonal representations
of matrix-exponential distributions and for computing Coxian representa-
tions of PH-distributions with real eigenvalues. The algorithms only use
information about the spectrum of the original representation and,
consequently, are efficient and easy to implement. If information about
the Jordan chains associated with the original representation is available,
the algorithms can be modified to find bi-diagonal representations of the
same or a smaller order. The algorithms can be used for computing simpler
representations and can serve as tools to do numerical experimentations
for theoretical explorations on the minimal representation and the
minimal bi-diagonal representation of PH-distributions.

The rest of the paper is organized as follows. In Section 2, some
basic concepts on matrix-exponential distributions and PH-distributions
are introduced. The concept of PH-majorization for PH-distributions is
generalized to ME-majorization for matrix-exponential distributions. In
Section 3, the Post-T spectral polynomial algorithm is developed. In
Section 4, we limit our attention to PH-representations with only real
eigenvalues. We show that every symmetric PH-representation has an
equivalent ordered Coxian representation of the same or a smaller
order. Section 5 presents a collection of results related to Coxian
representations and the Post-T spectral polynomial algorithm. The Pre-T
spectral polynomial algorithm is introduced in Section 6. We demonstrate
that if information about Jordan chains is available, the spectral polynomial
algorithm can be modified to find bi-diagonal representations of a smaller
order. Section 7 shows that all results obtained in this paper are valid
for discrete time PH-distributions. Some comments on future research are
offered to conclude this paper.
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2. PRELIMINARIES

For a given m × m matrix T , its characteristic polynomial is defined
as f (�) = det(�I − T ) (i.e., the determinant of matrix �I − T ), where I is
the identity matrix and m is a finite positive integer. Let spectrum (T ) =
�−�i , 1 ≤ i ≤ m� be the spectrum of T (counting multiplicities), which are
all the roots of f (�). The set spectrum(T ) includes all eigenvalues of T .

An m × m matrix T with negative diagonal, non-negative off-diagonal
elements, nonpositive row sums, and at least one negative row sum is called
a subgenerator in the general literature of Markov processes. We shall call a
subgenerator T a PH-generator (if m is finite). Consider a continuous time
Markov chain with m + 1 states and an infinitesimal generator(

T −T e
0 0

)
, (2.1)

where the (m + 1)st state is an absorption state and e is the column
vector with all elements being one. We assume that states �1, 2, � � � ,m�
are transient. Let � be a non-negative vector of size m for which the
sum of its elements is less than or equal to one. We call the distribution
of the absorption time of the Markov chain to state m + 1, with initial
distribution (�, 1 − �e), a phase type distribution (PH-distribution). We call
the 3-tuple (�,T , e) a PH-representation of that PH-distribution. The number
m is the order of the PH-representation (�,T , e). We refer to Chapter 2
in Neuts[33] for basic properties about PH-distributions. The probability
distribution function of the PH-distribution is given as 1 − � exp�Tt �e
for t ≥ 0, and the density function is given as −� exp�Tt�T e for t ≥ 0.
If �e = 0, the distribution has a unit mass at time 0. There is no need
for a PH-representation for such a distribution. If �e �= 0, the expression
� exp�Tt�e can be written as (�e)(�/(�e))exp�Tt�e. Thus, if �e �= 0, a study
on the representations of the PH-distribution (�,T , e) is equivalent to that
of (�/(�e),T , e). Without loss of generality, we shall assume that � is a
probability vector (a non-negative vector for which the sum of all its elements
is one) or has a unit sum. Throughout this paper, we assume that all
probability distributions have a zero mass at t = 0.

It is possible that 1 − � exp�Tt�u is a probability distribution function
for a row vector � of size m, an m × m matrix T , and a column vector u
of size m, where the elements of �,T , and u can be complex numbers. For
this case, the 3-tuple (�,T ,u) is called a matrix-exponential representation of
a matrix-exponential distribution. Without loss of generality, we assume that
�u = 1 (i.e., zero mass at t = 0). PH-representations are special matrix-
exponential representations. We refer to Asmussen and Bladt[5] for more
details about matrix-exponential distributions.

The matrix T can be considered as a linear mapping. A polytope
conv �x1, x2, � � � , xN � is defined as the convex combinations of the
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column vectors �x1, x2, � � � , xN � of size m (Rockafellar[41]). The polytope
conv�x1, x2, � � � , xN � is invariant under T if

Txi =
N∑
j=1

xj sj ,i , 1 ≤ i ≤ N � (2.2)

If the N × N matrix S = (si ,j) is a PH-generator, the polytope
conv�x1, x2, � � � , xN � is PH-invariant under T (PH-invariant polytope). Let
P be an m × N matrix with columns �xi , 1 ≤ i ≤ N �, i.e., with x1 as its
first column, x2 the second column,� � �, and xN the N th column. Then
equation (2.2) becomes TP = PS . Let � = �P . If there exists a vector
v such that u = P v, then (�,T ,u) finds an equivalent representation
(�, S , v) (Proposition 2.1). The objective of this paper is to find (�, S , v) for
(�,T ,u), where S is a bi-diagonal matrix.

Similarly, for row vectors �x1, x2, � � � , xN �, the polytope
conv�x1, x2, � � �, xN � is invariant under T if

xiT =
N∑
j=1

si ,jxj , 1 ≤ i ≤ N � (2.3)

Let ei be a row vector of size m with the ith element being one and all
others zero, 1 ≤ i ≤ m. Apparently, the polytope conv�ei , 1 ≤ i ≤ m� is PH-
invariant under T (i.e., IT = TI ). In this paper, we use equation (2.2) for
the definition of invariant polytope when column vectors are involved and
equation (2.3) when row vectors are involved.

For x = (x1, x2 � � � , xN ), a bi-diagonal matrix S(x) is defined as

S(x) =




−x1 0 · · · · · · 0

x2 −x2
� � �

� � �
���

0
� � �

� � �
� � �

���
���

� � � xN−1 −xN−1 0
0 · · · 0 xN −xN



� (2.4)

If �x1, x2 � � � , xN � are all real and positive and � is a probability vector,
then S(x) is called a Coxian generator and (�, S(x), e) is called a
Coxian representation that represents a Coxian distribution (Cox[15] and
O’Cinneide[35]). Furthermore, if x1 ≥ x2 ≥ · · · ≥ xN > 0, then (�, S(x), e) is
called an ordered Coxian representation.

The relationship between two PH-generators satisfying the equation
TP = PS for a non-negative matrix P with unit row sums was first
investigated by O’Cinneide[35]. For a given PH-generator T , let PH(T )
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denote the set of all PH-distributions with a PH-representation of the form
(�,T , e). For two PH-generators T and S , S is said to PH-majorize T if
PH(T ) ⊆ PH(S). O’Cinneide[35] showed that S PH-majorizes T if and only
if there exists a non-negative matrix P with unit row sums such that TP =
PS . We extend the concept of PH-majorization to ME -majorization. Let
ME(T ,u) denote the set of all probability distributions with a matrix-
exponential representation of the form (�,T ,u). For two pairs �T ,u� and
�S , v�, �S , v�ME -majorizes �T ,u� if ME(T ,u) ⊆ ME(S , v).

Proposition 2.1. Assume that �T ,u� and �S , v� are of orders m and N ,
respectively. If there exists an m × N matrix P such that TP = PS and u =
P v, then (�P , S, v) is an equivalent matrix-exponential representation of matrix-
exponential representation (�, T , u). Consequently, �S , v� ME-majorizes �T ,u�.

Proof. Since TP = PS , it is easy to verify that T nP = PSn for n ≥ 0. Then
we have, for t ≥ 0,

exp�Tt�u = exp�Tt�P v =
∞∑
n=0

t n

n!T
nP v =

∞∑
n=0

t n

n!PS
nv = P exp�St�v, (2.5)

which implies that (�P , S , v) and (�, T , u) have the same distribution
for any � such that (�, T , u) is a matrix-exponential distribution. Thus,
ME(T ,u) ⊆ ME(S , v), i.e., �S , v� ME -majorizes �T ,u�. This completes the
proof of Proposition 2.1.

Note 2.1. Note that the condition �u = 1 is not used in the proof of
Proposition 2.1. Hence, the proposition also holds without that condition.

