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Abstract

We consider a supply–assembly–store chain with produce-to-stock strategy, which comprises a set of component
suppliers, a mixed-model assembly line with a constantly moving conveyor linking a set of workstations in series,
and a set of product storehouses. Each supplier provides components of a specified family, which are assembled at a
corresponding workstation. Units belonging to different models of products are sequentially fed onto the conveyor,
and pass through the workstations to generate finished products. Each storehouse stores finished products belonging
to a specific model for satisfying customer demands. The suppliers deliver components according to a just-in-time sup-
ply policy with stochastic leadtimes. Customer demands for a particular model of products arrive at the corresponding
storehouse according to a Poisson stream. The paper conducts a modeling and performance analysis in the design stage
of the system in the sense of ‘‘long-term-behavior’’. A rolling technique is constructed for analyzing stationary proba-
bility distributions of the numbers of components. A two-dimensional Markov chain with infinite states is introduced
for analyzing stationary probability distributions of inventories of finished products. Based on these distributions, per-
formance measures of the system, such as work-in-process of components, inventory amounts of finished products, as
well as service levels for customers, can be easily obtained. Managerial insights are obtained from both analytical and
numerical results.
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1. Introduction

Supply chain management addresses the management of materials and information across the entire
chain from suppliers to producers, distributors, retailers, and customers. Traditionally, each company per-
forms purchasing, production and marketing activities independently, so that it is difficult to make an opti-
mal plan for the whole chain. In recent years, it has been realized that actions taken by one member of the
chain can influence all others in the chain (see, for example, Chopra and Meindl, 2001; Silver et al., 1998).
More and more companies have gradually recognized that each of them serves as part of a supply chain
against other supply chains in terms of competition, rather than as a single firm against other individual
firms. Since 1990, as the information technology has continuously developed, it is possible to coordinate
all organizations and all functions involved in the whole chain. Consequently, supply chain management
has been increasingly receiving attention from both academic researchers and practitioners. Roughly speak-
ing, research on supply chain management has been mainly focused on three major issues. One is the behav-
ior of information flow through a supply chain (see, for example, Lee et al., 1997). The second issue deals
with inventory management, which regards a supply chain as a multi-echelon inventory system (see, for
example, Axsater, 2000a; Zipkin, 2000, and the cited references in them). The third issue is orientated to
planning and operations management of a supply chain based on queueing systems, which has not been
addressed enough in the literature yet (see the most related works, for example, Parlar, 2000; Raghavan
and Viswanadham, 2001; Song and Yao, 2002).

Since a supply chain deals with material flows and information flows across the entire chain, from sup-
pliers of original components to final customers, it comprises at least two major domains: the physical
transformation domain (mining, smelting, casting, alloying, machining, assembling; etc.), and the goods
distribution domain (conveyance, storage, and transportation).

The physical transformation domain is formed by several manufacturing enterprises that generate goods
through a series of processes provided by different firms. In recent years, in this domain, the ‘‘just-in-time’’
(JIT) principle has been adopted as a supply mechanism in many firms in actual supply chains (see, for exam-
ple, Aigbedo, 2004; Grout and Christy, 1999; Kelle and Miller, 2001; Olhager, 2002; Pan and Yang, 2002).
Originally, the JIT philosophy was developed by the Toyota Motor Corporation through the kanban control
for the objective of minimizing inventories. Since the mid-1980�s it has become one of the principal methods
used as an internal production management system within a single manufacturer. Therefore a great deal of
the research in JIT production systems treats leadtimes for internal (to the firm) supplies as controllable; usu-
ally they are assumed to be constant or even zero (see, for example, Miyazaki et al., 1988; Muckstadt and
Tayur, 1995; Sarker and Balan, 1999; Spearman and Zazanis, 1992). If we extend the JIT principle as an
intra-firm supply mechanism in a supply chain, the leadtimes become a major factor of concern, and the
assumption of constant or zero supply leadtimes becomes no longer tenable. Therefore we contend that lead-
times should be treated as random variables. So far, to the authors� knowledge, few papers have treated sto-
chastic leadtimes for JIT supply mechanisms; see, for example, Yanagawa et al. (1994) who assume a discrete
probability distribution, and Grout and Christy (1999) who consider a uniform distribution.

In the goods distribution domain, goods are moved from warehouses to distributors, from distributors
to retailers, and finally from retailers to customers. The focus of research in this area is inventory manage-
ment, which is somewhat different from production management. For example, in the physical transforma-
tion domain the JIT supply mechanism among different companies can be implemented by exterior supply
kanbans (Monden, 1998). It can be difficult to introduce such a supply mechanism in the distribution area.
So far, the popular inventory management approaches in this area remain the (s, S) policy under periodic
review (see, form example, Cetinkaya and Parlar, 2002; Sobel and Zhang, 2001), the (R, Q) policy under
continuous review (see, for example, Axsater, 2000b), etc.

Mixed model assembly lines (MMALs) are widely developed in modern industries. In the last few dec-
ades MMALs have received considerable attention in the literature; see, for example, the survey articles of
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Gagnon and Ghosh (1991), Lima-Fernandes and Groover (1995) and Yano and Bolat (1989). In a supply
chain that includes an MMAL, the MMAL plays a central role as a bridge that connects the transformation
domain and the distribution domain. Components supplies are pulled from the transformation domain to
the MMAL, and the finished products are replenished from the MMAL to the distribution domain. There-
fore, the planning and operations management for the MMAL directly impact the performance of the en-
tire chain. For such MMAL-centered supply chains, goods replenishment processes from the MMAL to the
distribution area are not controlled by the conventional policies such as the (s, S) policy or the (R, Q) policy.
They are also different from conventional ‘‘one producer–multiple retailers with capacitated resource’’ sys-
tems in the literature (Evans, 1967; Perez and Zipkin, 1997; Rajagopalan, 2002; Tayur, 1993). We shall pro-
vide modeling and analysis of such supply chains in the subsequent sections.

On the other hand, for production strategies, basically speaking, there are two popular types: ‘‘produce-
to-stock’’ and ‘‘produce-to-order’’ (see Buzacott and Shanthikumar, 1993). Production planning with
produce-to-stock strategy is based on the market forecasting information, which is widely used in appliance
industry, IT industry, common-type autos industry, etc. Consequently, for these production systems, lost sales
may occur naturally. Production strategy of produce-to-order is adopted by industries such as aircraft manu-
facturing, ship manufacturing, special-type autos manufacturing, etc. The production planning for such indus-
tries is made only after receiving customers� demands. Hence, a lost sale may not take place in such systems.

