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1. Introduction
Coxian distributions have found many applications in
the study of queueing, reliability, supply chains, in-
surance and risk, and telecommunications (Asmussen
2000, 2003; Cox 1955a, b; Feldmann and Whitt 1998;
Haddad et al. 1998; Latouche and Ramaswami 1999;
Neuts 1981, 1989; Sasaki et al. 2004). For instance,
Coxian distributions have been used to model service
times and interarrival times in queueing models, com-
ponent life times in reliability models, and interarrival
times of claims in insurance and risk models. Analysis
of these models usually involves complicated compu-
tational procedures using detailed information about
Coxian distributions. In particular, the numbers of
phases of these distributions play a significant role
in computation. Consequently, reduction in the num-
ber of phases of Coxian representations can improve
efficiency in computation and performance analy-
sis. A number of studies have been carried out on
Coxian and related distributions (e.g., Cox 1955a, b;
Cumani 1982; Dehon and Latouche 1982; Harris et al.
1992; Heijden 1988; Mocanu and Commault 1999;
O’Cinneide 1989, 1991, 1993; Osogami and Harchol-
Balter 2003b).
Neuts (1975) generalized Coxian distributions into

phase-type (PH) distributions as the distribution of
the absorption time of a finite state Markov process,
which made it possible to study complicated queueing

models such as the PH/PH/c queue analytically and
numerically (Takahashi 1981). It is well known that
the representation of a PH-distribution is not unique.
To reduce the time complexity of algorithms associ-
ated with PH-distributions, it is useful to find a PH-
representation with the minimal number of phases
for a PH-distribution, known as the minimal PH-
representation problem (Aldous and Shepp 1987;
Commault and Mocanu 2003; Mocanu and Commault
1999; O’Cinneide 1989, 1990, 1991, 1993; Osogami and
Harchol-Balter 2003a). Chapter 2 in Neuts (1981) pro-
vided historical notes on PH-distributions. Commault
and Mocanu (2003) and O’Cinneide (1999) reviewed
studies on PH-distributions.
While the problem of finding a minimal PH-

representation for a PH-distribution is still open, the
problem of finding simpler representations for PH-
distributions or for some subsets of PH-distributions
has been studied extensively (Bobbio et al. 2002,
2004; Commault and Mocanu 2003; Cumani 1982;
Dehon and Latouche 1982; He and Zhang 2006a, b;
Mocanu and Commaut 1999; O’Cinneide 1990, 1991,
1999). Coxian representation is one of the simpler
PH-representations being investigated. Cumani (1982)
showed that any PH-distribution with a triangular
PH-representation is Coxian and a Coxian represen-
tation of the same order can be found. O’Cinneide
(1989, 1991, 1993) introduced a number of new
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concepts in the study of PH and Coxian distributions.
Concepts such as PH-simplicity and triangular order
shall be used in this paper. O’Cinneide (1991) proved
that all PH-distributions whose Laplace-Stieltjes trans-
forms have only real poles are Coxian. In O’Cinneide
(1993), a necessary and sufficient condition was given
for a Coxian representation to be minimal.
Approximating general probability distributions

with Coxian or PH-distributions has been investi-
gated extensively as well. Johnson (1993) and Johnson
and Taaffe (1989; 1990a, b) introduced several meth-
ods for fitting PH and Coxian distributions to gen-
eral distributions by matching their lower moments.
Osogami and Harchol-Balter (2003b) focused on
Coxian approximations of distributions. Algorithms
were introduced for computing Coxian distributions
matching the first three moments of the original
probability distributions. Their algorithms may find
Coxian representations with the minimal number of
phases, though it is not guaranteed. Sasaki et al.
(2004) developed an approximation method for find-
ing Coxian distributions as approximations of gen-
eral probability distributions. Other works on Coxian
approximations of distributions are Asmussen et al.
(1996), Feldmann and Whitt (1998), and Heijden
(1988).
Coxian distributions were studied as a subset of