Note 2.2. The conditions in Proposition 2.1 are sufficient but not
necessary for ME -majorization. For example, consider the following �T ,u�
and �S , v�:

T =
(√−1 0

0 −1

)
, u =

(
1
1

)
, S = (−1), and v = (1)� (2.6)

It is easy to show that the matrix-exponential distributions with
a representation (�, T , u) must have � = (0, �2), where 0 ≤ �2 ≤ 1.
Therefore, ME(T ,u) ⊆ ME(S , v). However, there is no matrix P satisfying
TP = PS and u = P v.

3. POST-T SPECTRAL POLYNOMIAL ALGORITHM

In this section, we develop an algorithm for computing bi-diagonal
representations of a matrix-exponential representation (�, T , u) of
order m. The basic idea is to use the spectral polynomials of matrix T to
construct an invariant polytope under T .
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We assume that �x1, x2, � � � , xN � are nonzero complex numbers, where
N is a positive integer. Let x = (x1, x2, � � � , xN ). For a given column vector
p1 of size m, we define{

pn = (xn−1I + T )pn−1/xn , 2 ≤ n ≤ N ;

pN+1 = (xN I + T )pN �
(3.1)

If pN+1 = 0, it is easy to see that Tpn = −xnpn + xn+1pn+1, for
1≤n ≤N − 1, and TpN = −xNpN , which can be written into the following
matrix form

TP = PS(x), (3.2)

where P is an m × N matrix whose columns are �pi , 1 ≤ i ≤ N � and S(x)
is the bi-diagonal matrix defined in equation (2.4). By the definition
given in equation (2.2), equation (3.2) implies that conv�pi , 1 ≤ i ≤ N �
is an invariant polytope under T . It is readily seen that, if the vectors
x and p1 are properly chosen, we may have P v = u for some v and,
consequently, �S(x), v� ME -majorizes �T ,u� (Proposition 2.1). Thus, the
issue of interest becomes how to choose x and p1 for the given pair �T ,u�
so that equation (3.2) and P v = u hold. It turns out that there can be many
solutions to the problem and we present one here.

Since we expect TP = PS(x), the eigenvalues of T should be included
in the set �−x1,−x2, � � � ,−xN �, which is the spectrum of S(x). That leads to
a specific selection of x and N : x = � = (�1, �2, � � � , �m) and N = m, where
−� is the spectrum of T . For this choice of x and N , if �i �= 0, for 1≤ i ≤m,
equation (3.1) becomes,

pn =




1
�n · · · �2 (�n−1I + T ) · · · (�1I + T )p1, 2 ≤ n ≤ m;

1
�m · · · �2 (�mI + T ) · · · (�1I + T )p1, n = m + 1�

(3.3)

The matrices �(�n−1I + T ) · · · (�1I + T ), 2 ≤ n ≤ m + 1� appeared in
equation (3.3) are called the spectral polynomials of T . If n = m + 1, by
the Cayley–Hamilton theorem (see Lancaster and Tismenetsky[22]), f (T ) =
(�mI + T ) · · · (�1I + T ) = 0. Consequently, we have pm+1 = 0 and TP =
PS(�). Next, we choose p1 so that the matrix P satisfies P v = u for some v.
For that purpose, we use the following identity derived from the equality
f (T ) = 0:

( m∏
j=1

�j

)
I +

( m∏
j=2

�j

)
T +

m−1∑
n=1

( m∏
j=n+2

�j

)( n∏
j=1

(�j I + T )

)
T = 0� (3.4)
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Suppose that p1 = −Tu/�1. Post multiplying u/(�1�2 · · · �m) on both
sides of equation (3.4) yields u − p1 − p2 − · · · − pm = 0. Therefore, we
obtain Pe = u. According to Proposition 2.1, there exists an equivalent
bi-diagonal representation (�, S(�), e) for any matrix-exponential
representation (�,T ,u), where � = �P . For the two representations, we
have �e = �u = 1.

In summary, we propose the following algorithm for computing
(�, S(�), e).

Post-T Spectral Polynomial Algorithm

Consider a matrix-exponential representation (�, T , u) of order m.
We assume that all eigenvalues of T are nonzero.

Step 1: Find the spectrum �−�1,−�2, � � � ,−�m� of T .
Step 2: Compute p1 = −Tu/�1, and �pn , 2 ≤ n ≤ m� by equation (3.3).

Set N = min�n : pn = 0� − 1.
Step 3: Construct the bi-diagonal matrix S(�) of size N for � =

(�1, � � � , �N ). Let P = (p1, � � � ,pN ) and compute � = �P . Then
(�, S(�), e) gives an equivalent bi-diagonal representation to
(�,T ,u).

Note 3.1. In the Post-T spectral polynomial algorithm, we have chosen
p1 = −Tu/�1. That choice of p1 is unique since we require Pe = u. In fact,
post-multiplying e on both sides of TP = PS(�), we obtain TPe = −�1p1.
Since all eigenvalues of T are nonzero, T is invertible. Thus, p1 = −Tu/�1
if and only if Pe = u.

Note 3.2. We like to point out that the Jordan canonical form of T leads
to a bi-diagonal matrix-exponential representation. However, finding such
a bi-diagonal representation needs information about the Jordan chains
and the Jordan canonical form of T , which can be difficult to obtain even
for m as large as 5.

It is readily seen that all matrix-exponential representations with
nonzero eigenvalues have bi-diagonal representations of the same or a
smaller order. If ��1,−�2, � � � ,−�m� are ordered differently, the matrix P and
the corresponding S(�) can be different. For a given �, the vector �= �P
can be different as well. Denote by fT (�)= (�+ �1)(�+ �2) � � � (�+ �K )
the minimal polynomial of T , where K is the degree of the minimal
polynomial. It is well known that fT (T ) = 0, �−�1,−�2, � � � ,−�K � is a
subset of spectrum(T ), and K ≤ m. (It is well known that fT (�) divides
all annihilating polynomials of T (Theorem 1, page 224, Lancaster
and Tismenetsky[22])). Thus, if K < m, the corresponding representation
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(�, S(�), e) has an order lower than that of (�,T ,u). That is why the
constant N was introduced in the Post-T spectral polynomial algorithm.
Note that, depending on the vector u, it is possible that N < K (see
Example 6.1). In the next proposition, we summarize the above results and
give an alternative expression for the vector �.

Proposition 3.1. Assume that T has no zero eigenvalue. Then �S(�), e� ME-
majorizes �T ,u�. A matrix-exponential representation (�,T ,u) has an equivalent
bi-diagonal representation (�, S(�), e) of the same or a smaller order with �e =
�u = 1 and � = �P or

�n =




1
�1
F (1)(0), n = 1;

1
�1�2 · · · �n

n∑
k=1

(
F (k)(0)

∑
�j1,j2,���,jn−k �:subset of �1,2,���,n−1�

j1<j2<···<jn−k

�j1�j2 · · · �jn−k

)
, 2≤n ≤N ,

(3.5)

where F (k)(0) is the kth derivative of the probability distribution function F (t) =
1 − � exp�Tt�u at t = 0, which is given by F (k)(0) = −�T ku, k ≥ 1.

Proof. We only need to show equation (3.5). By equation (3.3), we have

�n =



�pn = −1

�1
�Tu, n = 1;

�pn = −1
�1�2 · · · �n �(�n−1I + T ) · · · (�1I + T )Tu, n ≥ 2,

(3.6)

which leads to equation (3.5) directly. This completes the proof of
Proposition 3.1.

Equation (3.5) indicates that a bi-diagonal representation of a matrix-
exponential distribution F (t) can be found from the poles of its Laplace-
Stieltjes transform and �F (k)(0), k ≥ 1�. That may lead to new methods
for parameter estimation of matrix-exponential distributions and PH-
distributions (Asmussen et al.[6]). However, a study in that direction is
beyond the scope of this paper and we shall not explore this direction
further. In He and Zhang[19], equation (3.5) is utilized in finding a minimal
ordered Coxian representation for PH-distributions whose Laplace-Stieltjes
transforms have only real poles.

Next, we present two numerical examples and discuss the possible
outcomes from the Post-T spectral polynomial algorithm.
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Example 3.1. Consider Example 2.1 in Asmussen and Bladt[5]

(see Cox[15]). In that example, the matrix-exponential representation
(�,T ,u) is given as � = (1, 0, 0),u = e, and T in equation (3.7). The
eigenvalues of T are �−1 + 6�2832

√−1,−1 − 6�2832
√−1,−1�. By using

the Post-T spectral polynomial algorithm, the matrix P and S(�) are
obtained and presented in equations (3.8) and (3.9), respectively.