In this paper, we consider a supply–assembly–store chain with produce-to-stock strategy. The chain
comprises a set of component suppliers, a mixed model assembly line (MMAL) with a conveyor linking
a set of workstations in series, and a set of finished product storehouses. Each supplier provides compo-
nents of a specified component family to a specified workstation in the MMAL. All suppliers deliver com-
ponents according to the JIT mechanism with respective stochastic leadtimes. Each workstation assembles
components of some specified families. Units belonging to different models of products are sequentially fed
onto the conveyor of the MMAL, and are moved by the conveyor at a constant speed to pass through the
workstations to generate products. Finished products enter the storehouses, each of which stores finished
products of a specified model. Customers arrive at the storehouses to get their desired products. This system
is close to some real supply chains in such as electronic appliance industries and auto manufacturing (see,
for example, Monden, 1998). Thus, its study is of considerable value to practitioners in these industries.

We model the above system and analyze stationary probability distributions of the numbers of compo-
nents and stationary probability distributions of finished products in storehouses, in the sense of long-term-
behavior. These analyses are useful and valuable to obtain performance measures of the system, such as
averages and variances of work-in-processes (WIPs) of components, averages and variances of inventories
of finished products in storehouses, as well as service levels for customers. They are also useful and valuable
in risk and sensitivity analysis for the system. Such studies are usually essential at the design stage of the
supply chain to ensure satisfactory performance. For example, designers are concerned with the system per-
formance with respect to the system parameters, the system configuration, etc., to make an appropriate
decision. Similarly, they also expect to obtain performance measures to evaluate a given design plan.
The methods developed in this paper can be used to compare different system designs based on their sta-
tionary probability distributions, i.e., their ‘‘long-term-behavior’’. Therefore, the main contribution of this
paper is threefold: formulation of stochastic models for the number of components and the inventory of
finished products, performance analysis conducted by a ‘‘rolling method’’ and by using matrix analytic
methods, and the provision of some interesting insights into the behavior of such systems.

The rest of the paper is organized as follows. In Section 2, the model formulation of the supply chain is
given. In Section 3, a rolling technique is proposed to analyze stationary probability distributions of the
numbers of components, and managerial insights are obtained from analytical results. In Section 4, the sta-
tionary probability distributions of inventories in the storehouses are discussed based on the matrix analytic
method. Section 5 provides numerical results to investigate the impact on performance with respect to sev-
eral managerial measures. Future work is pointed out in Section 6 to conclude the paper.
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2. Model formulation

The supply–assembly–store chain considered in this paper comprises three parts: a set of N component
suppliers, a mixed model assembly line (MMAL), and a set of M product storehouses. Components come
from the N suppliers and are held in N component shelves near the MMAL before used in assembly.
Assemblies occur in K workstations (work zones) along the MMAL, where components are taken from
shelves and put on units to form M models of products. Finished products off the MMAL are stored in
the M product storehouses waiting to be sold to customers. In the rest of this section, we give a detailed
description of the three parts. (See an example in Fig. 1 with M = 3 product models, N = 5 component
suppliers, and K = 3 workstations.)

2.1. Storehouses of finished products

Products off the MMAL are stored in the M storehouses that are numbered from 1 to M with model m

products (1 6 m 6 M) stored in storehouse m. The demands from customers for model m products follow a
stationary Poisson process with parameter km with each demand requiring a single product. Since the sys-
tem adopts the produce-to-stock strategy, it is reasonable, as described in the previous section, that during
any period of no products in storehouse m, customers for model m products are lost.

2.2. Deliveries of components from suppliers

Components used in assembling on the MMAL are supplied by N suppliers that are numbered 1 to N.
Each supplier is responsible for the delivery of a family of (possibly different) components. For instance, in
a car assembly, all kinds of engines are from the same supplier but with different horsepower, which are
used in different model cars. We assume that supplier n is responsible for the delivery of the components
of family n, 1 6 n 6 N. There is a shelf near the MMAL for each family to hold the received components.

When an order for components of family n is issued, it takes a random time for supplier n to deliver the
ordered components. Such leadtimes of delivering components by supplier n are independently identically
distributed random variables (i.i.d.r.v.s) with cumulative distribution function Fn(t). Let nn be the generic
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Fig. 1. A supply–production–store chain.



Z. Xiaobo et al. / European Journal of Operational Research 176 (2007) 275–294 279
random variable corresponding to Fn(t). We assume that nn takes nonnegative real values and is bounded,
i.e., there is a finite positive constant Tn such that
F nðT nÞ ¼ Prfnn 6 T ng ¼ 1. ð2:1Þ

For later use and without loss of generality, we assume that Tn is the smallest integer for which Eq. (2.1)

holds. The above constraint on nn is not restrictive since any real delivery can be completed within a finite
time interval.

An actual MMAL is usually operated under the condition that a shortage of any component never oc-
curs. To satisfy that condition and to keep the inventory of components to a minimum, the following sup-
ply policy is adopted. For components of family n, an order is placed at time t for components to be used at
time t + Tn. This supply policy is called just-in-time (JIT) delivery with stochastic leadtimes. It is easy to see
that, under the JIT supply policy, no shortage of components of family n will occur since the leadtime nn is
less than or equal to Tn with probability one. It will be made clear that the production schedule at the
MMAL is deterministic. Thus, future requirements of any family of components can be entirely known.
Therefore, the JIT supply policy can be applied. We point out that the replenishment processes of different
families of components depend only on the production schedule (to be specified next) of the MMAL and
are independent of each other.

2.3. The MMAL

The MMAL consists of a constantly moving conveyor and K workstations each of which represents a
work zone. There are M different models of products produced on the MMAL. A model m (1 6 m 6 M)
product begins with an initial unit that is fed onto the front of the conveyor and moved by the conveyor
from workstations 1 to 2, 2 to 3, . . ., and K � 1 to K. Initial units fed onto the conveyor can be either com-
mon or specific to different models of products produced by the MMAL. For convenience, we call a unit for
model m product a model m unit. When a model m unit passes through a workstation, components required
for the model are assembled onto the unit. After passing all workstations (at the end of the conveyor), a
model m product is finished and is stored in storehouse m. The numbers of components from different com-
ponent families required for different models of products are given in the following M · N matrix:
A ¼

A1;1 � � � A1;N

..

. ..
. ..

.

AM ;1 � � � AM ;N

0
BB@

1
CCA; ð2:2Þ
where the (m, n)th element Am,n is the number of components of family n required by a unit of model m

product. The fact that a component family comprises a set of similar but different components and different
models of products may require different numbers of components makes the MMAL different from single
model assembly lines (SMALs).

