
Coxian Approximations of Matrix-Exponential
Distributions

Qi-Ming He∗ and Hanqin Zhang†

April 17, 2007

Abstract
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show that any phase-type generator with only real eigenvalues is PH-majorized by some
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1 Introduction

This paper focuses on the approximation of matrix-exponential (ME) distributions by Cox-

ian distributions. An algorithm is developed for computing Coxian representations of Coxian

approximations of ME-distributions. As a specialization, the problem of Coxian approxima-

tions of phase-type (PH) distributions is resolved. Moreover, the algorithm developed in this

paper is modified for computing ordered Coxian representations for PH-distributions whose

Laplace-Stieltjes transform has only real poles.

Neuts [22] introduced the PH-distribution as the distribution of the absorption time of

a finite-state Markov process. Since the class of PH-distributions is dense in the class of

all probability distributions with nonnegative support, the introduction of PH-distributions

made it possible to study complicated queueing models such as the PH/PH/c queue an-

alytically and numerically (Takahashi [33]). ME-distributions are generalizations of PH-

distributions and have been used in the study of queueing models (Lipsky [19]). Asmussen

and Bladt [4] studied ME-distributions and their corresponding renewal processes and queue-

ing models. Today, both PH-distributions and ME-distributions have been widely used in

the study of queueing networks, reliability models, supply chain models, insurance and risk

models, and telecommunications systems (Asmussen [2, 3], Latouche and Ramaswami [18],

Neuts [23, 24], and references therein).

It is well known that the representation of a PH-distribution is not unique. To reduce the

time complexity of algorithms involving PH-distributions, it is useful to find representations

with the minimal number of phases. This is known as the minimal PH-representation prob-

lem (Commault and Mocanu [7], Mocanu and Commault [21], Neuts [22, 25], O’Cinneide

[26, 27, 28, 29, 30]). Commault and Mocanu [7] and O’Cinneide [30] reviewed the lit-

erature on PH-distributions in recent years. While the problem of finding the minimal

PH-representation of a PH-distribution is still open, the problem of finding simpler rep-

resentations for PH-distributions or other probability distributions has been investigated

extensively in recent years ([4, 7, 10, 11, 21, 26, 27, 28, 29]) with the focus on finding PH-

representations with a simple structure for PH-distributions that approximate probability

distributions (Altiok [1], Asmussen [2], and Bobbio, Horváth, Scarpa, and Telek [6]). The

Coxian representation is one of the simpler PH-representations that have been investigated

(Cumani [10], Dehon and Latouche [11], and O’Cinneide [26, 28, 29]).

Erlang [12] introduced the idea of phase into the study of telephone systems, which led

to the introduction of Erlang distributions in probability and statistics. Cox [8, 9] gener-

alized the class of Erlang distributions and systematically studied probability distributions

as mixtures of Erlang distributions. Consequently, Cox [8, 9] gave the first definition of

Coxian distributions that have been used in many branches of science and engineering. In

O’Cinneide [28], it was shown that Coxian distributions with a positive density function on
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positive real numbers have an ordered Coxian representation, which is a special bi-diagonal

PH-representation. Coxian representations have many advantages in numerical computa-

tions. For instance, the eigenvalues of their Coxian generators are the diagonal elements and

can be used directly without further numerical computation. Therefore, it is computationally

attractive to replace ME-representations or PH-representations with Coxian representations

in the study of stochastic models. For that purpose, we need to find Coxian representa-

tions of Coxian distributions that approximate ME-distributions or PH-distributions. The

objective of this paper is to introduce an algorithm for computing Coxian representations of

Coxian distributions as approximations of ME-distributions and PH-distributions.

Recently, HE and Zhang [15] (also see HE and Zhang [14, 16]) developed a spectral

polynomial approach for computing bi-diagonal representations of PH-distributions. The

idea of the spectral polynomial approach is to treat a PH-generator as a linear mapping and

to generate some invariant polytopes of that linear mapping in order to calculate new ME-

representations. The theory developed in [15] provided the basis for developing an algorithm

for computing Coxian representations and Coxian approximations. In HE and Zhang [16],

based on the spectral polynomial approach, an algorithm for computing minimal Coxian

representations for Coxian distributions was developed. The algorithm in HE and Zhang

[16] dealt with individual Coxian distributions, while the algorithm in this paper focuses

on PH-generators. Thus, the algorithm developed in [16] complements the algorithm of

this paper. In van de Liefvoort and Heindl [34], computational methods were developed

for evaluating ME-distributions with a given representation. That paper considered the

numerical evaluation of ME-distributions, while this paper finds Coxian representations of

Coxian approximations of ME-distributions.

In this paper, we first concentrate on the class of ME-distributions and develop an al-

gorithm that can be used to find some special Coxian distributions as approximations of

ME-distributions. By taking into account the structure of PH-generators, the algorithm

is modified to find ordered Coxian representations of Coxian distributions that approxi-

mate PH-distributions. We show that any PH-generator with only real eigenvalues is PH-

majorized by some special ordered Coxian generator, which is consistent with Theorem 4.1

in O’Cinneide [28] and Theorem 5.2 in O’Cinneide [29]. In fact, the construction process

of the special ordered Coxian generator bears some similarities to the proof of Theorem

4.1 in O’Cinneide [28]. The algorithm is then modified for computing such ordered Coxian

generators from the original PH-generator.

The remainder of this paper is organized as follows. Section 2 gives preliminary results for

the development of the theory and the algorithm in this paper. In Section 3, we show that,

under some mild conditions, every matrix-exponential distribution can be approximated by

Coxian distributions. An algorithm is developed for computing Coxian representations of
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such approximations. In Section 4, we show how PH-distributions can be approximated by

Coxian distributions. The algorithm developed in Section 3 is modified for finding Coxian

approximations for the class of PH-distributions. Section 5 modifies the algorithm in Section

3 for computing Coxian representations of PH-distributions whose PH-generator has only

real eigenvalues. Numerical examples are presented in Section 6 to demonstrate the efficiency

of the algorithm and the accuracy of Coxian approximations. Section 7 concludes this paper.

2 PH, ME, and Coxian Distributions

A square matrix T with negative diagonal elements, nonnegative off-diagonal elements, and

non-positive row sums with at least one negative row sum, is called a sub-generator in the

general literature of Markov processes. We shall call a sub-generator T of finite size a PH-

generator. Define an infinitesimal generator for a continuous-time Markov chain with m + 1

states (
T −Te

0 0

)
(2.1)

where the state m + 1 is an absorption state and e is the column vector with all elements

being one. The matrix T is an m×m PH-generator. We assume that states {1, 2, · · · ,m} are

transient, which is equivalent to assuming that T is invertible. Let α be a nonnegative vector

of size m for which the sum of its elements is less than or equal to one. We call the distribution

of the absorption time of the Markov chain to state m+1, with initial distribution (α, 1−αe),

a phase-type distribution (PH-distribution). We call the 2-tuple (α, T ) a PH-representation of

the PH-distribution. The number m is the order of the PH-representation (α, T ). We refer to

Chapter 2 in Neuts [23] for basic properties of PH-distributions. The probability distribution

function of the PH-distribution is given as 1−α exp{Tt}e for t ≥ 0, and the density function

is given as 1 − α exp{Tt}Te for t > 0. If αe = 0, the distribution has a unit mass at time 0.

There is no need for a PH-representation for such a distribution. If αe 6= 0, the expression

α exp{Tt}e can be written as (αe)(α/(αe)) exp{Tt}e. Thus, the study of the representations

of (α, T ) is equivalent to that of (α/(αe), T ). Throughout this paper, we shall assume that

α is a vector for which the sum of all its elements is one. This assumption implies that all

probability distributions considered in this paper have a zero mass at t = 0. In O’Cinneide

[27], the following fundamental characterization of PH-distributions was proved.

Theorem 2.1. (Theorem 1.1 in O’Cinneide [27]) A probability distribution with nonnegative

support and a rational Laplace-Stieltjes transform is a PH-distribution if and only if

• it is either the point mass at zero, or
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• it has a continuous positive density on the positive real numbers, and its Laplace-

Stieltjes transform has a unique pole of maximal real part. 2

It is possible that 1 − α exp{Tt}u is a probability distribution function for a row vector

α of size m, an m × m matrix T , and a column vector u of size m, where the elements

of α , T , and u can be complex numbers. For this case, the 3-tuple (α, T, u) is called a

matrix-exponential representation (ME-representation) of a matrix-exponential distribution

(ME-distribution). For the aforementioned reason, we assume that αu = 1 so that the ME-

distribution has a zero mass at t = 0. We refer to Asmussen and Bladt [4] for more details of

ME-distributions. The class of PH-distributions is a subset of the class of ME-distributions.

Throughout this paper, if (α, T ) is used, it signifies that (α, T ) is a PH-representation of a

PH-distribution, where α is nonnegative and T is a PH-generator. If (α, T, u) is used, α may

not be nonnegative, T may not be a PH-generator, and it represents an ME-distribution.

It is well known that the class of PH-distributions is dense in the class of probability

distributions with nonnegative support. This leads to the issue of finding PH-approximations

for probability distributions. We address this issue by considering approximations related to

the class of Coxian distributions. For x = (x1, x2, · · · , xN ), where N is a positive integer, a

bi-diagonal matrix S(x) is defined as

S(x) =



−x1 0 · · · · · · 0

x2 −x2
. . . . . .

...

0
. . . . . . . . .

...
...