T =



0 −1 − 4�2 1 + 4�2

3 2 −6

2 2 −5


 � (3.7)

P =




0 0 1

0�0247 + 0�1552
√−1 −0�0741 − 0�1552

√−1 1�0494

0�0247 + 0�1552
√−1 −0�0494 − 0�1552

√−1 1�0247


 � (3.8)

S(�) =



−1 + 6�2832
√−1 0 0

1 + 6�2832
√−1 −1 − 6�2832

√−1 0

0 1 −1


 � (3.9)

An alternative matrix-exponential representation for (�,T ,u) is given
as (�, S(�), e) with � = (0, 0, 1).

Example 3.2. Consider a PH-representation (�,T , e) with T
given in equation (3.10). The eigenvalues of T are �−6�1830 +
2�4352

√−1,−6�1830 − 2�4352
√−1,−0�6341�. Using the Post-T spectral

polynomial algorithm, matrices P and S(�) can be found and are
presented in equations (3.11) and (3.12), respectively. If � = (1, 0, 0),
(�,T , e) has an equivalent bi-diagonal representation (�, S(�), e), where
� = (0�28 + 0�1103

√−1, 0�0989 − 0�1103
√−1, 0�6211). If � = (0, 1, 0),

(�,T , e) has an equivalent bi-diagonal representation (�, S(�), e), where
� = (0, 0�0906, 0�9094).

T =



−6 0 4

2 −2 0

0 4 −5


 � (3.10)

P =


0�28 + 0�1103

√−1 0�0989 − 0�1103
√−1 0�6211

0 0�0906 0�9094

0�14 + 0�0551
√−1 0�0268 − 0�0551

√−1 0�8332


 �

(3.11)



300 He and Zhang

S(�) =



−6�183 + 2�4352
√−1 0 0

6�183 + 2�4352
√−1 −6�183 − 2�4352

√−1 0

0 0�6341 −0�6341


 �

(3.12)

Since not all eigenvalues of T are real, a PH-representation (�,T , e)
may not have an equivalent bi-diagonal PH-representation, except for
some special probability vector �. For example, if � is the non-negative
eigenvector (normalized to have a unit sum) corresponding to the eigen-
value −0�6341, i.e., � satisfies �T = −0�6341�, then (�,T , e) represents an
exponential distribution with parameter 0.6341. An extension of the Post-T
spectral polynomial algorithm discussed in Section 6 can be used to deal
with such cases.

To end this section, we briefly discuss the time and space complexity of
the Post-T spectral polynomial algorithm. First, the algorithm is simple and
only depends on the spectrum of T . Thus, it is quite feasible to implement
the algorithm. Given that the spectrum of T is available, the space
complexity of the algorithm is O(m2) and the time complexity is O(m3). By
using MatLab, a straightforward implementation of the algorithm performs
properly for m up to 50. If m > 50, the algorithm becomes instable since
cumulated machine errors may become significant for such cases.

Note 3.3. For a given matrix-exponential representation (�,T ,u) with
spectrum −�, finding the matrix P is equivalent to solving a linear system:
TP = PS(�) and Pe = u. The linear system is equivalent to

	(P )(T ′ ⊗ I − I ⊗ S(�), I ⊗ e) = (0,u′), (3.13)

where 	(P ) is the direct-sum of P , ⊗ is for Kronecker product of matrices,
and T ′ (or u′) is the transpose of T (or u). For a straightforward
implementation, the space complexity for solving the linear equation
(3.13) is O(m4) and the time complexity is O(m6), which are significantly
larger than that of the Post-T spectral polynomial algorithm. Note
that a linear system approach for computing the new representation
was proposed in O’Cinneide[35] for PH-representations with a PH-simple
triangular generator.

4. PH-REPRESENTATIONS WITH ONLY REAL EIGENVALUES

In this section, we focus on finding bi-diagonal PH-representations of
a PH-representation (�,T , e) for which all eigenvalues of T are real. First,
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we summarize some conclusions related to the Post-T spectral polynomial
algorithm for PH-representations.

Proposition 4.1. For a given PH-representation (�,T , e) with only real
eigenvalues, the following conclusions hold.

4.1.1) P is a matrix with real elements and unit row sums, i.e., Pe = e. The first
column of P – the vector p1 – is always non-negative. Further, if �N =
min��1, �2, � � � , �m�, then pN is non-negative.

4.1.2) S(�) is a Coxian generator. The matrix-exponential representation
(�, S(�), e) with � = �P has the same distribution as (�,T , e).

4.1.3) �S(�), e� ME-majorizes �T , e�. Furthermore, S(�) PH-majorizes T if and
only if the matrix P is non-negative.

4.1.4) If � = �P is non-negative, then (�, S(�), e) is an equivalent Coxian
representation of (�,T , e). If �1 ≥ �2 ≥ · · · ≥ �N and � = �P is non-
negative, then (�, S(�), e) is an equivalent ordered Coxian representation of
(�,T , e).

Here the matrices P and S(�) are given by the Post-T spectral
polynomial algorithm introduced in Section 3.

Proof. Since T is a PH-generator, the assumption that all its eigenvalues
are real implies that all its eigenvalues are negative. Then S(�) is a Coxian
generator.

First note that −T e is non-negative since T is a PH-generator,
which implies that p1 is non-negative. The last part of 4.1.1 is obtained
from the fact that −(�N−1I + T ) · · · (�1I + T )T e is an eigenvector of T
corresponding to the eigenvalue −�N . Since �N = min��1, �2, � � � , �m�, −�N
is the eigenvalue of T with the largest real part. By the Perron-Probenius
theory (Minc[30]), we must have either

−(�N−1I +T ) · · · (�1I +T )T e ≤ 0 or − (�N−1I +T ) · · · (�1I +T )T e ≥ 0�
(4.1)

If −(�N−1I +T ) · · · (�1I +T )T e ≤ 0 with at least one negative element,
let y denote the nonzero and non-negative left eigenvector of T corres-
ponding to eigenvalue −�N and corresponding to the right eigenvector
−(�N−1I + T ) · · · (�1I + T )T e. Then the vector y can be so chosen that
y and −(�N−1I + T ) · · · (�1I + T )T e are not orthogonal to each other.
Consequently, we have −y(�N−1I + T ) · · · (�1I + T )T e < 0. However, since
�N = min��1, �2, � � � , �m� > 0, we have

−y(�N−1I + T ) · · · (�1I + T )T e = (�N−1 − �N ) · · · (�1 − �N )�N (ye) ≥ 0,
(4.2)
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which is a contradiction. Therefore, −(�N−1I +T ) · · · (�1I +T )T e is non-
negative, i.e., pN is non-negative if min��1, �2, � � � , �m�= �N . This proves 4.1.1.

4.1.2 and 4.1.3 are immediate from Proposition 3.1. 4.1.4 is obtained
by definitions and the fact that S(�) is a Coxian or an ordered Coxian
generator. This completes the proof of Proposition 4.1.

Note 4.1. Dehon and Latouche[17] showed that the PH-invariant polytope
conv�ei , 1 ≤ i ≤ m� is located in the intersection of two half spaces.
Geometrically, that means that at least two coordinates of the vector � = �P
are always non-negative for every � in conv�ei , 1 ≤ i ≤ m�. That implies
that at least two columns of P are non-negative, which gives a geometric
interpretation to Proposition 4.1.1.

Next, let us have a look at the following example.

Example 4.1. We consider two PH-representations (�,T1, e) and (�,T2, e)
with

T1 =



−5 0 0�5

1�8 −2 0

0 2 −3


 and T2 =




−5 3 0�5

1 −7 1

1 1�8 −3


 � (4.3)

The matrix T1 has eigenvalues −�1 = (−4�5397,−3�8446,−1�6158).
The matrix T2 has eigenvalues −�2 = (−8�1071,−4�8815,−2�0114). By
using the Post-T spectral polynomial algorithm, the corresponding matrix
P for the case with �1 > �2 > �3 can be obtained as

P1 =


0�9913 −0�0900 0�0988

0�0441 0�4932 0�4627

0�2203 0�1111 0�6686


 and P2 =



0�1850 0�4993 0�3157

0�6167 0�1828 0�2004

0�0247 0�2911 0�6842


,

(4.4)

for T1 and T2, respectively. For T1, P1 is not non-negative. Therefore,
some PH-distributions (�,T1, e) have a Coxian representation (�, S(�1), e)
while others do not. For instance, if � = (1, 0, 0), the corresponding
� = (0�9913,−0�0900, 0�0988) is not non-negative. If � = (0, 1, 0), the
corresponding � = (0�0441, 0�4932, 0�4627) is non-negative. Note that
T1 has a structure close to the unicyclic representation defined in
O’Cinneide[40], which explains partially why for this case we do not have
PH (T1) ⊆ PH (S(�1)). For T2, we have PH (T2) ⊆ PH (S(�2)) since P2 is
non-negative (O’Cinneide[35]). A geometric interpretation of these results
can be found in Figure 1.
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FIGURE 1 PH-invariant polytopes for Example 4.1.