Without loss of generality, we assume that workstation k assembles components from suppliers
{nk�1 + 1, nk�1 + 2, . . . , nk}, where n0 = 0 < n1 < n2 < � � � < nK = N. (Otherwise, we can simply re-number
the component suppliers so that the assumption holds). A workstation has a group of operators to com-
plete tasks of assembling the specified components. As soon as a unit is brought into workstation k by
the conveyor, all its required components from suppliers {nk�1 + 1, nk�1 + 2, . . . , nk} are simultaneously
taken from their shelves. As the unit on the conveyor moves through the work zone, the operators of
the workstation assemble these components onto the unit.

Fig. 1 illustrates a system with five suppliers, an MMAL with three workstations, and three storehouses.
Workstation 1 is used to assemble components of families 1 and 2, workstation 2 is to assemble components
of family 3, and workstation 3 is to assemble components of families 4 and 5. For this case, N = 5, K = 3,
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M = 3, and n0 = 0, n1 = 2, n2 = 3, and n3 = 5, i.e., the first workstation is for families {1, 2}, the second is
for family {3} and the third is for families {4, 5}.

We note that the assembling process of the MMAL is affected by the physical characteristics of the
MMAL, such as the speed of the conveyor, the lengths of the workstations, and the time duration between
feeding units onto the conveyor. For our model, it is not needed to consider the lengths of the workstations
nor the speed of the conveyor as long as the operators can complete their assembling tasks during the sojourn
time of a unit in the workstations. The MMAL operates in such a manner that: (1) one unit is fed onto the
conveyor every Tc units of time; and (2) the conveyor is moving at a constant speed. Without loss of gener-
ality, we assume that one unit is fed onto the conveyor per unit time (i.e., Tc = 1) so that the conveyor moves
one unit to each workstation per unit time. A moment�s reflection indicates that regardless of the speed of the
conveyor and the lengths of the workstations, if one unit is fed onto the conveyor per unit time, then one unit
moves into each workstation per unit time and one finished product goes off the MMAL per unit time.

A production schedule is determined by the feeding order of units for producing different models of prod-
ucts, i.e., the so-called sequence (see, for example, Scholl, 1999). For actual MMALs in the operational stage,
such a sequence represents the production schedule of one working day or one working shift. As was indi-
cated, we focus on the design stage of the supply chain for modeling and analysis based on the ‘‘long-term-
behavior’’, so in our model the production sequence is the same for each day (see Remark 2.1 for more
discussions on this assumption). Let R = {r(0), r(1), . . . , r(D � 1)} be the sequence, where r(j) identifies
the model of the unit fed onto the conveyor at time j and D is the total number of products produced per
day, 1 6 r(j) 6 M and 0 6 j 6 D � 1. By stationarity, it follows that r(j) identifies the model of the unit
fed onto the conveyor at time j + iD in the ith day, for 0 6 j 6 D � 1, and i is any nonnegative integer. There-
fore, production is scheduled in cycles with a cycle length D and R represents a production schedule for time
periods [0, D � 1], [D, 2D � 1], and so on.

Let dm represent the number of model m products in the sequence R, which is also the number of model
m products produced per day.

Remark 2.1. In the operation of an MMAL, an important element is the daily production schedule, i.e.,
the sequence. It needs to be dynamically adjusted if demands by customers are nonstationary or the
manufacturer takes a produce-to-order strategy for which a schedule is determined according to the
received order bills. This paper discusses long-term-behavior in design stage under conditions such as
stationary customers� demands and produce-to-stock strategy. In doing so, a fixed sequence R is used for
daily production for the analysis of the system in the sense of long-term-behavior.

Remark 2.2. In this paper, we assume that all leadtimes incurred by the same supplier are independent and
we do not make any further assumption on the delivery discipline such as ‘‘first-supply-first-arrive’’.

Remark 2.3. The JIT supply policy and Tc imply that the duration of the interval between two orders to a
supplier is just Tc. Nevertheless, if Tc is small, then the supply frequency may be too high. In such cases, we
can consider to take the supply duration as multiplies of Tc, which means that the amount of components in
a single delivery will be used by multiple units. Then the analysis principle for the number of components in
the subsequent section is the same for such cases.

Remark 2.4. The existing literature mainly focuses on MMALs under one of three objectives: (1) leveling
the usage rate of components consumption without supply leadtimes; (2) balancing the assembling load in
the workstations; and (3) smoothing the product output over all models under produce-to-order strategy.
In many actual systems, supply leadtimes of the components are essential, and inventories of finished prod-
ucts as well as service levels for customers are crucial under produce-to-stock strategy. Our model is more
appropriate for such systems from practical perspective.
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3. Analysis of components on shelves

The number of components of family n on the corresponding shelf (we call it the work-in-process (WIP)
thereafter), at integer time epoch s is denoted by Wn(s), 1 6 n 6 N. In this section, we develop a method to
analyze the probability distribution of Wn(s). Since no shortage is allowed and no coordination among sup-
pliers exists, the replenishment processes of the n families of components are independent. Thus, our anal-
ysis can be focused on a single family of components. We shall first introduce a ‘‘rolling’’ technique for
tracking the status of the placed orders, and then find its steady state distribution. After that, we obtain
the probability moments of the WIP, and finally present managerial insights gained from the analytical
results.
3.1. Rolling technique

Consider the components of family n. Suppose that the corresponding workstation of component family
n is k, i.e., components of family n are used in workstation k. Without loss of generality, we assume that the
first unit enters workstation k at time 0. Then subsequent units enter the workstation only at positive inte-
ger epochs since a unit is fed onto the conveyor each unit of time. In order to study Wn(s), we first analyze
the status of the placed orders at integer epochs (i.e., unit-entry epochs).

The method is based on a ‘‘rolling’’ technique that is characterized by two variables: a pointer and a
string.

The pointer, X(s), tracks the product model of the unit just entered workstation k at time s in the fol-
lowing manner. Let X(s) = Rem(s, D) be the remainder of the nonnegative integer s divided by D. (Note
that, throughout this paper, we use t for continuous time and s for integer time epochs.) The variable
X(s) is actually deterministic in a cyclic fashion and takes nonnegative integer values {0, 1, . . . , D � 1}.
By the definition of the production sequence R = {r(0), r(1), . . . , r(D � 1)}, r(X(s)) represents the product
model of the unit just entered workstation k at time s.

Next, the string, a vector of random variables JðsÞ ¼ ðj1ðsÞ; j2ðsÞ; . . . ; jT n�1ðsÞÞ, is introduced to track the
status of the placed orders. Since the leadtimes of supplies are less than or equal to Tn, there can be at most
Tn � 1 outstanding orders whose status is still uncertain at any time epoch s. In fact, these are the most
recent Tn � 1 orders. Let, for 1 6 i 6 Tn � 1,
jiðsÞ ¼
1; if the components of family n ordered at s� T n þ i have arrived;

0; otherwise.