PH-distributions and as approximations to general
distributions. However, no algorithm for computing
a minimal Coxian representation has been developed.
We find a set of necessary and sufficient conditions
for an ordered Coxian representation to be minimal.
This set of conditions establishes an explicit relation-
ship between the parameters of a Coxian representa-
tion of a Coxian distribution and the derivatives of
its distribution function at zero. Based on these con-
ditions, an algorithm is introduced for computing a
minimal Coxian representation for any Coxian dis-
tribution or, equivalently, any PH-distribution whose
Laplace-Stieltjes transform has only real poles. Our
necessary and sufficient conditions are based on the
spectral polynomial method, which was developed
in He and Zhang (2006b) (also see He and Zhang
2005, 2006a) for computing bidiagonal representations
of PH-distributions and matrix-exponential distribu-
tions. Use of spectral polynomials and the derivatives
of the distribution function at zero distinguishes our
method.
Section 2 gives definitions and some preliminary

results for development of the algorithm. Section 3
shows how to compute the algebraic degree of a
Coxian distribution, which is a lower bound on the
triangular order of Coxian distribution. In §4, we
present a set of necessary and sufficient conditions
for an ordered Coxian representation to be minimal.

In §5, we show that a minimal ordered Coxian repre-
sentation can be found by solving a series of nonlin-
ear programs for any PH-distribution whose Laplace-
Stieltjes transform has only real poles. Three numer-
ical examples are presented in §6 to show the effec-
tiveness of the algorithm and some geometric prop-
erties associated with Coxian distributions. Finally, in
§7, we discuss future research.

2. PH, ME, and Coxian Distributions
A square matrix T with negative diagonal elements,
nonnegative off-diagonal elements, nonpositive row
sums, and at least one negative row sum is called a
sub-generator in the general literature of Markov pro-
cess. We shall call a sub-generator T of finite size a
PH-generator. Define an infinitesimal generator for a
continuous-time Markov chain with m+ 1 states(

T −T e

0 0

)
�

where state m + 1 is an absorption state and e is
the column vector with all elements being one. The
matrix T is an m × m PH-generator. We assume
that states �1�2� � � � �m� are transient. Let � be a
nonnegative vector of size m for which the sum of
its elements is at most one. We call the distribu-
tion of the absorption time of the Markov chain to
state m + 1, with initial distribution (��1 − �e), a
phase-type distribution (PH-distribution). We call the
pair (��T ) a PH-representation of that PH-distribution.
The number m is the order of the PH-representation
(��T ). The probability distribution function of the
PH-distribution is given as 1 − �exp�Tt�e for t ≥ 0,
and the density function is given as −�exp�Tt�T e
for t ≥ 0. If �e = 0, the distribution has a unit mass
at time 0. There is no need for a PH-representation
for such a distribution. If �e �= 0, the expression
�exp�Tt�e can be written as (�e�	�/	�e��exp�Tt�e.
Thus, the study on the representation of 	��T � is
equivalent to that of (�/	�e�� T �. Without loss of gen-
erality, we assume that � is a vector for which the sum
of all its elements is one. That implies that all prob-
ability distributions we consider have a zero mass at
t = 0. See Chapter 2 in Neuts (1981) for basic proper-
ties of PH-distributions.
It is possible that 1−�exp�Tt�u is a probability dis-

tribution function for a row vector � of size m, an
m × m matrix T , and a column vector u of size m,
where the elements of �, T , and u can be complex
numbers. For this case, the 3-tuple (��T �u) is called
a matrix-exponential representation (ME-representation)
of a matrix-exponential distribution (ME-distribution).
Without loss of generality, we assume that �u = 1.
Apparently, the class of PH-representations is a subset
of the class of ME-representations. See Asmussen and
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Bladt (1996) and Lipsky (1992) for more details about
ME-distributions and their applications in queueing
theory.
Throughout this paper, when (��T ) is used, � is

nonnegative, T is a PH-generator, and (��T � is a PH-
representation of a PH-distribution. When (��T �u� is
used, � may not be nonnegative and T may not be a
PH-generator.
For x = 	x1�x2� � � � � xN � where N is a positive inte-

ger, a bidiagonal matrix S	x� is defined as

S	x�=




−x1 0 · · · · · · 0

x2 −x2
� � �

� � �
���

0
� � �

� � �
� � �

���

���
� � � xN−1 −xN−1 0

0 · · · 0 xN −xN



� (1)

If S	x� is a PH-generator, it is called a bidiagonal
PH-generator. If �x1�x2 � � � � xN � are all real and pos-
itive and � is a probability vector (i.e., � ≥ 0 and
�e = 1), then (�� S	x�) is called a Coxian representa-
tion, which represents a Coxian distribution. The class
of Coxian distributions is a subset of the class of
PH-distributions. Further, if x1 ≥ x2 ≥ · · · ≥ xN > 0,
then (�� S	x�) is called an ordered Coxian representa-
tion. The following theorem characterizes the class of
Coxian distributions.