If we choose � = (0, 1�01,−0�01), then both (�,T1, e) and (�,T2, e)
have an equivalent Coxian representation. That implies that (�,T1, e) and
(�,T2, e) represent Coxian distributions. Therefore, the Post-T spectral
polynomial algorithm can find Coxian representations for matrix-
exponential representations (�,T1, e) and (�,T2, e) for which � is not
non-negative.

Let �k be the kth row of P1 or P2, 1 ≤ k ≤ 3. By Definition (2.3), the
polytope conv��k , 1 ≤ k ≤ 3� is PH-invariant under S(�1) or S(�2). The
polytope conv�ek , 1 ≤ k ≤ 3� is PH-invariant under T1 and T2. Note that
(ek ,Ti , e) and (�k , S(�i), e) have the same distribution, for k = 1, 2, 3 and
i = 1, 2. For T1 and T2, we plot the two polytopes conv��k , 1 ≤ k ≤ 3� and
conv�ek , 1 ≤ k ≤ 3� in Figure 1. Part (a) of Figure 1 shows that a small
part of the polytope conv��k , 1 ≤ k ≤ 3� (the triangle with solid lines) is
outside of the polytope conv�ek , 1 ≤ k ≤ 3� (the triangle with dashed lines)
for T1. Thus, for every � with �P in that area, (�P , S(�1), e) is not a Coxian
representation. For T2, from part (b) of Figure 1, the polytope conv��k , 1 ≤
k ≤ 3� is located completely inside conv�ek , 1 ≤ k ≤ 3�. Thus, for every
probability vector �, (�P , S(�2), e) is a Coxian representation.

Example 4.1 indicates that for PH-generator T with only real
eigenvalues, it is possible that every PH-representation (�, T , e) has a
Coxian representation of the same or a smaller order. This gives an
interpretation to the observation in Section 5.8 in Asmussen et al.[6]: “In
most of our experimental work, we found a Coxian distribution to provide almost as
good a fit as a general phase-type distribution with the same m; for one exception,
see the Erlang distribution with feedback in Section 5.3.” Example 4.1 also shows
that the Post-T spectral polynomial algorithm may fail to find a Coxian
representation of the same or a smaller order for some (�, T , e) (since
such a representation may not exist). It is interesting to determine what
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kind of PH-representations has a bi-diagonal PH-representation of the same
or a smaller order. It is also interesting to know, for a given T with
only real eigenvalues, what kind of � corresponds to a bi-diagonal PH-
representation of the same or a smaller order. Proposition 4.1 provides
some general conditions for a PH-representation to have a bi-diagonal
PH-representation. For some special classes of PH-representations, further
results can be obtained. We summarize them in the following theorems.

Theorem 4.2. Assume that the PH-generator T is symmetric. If −� =
(−�1,−�2, � � � ,−�m), ordered as �1 ≥ �2 ≥ · · · ≥ �m, is the spectrum of T , then
S(�) PH-majorizes T , i.e., PH (T ) ⊆ PH (S(�)).

Proof. According to Micchelli and Willoughby[29], the spectral
polynomials are non-negative matrices for any non-negative and symmetric
matrix. It is also well-known that −�1 ≤ min�(T )j ,j , 1≤ j ≤m� for symmetric
matrix T (Ref.[29]). Thus, �1I + T is a non-negative symmetric matrix.
The eigenvalues of �1I + T are ��1 − �m , �1 − �m−1, � � � , �1 − �2, 0� ordered
in nonincreasing order. Applying Theorem 3.2 from Micchelli and Will-
oughby[29] to �1I +T , we obtain that �(�nI +T ) · · · (�1I + T ), 1 ≤ n ≤ m�
are non-negative matrices. Since p1 ≥ 0, by equation (3.3), pn ≥ 0 for
1 ≤ n ≤ m. Thus, the matrix P is non-negative and has unit row sums. By
Proposition 4.1 or Theorem 3 in O’Cinneide[35], PH (T ) ⊆ PH (S(�)). This
completes the proof of Theorem 4.2.

Theorem 4.3 (Cumani[16]). Assume that the PH-generator T is triangular. If
−� = (−�1,−�2, � � � ,−�m), ordered as �1 ≥ �2 ≥ · · · ≥ �m, is the spectrum of T ,
then S(�) PH-majorizes T , i.e., PH (T ) ⊆ PH (S(�)).

Proof. This result has been proved in Cumani[16] (also see Dehon and
Latouche[17] and O’Cinneide[35]). Here we give a new proof and an explicit
expression for the matrix P . Without loss of generality, we assume that
T is lower triangular. All we need to show is pn ≥ 0, for 1≤n ≤m. In
Appendix A, we show that the spectral polynomials �(�nI +T ) · · · (�1I +T ),
1 ≤ n ≤ m� are non-negative matrices. Thus, by equation (3.3), pn ≥ 0,
for 1 ≤ n ≤ m. Therefore, the matrix P is non-negative, i.e., PH (T ) ⊆
PH (S(�)). This completes the proof of Theorem 4.3.

If T does not have a special structure, the spectral polynomial method
can still lead to a complete solution to cases with m = 2 and m = 3.

Theorem 4.4. Every PH-generator T of order 2 is PH-majorized by a Coxian
generator of order 2. That is: if the two eigenvalues �−�1,−�2� of T are ordered as
�1 ≥ �2, we have PH (T ) ⊆ PH (S(�)).
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Proof. This result is well known (see O’Cinneide[35]). Our spectral
polynomial approach provides an alternative proof. Note that, if m = 2,
the two eigenvalues of T are real. If �1 ≥ �2, by 4.1.1 in Proposition 4.1,
the matrix P is non-negative. Therefore, we have PH (T ) ⊆ PH (S(�)). This
completes the proof of Theorem 4.4.

Theorem 4.5. Consider a PH-generator T of order 3. If all eigenvalues
�−�1,−�2,−�3� of T are real (counting multiplicities), then T is PH-majorized
by an ordered Coxian generator of order 4 or a smaller order. Furthermore,
if min�−�1,−�2,−�3� ≤ min�(T )1,1, (T )2,2, (T )3,3�, T is PH-majorized by an
ordered Coxian generator of order 3 or a smaller order.

Proof. See Appendix B. Note that Appendix B not only proves the
existence of an ordered Coxian generator of order 4 or a smaller order that
PH-majorizes T , but also provides a method for computing such a Coxian
generator and the corresponding matrix P .

Note 4.2. For Theorems 4.2 to 4.5, ��1, �2, � � � , �m� are required to be
in non-increasing order to ensure P to be non-negative. If ��1, �2, � � � , �m�
is not ordered that way, the result can be different. For example, the
PH-generator T given in equation (4.5) is symmetric with eigenvalues
�−11�8553,−5�6190,−2�5257�.

T =



−10 3 0�5

3 −7 1

0�5 1 −3


 � (4.5)

For �1 = (11�8553, 5�6190, 2�5257) and �2 = (2�5257, 5�6190, 11�8553), the
corresponding matrices P are denoted as P1 and P2, respectively, and are
given in equation (4.6):

P1=


0�5483 0�3274 0�1243

0�2531 0�5339 0�2130

0�1265 0�2932 0�5803


 and P2=



2�5735 −2�7363 1�1627

1�1878 0�5339 −0�7217

0�5939 0�3903 0�0158


�

(4.6)

For �1 with �1 > �2 > �3, P1 is non-negative. Thus, we have PH (T ) ⊆
PH (S(�1)). However, for �2, P2 is not non-negative, which implies that
PH (T ) ⊆ PH (S(�2)) does not hold. Proposition 5.1 explains partially why
��1, �2, � � � , �m� should be ordered in non-increasing order. See He and
Zhang[18] for a comprehensive geometric interpretation on this issue.
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5. PROPERTIES AND APPLICATIONS

Results in Section 4 indicate a strong relationship between the spectral
polynomial algorithm and the ordered Coxian representation. In this
section, we further explore that relationship and show some applications.