(
ð3:1Þ
The random variable ji(s) provides information about the order placed at time s � Tn + i; the components
placed at that time will be used at time s + i. In other words, the components associated with the ith ele-
ment in vector J(s) will be used by the unit r(Rem(X(s) + i, D)) in the sequence R.

It is clear that the vector (X(s), J(s)) provides all the information needed about the replenishment process
of components of family n.

Fig. 2 shows an example for which D = 5 and Tn = 7. Suppose at time epoch 17, (X(17), J(17)) = (2,
(1, 0, 1, 0, 1, 1)). Then the pointer is 2, two orders placed at times 12 and 14 have not arrived yet and other
orders placed at times 11, 13, 15, and 16 have arrived.

It is obvious that the pointer is deterministic which takes values cyclically and sequentially from 0 to
D � 1 whereas the string is stochastic characterized by the vector JðsÞ ¼ ðj1ðsÞ; j2ðsÞ; . . . ; jT n�1ðsÞÞ. The state
space of X(s) is
Xp ¼ f0; 1; . . . ;D� 1g. ð3:2Þ



Fig. 2. The rolling approach.
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That of J(s) is given by the cross product of Tn � 1 number of the set {0, 1}, i.e,
Xs ¼ f0; 1gT n�1. ð3:3Þ

Since any leadtime incurred by the supplier is independent of the pointer, the following result is

straightforward.

Proposition 3.1. The pointer X(s) and the string J(s) are independent of each other.

At an arbitrary integer observation epoch s, ji(s) in J(s) characterizes whether or not the order placed at
time s � Tn + i has arrived by taking values 1 and 0, with probability Fn(Tn � i) being 1 and probability
1 � Fn(Tn � i) being 0. Note that these probabilities are independent of the observation epochs. In other
words, they are the same at all observation epochs, hence the stationarity of the distribution. Moreover,
due to the independence among all the leadtimes by the supplier, the stationary distribution must possess
a product form over Tn � 1 dimensions for tracking the Tn � 1 placed orders.

Let pJ denote the stationary probability of J(s) at state J ¼ ðj1; . . . ; jT n�1Þ 2 Xs. Then we have the follow-
ing result.

Proposition 3.2. The stationary distribution p = (pJ)J2Xs
is given by
pJ ¼
YT n�1

i¼1

piðjiÞ; ð3:4Þ
where
piðjiÞ ¼
1� F nðT n � iÞ; if ji ¼ 0;

F nðT n � iÞ; if ji ¼ 1.

�
ð3:5Þ
3.2. Moments of the WIP

Since the vector (X(s), J(s)) provides all the information about the replenishment process of components
of family n, we can analyze the WIP from the production sequence R = {r(0), r(1), . . . ,r(D � 1)} and the
stationary distribution p.
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The manner can best be understood by referring to Fig. 2. Suppose the pointer is 2. Then the first ele-
ment in J(s) is related to the third unit in the sequence, the second element is related to the fourth unit, the
third one is related to the zeroth unit, and so forth. In general, if the pointer is at j, then the ith element of
J(s) is related to the unit r(Rem(j + i, D)) in the sequence R. Thus, from the requirement matrix A given in
Eq. (2.2), the corresponding requirement for components of family n for that unit is Ar(Rem(j+i,D)),n.

Suppose the pointer is zero. Then the WIP corresponding to the state J ¼ ðj1; . . . ; jT n�1Þ is given by
XT n�1

i¼1

ji � ArðRemði;DÞÞ;n. ð3:6Þ
From Proposition 3.2, the expectation of the above is then
pJ �
XT n�1

i¼1

ji � ArðRemði;DÞÞ;n ¼
YT n�1

i¼1

piðjiÞ
 ! XT n�1

i¼1

ji � ArðRemði;DÞÞ;n

 !
.

The expectation of the WIP at the pointer being zero is given by taking the summation over the state space
of J(s), i.e.,
X
J2Xs

pJ �
XT n�1

i¼1

ji � ArðRemði;DÞÞ;n

 !
¼
X
J2Xs

YT n�1

i¼1

piðjiÞ
 ! XT n�1

i¼1

ji � ArðRemði;DÞÞ;n

 ! !
.

Substituting (3.5) into the above with some algebra leads to
ArðRemð1;DÞÞ;n � F nðT n � 1Þ þ ArðRemð2;DÞÞ;n � F nðT n � 2Þ þ � � � þ ArðRemðT n�1;DÞÞ;n � F nð1Þ
In general, the expectation of the WIP at pointer x, 0 6 x 6 D � 1, is given by
ArðRemðxþ1;DÞÞ;n � F nðT n � 1Þ þ ArðRemðxþ2;DÞÞ;n � F nðT n � 2Þ þ � � � þ ArðRemðxþT n�1;DÞÞ;n � F nð1Þ
Summation over the state space of the pointer and taking the average, we obtain the first moment of the
WIP as follows
E½W n� ¼
1

D

X
x2Xp

½ArðRemðxþ1;DÞÞ;n � F nðT n � 1Þ þ � � � þ ArðRemðxþT n�1;DÞÞ;n � F nð1Þ�

¼ 1

D
ðF nð1Þ þ F nð2Þ þ � � � þ F nðT n � 1ÞÞ �

XD�1

x¼0

Arðxþ1;DÞ;n

" #
. ð3:7Þ
For the second moment of the WIP, we may not give an explicit expression form as writ the first moment
above. Nevertheless, we can easily calculate its value according to the following
E½W n�2 ¼
1

D

X
x2Xp

X
J2Xs

pJ �
XT n�1

i¼1

ji � ArðRemðxþi;DÞÞ;n

 !2
0
@

1
A. ð3:8Þ
In general, the kth moment of the WIP is calculated in accordance with
E½W n�k ¼
1

D

X
x2Xp

X
J2Xs

pJ �
XT n�1

i¼1

ji � ArðRemðxþi;DÞÞ;n

 !k
0
@

1
A. ð3:9Þ
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Remark 3.1. The expected WIP given in Eq. (3.7) is for the WIP at integer time epochs. However, supplied
components may arrive at any time between integers. For instance, j1 may be zero, but the corresponding
components may arrive before the next integer time epoch. For such a case, we must consider the possibility
in which supplied components arrive between two successive observations in order to find the expected WIP
at an arbitrary time. Define a conditional distribution function as
H iðtÞ ¼ Prfnn 6 tjnn > ig; i ¼ 0; 1; . . . ; T n � 1.
If j1 = 0 for state J(s) observed at an arbitrary integer time epoch s, according to the ‘‘time proportion’’
defined for a WIP, the expected WIP in the interval (s, s + 1] is given by
ArðRemðxþ1;DÞÞ;n �
Z T n

T n�1

ðT n � tÞHT n�1ðdtÞ.
For ji = 0, i = 2, . . . , Tn � 1, the expected WIP in the interval (s, s + 1] is given by
ArðRemðxþi;DÞÞ;n �
Z T n�iþ1

T n�i
½T n � iþ 1� t�HT n�iðdtÞ.
Then adding the above to (3.6) forms the expected WIP at any time epoch.