. . . xN−1 −xN−1 0

0
. . . 0 xN −xN


(2.2)

If {x1, x2, · · · , xN} are all real and positive and β is a probability vector (i.e., β ≥ 0 and βe =

1), then (β, S(x)) is called a Coxian representation, which represents a Coxian distribution.

The class of Coxian distributions is a subset of the class of PH-distributions. Further, if

x1 ≥ x2 ≥ · · · ≥ xN > 0, then (β, S(x)) is called an ordered Coxian representation. In this

paper, we are interested in a special class of ordered Coxian representations with x being of

the form given in equation (3.9). If x1 = x2 = · · · = xN > 0, then (β, S(x)) represents a

generalized Erlang distributions (a mixture of Erlang distributions). The following theorem

that characterizes the class of Coxian distributions is also due to O’Cinneide.

Theorem 2.2. (Theorem 4.1 in O’Cinneide [28] and Theorem 5.2 in O’Cinneide [29]) Every

PH-distribution whose Laplace-Stieltjes transform has only real poles is a Coxian distribution

and has an ordered Coxian representation. 2

Like the PH-representation of a PH-distribution, the ordered Coxian representation of a

Coxian distribution is not unique. We call an ordered Coxian representation with the minimal
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number of phases a minimal ordered Coxian representation. The number of phases of a

minimal ordered Coxian representation is called the triangular order of the corresponding PH-

distribution (O’Cinneide [29]). Theorem 6.2 in O’Cinneide [30] gave a necessary and sufficient

condition for an ordered Coxian representation to be minimal. In HE and Zhang [16], a set of

necessary and sufficient conditions for an ordered Coxian representation to be minimal was

identified, which led to an algorithm for computing minimal Coxian representations of Coxian

distributions. The following results show some relationships between Coxian representations

and PH-representations.

Theorem 2.3. 1) (Theorem 2 in Cumani [10]) Any PH-representation with a triangular

PH-generator has an equivalent ordered Coxian representation of the same order;

2) (Theorem 4.2 in HE and Zhang [15]) Any PH-representation with a symmetric PH-

generator has an equivalent ordered Coxian representation of the same order. 2

In general, a PH-representation that represents a Coxian distribution has equivalent

Coxian representations, but the orders of the equivalent Coxian representations may be

greater than that of the PH-representation (see Theorem 4.5 in HE and Zhang [15] and

Example 6.1 in HE and Zhang [16]).

If {x1, x2, · · · , xN} are all real and positive and β may or may not be nonnegative,

we call (β, S(x), e) a Coxian function representation that represents Coxian function 1 −
β exp{S(x)t}e, which may or may not be a probability distribution. If β is not nonnegative

but the function 1 − β exp{S(x)t}e is a probability distribution, then (β, S(x),e) is an ME-

representation of a Coxian distribution. For such a case, the algorithm developed in HE

and Zhang [16] can be used for computing an ordered Coxian representation of the Coxian

distribution.

PH-majorization was introduced and studied in O’Cinneide [26]. For a given PH-generator

T , we denote by PH(T ) the set of all PH-distributions with a PH-representation (α, T ). For

two PH-generators T and S, S is said to PH-majorize T if PH(T ) ⊆ PH(S). For a PH-

generator T , if PH-representations (α, T ) and (β, T ) represent two different distributions for

any different α and β, then T is called PH-simple. It was shown in O’Cinneide [26] that a

PH-simple S PH-majorizes T if and only if there exists a nonnegative matrix P with unit

row sums for which TP = PS. If S PH-majorizes T , then (α, T ) and (αP, S) represent the

same PH-distribution. Using the notion of PH-majorization, Theorem 2.3 can be improved

to a stronger form: 1) Any triangular PH-generator is PH-majorized by an ordered Coxian

generator of the same order; 2) Any symmetric PH-generator is PH-majorized by an ordered

Coxian generator of the same order. In Theorem 5.1 of this paper, we shall show that a

PH-generator with only real eigenvalues is PH-majorized by an ordered Coxian generator of

the same or a higher order.
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Similar to PH-majorization, ME-majorization can be defined for ME-distributions. For a

pair {T, u}, we denote by ME(T, u) the set of all ME-distributions of the form (α, T, u). For

two pairs {T, u} and {S, v}, {S, v} ME-majorizes {T, u} if ME(T, u) ⊆ ME(S, v). According

to Proposition 2.1 in HE and Zhang [15], if there exists a matrix P such that TP = PS

and u = Pv, then {S, v} ME-majorizes {T, u}, i.e., if (α, T, u) is an ME-distribution, then

(αP, S, v) represents the same ME-distribution.

The following spectral polynomial algorithm introduced in HE and Zhang [15] is useful for

computing bi-diagonal representations of ME-distributions and PH-distributions. Suppose

that (α, T, u) is an ME-representation of order m. Denote by x = (x1, x2, · · · , xN ), a set of

nonzero complex numbers, where N is a positive integer. Define

p1 = −Tu/x1;

pn = (xn−1I + T )pn−1/xn, 2 ≤ n ≤ N ; (2.3)

pN+1 = (xNI + T )pN .

Let P = (p1,p2, · · · , pN ), which is an m × N matrix. If pN+1 = 0, equation (2.3) can be

rewritten as TP = PS(x) and it can be shown that Pe = u. Then (αP, S(x), e) represents the

same ME-distribution as (α, T, u). We also say that (αP, S(x), e) and (α, T, u) are equivalent

representations. Similar to the proof of Propositions 2.1 and 3.1 in HE and Zhang [15], the

following results can be proved.

Theorem 2.4. If pN+1 = 0, then {S(x), e} ME-majorizes {T, u}, and the ME-distribution

(α, T, u) has a bi-diagonal ME-representation (β, S(x), e) of order N with βe = αu = 1 and

β = αP . 2

A particular choice of x was given in HE and Zhang [15]. Denote by {−λ1,−λ2, · · · ,−λm}
the spectrum of T (counting multiplicities). If {λ1, λ2, · · · , · · · , λm} is a subset of x, by the

Cayley-Hamilton theorem (Lancaster and Tismenetsky [17]), we have pN+1 = 0. If x1 ≥
x2 ≥ · · · ≥ xN > 0 and αP is nonnegative, (αP, S(x)) is an ordered Coxian representation.

For this case, we find an equivalent ordered Coxian representation for (α, T, u).

3 Approximating ME-Distributions by Coxian Distrib-

utions

Theorem 2.4 indicates that any ME-distribution has a bi-diagonal ME-representation, pro-

vided all poles of its Laplace-Stieltjes transform are nonzero. However, the bi-diagonal

ME-representation (αP, S(x), e) may be neither a PH-representation nor a Coxian represen-

tation. Since the class of Coxian distributions is dense in the class of probability distributions

with nonnegative support, for any ME-distribution, there are Coxian distributions that are
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arbitrarily close to it. The objective of this section is to propose an algorithm that can find

Coxian representations of Coxian distributions that approximate an ME-distribution. To

that end, we study the relationship between (α, T, u) and the representation (αP, S(x), e)

obtained by the spectral polynomial algorithm first.

Denote by F(α,T,u)(t) = 1 − α exp{Tt}u, t ≥ 0, for (α, T, u). For given x, since pN+1 = 0

may not be true, the Coxian function representation (αP, S(x), e) may not be an equivalent

representation of (α, T, u). Denote by F(αP,S(x),e)(t) = 1−αP exp{S(x)t}e, t ≥ 0, which may

or may not represent a probability distribution.

Lemma 3.1. Assume that all elements of x are nonzero and T is invertible. For (α, T, u)

and the representation (αP, S(x),e) obtained by the spectral polynomial algorithm, we have

F(αP,S(x),e)(t) − F(α,T,u)(t) = ε1(t) + ε2(t), t ≥ 0, (3.1)

where

ε1(t) =
∞∑

k=0

(αT kpN+1)
∞∑

n=0

tn+k+1

(n + k + 1)!

(
eN (S(x))ne

)
,

ε2(t) = −α exp{Tt}T−1pN+1,

(3.2)

and eN = (0, · · · , 0, 1), a row vector of size N .

Proof. Since all elements of x are nonzero, the matrix P is well defined. First note that

equation (2.3) can be rewritten as

TP = PS(x) + (0, · · · , 0, pN+1), (3.3)

where (0, · · · , 0, pN+1) is an m × N matrix. By (3.3), it is easy to show that, for n ≥ 0,

TnP = P (S(x))n +
n−1∑
k=0

T k(0, · · · , 0, pN+1)(S(x))n−1−k. (3.4)

Note that, for n = 0, both sides of equation (3.4) are reduced to P . Pre-multiplying by α,

post-multiplying by tne/n! on both sides of equation (3.4), and summing them up, for n ≥ 0,

yield, for t ≥ 0,

α exp{Tt}Pe = αP exp{S(x)t}e +
∞∑

n=1

tn

n!

n−1∑
k=0

(
αT kpN+1

)(
eN (S(x))n−1−ke

)

= αP exp{S(x)t}e +
∞∑

k=0

(
αT kpN+1

) ∞∑
n=0

tn+k+1

(n + k + 1)!