Theorem 1 (Theorem 4.1 in O’Cinneide 1991
and Theorem 5.2 in O’Cinneide 1993). Every PH-
distribution whose Laplace-Stieltjes transform has only real
poles is a Coxian distribution and has an ordered Coxian
representation. �

Theorem 1 implies that the class of (standard)
Coxian distributions defined by (1) covers many well-
known probability distributions. For instance, gener-
alized Erlang distributions, mixtures of exponential
distributions, PH-distributions with a triangular PH-
generator (Cumani 1982), and PH-distributions with
a symmetric PH-generator (He and Zhang 2006b) are
all special cases of Coxian distributions.
It is well known that the PH-representation of

a PH-distribution and the ordered Coxian repre-
sentation of a Coxian distribution are not unique.
A PH-representation with the minimal number of
phases is called a minimal PH-representation. The num-
ber of phases of a minimal PH-representation is called
the PH-order of the corresponding PH-distribution.
An ordered Coxian representation with the minimal
number of phases is called a minimal ordered Coxian
representation. The number of phases of a minimal
ordered Coxian representation is called the triangu-
lar order of the corresponding PH-distribution. Theo-
rem 6.2 in O’Cinneide (1993) gave a necessary and

sufficient condition for an ordered Coxian represen-
tation to be minimal. In the following, a new set of
necessary and sufficient conditions is obtained for an
ordered Coxian representation to be minimal, and a
series of nonlinear programs is developed for com-
puting a minimal ordered Coxian representation.
In general, a PH-representation that represents a

Coxian distribution has Coxian representations, but
the orders of the Coxian representations may be larger
than the order of the PH-representation (see Theo-
rem 4.5 in He and Zhang 2006b and Example 1 in this
paper).
The following spectral polynomial algorithm intro-

duced in He and Zhang 2006b is useful for
computing bidiagonal representations of ME-
distributions and PH-distributions. Let (��T �u)
be an ME-representation of order m. Denote by
x = 	x1�x2� � � � � xN � a vector whose elements are
complex numbers, where N is a positive integer. If
all elements of x are nonzero, define


p1 =−T u/x1�

pn = 	xn−1I + T �pn−1/xn� 2≤ n≤N�

pN+1 = 	xN I + T �pN �

(2)

Let P = 	p1�p2� � � � �pN �, which is an m×N matrix.
Similarly to the proof of Proposition 3.1 in He and
Zhang (2006b), the following results can be proved.

Theorem 2. If pN+1 = 0, we have TP = PS	x� and
Pe = u. Further, the matrix-exponential representation
(��T �u) has an equivalent bidiagonal representation
(�� S	x��e) of order N with �e=�u= 1 and �=�P . �

The above spectral polynomial algorithm is called
the Post-T spectral polynomial algorithm in He and
Zhang (2006b). We remove “Post-T ” because it is
nonessential.
For any two vectors x and y, we say that x is

part of y if any element that appears k 	≥0� times in
x appears at least k times in y. A particular choice
of x was given in He and Zhang (2006b). Denote
by �−�1�−�2� � � � �−�m� the spectrum of T (count-
ing multiplicities, i.e., with repeated elements). If
(�1��2� � � � ��m) is part of x, by the Cayley-Hamilton
theorem (Lancaster and Tismenetsky 1985), we must
have pN+1 = 0. If x1 ≥ x2 ≥ · · · ≥ xN > 0 and �P is
nonnegative, 	�P�S	x�� is an ordered Coxian repre-
sentation. For this case, an ordered Coxian represen-
tation is obtained for 	��T �u�. For more about the
spectral polynomial algorithm, see He and Zhang
(2005; 2006a, b).
In O’Cinneide (1989), a PH-generator T is called