Proposition 5.1. Assume that � = (�1, �2, � � � , �m) are positive numbers ordered
as �1 ≥ �2 ≥ · · · ≥ �m. Let � = (
1, 
2, � � � , 
N ). If 
 is a subset of � (i.e., the set
of elements of 
 is a subset of the set of elements of �), then S(�) PH-majorizes S(�).

Proof. Since � is a subset of �, we must have m ≥ N . We introduce
a new set � by �1 = 
1, � � � , �N = 
N , and ��N+1, � � � , �m� = ��j : �j ∈ � and
�j � ��. Then � is an ordered set of �. Since the PH-generator S(�) is lower
triangular, and S(�) and S(�) have the same spectrum, by Theorem 4.3,
there exists an m × m stochastic matrix L such that S(�)L = LS(�). We
decompose L and S(�) as follows

L =
(
L1

L2

)
and S(�) =

(
S(�) 0

S21 S2

)
(5.1)

where L1 is an N × m matrix and L2 is an (m − N ) × m matrix. It can be
verified that S(�)L1 = L1S(�). It is readily seen that L1 is non-negative and
has unit row sums. Therefore, S(�) PH-majorizes S(�). This completes the
proof of Proposition 5.1.

For a given PH-representation (�,T , e), if it has a Coxian representa-
tion (�, S(�), e) (� is a probability vector), then it has an ordered Coxian
representation (�′, S(�), e) when � ⊆ � and �1 ≥ �2 ≥ · · · ≥ �m . In fact,
the conclusion can be obtained directly since �′ = �PL1 is non-negative
if � = �P is non-negative, where P satisfies TP = PS(�) and Pe = e.
Furthermore, it is possible that �′ is non-negative while � is not non-
negative.

Assume that information about the minimal polynomial fT (�) of T is
available and we can find the roots �−�1,−�2, � � � ,−�K � of fT (�). Then
some results on the minimal PH-representation of a PH-distribution can be
obtained. Define the PH-order of a PH-distribution as the minimal number
of phases required by any PH-representation of that PH-distribution. We
give two such examples in the following proposition.

Proposition 5.2. Assume that T is lower triangular or symmetric and �1 ≥
�2 ≥ · · · ≥ �K . Then we have PH (T ) ⊆ PH (S(�)), i.e., S(�) PH-majorizes T .
Consequently, the PH-distribution (�,T, e) has a PH-order no larger than K .
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Proof. According to the proofs of Theorems 4.2 and 4.3, for both cases,
the spectral polynomials (�nI + T ) · · · (�1I + T ) corresponding to the
eigenvalue set � are non-negative. For the symmetric case, K is the number
of distinct eigenvalues. From Theorems 4.2 and 4.3 and Proposition 5.1, it
is readily seen that an ordered Coxian representation of order K exists for
(�,T , e). Therefore, the PH-order of PH-distribution (�,T , e) is not larger
than K . This completes the proof of Proposition 5.2.

We can also use the Post-T spectral polynomial algorithm and the
ordered Coxian distributions to explore the stochastically larger order
for matrix-exponential distributions (with only real eigenvalues). Denote
by F1(t) and F2(t) the distribution functions of (�1,T ,u) and (�2,T ,u),
respectively. We say that (�1,T ,u) is stochastically larger than (�2,T ,u) if
F1(t) ≤ F2(t) for t ≥ 0. For two row vectors �i = (�i ,1, �i ,2, � � � , �i ,m), i =
1, 2, if �1,1 + �1,2 + · · · + �1,n ≤ �2,1 + �2,2 + · · · + �2,n , for 1 ≤ n ≤ m, and
equality holds for n = m, then we say that �2 majorizes �1 (Marshall and
Olkin[28]). Note that �1 and �2 do not have to be non-negative.

Lemma 5.1. For matrix-exponential distributions (�1, S(�), e) and (�2, S(�), e)
with positive � ordered as �1 ≥ �2 ≥ · · · ≥ �m > 0, (�1, S(�), e) is stochastically
larger than (�2, S(�), e) if �2 majorizes �1.

Proof. Let F1(t) and F2(t) be the distribution functions of the two
distributions (�1, S(�), e) and (�2, S(�), e), respectively. Suppose that
�i = (�i ,1, �i ,2, � � � , �i ,m), i = 1, 2. By definition, we have

Fi(t) =
m∑
j=1

�i ,jGj(t), t ≥ 0, i = 1, 2, (5.2)

where Gj(t) is the distribution function of (ej , S(�), e), 1 ≤ j ≤ m. Note that
Gj(t) is the distribution function of the sum of j independent exponential
random variables with parameters ��1, �2, � � � , �j�. Then it is easy to see
that G1(t) ≥ G2(t) ≥ · · · ≥ Gm(t), t ≥ 0. By equation (5.2), it is easy to
obtain

Fi(t) =
m−1∑
j=1

( j∑
k=1

�i ,k

)
(Gj(t) − Gj+1(t)) + Gm(t), t ≥ 0, i = 1, 2� (5.3)

Note that �1e = �2e = 1. If �2 majorizes �1, by equation (5.2), we have
F1(t) ≤ F2(t) for t ≥ 0. Consequently, (�1, S(�), e) is stochastically larger
than (�2, S(�), e). This completes the proof of Lemma 5.1.
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Combining with the Post-T spectral polynomial algorithm, Lemma 5.1
leads to the following stochastic comparison result for matrix-exponential
distributions.

Proposition 5.3. Consider two matrix-exponential distributions (�1,T ,u) and
(�2,T ,u). Then (�1,T ,u) is stochastically larger than (�2,T ,u) if there exists
positive � = (�1, �2, � � � , �m), ordered as �1 ≥ �2 ≥ · · · ≥ �m, such that TP =
PS(�), Pe = u, and �2P majorizes �1P .

Proof. By Proposition 3.1, the matrix exponential distribution (�i ,T ,u)
has a bi-diagonal representation (�iP , S(�), e), i = 1, 2. Then we apply
Lemma 5.1 to obtain the desired result. This completes the proof of
Proposition 5.3.

6. EXTENSIONS OF THE POST-T SPECTRAL
POLYNOMIAL ALGORITHM

First, we propose a dual algorithm to the Post-T spectral polynomial
algorithm. As in Section 3, we consider a matrix-exponential representa-
tion (�, T , u) of order m. For the Post-T spectral polynomial algorithm,
we find �P , S(�)� from �T ,u�, while � is a free vector variable. For the
Pre-T spectral polynomial algorithm to be introduced next, we shall find
�Q , S(�)� from ��,T � and leave u as a free vector variable.

For �x1, x2, � � � , xN � with nonzero elements, and a given row vector q1 of
size m, we define

qn = qn−1(xn−1I + T )/xn , 2 ≤ n ≤ N + 1, (6.1)

where xN+1 = 1. If qN+1 = 0, it is readily seen that qnT = −xnqn + xn+1qn+1,
for 1 ≤ n ≤ N − 1, and qN T = −xNqN , which is equivalent to the following
matrix equation

QT = (S(x))′Q , (6.2)

where Q is an N × m matrix with rows �qn , 1 ≤ n ≤ N �. Equation (6.2)
shows that the polytope conv �qn , 1 ≤ n ≤ N � is invariant under T . Similar
to the Post-T case, we choose −x as the spectrum of T : x = � =
(�1, �2, � � � , �m) and N = m. For this choice of x, equation (6.1) becomes

qn = 1
�2 � � � �n

q1(�1I + T ) · · · (�n−1I + T ), 2 ≤ n ≤ m + 1, (6.3)

where �m+1 = 1. Then qm+1 = 0 holds by the Cayley–Hamilton theorem. Let
q1 = −�T /�1. Then we have � = e′Q by equation (3.4). Let v = Qu. In view
of zero mass at t = 0, we have v′e = �u = 1.
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Pre-T Spectral Polynomial Algorithm

For a given matrix-exponential representation (�,T ,u), we assume that
all eigenvalues of T are nonzero.

Step 1: Find the spectrum �−�1,−�2, � � � ,−�m� of T .
Step 2: Compute q1 = −�T /�1 and �qn , 2 ≤ n ≤ m� by equation (6.3). Set

N = max�n : qn = 0� − 1.
Step 3: Construct the bi-diagonal matrix S(�) of size N with � =

(�1, � � � , �N ). Define a matrix Q with row vectors �qn , 1 ≤ n ≤ N �.
Compute v = Qu. Then (e′, (S(�))′, v) (or (v′, S(�), e)) of order N
represents the same distribution as (�,T ,u).