(
eN (S(x))ne

)
= αP exp{S(x)t}e + ε1(t). (3.5)

From equation (2.3), we have

pN+1 = T (pN + pN−1 + · · · + p2 + p1) + x1p1 = TPe − Tu, (3.6)
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which leads to Pe = u + T−1pN+1 (Note that T is invertible). Equation (3.1) is obtained

from equation (3.5) and Pe = u + T−1pN+1. This completes the proof of Lemma 3.1. 2

The Coxian function F(αP,S(x),e)(t) may not be a probability distribution function (see

Example 6.1). Nonetheless, equation (3.1) indicates that F(αP,S(x),e)(t) can be a satisfactory

approximation of F(α,T,u)(t) if ε1(t) and ε2(t) are small enough for all t. By equation (3.2),

it is clear that F(αP,S(x),e)(t) = F(α,T,u)(t), for t ≥ 0, if pN+1 = 0. The condition pN+1 = 0

is sufficient but not necessary for F(αP,S(x),e)(t) = F(α,T,u)(t), for t ≥ 0, and, for some

cases, is not possible. It can be shown, by comparing the coefficients of tn on both sides,

F(αP,S(x),e)(t) = F(α,T,u)(t), for t ≥ 0, if and only if αTnpN+1 = 0 for n ≥ −1. If the

condition {αTnpN+1 = 0, for n ≥ −1} is used to find approximations or new representations,

the results will depend on the vector α. A study in that direction is beyond the scope of this

paper. In this paper, we shall focus on new representations for which the Coxian generator

S(x) is independent of α. Basically, we look for x such that pN+1 is small.

Define

ζ(k, t) =
∞∑

n=0

tn+k

(n + k)!

(
eN (S(x))ne

)
, k ≥ 0, t ≥ 0. (3.7)

Lemma 3.2. Assume that all elements of x are positive. Then 0 < ζ(k, t) ≤ tk/k!, k ≥
0, t ≥ 0.

Proof. Denote by ζ(j)(k, t) the j-th derivative of ζ(k, t) with respect to t. It is easy to

verify that ζ(j)(k, t) = ζ(k − j, t), 0 ≤ j ≤ k, t ≥ 0 and ζ(j)(k, t) = ζ(0, t) = eN exp{S(x)t}e ≥
0, k ≥ 0. Since ζ(k, 0) = 0, k ≥ 1, by induction, it can be proved that ζ(k, t) is nonnegative

and non-decreasing in t. Since all elements of x are positive, S(x) is a PH-generator and

(eN , S(x)) represents a PH-distribution. Then 1−ζ(0, t) is a probability distribution function.

Therefore, 0 < ζ(0, t) ≤ 1, for t ≥ 0. Again, by induction, ζ(k, t) is positive and

ζ(k, t) =

∫ t

0

ζ(k − 1, z)dz ≤
∫ t

0

zk−1

(k − 1)!
dz ≤ tk

k!
, t ≥ 0, k ≥ 1. (3.8)

This completes the proof of Lemma 3.2. 2

Now, we are ready to state and prove the main result of this section. We show that

|ε1(t) + ε2(t)| can be arbitrarily small if x is chosen properly.

Theorem 3.3. Assume that all the eigenvalues of T have negative real parts. We choose an

N-dimensional vector

x = (λ, · · · , λ, y1, · · · , yL−1, yL), (3.9)

where L is a positive integer, λ is repeated in x N − L times, and y1 ≥ y2 ≥ · · · ≥ yL−1 ≥
yL > 0. For any given positive ε∗, there exists a positive N∗ such that, for any N ≥ N∗,
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if λ is large enough, we have |ε1(t) + ε2(t)| < ε∗ for t ≥ 0. Consequently, there is always

a Coxian function approximation (αP, S(x), e) to (α, T, u) for any given error level ε∗. In

addition, the Coxian function (αP/(αPe), S(x), e) also approximates (α, T, u) if N is large

enough.

Proof. The proof consists of two parts. First, we show the theorem for t > t∗, where t∗ is a

large positive number (to be determined). Second, we prove the theorem for 0 ≤ t ≤ t∗.

Let re(λj) and imag(λj) denote the real and imaginary parts of the complex number λj,

respectively, where −λj is an eigenvalue of T . Since the real part of each eigenvalue of T is

negative, we know that re(λj) is positive. Thus, if λ is large enough, (re(λj))
2+(imag(λj))

2 <

2re(λj)λ , which is equivalent to ||1 − λj/λ|| < 1, where ||1 − λj/λ|| = [(1 − re(λj)/λ)2 +

(imag(λj)/λ)2]1/2. Let η be a real number such that max{||1 − λj/λ||, 1 ≤ j ≤ m} < η < 1.

Since λ ≥ y1 ≥ y2 ≥ · · · ≥ yL−1 ≥ yL > 0, S(x) is a PH-generator. Thus, every element

of the vector exp{S(x)t}e is less than or equal to one for t ≥ 0. By definition, we have

p1 = −Tu/λ and

pn =
(

I +
T

λ

)n−1

p1, 2 ≤ n ≤ N − L;

pN−L+1 =
λ

y1

(
I +

T

λ

)N−L

p1,

pN−L+j =
λ

yj · · · y1
(yj−1I + T ) · · · (y1I + T )

(
I +

T

λ

)N−L

p1, 2 ≤ j ≤ L;

pN+1 =
λ

yL · · · y1
(yLI + T ) · · · (y1I + T )

(
I +

T

λ

)N−L

p1.

(3.10)

Note that the spectrum of I + T/λ is {1 − λj/λ, 1 ≤ j ≤ m}. Using the Jordan canonical

form of I + T/λ (Lancaster and Tismenetsky [17]), we have pn = o(ηn−m−L)e for large n.

Then we have∣∣∣∣αP exp{S(x)t}e
∣∣∣∣ =

∣∣∣∣ N∑
n=1

(αpn)
(

exp{S(x)t}e
∣∣∣∣

≤
∣∣∣∣ N1∑

n=1

(αpn)
(

exp{S(x)t}e
)

n

∣∣∣∣ + c1

N∑
n=N1+1

ηn−m−L

∣∣∣∣( exp{S(x)t}
)

n

∣∣∣∣
≤

∣∣∣∣ N1∑
n=1

(αpn)
(

exp{S(x)t}e
)

n

∣∣∣∣ + c1
ηN1+1−m−L

1 − η
, (3.11)

where c1 is a positive constant and N1 is a fixed large integer. If N1 is large enough, the

second part of the right-hand side of the last line in equation (3.11) can be made smaller

than ε∗/4. For fixed N1, if t is large enough, the first part of the right-hand side of the last

line in equation (3.11) can be made smaller than ε∗/4. Therefore, if t is large enough, we

have |1 − F(αP,S(x),e)(t)| = |αP exp{S(x)t}e| < ε∗/2.
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Since (α, T, u) is a probability distribution, we must have 1 − F(α,T,u)(t) < ε∗/2 if t is

large enough. Combining the above two results, we conclude that there exists t∗ such that

for t > t∗ and any N ,

|ε1(t) + ε2(t) ≤ |1 − F(α,T,u)(t)| + |1 − F(αP,S(x),e)(t)| <
ε∗

2
+

ε∗

2
= ε∗. (3.12)

Let |α| = (|αj |) and |T | = (|ti,j|). By equation (3.2) and Lemma 3.2, we have

|ε1(t)| ≤
∞∑

k=0

∣∣∣∣αT kpN+1

∣∣∣∣ tk+1

(k + 1)!

≤ t|α| exp{|T |t}|pN+1|
≤ c2 · (t|α| exp{|T |t}e)ηN−m−L;

ε2(t) =

∣∣∣∣α exp{Tt}T−1pN+1

∣∣∣∣ ≤ c2 · (|α| exp{|T |t}|T−1|e)ηN−m−L,

(3.13)

where c2 is a positive constant. Therefore, for 0 ≤ t ≤ t∗, if N is large enough, equation

(3.13) leads to |ε1(t) + ε2(t)| ≤ |ε1(t)| + |ε2(t)| < ε∗.

In summary, we have shown that if N is large enough, |ε1(t) + ε2(t)| < ε∗ for t ≥ 0.

To prove the last part of the theorem, note that equation (3.6) leads to αPe = αu +

αT−1pN+1 = 1 + o(ηN ). Thus, αP −αP/(αPe) = (αP )o(ηN ). Therefore, (αP/(αPe), S(x), e)

approximates (αP, S(x), e). Together with the first part, we conclude that (αP/(αPe), S(x), e)

is a satisfactory approximation of (α, T ) if N is large enough. This completes the proof of

Theorem 3.3. 2

By the well-known fact that the class of Coxian distributions is dense in the class of

all probability distributions with nonnegative support, Theorem 3.3 is not surprising. The

construction process of {p1, p2, · · · , pN} bears some similarities to the construction process

of an invariant polytope in O’Cinneide [27]. Since our construction is realized in a linear

space, instead of a measure space, more analytic results can be obtained. More importantly,

Theorem 3.3 leads to simple algorithms to find satisfactory Coxian approximations of ME-

distributions and PH-distributions. In Theorem 3.3, the condition that every eigenvalue of

T has a negative real part is not restrictive since the poles of the Laplace-Stieltjes transforms

of probability distribution functions must have negative real parts.

The Coxian function representation (αP, S(x),e) obtained in Theorem 3.3 may not be a

desired solution for several reasons: 1) αP may not be real; 2) The representation may not

represent a Coxian distribution (see Example 6.1); and 3) αP may not be nonnegative. By

Theorem 3.3, the first issue can be resolved by simply removing the imaginary part of αP .

The second issue can be dealt with by using Theorem 3.4 (to be proved next). The last reason

implies that, even if the representation does represent a Coxian distribution, it may not be a

Coxian representation. This issue can be dealt with by using Theorem 3.4 and an algorithm

developed in HE and Zhang [16] (see the discussion right after the proof of Theorem 3.4).