PH-simple if each PH-distribution 	��T � has a unique
representation of the form 	��T �, i.e., if �1 and �2 are
two probability vectors and �1 �= �2, then (�1�T � and
(�2�T � represent two different PH-distributions. By
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Theorem 1 in O’Cinneide (1989), a PH-generator T is
PH-simple if and only if �T e�T 2e� � � � � T me� are inde-
pendent vectors. By Theorem 2 in O’Cinneide (1989),
a PH-generator T is PH-simple if and only if it has no
left eigenvector orthogonal to e.
The above definition of PH-simplicity can be gen-

eralized to ME-representations of the form 	��T �e�,
where T is a PH-generator, and �e = 1 (but � may
not be nonnegative). That is, a PH-generator T is
PH-simple if each ME-distribution 	��T �e� has a
unique representation of the form 	��T �e�. This gen-
eralization of simplicity is exactly the same as the
property of simplicity for the case of a PH-generator.
It is easy to check that both Theorems 1 and 2 in
O’Cinneide (1989) are still true under the generalized
definition of PH-simplicity. Next, we establish a rela-
tionship between PH-simplicity and the spectral poly-
nomial algorithm.

Theorem 3. Assume that (1) T is PH-simple; (2) u= e;
(3) all elements of x are nonzero; and (4) N =m. Then the
matrix P obtained from (2) is invertible.

Proof. From (2), we obtain

pn = cn�1T e+ cn�2T
2e+ · · ·+ cn�nT

ne� 1≤ n≤m�

where �cn� j�1 ≤ j ≤ n ≤ m� are some constants and
cn�n �= 0, for 1≤ n≤m. Since T is PH-simple, by Theo-
rem 1 in O’Cinneide (1989), vectors T e�T 2e� � � � � T me
are independent. Together with cn�n �= 0, for 1 ≤ n ≤
m, it is easy to see that the vectors p1�p2� � � � �pm

are independent, and consequently, the matrix P is
invertible. �

3. A Minimal ME-Representation
We assume that the Laplace-Stieltjes transform of
a PH-distribution 	��T � of order m has only real
poles. According to Theorem 1, 	��T � represents a
Coxian distribution. We will develop a method for
finding the triangular order of (��T � and for com-
puting a minimal ordered Coxian representation of
(��T �. We begin with computation of a minimal
ME-representation.
We assume that the PH-generator T has in total

K distinct eigenvalues �−�1�−�2� � � � �−�K�. Assume
that the algebraic multiplicity of the eigenvalue −�k

is mk, i.e., −�k appears a total of mk times in the vec-
tor (−�1�−�2� � � � �−�m�. Let �= 	�1��2� � � � ��K� and
m= 	m1�m2� � � � �mK�. Define

S	��m�=



E	�1�m1�

� � �

E	�K�mK�


 �

where the matrix E	�k�mk�= S		�k��k� � � � ��k�� is of
size mk�1 ≤ k ≤ K. Note that if �k is positive real,

E	�k�mk� is the PH-generator of an Erlang distribu-
tion of order mk with parameter �k.

Lemma 1. If �1��2� � � � ��K are distinct, then no left
eigenvector of S	��m� is orthogonal to the vector e. Fur-
thermore, if �1��2� � � � ��K are distinct positive real num-
bers, then the PH-generator S	��m� is PH-simple.

Proof. Suppose that vector v is a left eigen-
vector of S	��m� corresponding to eigenvalue �k.
Since �1��2� � � � ��K are distinct, v has structure
	0� � � � �0�vk�0� � � �0�, where vk is an eigenvector of the
matrix E	�k�mk�. Post-multiplying e on both sides of
−�kvk = vkE	�k�mk�, we obtain

−�kvke= vkE	�k�mk�e=−�kvk	1�0� � � � �0�
′� (3)

where 	1�0� � � � �0�′ is the transpose of 	1�0� � � � �0�. If
ve= 0, then vke= 0. Equation (3) implies that the first
element of vk is zero. From −�kvk = vkE	�k�mk�, it can
be shown that the vector vk is zero. Thus, v is zero,
which is a contradiction. Therefore, no left eigenvector
of S	��m� is orthogonal to e.
If �1��2� � � � ��K are distinct positive real numbers,

then S	��m� is a PH-generator. Because no left eigen-
vector of S	��m� is orthogonal to e, by Theorem 2 in
O’Cinneide (1989), S	��m� is PH-simple. �

Next, we use the spectral polynomial algorithm to
find an expression for the distribution function of
	��T � in a few steps.
1. By using the spectral polynomial algorithm, we

obtain TP	�� = P	��S	��, where P	�� is an m × m
matrix with unit row sums and � = 	�1��2� � � � ��m�.
(See Theorem 2 and the ensuing discussion.)
2. By using the spectral polynomial algorithm

again, we obtain S	��m�P1 = P1S	��, where P1 is a
matrix with unit row sums. By Lemma 1, similarly
to the proof of Theorem 3, it can be shown that P1 is
invertible. Then the equation S	��m�P1 = P1S	�� can
be written as P−1

1 S	��m�= S	��P−1
1 .

3. Combining the above results, we obtain TP	�� ·
P−1
1 = P	��P−1

1 S	��m� and P	��P−1
1 e = e. It is easy to

check that 	�� S	��m��e� is an ME-representation of
	��T �, where �= �P	��P−1

1 (see the proof of Propo-
sition 2.1 in He and Zhang 2006b).

Lemma 2. The distribution function F 	t� of 	��T � can
be obtained as (note m0 = 0)

F 	t� = 1−
K∑
k=1

(mk−1∑
i=0

ti�i
k

i!
( m1+···+mk−1+mk∑
j=m1+···+mk−1+1+i

�j

))
exp�−�kt��

t ≥ 0�
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Proof. By definitions and the structure of S	��m�,
the distribution function F 	t� of 	��T � can be
obtained as

F 	t� = 1−�exp�Tt�e

= 1−�exp�S	��m�t�e

= 1−
K∑
k=1
	�m1+···+mk−1+1��m1+···+mk−1+2� � � � �

�m1+···+mk−1+mk
�exp�E	�k�mk�t�e�

(4)

which leads to (4) by routine calculations. �

The PH-generator T may have non-real eigenval-
ues when the Laplace-Stieltjes transform of 	��T � has
only real poles. However, because the Laplace-Stieltjes
transform of the PH-distribution (��T ) has only real
poles, the coefficient of exp�−�kt� in (4) must be zero
if −�k is not a real number. Without loss of gen-
erality and to simplify notation, we assume that all
K eigenvalues �−�1�−�2� � � � �−�K� in (4) are real.
Since T is a PH-generator, all its eigenvalues must
have negative real parts (Minc 1988, Seneta 1973).
Thus, −�1�−�2� � � � �−�K are negative real numbers
and, consequently, S	��m� is a PH-generator. Further,
if �m1+···+mk−1+i = 0� 1 ≤ i ≤ mk, we remove all items
associated with −�k. Thus, we assume that at least
one of ��m1+···+mk−1+i� i = 1�2� � � � �mk� is not zero, for
k = 1�2� � � � �K� If �m1+···+mk

= 0, then we choose the
largest i such that �m1+···+mk−1+i �= 0� 1 ≤ i ≤ mk, and
redefine mk to i to ensure �m1+···+mk

�= 0. Let
Nm =m1+m2+ · · ·+mK� (5)

which is the algebraic degree of the corresponding
PH-distribution (O’Cinneide 1993).
It is readily seen that Nm ≤ m. (4) indicates that

F 	t� is associated with K Jordan blocks correspond-
ing to distinct real eigenvalues �−�1�−�2� � � � �−�K�
of T . Next, we use the expression of F 	t� given in
(4) to prove that the algebraic degree Nm is a lower
bound on the triangular order of the PH-distribution
(��T ). It is well known that the triangular order and
PH-order of a PH-distribution are as large as the alge-
braic degree of the PH-distribution (O’Cinneide 1993).
We provide the following proof for completeness.

Lemma 3. Consider a PH-distribution with a PH-
representation (��T � of order m. We assume �1 > �2 >
· · · > �K and �m1+···+mk

�= 0 for k = 1�2� � � � �K. Then
any ME-representation of the PH-distribution (��T ) must
have at least Nm phases. Consequently, the triangular order
and the PH-order of (��T ) are larger than or equal to Nm.

Proof. By (4), since min��1� � � � ��K−1� > �K , we
have

lim
t→


F 	t�

tmK−1�mK−1
K

	mK−1�! exp�−�Kt�
= �m1+m2+···+mK

� (6)

Similarly to (6), for 1≤ k≤K− 1, we have

lim
t→


F 	t�− K∑
u=k+1

mu−1∑
i=0

ti�iu
i!