In essence, the Pre-T and the Post-T spectral polynomial algorithms
are the same. The reason is that (�,T ,u) and (u′,T ′, �′) represent the
same matrix-exponential distribution. Thus, applying the Pre-T spectral
polynomial algorithm on (�,T ,u) is equivalent to applying the Post-T
spectral polynomial algorithm on (u′,T ′, �′).

We like to point out that, even though the spectral polynomial
algorithms can be efficient in finding bi-diagonal representations, they may
not be efficient in reducing the orders of representations. For instance,
if T e = −�me, by direct calculations, it can be shown that (�,T , e) is an
exponential distribution with parameter �m for any vector � with a unit
sum. That implies that the PH-order of distribution (�,T , e) is 1. Assume
that �1 > �2 > · · · > �m > 0. Let

ci = �m

�i

i−1∏
j=1

(
1 − �m

�j

)
, 1 ≤ i ≤ m� (6.4)

By equation (3.3), we have pi = cie, 1 ≤ i ≤ m, and P = e(c1, � � � , cm) ≡ ec.
Note that c is a probability vector. Thus, any matrix-exponential
representation (�,T , e) has an ordered Coxian representation (c, S(�), e)
of order m. This example shows that the Post-T spectral polynomial
algorithm is not able to reduce the order of the representation to 1.

Nevertheless, if information about Jordan chains of T is available,
the spectral polynomial algorithm can be extended to find the smallest
matrix-exponential representation in a bi-diagonal form. For instance, for
the above example, if we know that T e = −�me, we choose � = (�m) and
N = 1. Then we find the exponential distribution immediately by using the
Post-T spectral polynomial algorithm.

In general, we consider a matrix-exponential distribution (�,T ,u).
Suppose that � is located in the linear subspace generated by Jordan
chains ��i , 1 ≤ i ≤ N � corresponding to eigenvalues �−�1,−�2, � � � ,−�N �
(counting multiplicities), i.e., � = ∑N

i=1 xi�i . We assume that, if an
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eigenvalue −� is in �−�1,−�2, � � � ,−�N � and its corresponding Jordan block
is of order n, then −� repeats n times in �−�1,−�2, � � � ,−�N �. Based on
that assumption, we have �i(�1I + T ) · · · (�N I + T ) = 0 for 1 ≤ i ≤ N (see
Lancaster and Tismenetsky[22]). Thus, we have

�qN+1 = 1
�1�2 � � � �N+1

(
N∑
i=1

xi�i

)(
�1I + T

)(
�2I + T

) · · · (�N I + T
)
T

= 1
�1�2 � � � �N+1

(
N∑
i=1

xi�i

(
�1I + T

)(
�2I + T

) · · · (�N I + T
)
T

)

= 0, (6.5)

where qN+1 is defined in equation (6.3). Then the Pre-T spectral polynomial
algorithm produces an equivalent bi-diagonal representation (v′, S(�), e) of
order N for (�,T ,u). More systematic studies on order reduction can be
found in He and Zhang[18,19].

Example 6.1. Consider (�,T , e) with T given as

T =




−15 0 1 1 2
1 −5 0�5 1 0�5
2 0 −4 0 1
0 2 1 −7 1
1 0�5 0 2 −5


 (6.6)

The matrix T has five distinct eigenvalues: −15�3197, −7�9712, −2�5075,
−5�1008 + 0�1706

√−1, and −5�1008 − 0�1706
√−1. The left eigenvectors

corresponding to the eigenvalues are, respectively,

�1 = (−0�9987,−0�0242,−0�0822,−0�0799, 0�1790);
�2 = (0�1456, 0�6685, 0�1346,−1�0146, 0�0856);
�3 = (0�1670, 0�4394, 0�5266, 0�3992, 0�5936);
�4 = (0�0623 − 0�1325

√−1,−0�1051 + 3�8057
√−1,

0�4935 − 1�7255
√−1,−0�2587 + 0�2133

√−1,
− 0�2424 − 1�6561

√−1);
�5 = (0�0623 + 0�1325

√−1,−0�1051 − 3�8057
√−1,

0�4935 + 1�7255
√−1,−0�2587 − 0�2133

√−1,
− 0�2424 + 1�6561

√−1)�

(6.7)

Although the PH-generator T has complex eigenvalues, (�,T , e) may
have an ordered Coxian representation. For example, suppose that � =
(0�0324, 0�3082, 0�2836, 0�0594, 0�3164) = (0�1�1 + 0�2�2 + 0�7�3)/r , where
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r = (0�1�1 + 0�2�2 + 0�7�3)e, i.e., � is in the subspace generated by three
Jordan chains ��1�, ��2�, and ��3� corresponding to eigenvalues �−15�3197,
−7�9712,−2�5075�. Then we choose � = (15�3197, 7�9712, 2�5075) and
apply the Pre-T spectral polynomial algorithm. It can be found that
(�,T , e) has an ordered Coxian representation (v′, S(�), e), where

v′ = (0�1246, 0�2763, 0�5991),
(6.8)

S(�) =

−15�3197 0 0

7�9712 −7�9712 0
0 2�5075 −2�5075


 �

Note 6.1. If the vector e is located in a subspace generated by some
Jordan chains of T , it can be shown in a similar way that a bi-diagonal
representation of a smaller order can be found for (�,T , e).

7. CONCLUDING REMARKS

The results obtained in this paper hold for discrete time PH-
distributions, which are defined as the distributions of the absorption
times of discrete time Markov chains with a finite number of states.
The main reason is the following relationship between discrete time PH-
distributions and continuous time PH-distributions. For a continuous time
PH-distribution (�,T , e), define S = I + T /v for v > max�−(T )j ,j�. The
matrix S is a substochastic matrix and

� exp�Tt�e = �e−vt exp�Svt�e = e−vt
∞∑
n=0

(vt)n

n! �Sne� (7.1)

Equation (7.1) establishes a relationship between (�,T , e) and the
discrete time PH-distribution (�, S , e). For a given v (large enough), the
distributions of (�,T , e) and (�, S , e) determine each other uniquely.
Thus, (�,T , e) has an equivalent PH-representation (�,T1, e) if and only
if (�, S , e) has an equivalent PH-representation (�, S1, e), where T1 and S1
have the relationship S1 = I + T1/v. By equation (7.1), we can translate
a PH-representation problem of discrete time PH-distributions into a
continuous time one. Therefore, all results obtained in this paper apply to
the discrete time case.

This paper does not consider the minimal PH-representation problem
directly, although the results in this paper can be used in the study of
that problem. The results obtained in this paper indicate that finding the
minimal PH-representation has much to do with PH-invariant polytopes
with the minimum number of extreme points. Therefore, how to construct
PH-invariant polytopes with a smaller number of extreme points can
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be a key to solving the problem. Research in this direction is ongoing
(He and Zhang[18,19]). In Ref.[18], we construct PH-invariant polytopes
associated with bi-diagonal representations of PH-distributions. Geometric
and probabilistic interpretations to the spectral polynomial algorithms are
offered. In Ref.[19], we develop an algorithm for computing a minimal
ordered Coxian representation for PH-distributions whose Laplace-Stieltjes
transforms have only real poles.

APPENDIX A. NONNEGATIVITY OF SPECTRAL POLYNOMIALS
OF TRIANGULAR MATRICES

This appendix gives a proof to the non-negativity of the spectral
polynomials of lower triangular matrices with non-negative off-diagonal
elements. Assume that T is a lower triangular matrix with non-negative
off-diagonal elements. Suppose that �−�1,−�2, � � � ,−�m� are the diagonal
elements of T and are ordered as �1 ≥ �2 ≥ · · · ≥ �m . We show that the
spectral polynomials �(�nI + T ) · · · (�1I + T ), 1 ≤ n ≤ m� are non-negative
matrices. Note that T = (ti ,j).