11



Next, from (αP, S(x), e), we construct a Coxian distribution that approximates the original

ME-distribution.

Define β = (β1, β2, · · · , βN ) = αP . By the definition given in equation (3.10), it is easy to

see that βn remains the same for N > n+L. Thus, the dependency of βn on N is not shown

explicitly. Let βR be the real part of β. Define (componentwise)

β+
R = max{0, βR} and β−

R = max{0,−βR}. (3.14)

Then it is easy to see βR = β+
R − β−

R . Define, for 1 ≤ N0 ≤ N ,

β(N0, N) = β+
R − (β−

R,1, β
−
R,2, · · · , β−

R,N0
, 0, · · · , 0). (3.15)

Theorem 3.4. Assume that all conditions in Theorem 3.3 hold. In addition, we assume that

the density function of (α, T, u) is positive on the positive real numbers. If N is large enough,

there exists N0 such that (β(N0, N)/(β(N0, N)e), S(x), e) represents a Coxian distribution that

approximates the ME-distribution (α, T, u).

Proof. To show that (β(N0, N)/(β(N0, N)e), S(x), e) represents a Coxian distribution, we

need to prove that the corresponding derivative function is nonnegative. For 1 ≤ n ≤ N ,

define
Gn(t) = 1 − en exp{S(x)t}e, t ≥ 0;

G
(1)
n (t) = −en exp{S(x)t}S(x)e, t ≥ 0,

(3.16)

where en is a row vector with all elements being zero except that the n-th element is one

and G
(1)
n (t) is the first derivative of Gn(t). For x given in equation (3.9), Gn(t) and G

(1)
n (t)

are the distribution function and the density function of a generalized Erlang distribution

of order n, respectively. If n ≤ N − L, Gn(t) and G
(1)
n (t) = λe−λt(λt)n−1/(n − 1)! are the

distribution function and density function of an Erlang distribution of order n, respectively.

By Theorem 3.3, F(αP,S(x),e)(t) converges to F(α,T,u)(t) uniformly as N goes to infinity. Since

|βR,n| = |αpn| = o(ηn), we have

F(α,T,u)(t) =
∞∑

n=1

βR,nGn(t) =
∞∑

n=1

β+
R,nGn(t) −

∞∑
n=1

β−
R,nGn(t). (3.17)

It is straightforward to verify, for t > 0,

F
(1)
(α,T,u)(t) = lim

δ→0

F(α,T,u)(t + δ) − F(α,T,u)(t)
δ

= lim
δ→0

( ∞∑
n=1

β+
R,n

Gn(t + δ) − Gn(t)

δ
−

∞∑
n=1

β−
R,n

Gn(t + δ) − Gn(t)

δ

)
=

∞∑
n=1

β+
R,n lim

δ→0

Gn(t + δ) − Gn(t)

δ
−

∞∑
n=1

β−
R,n lim

δ→0

Gn(t + δ) − Gn(t)

δ

=
∞∑

n=1

β+
R,nG

(1)
n (t) −

∞∑
n=1

β−
R,nG

(1)
n (t).

(3.18)
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The exchange of limits in the third equality in equation (3.18) is valid since the derivative

of Gn(t) is uniformly bounded for all n > 0 and t ≥ 0 and |βR,n| = |αpn| = o(ηn).

For any given error level, we can choose N0 such that, for any N ≥ N0, the function

F(N0,N)(t) =
∑N

n=1 β+
R,nGn(t) −

∑N0

n=1 β−
R,nGn(t) approximates F(α,T,u)(t). It is readily seen

that F(N0,N)(t) has a Coxian function representation (β(N0, N), S(x), e). Since F
(1)
(α,T,u)(t) is

positive in (0,∞), the function
∑∞

n=1 β+
R,nG

(1)
n (t) −

∑N0

n=1 β−
R,nG

(1)
n (t) is positive in (0,∞).

Next, we show that there exists a finite N such that the derivative function F
(1)
(N,N0)(t) =∑N

n=1 β+
R,nG

(1)
n (t)−

∑N0

n=1 β−
R,nG

(1)
n (t) of is nonnegative. We consider three cases: 1) t is very

large; 2) t is close to zero; and 3) others.

First, we consider case 1). For N0 < n < N − L, we have

G
(1)
N0

(t)

G
(1)
n (t)

=
(n − 1)!

(N0 − 1)!(λt)n−N0
→ 0, t → ∞. (3.19)

If β+
R,n = 0 for all n > N0, then F

(1)
(N0,N)(t) ≥ F

(1)
(α,T,u)(t) > 0 for t > 0. Otherwise, there exists

n1 > N0 such that β+
R,n1

> 0. By equation (3.19), there exists t0 such that, for t > t0, the

function F
(1)
(N0,N)(t) is positive for t > 0 and N ≥ n1.

For case 2), first note that F
(n)
(α,T,u)(0) = −αTnu, n ≥ 1 , where F

(n)
(α,T,u)(0) denotes

the n-th derivative of the function F(α,T,u)(t) at t = 0. Let n2 = min{n : βn 6= 0, n ≥
1}. Since β1 = αp1 = −αTu/λ, it can be shown that F

(n)
(α,T,u)(0) = 0, 1 ≤ n ≤ n2, and

F
(n2)
(α,T,u)(0) = −αTn2u = λn2βn2 . Since F(α,T,u)(t) is nonnegative, we must have F

(n2)
(α,T,u)(0) >

0. Consequently, we have βn2 > 0. Since G
(1)
n (t) is the density function of the sum of n

exponential random variables, it can be shown that∣∣∣∣
∑∞

n=n2+1 βnG
(1)
n (t)

βn2G
(1)
n2 (t)

∣∣∣∣ ≤
∑∞

n=n2+1 |βn|G(1)
n (t)

βn2G
(1)
n2 (t)

≤ ct
∞∑

n=n2+1

(n2 − 1)!(λt)n−n2−1

(n − 1)!
≤ cteλt → 0, (3.20)

as t → 0, where c is a constant. Then we have

F
(1)
(N0,N)(t) = βn2G

(1)
n2

(t)

(
1 +

N∑
n=n2+1

β+
R,nG

(1)
n (t)

βR,n2G
(1)
n2 (t)

−
N0∑

n=n2+1

β−
R,nG

(1)
n (t)

βR,n2G
(1)
n2 (t)

)

≥ βn2G
(1)
n2

(t)

(
1 −

∣∣∣∣ N∑
n=n2+1

β+
R,nG

(1)
n (t)

βR,n2G
(1)
n2 (t)

+
N0∑

n=n2+1

β−
R,nG

(1)
n (t)

βR,n2G
(1)
n2 (t)

∣∣∣∣) (3.21)

≥ βn2G
(1)
n2

(t)(1 − cteλt).

Therefore, we have F
(1)
(N0,N)(0) ≥ F

(1)
(α,T,u)(0) ≥ 0 and F

(1)
(N0,N)(t) > 0 if t is close to zero, say,

0 < t < δ , for some positive δ, for all N > N0.
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For case 3), since F
(1)
(α,T,u)(t) is positive for δ ≤ t ≤ t0, by equation (3.18), it is easy to

see that we can choose N large enough so that F
(1)
(N0,N)(t) is positive.

Combining the above three cases, we conclude that, if N is large enough, the function

F(N0,N)(t) with a representation (β(N0, N), S(x),e) has a nonnegative derivative.

Since β(N0, N)e ≈ 1, the Coxian distribution represented by (β(N0, N)/(β(N0, N)e), S(x), e)

approximates the Coxian function represented by (β(N0, N), S(x),e). Since the Coxian func-

tion (β(N0, N), S(x),e) approximates the ME-distribution (α, T, u), the Coxian distribution

(β(N0, N)/(β(N0, N)e), S(x), e) approximates the ME-distribution (α, T, u). This completes

the proof of Theorem 3.4. 2

If β(N0, N) is nonnegative, (β(N0, N)/(β(N0, N)e), S(x)) is a Coxian representation of a

Coxian distribution that approximates (α, T, u). Otherwise, (β(N0, N)/(β(N0, N)e), S(x), e)

is an ME-representation that represents a Coxian distribution. An algorithm developed in HE

and Zhang [16] can be used for computing a Coxian representation from (β(N0, N)/(β(N0, N)e),

S(x), e) for that Coxian distribution. We refer readers to HE and Zhang [16] for details of

the algorithm for computing a minimal Coxian representation of a Coxian distribution.

It is clear from Theorem 3.3 that x in the representation (αP, S(x), e) can be chosen

differently. It is also clear that, to find a satisfactory approximation, we want to choose x

such that pN+1 is small and P is nonnegative for N that is not large. In general, it is a

complicated issue to choose a proper x and we shall address this issue for some subsets of

ME-distributions in Sections 4 and 5. In the meantime, we have the following observations

that may help us choose x.

According to Theorem 3.3, most of the elements of x should be large enough so that η

(defined in the proof of Theorem 3.3) is as small as possible. By routine calculations, it can

be proved that ||1 − λj/λ||, as a function of λ, is minimized at re(λj) + (imag(λj))
2/re(λj).