(
m1+···+mu−1+mu∑

j=m1+···+mu−1+1+i
�j

)
exp�−�ut�

tmk−1�mk−1
k

	mk−1�!
exp�−�kt�

=�m1+···+mk
�

Since �m1+···+mk
�= 0 for 1≤ k≤ K, it is easy to see that

any expression of the distribution function of 	��T �
must be equivalent to the one given in (4). Thus, the
Laplace-Stieltjes transform of any representation of
F 	t�must have the poles −�1�−�2� � � � , and −�K with
multiplicities m1�m2� � � � , and mK , respectively. There-
fore, any ME-representation of 	��T � must have at
least Nm phases. Consequently, the triangular order
and the PH -order of 	��T � are larger than or equal
to Nm. �

According to Lemma 3, (�� S	��m��e) is a minimal
ME-representation of 	��T � and the 3-tuple �����m�
is invariant to the probability distribution 	��T �.

4. A Set of Necessary and Sufficient
Conditions

In this section, we use �����m� defined in §3 to find a
set of necessary and sufficient conditions for a Coxian
representation of 	��T � to be minimal.
We begin with the construction of an ME-repre-

sentation with an ordered Coxian generator from
�����m�. Let �= 	 1� 2� � � � � Nm� with

 j=�k for m1+m2+···+mk−1+1≤ j≤m1+m2+···+mk

and 1≤ k≤K�

Since �1 > �2 > · · · > �K , the elements of � are in
nonincreasing order. By using the spectral polynomial
algorithm, we can find P	�� satisfying S	��m�P	��=
P	��S	�� and P	��e= e. Since S	��m� is lower trian-
gular, by Corollary 2 in O’Cinneide (1989) (also see
Theorem 4.3 in He and Zhang 2006b), P	�� is nonneg-
ative so it is a stochastic matrix. Because all elements
of � are positive, the determinant of

	S	��e� 	S	���2e� � � � � 	S	���Nme�

=−




 1 − 21  31 ··· 	−1�Nm−1 Nm1
0  1 2 −	 21 2+ 1 22� ··· ���

0 0  1 2 3 ··· ���

���
� � �

� � �
� � �

���

0 ··· 0 0  1 2 3 ��� Nm




is nonzero. Thus, the vectors �S	��e� S	��2e� � � � �
S	��Nme� are independent. Therefore, by Theorem 1
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in O’Cinneide (1989), the PH-generator S	�� is
PH-simple.
According to Theorem 2, the PH-representation

(��T ) has an equivalent ME-representation (�P	���
S	���e), where S	�� is an ordered Coxian generator.
If �P	�� is nonnegative, (�P	��� S	��) is an ordered
Coxian representation. By Lemma 3, 	�P	��� S	��� is
a minimal ordered Coxian representation of (��T )
and the triangular order of (��T ) is Nm. If �P	��
is not nonnegative, however, the triangular order of
(��T ) must be larger than Nm. The reason is that by
Lemma 3, any ordered Coxian representation of (��T )
of order Nm must have a representation of the form
	y� S	���e�. Since S	�� is PH-simple, we must have
y = �P	��, which is not nonnegative. Therefore, the
triangular order of (��T ) is larger than Nm.
Suppose that (�� S	x��e) of order n 	≥Nm� is

an ME-representation of (��T ), where x equals
(x1�x2� � � � � xn) with positive elements. By Lemma 3,
it is apparent that ( 1� 2� � � � � Nm ) must be part of
(x1�x2� � � � � xn). By using the spectral polynomial algo-
rithm, we obtain S	��m�P	x� = P	x�S	x�� � = �P	x�,
and P	x�= 	p1	x��p2	x�� � � � �pn	x��, where

p1	x� = −S	��m�e/x1�

pj 	x� =
	−1�
xj ···x1

	xj−1I+S	��m��···	x1I+S	��m��

·S	��m�e� 2≤ j≤n�

0 = 	−1�
xn ···x1

	xnI+S	��m��···	x1I+S	��m��

·S	��m�e�

(7)

Our goal is to find the smallest n such that
(�� S	x��e) is an ordered Coxian representation. To
that end, we first show that � can be obtained from
x and the original representation (��T ) (more specif-
ically, the derivatives of the PH-distribution at zero).
Let !	k� j� be the set of all the subsets of �1�2� � � � � j�
with exactly k elements, for k≤ j . Define

hi�1 = F 	i�	0�� 1≤ i≤ n�

hi� j =
j−1∑
k=1

F 	k+i−1�	0�
( ∑
�i1�����ij−k�⊆!	j−k� j−1�

xi1 · · ·xij−k
)

+ F 	j+i−1�	0�� 3≤ i+ j ≤ n+ 1�

(8)

where F 	j�	0� is the j-th derivative of F 	t� at t = 0 for
j ≥ 0. Note that

F 	t�= 1−�exp�Tt�e= 1−�exp�S	��m�t�e

and

F 	j�	0�=−�T je=−�	S	��m��je� j ≥ 1�
The relationship between � and �hi� j � i� j ≥ 1� is given
as follows.