Remark 3.2. For an actual MMAL, some models of products may not require a particular family of com-
ponents, i.e., Am,n = 0 for some m and n. Such a case can still be treated by our method by introducing a
dummy supply with the same leadtime nn. In doing so, the stationary probability distribution does not
change. This dummy supply does not influence the real value of WIP since Am,n = 0.

Remark 3.3. Once the WIPs of individual component families are found, the total WIP associated with
workstation k can be found easily by summing up all WIPs of the component families
{nk�1 + 1, nk�1 + 2, . . . , nk}. In practice, such a result is useful for the configuration of the workstations.
3.3. Some insights

In the design stage of the system, one important issue is to plan resources, such as space or the sizes of
the shelves for holding arrived components. The first and second moments of the WIPs provide helpful and
valuable information for such work.

Consider the WIP of family n. Recall that dm is the number of model m products in the sequence R. Then
it holds that
XD�1

x¼0

Arðxþ1;DÞ;n ¼
XM

m¼1

Am;n � dm.
The above implies that given the dm�s, the number of model m products produced per day, the expectation
of the WIP (3.7) is independent of the sequence R. This is reasonable because a particular requirement for
components only changes the relative usage time in different sequences. Their contributions to the expected
WIP are the same at any using time under the JIT supply policy. Nevertheless, the second moment of the
WIP may depend on the sequence, which leads to different variances of the WIP. We shall investigate such
behavior numerically in Section 5.

From (3.7), on the other hand, the expected WIP depends on the distribution function Fn(t) of the supply
times nn�s. It indicates that the smaller the summation term Fn(1) + Fn(2) + � � � + Fn(Tn�1), the smaller the
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expected WIP. This summation is equivalent to the shaded area in Fig. 3. To reduce the expected WIP, the
endeavors may take into consideration of shortening the upper bound of the leadtimes Tn first (see, for exam-
ple, Pan and Yang, 2002; Grout and Christy, 1999). However, it is not a unique approach for lowering the
expected WIP. In fact, even if Tn is large, we can still maintain the expected WIP at a low level through
enhancing the stability of nn�s. Since Fn(t) is a probability distribution function, it possesses the nondecreas-
ing property. This implies that to reduce the shaded area shown in Fig. 3, reduction of Fn(i) is more impor-
tant than reduction of Fn(j) for i < j. Moreover, we can consider the shaded area at a limiting form as follows
Z T n

0

F nðtÞdt.
On the other hand, if we take the expectation of nn, we have
E½nn� ¼
Z T n

0

�F nðtÞdt ¼
Z T n

0

ð1� F nðtÞÞdt ¼ T n �
Z T n

0

F nðtÞdt;
or equivalently,
Z T n

0

F nðtÞdt ¼ T n � E½nn�. ð3:10Þ
The above gives us a insight such that the shaded area or the expected WIP E[Wn] can be reduced, no mat-
ter how long the upper bound of the leadtimes Tn is, provided we can make the average leadtime E[nn] as
close as to the upper bound as possible.

Remark 3.4. Components are delivered with leadtimes according to the Tn�s to avoid component shortages.
The maximum resource needed by a particular component family for holding arrived components is relevant
to its Tn. If the resources for all component families are set according to these maximum requirements,
components can be admitted whenever they arrive, but the utilization ratio of the resources may be low.
Other than such safe mode, to improve resource utilization, we can determine the resource capacities based
on the first and second moments of the WIPs. Then risks of resource shortages may happen. Nevertheless, a
special common resource can be spared to absorb risks of resource shortages over all component families. In
such a case, the total resources required can be much less than in the safe mode.
4. Analysis of finished products in storehouses

In this section, we study the inventories of finished products in storehouses, and the service levels for
customers. It is clear that the different models of the finished products are independent. Thus we focus
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on just one model of products, say model m (1 6 m 6 M), and we call customers who require model m

products ‘‘type m customers’’. First, we introduce an embedded Markov chain associated with the number
of model m products at integer time epochs. Then we analyze the Markov chain in the steady state. Based
on the stationary distribution of the Markov chain, moments of the inventory and service level are ob-
tained. Recall that Tc = 1 and the production sequence is R = {r(0), r(1), . . . ,r(D � 1)}.

4.1. The embedded Markov chain

Without loss of generality, we assume that the first finished product leaves the MMAL at time 0. Then
subsequent finished products move off the MMAL at integer time epochs; each of them enters the corre-
sponding storehouse for satisfying customer demand. We construct a Markov chain by observing the inven-
tory of model m products at the epochs at which a finished product (regardless of its model) leaves the
MMAL. Define a variable Y(s) = Rem(s, D). Then Y(s), together with the sequence R, provide information
about the model of the product moving off the MMAL at (integer) time s. The variable Y(s) takes values
{0, 1, 2, . . . , D � 1} cyclically. (Although Y(s) takes the same values as X(s) defined in the previous section,
their physical meanings are somewhat different. Therefore we introduce Y(s) as a new variable here.) Let
Im(s) be the number of model m products in storehouse m right after time s (i.e., at time s+). The random
variable Im(s) takes nonnegative integer values.

Putting Y(s) and Im(s) together, we obtain a process (Im(s), Y(s)) with information about the inventory
status in storehouse m at integer time epochs. It is easy to see that (Im(s), Y(s)) is a Markov chain. We call
Im(s) the level variable and Y(s) the phase variable.

Let dm,r(y) = 1, if r(y) = m; 0, otherwise, for 0 6 y 6 D � 1. Then we have
dm ¼
XD�1

y¼0

dm;rðyÞ ð4:1Þ
being the number of model m products in the sequence R, or the number of model m products produced per
day. Note that if r(Y(s)) = m, we must have Im(s) > 0. Thus, the infinite state space of the Markov chain
(Im(s), Y(s)) is:
XI ¼ fð0; yÞ : 0 6 y 6 D� 1; rðyÞ 6¼ mg [ fði; yÞ : i P 1 and 0 6 y 6 D� 1g.

It is easy to see that every level has D states except level 0, which has D � dm states.

Between two consecutive observation epochs (i.e., during the period of a unit time), Im(s) can increase at
most by one. On the other hand, since there can be any number of demands arriving during a unit time,
Im(s) may drop to zero. Therefore, the Markov chain (Im(s), Y(s)) is a typical GI/M/1 type Markov chain
(see Neuts, 1981), where GI refers to the entry process of finished products into the storehouse and M refers
to the arrival process of type m customers. Next, we find the one-step transition probabilities of (Im(s), Y(s)).