Therefore, we shall choose λ so that

λ ≥ max
1≤j≤m

{
re(λj) +

(imag(λj))
2

re(λj)

}
. (3.22)

According to the Cayley-Hamilton theorem, for pN+1 to be small, some elements of x

should be close to the eigenvalues of T . Therefore, we should include numbers such as

{|re(λ1) + imag(λ1)|, |re(λ2) + imag(λ2)|, · · · , |re(λm) + imag(λm)|}

or

{|re(λ1)|, |re(λ2)|, · · · , |re(λm)|}

in x.

Based on Theorem 3.3, Theorem 3.4, and the above observations, we propose an algorithm

that produces a Coxian distribution as a satisfactory approximation of an ME-distribution.
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Coxian Approximation of ME-distribution (CAMED) Algorithm We consider an

ME-representation (α, T, u) satisfying conditions given in Theorem 3.3 and Theorem 3.4.

Step 1: Find the spectrum {−λ1,−λ2, · · · ,−λm} of T and arrange the eigenvalues such

that |re(λ1) + imag(λ1)| ≥ |re(λ2) + imag(λ2)| ≥ · · · ≥ |re(λm) + imag(λm)|. Denote by ε∗ a

small positive number. Let N = m and choose using equation (3.22).

Step 2: Let x = (λ, · · · , λ, |re(λ1) + imag(λ1)|, |re(λ2) + imag(λ2)|, , |re(λm) + imag(λm)|), where

λ is repeated in x N − m times.

Step 3: Use the spectral polynomial algorithm to compute the matrix P and the vector

pN+1. Compute εmax = max1≤i≤m{|(pN+1)i|}.
Step 4: If max εmax ≤ ε∗, go to Step 5. Otherwise, set N =: N + 1 and go back to Step 2.

Step 5: Calculate αP and construct S(x). Find the greatest N0 ≤ N such that F
(1)
(N0,N)(t) is

positive on the positive real numbers. Construct β(N0, N) from P . If (β(N0, N)/(β(N0, N)e),

S(x), e) represents a Coxian distribution that is a satisfactory approximation of the ME-

distribution (α, T, u), go to Step 6. Otherwise, reset ε∗ to be ε∗/2, go back to Step 2.

Step 6: If β(N0, N) is nonnegative, then (β(N0, N)/(β(N0, N)e), S(x)) is a desired solution.

Otherwise, use the algorithm developed in HE and Zhang [16] to find an ordered Coxian

representation from (β(N0, N)/(β(N0, N)e), S(x), e).

Note that ε∗ used in the above algorithm does not measure the difference between

F(α,T,u)(t) and F(αP,S(x),e)(t) directly. Instead, ε∗ measures how small the vector pN+1

is, which ensures a small difference between F(α,T,u)(t) and the Coxian approximation.

4 Approximating PH-distributions by Coxian Distrib-

utions

In this section, we consider Coxian approximations of PH-distributions with a PH-representation

(α, T ). First, we present some results directly obtained from Theorem 3.3 for this special

case.

Proposition 4.1. Assume that the matrix T = (ti,j) is a PH-generator. We choose x =

(λ, · · · , λ, y1, · · · , yL−1, yL) of order N , where L is a positive integer, is repeated in x N − L

times, and λ ≥ y1 ≥ y2 ≥ · · · ≥ yL−1 ≥ yL > 0. For any given positive ε∗, there exists N∗

such that, for N ≥ N∗ and λ large enough, we have |ε1(t) + ε2(t)| < ε∗ for t ≥ 0. If every

element of x is greater than max{−t1,1,−t2,2, · · · ,−tm,m}, the matrix P is nonnegative for

all N ≥ L. Any PH-distribution with a PH-representation (α, T ) can be approximated with

a Coxian distribution with Coxian representation (αP/(αPe), S(x)). 2

Proposition 4.1 implies that, if T is a PH-generator, (αP/(αPe), S(x), e) can be an ordered
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Coxian representation that represents an approximation of a PH-distribution with a PH-

representation (α, T ). However, to ensure that (αP/(αPe), S(x), e) is an ordered Coxian rep-

resentation, we choose x such that all elements of x are greater than max{−t1,1,−t2,2, · · · ,−tm,m}.
One consequence of such a selection of x is that the number of phases (i.e., the integer N)

may have to be large for a satisfactory approximation. To reduce the numbers of phases in

satisfactory Coxian approximations, we exploit the structure of the PH-generator T for a

better choice of x.

It is readily seen that the PH-generator T is an M -matrix (Berman and Plemmons [5]).

Recall that {−λ1,−λ2, · · · ,−λm} is the spectrum of T . Assume that −λm is the Perron-

Frobenius eigenvalue of T (i.e., the eigenvalue of T with the largest real part).

Theorem 4.2. Consider a PH-generator T . We choose x = (λ, · · · , λ, y1, · · · , yL−1, yL) of

order N , where λ is large enough, λ > y1 ≥ y2 ≥ · · · ≥ yL−1 ≥ yL > 0, and yL−1 > λm.

If N is large enough, then the matrix P is nonnegative. Consequently, if α is nonnegative,

(αP/(αPe), S(x)) is an ordered Coxian representation that represents an approximation of

the PH-distribution (α, T ).

Proof. A complete proof of Theorem 4.2 is tedious and is presented in the Appendix. To

help readers understand the proof in the Appendix, we first prove the theorem by assuming

that T is irreducible. We choose

λ > max

{
max

1≤i≤m
{−ti,i}, max

1≤j≤m

{
re(λj) +

(imag(λj))
2

re(λj)

}}
. (4.1)

Then the matrix λI+T is nonnegative, irreducible, and aperiodic (see Berman and Plemmons

[5], Minc [20] and Seneta [32] for more about nonnegative matrices and M-matrices). It

is readily seen that λ − λm is the Perron-Frobenius eigenvalue of λI + T with algebraic

multiplicity being one (i.e., the eigenvalue with the largest modulus). Let u and v be the left

and right eigenvectors corresponding to the eigenvalue λ− λm, respectively. Since λI + T is

irreducible, by the Perron-Frobenius theory, the vectors u and v can be chosen to be positive

(componentwise) and uv = 1 and ue = 1. It is well known that the spectral radius of λI +T

equals its Perron-Frobenius eigenvalue λ − λm and

(λI + T )n = (λ − λm)nvu + o

(
(λ − λm)n

)
vu. (4.2)

Post-multiplying by −Te on both sides of equation (4.2), yields

(λI + T )n(−Te) = (−uTe)(λ − λm)nv + o

(
(λ − λm)n

)
v

= λm(λ − λm)nv + o

(
(λ − λm)n

)
v. (4.3)

16



Note that we use uT = −λmu and ue = 1 in equation (4.3). By equation (4.3), we have

(y1I + T )(λI + T )n(−Te) = (y1 − λm)λm(λ − λm)nv +
(

(λ − λm)n

)
v. (4.4)

Using equation (4.4) and induction, it can be shown, for 1 ≤ j ≤ L − 1,

(yjI + T ) · · · (y1I + T )(λI + T )n(−Te)

= (yj − λm) · · · (y1 − λm)λm(λ − λm)nv +
(

(λ − λm)n

)
v. (4.5)

By the assumption that yj > λm, for 1 ≤ j ≤ L − 1, the expression in equation (4.5)

becomes nonnegative if n is large enough. Since the columns of the matrix P are defined as

(see equation (2.3))

p1 =
−Te

λ
;

pj =
1
λj

(λI + T )j−1(−Te), 2 ≤ j ≤ N − L;

pN−L+1 =
1

y1λN−L
(λI + T )N−L(−Te);

pN−L+j =
1

yj · · · y1λN−L
(yj−1I + T ) · · · (y1I + T )(λI + T )N−L(−Te), 2 ≤ j ≤ L,

(4.6)

equations (4.3), (4.5), and (4.6) imply that the matrix P is nonnegative if N is large enough.

The rest of the results is obtained by Theorem 3.3. This completes the proof of Theorem 4.2.

2

Based on Theorem 4.2, we modify the CAMED algorithm for computing S(x) and an

ordered Coxian representation (αP/(αPe), S(x)) of an approximation of the PH-distribution

(α, T ).

Coxian Approximation of PH-distribution (CAPHD) Algorithm We consider a PH-

representation (α, T ).

Step 1, Step 2, and Step 3: They are the same as Steps 1, 2, and 3 in the CAMED

algorithm given in Section 3. We choose x according to Theorem 4.2.

Step 4: Calculate pmin = min1≤i≤m,1≤j≤N{(P )i,j}. If εmax ≤ ε∗ and pmin ≥ 0 (the matrix

P becomes nonnegative), go to Step 5. Otherwise, set N =: N + 1 and go back to Step 2.

Step 5: Calculate αP and construct S(x), then (αP/(αPe), S(x)) is a Coxian represen-

tation that represents a Coxian distribution approximating the PH-distribution (α, T ).

It is possible that αP is nonnegative even if α is not nonnegative. Thus, Theorem 4.2

and the CAPHD algorithm can be applied to ME-distributions with an ME-representation

(α, T, e), where T is a PH-generator.
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5 Coxian Representations of Coxian Distributions

Proposition 4.1 and Theorem 4.2 improve Theorem 3.3 in the sense that, in addition to a

small pN+1, P can be nonnegative and (αP/(αPe), S(x)) is a Coxian representation of a

Coxian distribution. Unfortunately, if T has complex eigenvalues, pN+1 may never be zero

no matter how large N is. On the other hand, if T is a PH-generator and has only real

eigenvalues, the PH-representation (α, T ) represents a Coxian distribution and has Coxian

representations (see Theorem 2.2). For this case, we extend Theorem 4.2 to find equivalent

ordered Coxian representations for (α, T ). This gives an alternative proof to Theorem 2.2.