Let T (n) = (
t (n)i ,j

) = (
�nI + T

) · · · (�1I + T
)
, 1 ≤ n ≤ m. Since T is lower

triangular, t (n)i ,j = 0 if j > i . It is easy to see that

t (n)i ,i = (�1 + ti ,i) · · · (�n + ti ,i), 1 ≤ i ≤ m� (A.1)

Thus, t (n)i ,i ≥ 0, since either −ti ,i ∈ ��1, �2, � � � , �n� or −ti ,i < �n , 1 ≤ i ≤ m.
For j < i , we have

t (n)i ,j = ti ,j
n∑

d=1

(
d−1∏
s=1

(
�s + ti ,i

))(
n∏

s=d+1

(
�s + tj ,j

))

+
j−i−1∑
k=1

∑
i<i1<···<ik<j

ti ,i1 ti1,i2 � � � tik ,j
∑

1≤d1<d2<···<dk≤n

(
d1−1∏
s=1

(�s + ti ,i)

)

×
( d2−1∏

s=d1+1

(�s + ti1,i1)

)
· · ·

(
dk−1∏

s=dk−1+1

(
�s + tik ,ik

))(
n∏

s=dk+1

(
�s + tj ,j

))
�

(A.2)

Intuitively, the above expression shows that t (n)i ,j can be interpreted
as the transition “probability” from state i to state j in n steps with
transition matrices ��nI + T , � � � , �1I + T �. To prove the non-negativity of
t (n)i ,j , we introduce the function g (x) = (�n + x) · · · (�1 + x). Define the
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divided differences of g (x) as follows (Horn and Johnson[20]), g [x] = g (x),
and

g [x1, x2] = g [x1] − g [x2]
x1 − x2

;

g [x1, x2, � � � , xn , xn+1] = g [x1, x2, � � � , xn−1, xn+1] − g [x1, x2, � � � , xn−1, xn]
xn+1 − xn

�

(A.3)

It can be shown that g [x1, � � � , xk] is permutation invariant. In fact, it can
be verified that, for 2 ≤ k ≤ n,

g [x1, � � � , xk] =
∑

1≤d1<d2<···<dk−1≤n

(
d1−1∏
s=1

(�s + x1)

)
· · ·

(
n∏

s=dk−1+1

(�s + xn)

)
�

(A.4)

By using the divided differences of g (x), equation (A.2) can be
rewritten as

t (n)i ,j = ti ,j g
[
ti ,i , tj ,j

] +
j−i−1∑
k=1

∑
i<i1<···<ik<j

ti ,i1 ti1,i2 � � � tik ,j g
[
ti ,i , ti1,i1 , � � � , tik ,ik , tj ,j

]
�

(A.5)

We can arrange �ti ,i , ti1,i1 , � � � , tik ,ik , tj ,j� in increasing order and the
divided differences remain unchanged. Next, we show that g [ti ,i , ti1,i1 , � � � ,
tik ,ik , tj ,j ] ≥ 0. To simply the notation, we use g [x1, � � � , xN ], where �x1, � � � ,
xN �⊆ �−�1, � � �,−�m�. Ifmin�x1, � � �, xN �≥ max�−�1, � � �,−�n�, equation(A.4)
implies that g [x1, � � � , xN ] ≥ 0. Otherwise, some xi is in �−�1, � � � ,−�n�.
Assume that x1 ≤ x2 ≤ · · · ≤ xN , xK ∈ �−�1, � � �,−�n�, and xK+1 � �−�1, � � � ,
−�n�. We rearrange the function g (x) in the following way:

g (x) =
( ∏

i≤n: �i∈�x1,���,xN �

(x + �i)

)( ∏
i≤n: �i � �x1,���,xN �

(x + �i)

)
≡ g1(x) g2(x)�

(A.6)

By Steffenson’s product rule (Ref.[29]), we have

g [x1, x2, � � � , xN ] =
N∑
s=1

g1[x1, x2, � � � , xs] g2 [xs , � � � , xN ]� (A.7)

If s ≤ K , we have g1[x1, � � �, xs] = 0 since g1(xi) = 0, 1 ≤ i ≤ s. If s > K ,
g1[x1, � � � , xs] = 1 and g2[xs , � � � , xN ] ≥ 0 since xi > max�−�1, � � �,−�n�,
K + 1 ≤ i ≤ N . Equation (A.7) shows that g[x1, � � � , xs] is non-negative.
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Thus, every g [ti ,i , ti1,i1 , � � � , tik ,ik , tj ,j ] is non-negative. Equation (A.5) implies
that the spectral polynomials are all non-negative. This completes the
proof of Appendix A.

APPENDIX B. A PROOF OF THEOREM 4.5

First, we note that results about M -matrix and non-negative matrix can
be found in Minc[30] and Seneta[43]. Suppose that �1 ≥ �2 ≥ �3. By 4.1.1 of
Proposition 4.1, p1 and p3 are non-negative. Thus, to prove the second
result, we only need to show that p2 is non-negative. By equation (3.3), we
have p2 = (�1I + T )(−T e)/(�1�2). If −�1 = min�−�1,−�2,−�3� ≤ min�t1,1,
t2,2, t3,3�, �1I + T is non-negative. Note that T = (ti ,j). Therefore, p2 is non-
negative, which implies that P is non-negative. Thus, under that condition,
(�,T , e) has an ordered Coxian representation of order 3 or a smaller
order. This proves the second part of Theorem 4.5.

To show the general result, we order �t1,1, t2,2, t3,3� in increasing order
as t(1,1) ≤ t(2,2) ≤ t(3,3). We first show that −�1 ≤ t(2,2). It is well known that
−(�1 + �2 + �3) = t1,1 + t2,2 + t3,3 = t(1,1) + t(2,2) + t(3,3). It is also known from
Perron-Frobenius theory that t(3,3) ≤ −�3. If −�1 > t(2,2), then −(�1 +
�2 + �3) > 2t(2,2) + t(3,3) ≥ t(1,1) + t(2,2) + t(3,3) = t1,1 + t2,2 + t3,3, which is a
contradiction. An immediate implication of −�1 ≤ t(2,2) is that at most
one element of p2 can be negative, since p2 = (�1I + T )(−T e)/(�1�2). To
prove the general result, we need to consider three cases.

First, if p2 is non-negative, the conclusion is obvious.
Second, if p2 is not non-negative and �p1,p2,p3� are dependent, then

�T e,T 2e,T 3e� are dependent, which implies that �e,T e,T 2e� are dep-
endent (since m = 3). That further implies that (�1I + T )(�2I + T )e = 0
for some �1 and �2. Suppose that u is a left eigenvector corresponding
to −�3. Since the eigenvector corresponding to −�3 can be chosen to be
non-negative (and must be nonzero), we choose u to be non-negative and
normalize u by ue = 1. Pre-multiplying u on both sides of (�1I + T )
(�2I + T )e = 0 yields (�1 − �3)(�2 − �3) = 0. Thus, we must have (say)
�2 = �3. Then it is easy to see that either T e = −�3e or �1 ∈ ��1, �2�. For
the first case, (�,T , e) is an exponential distribution for any probability
vector �. For the second case, we apply the Post-T spectral polynomial
algorithm with ��1, �2�. Then the new vector p2 is non-negative since it is
an eigenvector corresponding to −�3 (see the proof of Proposition 4.1.1).
Thus, the new matrix P is non-negative for this case as well. Therefore,
if �p1,p2,p3� are dependent, P is non-negative and an ordered Coxian
representation of order 1 or 2 can be found for (�,T , e) for any probability
vector �.

Lastly, if p2 is not non-negative and �p1,p2,p3� are independent, let
P = (p1,p2,p3) = (pi ,j). Without loss of generality, suppose that the first
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element of p2 is negative. Then it is clear that the PH-representation
(e1,T , e) has a representation ((p1,1, p1,2, p1,3), S(�), e), which is not a PH-
representation since p1,2 is negative. Let Q = P−1. Denote by �q1,q2,q3� the
first row, second row, and third row of Q , respectively. Then we have QT =
S(�)Q , i.e., conv�q1,q2,q3� is a PH-invariant polytope under T . That PH-
invariant polytope covers probability vector e2 and e3, but not e1. In order
to construct a PH-invariant polytope that covers all probability vectors,
we consider the polytope conv�q1,q2,q3, e1�. More specifically, by using
PQ = I , we have

e1T = t1,1e1 + t1,2e2 + t1,3e3

= t1,1e1 +
3∑

i=1

(
t1,2p2,i + t1,3p3,i

)
qi ≡ t1,1e1 +

3∑
i=1

wiqi � (B.1)

By the definition of �w1,w2,w3�, we have

w1 + w2 + w3 + t1,1 =
3∑

i=1

(
t1,2p2,i + t1,3p3,i

) + t1,1

= t1,2
3∑

i=1

p2,i + t1,3
3∑

i=1

p3,i + t1,1

= t1,2 + t1,3 + t1,1 ≤ 0� (B.2)

Let

Q1 =
(
Q
e1

)
and H =

(
S(�) 0

(w1,w2,w3) t1,1

)
(B.3)

By equations (B.1) and (B.2), it is easy to verify Q 1T = HQ1, Q 1e = e,
and H is a PH-generator. By the definition of Q 1, it is easy to see that
the polytope conv�q1,q2,q3, e1� is PH-invariant under T and it covers all
probability vectors � of order 3. Since H is a lower triangle PH-generator,
by Theorem 4.3, there exists a stochastic matrix P1 and an ordered Coxian
generator S1 with spectrum �−�1,−�2,−�3, t1,1� such that HP1 = P1S1.