During a unit time, the probability that i type m customers arrived at storehouse m is given by
ui ¼
ðkmÞi

i!
e�km ; i P 0. ð4:2Þ
Define a diagonal matrix C as follows
C ¼

dm;rð0Þ

dm;rð1Þ

. .
.

dm;rðD�1Þ

0
BBBB@

1
CCCCA. ð4:3Þ
The matrix C is used to find out whether or not a finished product is of model m.
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Let
P ¼
0 ID�1

1 0

� �
;

where ID�1 is an identity matrix of size D � 1.
Define
Û 0;0 ¼ ðID � CÞP ðID � CÞ þ CP and Û 0;1 ¼ ðID � CÞPC; ð4:4Þ
and for k P 1
Û k;0 ¼ 1�
Xk�1

i¼0

ui

 !
PðID � CÞ;

U k;1 ¼ 1�
Xk�1

i¼0

ui

 !
PCþ uk�1P ðID � CÞ;

U k;j ¼ Ukþ1�j � uk�jPðID � CÞ þ ukþ1�jPC; 2 6 j 6 k;

U k;kþ1 ¼ U 0 � u0PC;

U k;j ¼ 0; j P k þ 2.

ð4:5Þ
Let U0,0 be a (D � dm) · (D � dm) matrix obtained by deleting all rows and columns in the matrix Û 0;0 that
satisfy r(i) = m, where i is the row number or the column number. Let U0,1 be a (D � dm) · D matrix ob-
tained by deleting all rows in matrix Û 0;1 that satisfy r(i) = m, where i is the row number. Moreover, let
Uk,0 be a D · (D � dm) matrix obtained by deleting all columns in matrix Û k;0 that satisfy r(i) = m, where
i is the column number. The probability transition blocks from level 0 to level 0 and from level 0 to level 1
are U0,0 and U0,1, respectively. The probability transition blocks from level k to other levels are {Uk,j, j P 0}
for k P 1. Note that matrix P plays the role of shifting the production sequence by one unit of time, and
the matrix C is for tracking whether or not the model of the product just finished is of model m. The above
transition blocks can be obtained easily from their intuitive interpretations. For instance, the transition
from k to j for 2 6 j 6 k can take place in two ways: one is when k � j demands arrived and the finished
product is not of model m; the other is when k + 1 � j demands arrived and the finished product is of
model m.

With the above background, we are ready to give the one step transition matrix of the Markov chain
(Im(s), Y(s)).

Proposition 4.1. The one-step transition probability matrix of the Markov chain (Im(s), Y(s)) is given by
P F ¼

U 0;0 U 0;1

U 1;0 U 1;1 U 0

U 2;0 U 2;1 U 1 U 0

U 3;0 U 3;1 U 2 U 1 U 0

..

. ..
. . .

. . .
. . .

. . .
.

0
BBBBBBB@

1
CCCCCCCA
; ð4:6Þ
where the matrix blocks in PF are defined in Eq. (4.5) or following the discussion immediately after Eq. (4.5).

Let U ¼
P1

k¼0U k. It can be verified that
U ¼ PCþ PðID � CÞ ¼ P ; ð4:7Þ
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which indicates that U is also irreducible. Therefore, there exists a strictly positive left-eigenvector h of U,
such that hU = 1 and he = 1. In fact, it is easy to see that h = (1/D, . . . , 1/D). Furthermore, define K* as
K� ¼
X1
k¼1

kU ke. ð4:8Þ
A condition for the Markov chain (Im(s), Y(s)) (with infinite state space) to be positive recurrent is given in
the following important proposition.

Proposition 4.2. The irreducible Markov chain (Im(s), Y(s)) is positive recurrent if and only if
qm ¼
dm

kmD
< 1. ð4:9Þ
Proof. According to Neuts (1981), since the Markov chain (Im(s), Y(s)) is irreducible, it is positive recurrent
if and only if hK* > 1. By using expressions in Eq. (4.5), routine calculations lead to
hK� ¼ h
X1
k¼1

k½uk�1PðID � CÞ þ ukPC�
 !

e ¼ hðð1þ kmÞP ðID � CÞ þ kmPCÞe ¼ 1þ km �
dm

D
. ð4:10Þ
Thus, hK* > 1 is equivalent to Eq. (4.9). This completes the proof of the proposition. h

Remark 4.1. For a standard GI/G/1 queueing system, a condition for system stability is q = k/l < 1, i.e.,
the arrival rate k is less than the service rate l (see, for example, Wolff, 1989). For the Markov chain
(Im(s), Y(s)), qm defined in Eq. (4.9) gives a similar system stability condition. In fact, km is the demand rate
of model m products (equivalent to the service rate l in a standard GI/G/1 queueing system) and dm/D is the
production rate of model m products (equivalent to the arrival rate k in a standard GI/G/1 queueing
system). Thus, qm is the ratio of demand rate to the production rate.

We assume that qm < 1 so that the stationary distribution of the Markov chain (Im(s), Y(s)) exists.
Denote the stationary distribution by
~P ¼ ð~pð0Þ; ~pð1Þ; ~pð2Þ; . . .Þ; ð4:11Þ

where ~pð0Þ ¼ ð~p0ð0Þ; ~p1ð0Þ; . . . ; ~pD�dm�1ð0ÞÞ and ~pðkÞ ¼ ð~p0ðkÞ; ~p1ðkÞ; . . . ; ~pD�1ðkÞÞ, k P 1. Let R be the min-
imal nonnegative solution to the equation:
R ¼
X1
k¼0

RkUk. ð4:12Þ
Using results in Neuts (1981), the stationary distribution of the Markov chain (Im(s), Y(s)) can be
obtained.

Proposition 4.3. If condition (4.9) is satisfied, then the spectrum of the matrix R is less than one. ð~pð0Þ; ~pð1ÞÞ
is the unique positive solution of the following equation
~pð0Þ ¼ ~pð0ÞU 0;0 þ ~pð1Þ
P1
k¼1

Rk�1U k;0;

~pð1Þ ¼ ~pð0ÞU 0;1 þ ~pð1Þ
P1
k¼1

Rk�1U k;1;

~pð0Þeþ ~pð1ÞðID � RÞ�1e ¼ 1;

8>>>>>>><
>>>>>>>:

ð4:13Þ
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and for k = 2, 3, . . ., we have
~pðkÞ ¼ ~pð1ÞRk�1. ð4:14Þ
Proof. The results can be obtained from Theorem 1.3.2 of Neuts (1981). h

According to Neuts (1981), the procedure to compute the stationary distribution can be roughly stated
as follows. First, given an initial matrix R = 0, calculate an approximate solution of Eq. (4.12) by an iter-
ative method. Then calculate ~pð0Þ and ~pð1Þ according to equations in (4.13). Finally, calculate other
f~pðkÞ; k P 2g by using Eq. (4.14).