Theorem 5.1. Assume that all eigenvalues {−λ1,−λ2, · · · ,−λm} of PH-generator T (counting

multiplicities) are real and λ1 ≥ λ2 ≥ · · · ≥ λm. We choose x as

x = (λ, · · · , λ, λ1, · · · , λm−1, λm), (5.1)

where λ is repeated in x N −m times and λ > max{λ1, max{−t1,1,−t2,2, · · · ,−tm,m}}. Then

we have TP = PS(x) and Pe = e for N ≥ m. If N is large enough, P becomes nonnegative,

i.e., S(x) PH-majorizes T . Consequently, for any probability vector α, (αP, S(x)) is an

equivalent ordered Coxian representation of the PH-representation (α, T ).

Proof. A complete proof of this theorem is given in the Appendix. In this proof, similar to

that of Theorem 4.2, we assume that T is irreducible. Since {λ1, λ2, · · · , λm} is a subset of

x (see equation (5.1)), by the Cayley-Hamilton theorem, pN+1 = 0 for any N ≥ m. Then we

have TP = PS(x), Pe = e, and Pe = 1. Thus, (α, T ) and (αP, S(x), e) represent the same

distribution for any N ≥ m. Next, we show the nonnegativity of the matrix P for large N .

For our choice of x, equation (4.5) becomes, for 1 ≤ j ≤ m − 1,

(λjI + T ) · · · (λ1I + T )(λI + T )n(−Te)

= (λj − λm) · · · (λ1 − λm)λm(λ − λm)nv + o

(
(λ − λm)n

)
v. (5.2)

Since the matrix T is irreducible, we have λm−1 > λm. Therefore, the expression in

equation (5.2) becomes nonnegative if n is large enough. Combining equations (4.6) and

(5.2), we conclude that the matrix P is nonnegative if N is large enough.

For large enough N , P becomes nonnegative. Since TP = PS(x), and Pe = e, according

to Theorem 2 in O’Cinneide [26], S(x) PH-majorizes T .

Finally, if P is nonnegative, (αP, S(x)) is an ordered Coxian representation representing

the same probability distribution as that of the PH-representation (α, T ). This completes

the proof of Theorem 5.1. 2

Note that for some Coxian distributions (α, T, e) for which α is not nonnegative, it

is possible that (αP, S(x)) is an ordered Coxian representation. Thus, the application of
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Theorem 5.1 is not limited to PH-representations (see Example 6.3). Based on Theorem 5.1,

we modify the CAPHD algorithm to compute equivalent ordered Coxian representations for

Coxian distributions.

Coxian Representation of Coxian Distribution (CRCD) Algorithm Assume that T

is a PH-generator with spectrum {−λ1,−λ2, · · · ,−λm} ordered as λ1 ≥ λ2 ≥ · · · ≥ λm. Let

λ > max{λ1, max1≤i≤m{−ti,i}} and N = m.

Step 1: Use equation (5.1) to define x.

Step 2: Use the spectral polynomial algorithm to compute the matrix P . Let pmin =

min1≤i≤m,1≤j≤N{(P )i,j} .

Step 3: If pmin ≥ 0, go to Step 4; Otherwise, set N =: N + 1 and go back to Step 1.

Step 4: Calculate αP and construct S(x). Then (αP, S(x), e) is an equivalent bi-diagonal

ME-representation of (α, T, e). If P is nonnegative, (αP, S(x)) is an ordered Coxian repre-

sentation.

6 Numerical Examples

In Sections 3, 4, and 5, we developed an algorithm for computing Coxian representations

of Coxian distributions as approximations of ME-distributions or PH-distributions. The

algorithm also finds equivalent Coxian representations for PH-representations that repre-

sent Coxian distributions. In this section, we present three numerical examples to show

the accuracy of such approximations and the number of phases needed for a satisfactory

approximation.

Example 6.1 Consider Example 2.1 in Asmussen and Bladt [4]. In that example, an ME-

representation (α, T, u) is given as α = (1, 0, 0), u = e, and T in equation (6.1). The eigen-

values of T are {−1,−1 + 2π
√
−1,−1− 2π

√
−1}. For brevity, we only look at (αP, S(x), e)

and (β(N0, N), S(x), e).

T =

 0 −1 − 4π2 1 + 4π2

3 2 −6

2 2 −5

 . (6.1)

By using the CAMED algorithm, for λ = 40 (chosen by using equation (3.22)), we

obtained approximations for N = 10, 30, 100, 200, 300, and 400. The density functions of

the original matrix-exponential distribution and all the approximations are plotted in Figure

6.1 (N=10, 30, and 100 in (a) and N=200, 300, and 400 in (b)). The corresponding errors

of the approximations are given in Table 6.1.
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Figure 6.1 The functions −α exp{Tt}Tu and −αP exp{S(x)t}S(x)e

Figure 6.1 shows that if N = 10, the function −αP exp{S(x)t}S(x)e is close to the original

density function −α exp{Tt}Tu for 0 ≤ t ≤ 0.5; if N = 30, the approximation is close to the

original density function for 0 ≤ t ≤ 1; if N = 100, the approximation is close to the original

density function for 0 ≤ t ≤ 2.5; if N = 200, the approximation is close to the original

density function for 0 ≤ t ≤ 5; if N = 300, the approximation is close to the original density

function for 0 ≤ t ≤ 7.5; and finally, if N = 400, the approximation and the original density

function are almost the same. It is clear that if we put more phases into the ordered Coxian

generator S(x), a better approximation can be obtained.

Table 6.1 βmin and εmax of the six approximations in Example 6.1

N = 10 N = 30 N = 100 N = 200 N = 300 N = 400

βmin 0 -0.8937 -0.0062 -0.0615 -0.0208 -0.0062

εmax 4.8589 3.8001 3.3621 0.9357 0.2414 0.0567

Note that, in Table 6.1, βmin is defined as βmin = min1≤i≤N{(αP )i} , which is real since x

(given in the CAMED algorithm given in Section 3) is real, and εmax is defined in the CAMED

algorithm. In Table 6.1, βmin and εmax are presented for the six approximations. Table 6.1

shows that all the representations of the six approximations are not Coxian representations

(since βmin < 0), except for N = 10. Furthermore, some of the approximations to the

probability distribution functions are monotone functions (e.g., N = 10 and 100), while

others are not (e.g., N = 30, 200, 300, and 400) (see Figure 6.1).

For cases with N = 10 and 100, after normalizing the vector β, the corresponding func-

tions are Coxian distribution functions that approximate the original distribution function.

For cases with N = 30, 200, 300, and 400, by using Theorem 3.4, we can find Coxian dis-

tributions that approximate the original distributions. When N=30, all elements of β are

positive except β30. Then we choose N0 = 29 and the function F(29,30)(t) is monotone.

The Coxian representation (β(29, 30)/(β(29, 30)e), S(x)) represents a Coxian distribution.

When N = 200, we choose N0 = 197 and the function F(197,200)(t) is monotone. Then
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the ME-representation (β(197, 200)/(β(197, 200)e), S(x), e) represents a Coxian distribution.

When N = 300, we choose N0 = 299 and the function F(299,300)(t) is monotone. Then

(β(299, 300)/(β(299, 300)e), S(x), e) represents a Coxian distribution. When N = 400, we

choose N0 = 398 and the function F(398,400)(t) is monotone. Then (β(398, 400)/(β(398, 400)e),

S(x), e) represents a Coxian distribution. For the last three cases, an equivalent Coxian

representation can be obtained by using the algorithm developed in HE and Zhang [16].

It is reasonable to say that, by adding more phases, the corresponding Coxian approxima-

tion is better and it is more likely that the resulting representation is a Coxian representation.

Unfortunately, when the approximation becomes satisfactory, the corresponding represen-

tation may have too many phases (compared to that of the original ME-representation).

Our numerical experiments demonstrate that if T is a PH-generator, the number of phases

needed for a good Coxian approximation does not have to be large when compared to the

number of phases of the original PH-representation. One of such examples is shown next.

Example 6.2 We consider T of order 10 given as

T =



−4 0 0 0.1 0 0 0 0 0.1 0.1

4 −4 0 0 0 0 0 0 0 0

0 4 −4 0 0 0 0 0 0 0

0.1 0 3.5 −4 0 0 0 0 0 0.1

0.1 0 0 3.8 −4 0 0 0 0 0.1

0 0 0 0.9 0 −1 0 0 0.1 0

0 0.1 0 0 0 0.9 −1 0 0 0

0 0 0 0 0 0 1 −1 0 0

0 0 0 0 0 0 0 1 −1 0

0 0.1 0 0 0 0 0 0 0.9 −1



. (6.2)

The eigenvalues of T are {−0.3399,−2.4415,−4.000,−5.5392,−0.8539−0.6100
√
−1,−0.8539+

0.6100
√
−1,−1.4832− 0.2856

√
−1,−1.4832+0.2856

√
−1,−4.0027− 1.5382

√
−1,−4.0027+

1.5382
√
−1}. We choose x = (λ, · · · , λ, y1, · · · , y10), where λ = 6 and yi = re(λi), 1 ≤ i ≤ 10.

For N=13, 15, 20, 30, 100, and 200, by using the spectral polynomial algorithm and the

CAPHD algorithm, we calculate the corresponding matrix P and vector pN+1. We consider

a PH-distribution (α, T ) with α = (0, 0, 0, 0, 0.2, 0, 0, 0, 0, 0.8). The corresponding pmin, βmin,

and εmax are presented in the following table.