For any probability vector � = (�1, �2, �3), we have

� = �1e1 + �2e2 + �3e3 = �1e1 + �2

3∑
i=1

p2,iqi + �3

3∑
i=1

p3,iqi

= �1e1 +
3∑

i=1

(�2p2,i + �3p3,i)qi ≡
3∑

i=1

xiqi + x4e1� (B.4)
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It is easy to verify that �x1, x2, x3, x4� are non-negative and x1 + x2 +
x3 + x4 = 1. Thus, there exists a probability vector x = (x1, x2, x3, x4) such
that � = xQ 1. Then (�,T , e) and (x,H , e) represent the same probability
distribution. Let � = xP1, which is a probability vector. Then (�, S1, e) is
an ordered Coxian representation of order 4, which represents the same
probability distribution as (x,H , e) and (�,T , e). This completes the proof
of Theorem 4.5.

ACKNOWLEDGMENTS

The authors would like to thank an anonymous referee and Dr.
O’Cinneide for valuable comments and suggestions on the paper. The
authors would also like to thank Dr. Marvin Silver for proofreading the
paper. This research project was supported in part by a NSERC research
grant and a research grant from the Chinese Academy of Sciences.

REFERENCES

1. Aldous, D.; Shepp, L. The least variable phase type distribution is Erlang. Stochastic Models.
3 (3), 467–473.

2. Alfa, A.S.; Chakravarthy, S.R., Eds. Advances in Matrix Analytic Methods for Stochastic Models;
Notable Publications: New Jersey, 1998.

3. Asmussen, S. Applied Probability and Queues; Springer: New York, 2003.
4. Asmussen, S. Exponential families generated by phase-type distributions and other Markov

lifetimes. Scand. J. Statist. 1989, 16, 319–334.
5. Asmussen, S.; Bladt, M. Renewal theory and queueing algorithms for matrix-exponential

distributions. In Proceedings of the First International Conference on Matrix Analytic Methods in
Stochastic Models; Alfa, A.S.; Chakravarthy, S., Eds.; Marcel Dekker: New York, 1996.

6. Asmussen, S.; Nerman, O.; Olsson, M. Fitting phase-type distributions via the EM algorithm.
Scand. J. Statist. 1996, 23, 419–441.

7. Blackwell, D.; Koopmans, L. On the identifiability problem for functions of finite Markov chains.
Ann. Math. Statist. 1957, 28, 1011–1015.

8. Botta, R.F.; Harris, C.M.; Marchal, W.G. Characterizations of generalized hyperexponential
distribution functions. Stochastic Models 1987, 3 (1), 115–148.

9. Chakravarthy, S.R.; Alfa, A.S. Matrix-Analytic Methods in Stochastic Models; Marcel Dekker: New
York, 1997.

10. Commault, C. Linear positive systems and phase-type representations. Positive Systems,
Proceedings 2003, 294, 281–288.

11. Commault, C.; Chemla, J.P. On dual and minimal phase-type representations. Stochastic Models
1993, 9, 421–434.

12. Commault, C.; Chemla, J.P. An invariant of representations of phase-type distributions and some
applications. Journal of Applied Probability 1996, 33, 368–381.

13. Commault, C.; Mocanu, S. A generic property of phase-type representations. Journal of Applied
Probability 2002, 39, 775–785.

14. Commault, C.; Mocanu, S. Phase-type distributions and representations: some results and open
problems for system theory. International Journal of Control 2003, 76, 566–580.

15. Cox, D.R. On the use of complex probabilities in the theory of stochastic processes. Proc. Camb.
Phil. Soc. 1955, 51, 313–319.

16. Cumani, A. On the canonical representation of Markov processes modeling failure time
distributions. Microelectronics and Reliability 1982, 22 (3), 583–602.

17. Dehon, M.; Latouche, G. A geometric interpretation of the relations between the exponential
and the generalized Erlang distributions. Adv. Appl. Probab. 1982, 14, 885–897.



Spectral Polynomial Algorithms 317

18. He, Qi-Ming; Zhang, H. PH-invariant polytopes and coxian representations of PH-representations
(in press).

19. He, Qi-Ming; Zhang, H. An algorithm for computing minimal coxian representations (submitted
for publication).

20. Horn, R.A.; Johnson, C.R. Matrix Analysis; Cambridge University Press: Cambridge, 1991.
21. Ito, H.; Amari, S.I.; Kobayashi, K. Identifiability of hidden Markov information sources and their

minimum degrees of freedom. IEEE Trans. Inf. Theory 1992, 38, 324–333.
22. Lancaster, P.; Tismenetsky, M. The Theory of Matrices; Academic Press: New York, 1985.
23. Latouche, G.; Ramaswami, V. Introduction to Matrix Analytic Methods in Stochastic Modelling; ASA

& SIAM: Philadelphia, USA.
24. Latouche, G.; Taylor, P., Eds. Advances in Algorithmic Methods for Stochastic Models; Notable

Publications: New Jersey.
25. Latouche, G.; Taylor, P., Eds. Matrix-Analytic Methods: Theory and Applications; World Scientific:

New Jersey.
26. Maier, R.S. The algebraic construction of phase-type distributions. Stochastic Models 1991, 7

(4), 573–602.
27. Maier, R.S.; O’Cinneide, C.A. A closure characterization of phase-type distributions. Journal of

Applied Probability 1992, 29, 92–103.
28. Marshall, A.W.; Olkin, I. Inequalities: Theory of Majorization and its Applications; Academic Press:

New York, 1979.
29. Micchelli, C.A.; Willoughby, R.A. On functions which preserve the class of Stieltjes matrices.

Linear Algebra and its Applications 1979, 23, 141–156.
30. Minc, H. Non-negative Matrix; John Wiley & Sons: New York, 1988.
31. Mocanu, S.; Commault, C. Sparse representations of phase type distributions. Stochastic Models

1999, 15, 759–778.
32. Neuts, M.F. Probability distributions of phase type. In: Liber Amicorum Prof. Emeritus H. Florin;

University of Louvain: Louvain, 1975; 173–206.
33. Neuts, M.F. Matrix-Geometric Solutions in Stochastic Models – An Algorithmic Approach; The Johns

Hopkins University Press: Baltimore, 1981.
34. Neuts, M.F. Two further closure-properties of PH-distributions. Asia-Pacific Journal of

Operational Research 1992, 9, 77–85.
35. O’Cinneide, C.A. On non-uniqueness of representations of phase-type distributions. Stochastic

Models 1989, 5 (2), 247–259.
36. O’Cinneide, C.A. Characterization of phase-type distributions. Stochastic Models 1990, 6 (1),

1–57.
37. O’Cinneide, C.A. Phase-type distributions and invariant polytope. Adv. Appl. Probab. 1991, 23,

515–535.
38. O’Cinneide, C.A. Phase-type distributions and majorization. Annals of Applied Probability 1991,

1 (2), 219–227.
39. O’Cinneide, C.A. Triangular order of triangular phase-type distributions. Stochastic Models 1993,

9 (4), 507–529.
40. O’Cinneide, C.A. Phase-type distributions: open problems and a few properties. Stochastic

Models 1999 15 (4), 731–757.
41. Rockafellar, R.T. Convex Analysis; Princeton University Press: New Jersey.
42. Ryden, T. On identifiability and order of continuous-time aggregated markov chains, Markov-

modulated Poisson processes, and phase-type distributions. Journal of Applied Probability 1996,
33, 640–653.

43. Seneta, E. Non-Negative Matrices: An Introduction to Theory and Applications; John Wiley & Sons:
New York, 1973.

44. Telek, M. The minimal coefficient of variation of discrete phase type distributions. In Proceedings
of the First International Conference on Matrix Analytic Methods in Stochastic Models; Latouche, G.;
Taylor, P.G., Eds.; Notable Publications, Inc.: New Jersey, 2000.

45. Yao, R. A. Proof of the steepest increase conjecture of a phase-type density. Stochastic Models
2002, 18 (1), 1–6.