4.2. Moments of inventories

Based on the stationary distribution of the Markov chain, we can easily calculate the expected inventory
of model m finished products in the corresponding storehouse, E[Im], as follows
E½Im� ¼
X1
k¼1

XD�1

y¼0

~pyðkÞ � k. ð4:15Þ
The second moment, E[Im]2, is given by
E½Im�2 ¼
X1
k¼1

XD�1

y¼0

~pyðkÞ � k2. ð4:16Þ
In general, its nth moment, E[Im]n, is then
E½Im�n ¼
X1
k¼1

XD�1

y¼0

~pyðkÞ � kn. ð4:17Þ
In the design stage, one important consideration is to determine spaces (or the sizes of the storehouses)
for storing finished products. The first and second moments of the inventories provide helpful and valuable
information for such work. Moreover, the moments may depend on the sequence R. We shall investigate
behavior in terms of the sequence in the next section for some managerial insights.

Remark 4.2. Since the observations occur at integer time epochs, the above stationary distribution
characterizes the inventories at these time epochs. If one wants to find the inventory at an arbitrary time, we
need to find the inventory between integer time epochs (or between observation epochs), since demands
may arrive at any time and take away products upon their arrivals. Let si be the arrival time of the ith
demand from a Poisson stream, i P 1. According to Theorem 2.3.1 in Ross (1983), given that there are
exactly i demands arrived in [0, 1], {s1, . . . , si} possess the same joint distribution as the order statistics
corresponding to i independent random variables uniformly distributed on the interval [0, 1]. Following a
general definition of inventory on the time proportion (see, for example, Section 3.2.2 in Buzacott and
Shanthikumar, 1993), given that the inventory is k at the beginning of the interval [0, 1], the expected
inventory in that interval is given by, for i 6 k,
E½ks1 þ ðk � 1Þðs2 � s1Þ þ � � � þ ðk � iÞð1� s1 � � � � � siÞjsi 6 1 < siþ1�

¼ E½k � iþ s1 þ s2 þ � � � þ sijsi 6 1 < siþ1� ¼ k � i
2
; ð4:18Þ
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and, for i > k, �

E½ks1þðk� 1Þðs2� s1Þþ � � �þ ðsk � sk�1Þjsi 6 1< siþ1� ¼ E

Xk

j¼1

sj

����si 6 1< siþ1

" #
¼
Xk

j¼1

j
iþ 1

¼ kðkþ 1Þ
2ðiþ 1Þ .

ð4:19Þ

Note that if i > k, the inventory will become zero after the kth demand arrival epoch. Hence we only con-
sider the first k arrival epochs. By using Eqs. (4.18) and (4.19), given that the initial state is (k, y), the ex-
pected inventory between two consecutive integer time epochs is given by
k � 0

2

� �
� ðkmÞ0

0!
e�km þ k � 1

2

� �
� kmð Þ1

1!
e�km þ � � � þ k � k

2

� �
� ðkmÞk

k!
e�km

þ kðk þ 1Þ
2ðk þ 2Þ �

ðkmÞkþ1

ðk þ 1Þ! e�km þ kðk þ 1Þ
2ðk þ 3Þ �

ðkmÞkþ2

ðk þ 2Þ! e�km þ � � �

¼
Xk

i¼0

k � i
2

� �
� ðkmÞi

i!
e�km þ

X1
i¼kþ1

kðk þ 1Þ
2ðiþ 1Þ �

ðkmÞi

i!
e�km

¼ e�km
Xk

i¼0

k � i
2
� kðk þ 1Þ

2ðiþ 1Þ

� �
ðkmÞi

i!

( )
þ kðk þ 1Þ

2km
ð1� e�kmÞ. ð4:20Þ
From the above analysis, the expected inventory of finished products in storehouse m at an arbitrary time
(in the steady state) is given by
X1

k¼1

XD�1

y¼0

~pyðkÞ e�km
Xk

i¼0

k � i
2
� kðk þ 1Þ

2ðiþ 1Þ

� �
ðkmÞi

i!

( )
þ kðk þ 1Þ

2km
ð1� e�kmÞ

 !
. ð4:21Þ
4.3. Service levels for customers

The service level, Sm, for type m customers is defined as the proportion of the number of satisfied cus-
tomers in steady state. Similar to (4.21), the expected number of satisfied customers per time unit is
X1
k¼1

XD�1

y¼0

~pyðkÞ
Xk�1

i¼0

ðkm � kÞ ðkmÞi

i!
e�km � ðkmÞk

ðk � 1Þ! e�km þ k

 !
. ð4:22Þ
According to the Poisson property, the expected number of customer arrivals per time unit is km. By def-
inition, the service level for type m customers is consequently given by
Sm ¼
P1

k¼1

PD�1
y¼0 ~pyðkÞ

Pk�1
i¼0 ðkm � kÞ ðkmÞi

i! e�km � kmð Þk
ðk�1Þ! e

�km þ k
� �

km
. ð4:23Þ
Remark 4.3. Since the arrival rate of type m customers is km, the production rate of model m products from
the MMAL is dm/D, and model m products are taken by type m customers only, we must have
Sm = qm = (dm/D)/km = dm/(km D). Consequently, we have the following convergence conclusion of the
series in the numerator of (4.23)
X1
k¼1

XD�1

y¼0

~pyðkÞ
Xk�1

i¼0

ðkm � kÞ ðkmÞi

i!
e�km � ðkmÞk

ðk � 1Þ! e�km þ k

 !
¼ dm

D
. ð4:24Þ
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5. Numerical results

The sequence R plays a central role in the whole system. In this section, we investigate, through numer-
ical results, the influences on WIPs of components, inventories of finished products and service levels for
customers by different sequences.

5.1. WIP of components

In Section 3, we have provided managerial insights in terms of the leadtimes for the expected WIP. We
have shown that the first moment of the WIP is independent of the sequence R. Here we investigate the
variances of the WIP for different sequences.

Consider the system with the following parameters. (As pointed out in Section 3, without loss of gener-
ality, we only focus on a single family of components.)