Table 6.2 pmin,βmin and εmax of the six approximations in Example 6.2

N = 13 N = 15 N = 20 N = 30 N = 100 N = 200

pmin -8.1562 -3.3428 0 0 0 0

βmin 0 -0.1421 0 0 0 0

εmax 34.3317 10.9335 0.1779 0.0169 10−6 9.9 × 10−11
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Table 6.3 shows that if x is chosen properly, (αP, S(x), e) is an ordered Coxian represen-

tation that may represent a satisfactory approximation for a moderate size N(≈ 20). Note

that, since some of the eigenvalues of T are not real, then (αP, S(x),e) always represents an

approximation. Table 6.2 also shows that the elements of P become nonnegative faster than

the elements of pN+1 become small. The reason is that more than half of the eigenvalues of

T are not real. Thus, we need to increase N to achieve a small pN+1.

Figure 6.2 plots the density functions of (α, T ) and its approximations with N=13, 15,

and 20. If N is 30 or larger, the approximations match the original density function extremely

well. That indicates that the approximation can be very good, even if the corresponding

εmax is not small (see Table 6.2). Since α is nonnegative, the approximations are Coxian

distributions, if N is 20 or greater. For N ≥ 20, the matrix P becomes nonnegative. Then

(αP/(αPe), S(x)) is a Coxian representation that represents a Coxian distribution.

Figure 6.2 Density functions for N = 13, 15, and 20 and the original

In this example, we included {re(λi), 1 ≤ i ≤ 10} in the definition of x given in Theo-

rem 4.2, which is better than the other choice {|re(λi) + imag(λi)|, 1 ≤ i ≤ 10} with respect

to the number of phases N needed for a satisfactory approximation. However, according to

our numerical experiments with a large number of ME-distributions for m = 10 to 50, the

choice {|re(λi) + imag(λi)|, 1 ≤ i ≤ m} is better than {re(λi), 1 ≤ i ≤ m} for some cases.

If the PH-generator has only real eigenvalues, then it is possible to find an equivalent

ordered Coxian representation, instead of approximations. As indicated by the following

example, the size of the ordered Coxian representation does not have to be large when

compared to that of the original PH-generator.
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Example 6.3 Consider a PH-generator T defined as

T =


−10 0 1 0 0.5

5 −5 0 0 0

1 4 −5 0 0

0 0 0.5 −0.5 0

0 0 0 0.5 −0.5

 . (6.3)

Eigenvalues of T are {−8.9960,−7.7986,−3.1946,−0.6408,−0.3699}. Using the Coxian

representation algorithm, we compute Coxian representations for a PH-distribution with a

ME-representation (α, T, e), where α = (0, 1, 0,−0.1, 0.1). We choose x = (10, · · · ,10, 8.9960,

7.7986, 3.1946, 0.6408, 0.3699). Results related to representations (αP, S(x), e) are given in

Table 6.3.

Table 6.3 pmin and βmin of four representations for Example 6.3

N = 5 N = 8 N = 11 N ≥ 18

pmin -0.1216 -0.0052 0 0

βmin -0.0798 -0.0519 -0.0304 0

Note that, for this example, εmax = 0 for all N ≥ 5. Table 6.3 shows that, if N ≥ 11, the

matrix P is nonnegative and, if N ≥ 18, the vector αP becomes nonnegative, i.e., (αP, S(x))

becomes an equivalent ordered Coxian representation of (α, T, e).

Suppose that α = (0, 1,−0.5, 0, 0.5). If we still choose x = (10, · · · , 10, 8.9960, 7.7986,

3.1946, 0.6408, 0.3699), αP is not nonnegative for all N ≥ 5. In fact, for N ≥ 11, we always

have βmin = -0.0061. However, if we choose x = (30, · · · , 30, 8.9960, 7.7986, 3.1946, 0.6408,

0.3699), then αP becomes nonnegative for N ≥ 25. This example indicates that the choice

of x is an important factor for finding an ordered Coxian representation successfully, which

is an interesting issue for future research.

7 Conclusions and Discussion

In this paper, based on the spectral polynomial algorithm, we developed an algorithm for

computing 1) exact Coxian representations for PH-representations of Coxian distributions;

2) Coxian representations for approximate Coxian distributions of PH-distributions; and

3) Coxian representations for approximate Coxian distributions of ME-distributions. The

algorithm can be implemented in a straightforward manner. The form of the Coxian rep-

resentations of the approximations is simple and convenient for theoretical and numerical

studies of stochastic models.

A direction for further research is related to the number of phases in the Coxian repre-

sentations of the approximations. This issue is sensitive to the choice of vector x (see the
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CAMED algorithm in Section 3), where it is not clear how to choose x in an optimal way

in a practical case. For the approximations of ME-distributions and PH-distributions, an

interesting problem is to reduce the number of phases in their Coxian representations. For

the Coxian representations of Coxian distributions, an open question is the number of phases

needed by their Coxian representations.

A Appendix: Proofs of Theorem 4.2 and Theorem 5.1

To give complete proofs of Theorem 4.2 and Theorem 5.1, we need to show that the matrix

P is nonnegative. Our proofs are based on the extension of the Perron-Frobenius theorem

for reducible nonnegative matrices developed in Gantmacher [13] and Rothblum [31], and

the Jordan canonical form of matrices. We use the notation introduced in Berman and

Plemmons [5] (see Section 2.3 in [5]). First, we need to introduce a number of concepts

related to nonnegative matrices.

Assume that A is a nonnegative matrix of order m. Denote by An = (a
(n)
i,j ). We say that

phase j is accessible from i if a
(n)
i,j > 0 for some n. A class of phases consists of phases for

which any two phases are accessible from each other. Class ϕ is accessible from class φ , if

any phase in φ has access to any phase in ϕ . A class is final if it has access to no other class.

Denote by ρ(A) the Perron-Frobenius eigenvalue of the nonnegative matrix A, which is the

spectral radius of A since A is nonnegative. Class ϕ (a subset of {1, 2, · · · ,m}) is basic if

ρ(A[ϕ]) = ρ(A), where A[ϕ] is the submatrix of A based on the phases in ϕ, and non-basic

if ρ(A[ϕ]) < ρ(A).

A collection of basic classes {ϕ1, ϕ2, · · · , ϕn} is a chain from ϕ1 to ϕn, if ϕk has access to

ϕk+1, k = 1, 2, · · · , n− 1. The length of a chain is the number of basic classes it contains. A

class ϕ has access to a class φ in j steps if j is the length of the longest chain from ϕ to φ .

The height of a class ϕ is the length of the longest chain of classes that terminates in ϕ .

The degree v(A) of ρ(A) is the dimension of the largest Jordan block corresponding to

ρ(A). The null space N((ρ(A)I − A)v(A)) is called the algebraic eigenspace of A and its

elements are called generalized eigenvectors. The following theorem is given in Berman and

Plemmons [5].

Theorem A.1. (Theorem 3.20, Berman and Plemmons [5]) Assume that A has spectral

radius ρ(A) and n basic classes ϕ1, ϕ2, · · · , and ϕn. Then the algebraic eigenspace of A

contains nonnegative vectors, u(1), u(2), · · · , and u(n), such that the i-th element (u(j))i of

u(j) is positive if and only if the phase i has access to the class j, and any such collection is

a basis of the algebraic eigenspace of A.

It is also known that the degree of an irreducible matrix is one. An immediate consequence

of Theorem A.1 is that any Jordan chain of ρ(A) corresponds to a set of basic classes
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(Lancaster and Tismenetsky [17]). The length of the Jordan chain equals the number of

basic classes involved. The vectors of the Jordan chain can be chosen to be nonnegative with

positive elements corresponding to the related basic classes.

Now we consider a Jordan chain {u(1), u(2), · · · , u(K)} of ρ(A), i.e.,

(ρ(A)I − A)ku(k) = 0, 1 ≤ k ≤ K. (A.1)

Or equivalently, we have Au(1) = ρ(A)u(1) and Au(k) = ρ(A)u(k) + u(k−1), 2 ≤ k ≤ K. We

denote the corresponding chain of basic classes as ϕ1, ϕ2, · · · , and ϕK . The length of the

chain is K and the chain terminates at the class ϕK . Since any phase that has access to the

basic class ϕj also has access to the basic class ϕj+1, we have (u(j+1))i > 0 if (u(j))i > 0.

We divide the phases {1, 2, · · · ,m} into two subsets: the phases that have access to ϕK

and the phases that have no access to ϕK . By reordering the phases, A can be rewritten as

A =

(
A0 0

A1,0 A1

)
, (A.2)

where phases corresponding to A1 have access to ϕK and phases corresponding to A0 have

no access to ϕK . The matrix A1 contains not only all the submatrices corresponding to the

basic classes ϕ1, ϕ2, · · · , and ϕK , but also all phases that have access to ϕK . Some basic

classes may be in the matrix A0, but such basic classes have no access to ϕK and vice versa.

According to Theorem A.1, we have

u(k) =

(
0

u
(k)
1

)
, 1 ≤ k ≤ K, (A.3)

and the vector u
(K)
1 is positive since ϕK is accessible from all phases related to A1. By

equation (A.1), the vectors {u(1)
1 , u

(2)
1 , · · · , u

(K)
1 } satisfy A1u

(1)
1 = ρ(A)u(1)

1 and A1u
(k)
1 =

ρ(A)u(k)
1 + u

(k−1)
1 , 2 ≤ k ≤ K.

By Theorem A.1, we can extend {u(1), u(2), · · · , u(K)} to a complete set of Jordan chains

{u(1),u(2), · · · , u(K), u(K+1), · · · , u(m)} of the matrix A. Let U = (u(1), u(2), · · · , u(m)). By

definition, U is invertible. Denote by V the inverse matrix of U and by {v(1), v(2), · · · , v(m)}
the 1-st, 2-nd, · · · , m-th rows of V , respectively. By definition of the Jordan chain, it is clear

that v(K)u(K) = 1 and v(K)A = ρ(A)v(K). Since u(K) is chosen to be nonnegative, the vector

v(K) is nonnegative and v(K)e is positive.

By the Jordan canonical form and routine calculations, we obtain

An =
min{K,n+1}∑

k=1

u(k)

( min{n+1,K}∑
j=k

n!(ρ(A))n+k−j

(n + k − j)!
v(j)

)
+ R(n), (A.4)

where R(n) includes all the remaining items in the expansion of An.
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Proof of Theorem 4.2

Let A = λI + T , which is nonnegative for λ given by equation (4.1). We rewrite T into

the following form according to that of A given in equation (A.2):

T =

(
T0 0

T1,0 T1

)
. (A.5)

The spectrum of A is {λ − λ1, · · · , λ − λm}. In Section 4, we assumed that −λm is the

Perron-Frobenius eigenvalue of T . Then it is easy to see ρ(A) = λ− λm. We choose n > K.

Post-multiplying by −Te on both sides of equation (A.4), we obtain, since v(K)e is positive,

(λI + T )n(−T )e (A.6)

=
min{K,n+1}∑

k=1

u(k)

( min{n+1,K}∑
j=k

n!(ρ(A))n+k−j

(n + k − j)!
v(j)(−T )e

)
+ R(n)(−T )e

=
min{K,n+1}∑

k=1

u(k)

(
n!(ρ(A))n+k−K+1

(n + k − K)!
v(K)e +

min{n,K−1}∑
j=k

n!(ρ(A))n+k−j

(n + k − j)!
v(j)(−T )e

)
+R(n)(−T )e

=
min{K,n+1}∑

k=1

(
0

u
(k)
1

)(
n!(ρ(A))n+k−K+1

(n + k − K)!
v(K)e + o

(
n!(ρ(A))n+k−K+1

(n + k − K)!

)
e

)
+ R(n)(−T )e.

Note that, in equation (A.6), the notation “o” is respect to n. Since the phases of any Jordan

chain associated with ρ(A) has no access to the phases of any other Jordan chain associated

with ρ(A) (otherwise, they form a single Jordan chain), equations (A.2)-(A.6) imply

(λI + T )n(−T )e (A.7)

=

 (λI + T0)n(−T0)e(∑min{K,n+1}
k=1 u

(k)
1

(
n!(ρ(A))n+k−K+1

(n+k−K)! v(K)e + o

(
n!(ρ(A))n+k−K+1

(n+k−K)!

)
e

)
+ o

((
ρ(A)

)n
))

e

 .

Since −Te is nonnegative, (λI + T )n(−T )e is nonnegative. Furthermore, since y1 > λm, we

have

(y1I + T )(λI + T )n(−T )e (A.8)

=

 (y1I + T0)(λI + T0)n(−T0)e∑min{K,n+1}
k=1 (y1I + T1)u

(k)
1

(
n!(ρ(A))n+k−K+1

(n+k−K)! v(K)e + o

(
n!(ρ(A))n+k−K+1

(n+k−K)!

)
e

) 
+

 0

o

((
ρ(A)

)n
)

e
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=

 (y1I + T0)(λI + T0)n(−T0)e∑min{K,n+1}
k=1

[
(y1 − λm)u(k)

1 + u
(k−1)
1

](
n!(ρ(A))n+k−K+1

(n+k−K)! v(K)e + o

(
n!(ρ(A))n+k−K+1

(n+k−K)!

)
e

) 
+

 0

o

((
ρ(A)

)n
)

e


=

 (y1I + T0)(λI + T0)n(−T0)e∑min{K,n+1}
k=1 u

(K)
1

(
n!(y1−λm)(ρ(A))n+k−K+1

(n+k−K)! v(K)e + o

(
n!(ρ(A))n+k−K+1

(n+k−K)!

)
e

) 
+

 0

o

((
ρ(A)

)n
)

e

 .

By induction and equation (A.6) and yj > λm, we obtain, for j < L,

(yjI + T ) · · · (y1I + T )(λI + T )n(−T ))e

=

 (yjI + T0) · · · (y1I + T0)(λI + T0)n(−T0)e∑min{K,n+1}
k=1 u

(K)
1

(
n!(yj−λm)···(y1−λm)(ρ(A))n+k−K+1

(n+k−K)! v(K)e + o

(
n!(ρ(A))n+k−K+1

(n+k−K)!

)
e

) 
+

 0

o

((
ρ(A)

)n
)

e


≡

(
(yjI + T0) · · · (y1I + T0)(λI + T0)n(−T0)e

w(n)

)

+

 0

o

((
ρ(A)

)n
)
e


=

 (yjI + T0) · · · (y1I + T0)(λI + T0)n(−T0)e

w(n) + o

((
ρ(A)

)n)
e

 . (A.9)

Since v(K)e is positive and u
(1)
1 + · · · + u

(K)
1 is positive, we have wj(n) ≥ O((ρ(A))n) for all

possible indices j for the vector w(n). Then we have wj(n) + o((ρ(A))n) ≥ O((ρ(A))n)).

Thus, equation (A.9) indicates that the vector(yjI + T ) · · · (y1I + T )(λI + T )n(−T ))e becomes

nonnegative if n is large enough and (yjI + T0) · · · (y1I + T0)(λI + T0)n(−T0)e is nonnegative.

The non-negativity of the vector (yjI + T0) · · · (y1I + T0)(λI + T0)n(−T0))e can be proved by

repeating the above proof on T0.

Equations (A.7) and (A.9) show the non-negativity of matrices {(λI + T )n(−T ), (yjI +

T ) · · · (y1I + T )(λI + T )n(−T ))e, 1 ≤ j ≤ L − 1} if n is large enough, which implies the non-

negativity of the matrix P . This completes the proof of Theorem 4.2. 2
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Proof of Theorem 5.1

The proof of Theorem 5.1 is similar to that of Theorem 4.2. For this case, we have L = m

and yj = λj, 1 ≤ j ≤ m. The major difference between the proof given in Section 5 and this

proof is that λj = λm can be true for j < m. Because of that, in equation (A.9), it is now

possible that (λj − λm) · · · (λ1 − λm) becomes zero for j < m.

To show that the second part of the vector in equation (A.9) is nonnegative, we note

that λ1 ≥ λ2 ≥ · · · ≥ λm > 0. We consider two cases. First, if λj > λm, equation (A.9)

shows that the second part of the vector is nonnegative if n is large enough. Second, if

λj = λm, then for all other eigenvalues −λi with λi > λm, the term λiI +T is in the product

(λjI +T ) · · · (λ1I +T )(λI +T )n(−T )e and repeats itself in the product for τ(−λi) times, where

τ(−λi) is the algebraic multiplicity of −λi. That implies that the Jordan chains associated

with −λi are not in the expansion of the product (λjI + T ) · · · (λ1I + T )(λI + T )n(−T )e. One

of the consequences is that the residual term −R(n)Te disappears. Thus, equation (A.4)

becomes

(λjI + T ) · · · (λ1I + T )(λI + T )n(−T )e (A.10)

=

 0∑min{K,n+1}
k=1 (λjI + T1) · · · (λ1I + T1)u

(k)
1

(
n!(ρ(A))n+k−K+1

(n+k−K)! v(K)e + o

(
n!(ρ(A))n+k−K+1

(n+k−K)!

)
e

)  .

Suppose that n0 = min{n : λn = λm}. For j ≥ n0, equation (A.10) becomes

(λjI + T ) · · · (λ1I + T )(λI + T )n(−T )e (A.11)

=


0

∑min{K,n+1}
k=1 (λmI + T1)j−n0+1u

(k)
1

(n!

(
Π

n0−1
i=1 (λi−λm)

)
(ρ(A))n+k−K+1

(n+k−K)! v(K)e

)


+

 0∑min{K,n+1}
k=1 (λmI + T1)j−n0+1u

(k)
1

(
o

(
n!(ρ(A))n+k−K+1

(n+k−K)!

)) 

=


0

∑min{K,n+1}
k=j−n0+2 u

(k−j+n0−1)
1

(n!

(
Π

n0−1
i=1 (λi−λm)

)
(ρ(A))n+k−K+1

(n+k−K)! v(K)e + o

(
n!(ρ(A))n+k−K+1

(n+k−K)!

)
e

)
,

 .

where we used (λmI +T1)u
(k)
1 = u

(k−1)
1 and we assumed that K is the dimension of the largest

Jordan block associated with −λm. The second part of the vector in the last line of equation

(A.11) is either zero or nonnegative if n is large enough. If two or more than two Jordan chains

associated with −λm have the same length K, then these chains are not accessible from each

other and can be dealt with separately. Thus, the vector (λjI +T ) · · · (λ1I +T )(λI +T )n(−T )e
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is nonnegative if n is large enough. Therefore, the matrix P is nonnegative. This completes

the proof of Theorem 5.1. 2
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