The number of product models: M = 10.
The component requirements for the family by the product models: [A1,n, . . . , A10,n] = [1, 2, 3, 4, 5,

6, 7, 8, 9, 10].
The bound of the leadtimes: Tn = 10.
The distribution function of the leadtimes: [F(1), . . . , F(Tn � 1)] = [F(1), F(2), F(3), F(4), F(5),

F(6), F(7), F(8), F(9)] = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9].
The total number of products per day: D = 100.
The number of each product model per day: d1 = d2 = � � � = d10 = 10.
For the above system, we consider the following three typical sequences:

(1) Batch-sequence: R1 = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9,
9, 9, 9, 9, 9, 10,10, 10, 10, 10, 10, 10, 10, 10, 10];

(2) Uniform-sequence: R2 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3,
4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10];

(3) Even-sequence: R3 = [1, 10, 2, 9, 3, 8, 4, 7, 5, 6, 1, 10, 2, 9, 3, 8, 4, 7, 5, 6, 1, 10, 2, 9, 3, 8, 4, 7, 5, 6, 1, 10, 2, 9, 3,
8, 4, 7, 5, 6, 1, 10, 2, 9, 3, 8, 4, 7, 5, 6, 1, 10, 2, 9, 3, 8, 4, 7, 5, 6, 1, 10,2, 9, 3, 8, 4, 7, 5, 6, 1, 10, 2, 9, 3, 8, 4, 7, 5, 6, 1,
10, 2, 9, 3, 8, 4, 7, 5, 6, 1, 10, 2, 9, 3, 8, 4, 7, 5, 6].

The ‘‘batch-sequence’’ continuously feeds the same model onto the conveyor till exhaustion of the products
to the model in a production cycle. The ‘‘uniform-sequence’’ repeats from model 1 to model 10 in the
sequence. Referring to A, the component requirements by the product models, the ‘‘even-sequence’’ means
that units with less component requirement and more component requirement or units with closer compo-
nent requirement to the average requirement alternatively appear in the sequence. That is, a unit with less
component requirement is followed by a unit with more component requirement, and a unit with the com-
ponent requirement closer to the average requirement is followed by one with the component requirement
also closer to the average requirement. The computational results are as follows:
Expected WIP Variances of WIP

24.75 Batch-sequence: R1 Uniform-sequence: R2 Even-sequence: R3

208.02 78.79 66.09
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Although the expected WIP is not large, the variances can be very different under different sequences.
The batch-sequence is the worst sequencing method, whereas the even-sequence is the best one. Therefore,
the manager should consider adopting an even-sequence as far as possible for saving shelf resources or for
reducing the risk of space shortage for capacitated shelf resources.

5.2. Inventories of finished products

Suppose the system is the same as in the previous subsection. Customers� demands for all product models
follow Poisson streams with rates: [k1, . . . ,k10] = [0.105, 0.110, 0.114, 0.117, 0.119, 0.120, 0.125, 0.130,
0.135, 0.140].

For the uniform-sequence R2 and the even-sequence R3, any product model appears evenly in the both
sequences. It is clear, from the long-term-behavior, that the uniform-sequence R2 possesses the same effi-
ciency as the even-sequence R3 as far as the behavior of finished products in the storehouses is concerned.
Therefore, we only need to consider two typical sequences: Batch-sequence, and Even-sequence.

We investigate the first moments and the variances of inventories of finished products. They provide
important information for planning the storehouses, such as the space of the storehouses. The following
are the computational results:
The first moments
Product model 1 2 3 4 5 6 7 8 9 10
Batch-sequence 12.99 7.92 6.43 5.76 5.42 5.28 4.71 4.31 4.00 3.76
Even-sequence 10.21 5.21 3.78 3.15 2.84 2.71 2.21 1.87 1.63 1.45

The variances
Product model 1 2 3 4 5 6 7 8 9 10
Batch-sequence 111.83 35.34 22.73 18.49 16.71 16.01 13.67 12.40 11.61 11.09
Even-sequence 103.47 26.81 14.09 9.77 7.94 7.22 4.81 3.48 2.66 2.12
The results show that the batch-sequence generates larger average (the first moment) inventories and
larger variances. The relative differences of the average values or the variance values indicate that product
model 1 is the most nonsensitive one whereas product model 10 is the most sensitive one with respect to the
sequence. Referring to the stability condition (the positive recurrent condition (4.9)) by Proposition 4.2, we
know that [q1, . . . ,q10] = [0.952, 0.909, 0.877, 0.855, 0.840, 0.833, 0.800, 0.770, 0.742, 0.714]; product model 1
with the value q1 closest to 1, and the larger the index number m, the smaller the qm values.

The above analysis gives us insight to determine the number of each product model per day, dm�s, for
qm = dm/kmD from (4.9). To attain relatively stable behavior of inventories with respect to different se-
quences, the manager should determine the dm�s in such a manner as to let the qm�s be as close to 1 as pos-
sible. Of course, this will lead the corresponding inventories to increase.

Remark 5.1. A storehouse is regarded as a GI/M/1 type queueing system with GI referring to the output
process of finished products related to the sequence. In a GI/M/1 type queueing system, the average number
of customers should be minimized if the variance of arrivals is minimized. Therefore, a pattern of the
optimal sequence for minimizing the expected inventories may be such that the output over all product
models is smoothed as far as possible. In other words, different product models positioned in a cycle length
D should be smooth as far as possible.
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5.3. Service levels for customers

As expected from (4.23) and (4.24), the service level for type m customers is given by
Sm ¼
dm

kmD
;

which is independent of sequences. For the system with the parameters in the previous subsections, calcu-
lations generate the service levels being [S1, . . . , S10] = [0.952, 0.909, 0.877, 0.855, 0.840, 0.833, 0.800, 0.770,
0.742, 0.714] for any sequence.

An important concern in the design stage is to determine the production capacity, or equivalently to
determine D that is formed by d1, . . . , dM. Consequently, assigning d1, . . ., dM for a given D is an interesting
task. One approach for determining the appropriate dm�s for any stationary demand processes is to make
dm=

PM
i¼1dið¼ dm=DÞ as close to km as possible. Raising customer service levels by letting dm/D be as close to

km as possible will cause qm to be close to 1, hence increases inventories of finished products in the corre-
sponding storehouse. Therefore, the manager must make a balance from the trade-off between inventories
and service levels.
6. Future extensions

This paper addresses an important issue in the design stage of the supply chain, performance analysis,
for investigating the ‘‘long-term-behavior’’ of the system. One of the future research tasks is the daily con-
trol for the system, which is a crucial issue involved in its operational stage. The most challenging issue is to
dynamically determine the production sequence every day. That is, given the information on a particular
day such as the WIP on the shelves at the beginning of the day, the distributions of customers� demands
during the day, the inventories in the storehouses at the beginning of the day, what is the optimal sequence
for that day? This problem is well discussed in the literature as a typical issue in an MMAL in deterministic
model (see, for example, Aigbedo, 2004; Scholl, 1999 and the cited references in it). For the supply chain in
the stochastic environment considered in this paper, the objective of the optimal sequence can be set as min-
imizing the variances of WIP, minimizing the inventories of finished products in the storehouses, and max-
imizing the service levels for customers. Particularly, minimizing the variances of WIP is just fitting
Toyota�s goal: smoothing the usage rate of every component family (Monden, 1998).
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