Lemma 4. For ME-representation (�� S	x��e� defined
above, we have #j = h1� j/	x1x2 · · ·xj�� 1≤ j ≤ n.

Proof. Since � = �P	x�, we have #j = �pj 	x�� 1 ≤
j ≤ n. The results are obtained by (7) and (8) and rou-
tine calculations. �

Lemma 5. The ME-representation (�� S	x��e) defined
above is an ordered Coxian representation of (��T ) if and
only if

(1) x1 ≥ x2 ≥ · · · ≥ xn > 0;
(2) � is part of x; and
(3) h1� j ≥ 0� 1≤ j ≤ n.

Proof. If (�� S	x��e) is an ordered Coxian represen-
tation of (��T ), we must have x1 ≥ x2 ≥ · · · ≥ xn >0.
Thus, condition (1) holds. By Lemma 2, � must be
part of x, which implies condition (2). Since � ≥ 0, by
Lemma 4, condition (3) holds. This proves the neces-
sity of the conditions.
On the other hand, suppose that conditions (1),

(2), and (3) hold. Condition (1) implies that S	x� is
a PH-generator. Condition (2) implies S	��m�P	x� =
P	x�S	x� and P	x�e= e. Condition (3) implies that �=
�P	x� is nonnegative. In conclusion, (�� S	x��e� is an
equivalent ordered Coxian representation of (��T �.
This proves the sufficiency of the conditions. �

Theorem 6.2 in O’Cinneide (1993) provides a neces-
sary and sufficient condition for a PH-representation
with a triangular PH-generator to be minimal. Com-
pared to that condition, the conditions given in
Lemma 5 are easier to check numerically. In fact,
the conditions in Lemma 5 lead to an algorithm for
computing a minimal Coxian representation for any
Coxian distribution. Lemma 5 establishes a relation-
ship between the Coxian representation of a Coxian
distribution and the derivatives of its distribution
function at zero. Now, we are ready to state and prove
the main result of this section.

Theorem 4. Let n∗ be the minimal n such that condi-
tions (1), (2), and (3) in Lemma 5 are satisfied. Then n∗ is
the triangular order of (��T �. The number n∗ is finite and
is at least Nm (defined in (5)). The corresponding represen-
tation (�� S	x��e) is a minimal ordered Coxian representa-
tion of (��T ).

Proof. The first conclusion is obvious from Lem-
ma 5. By Lemma 3, we must have n∗ ≥ Nm. Accord-
ing to Theorem 1, any PH-distribution with only real
poles has a triangular representation or, equivalently,
an ordered Coxian representation. Therefore, n∗ is
finite. �

It is clear from the proofs of the above lemmas that
Theorem 4 is valid for any Coxian distribution with
an ME-representation (��T �e), where � may not be
nonnegative. Consequently, the algorithm developed
in §5 can be used for computing minimal ordered
Coxian representations for Coxian distributions with
ME-representations (��T �e) (see Example 1, §6).
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5. A Nonlinear-Programming
Approach

Based on Lemma 5 and Theorem 4, a nonlinear
system can be developed for computing a mini-
mal ordered Coxian representation for (��T ). First,
we prove a property for minimal ordered Coxian
representations.

Lemma 6. For a minimal ordered Coxian representation
(�� S	x�) of order n∗, we must have xj ≥  Nm� 1≤ j ≤ n∗.

Proof. Note that x1 ≥ x2 ≥ · · · ≥ xn∗ . If there exists
xj such that xj <  Nm , then xn∗ is the smallest one with
that property. Suppose that xn∗−1 > xn∗ . By routine cal-
culations, we can obtain

� exp�S	x�t�e=
n∗−1∑
j=1

cj 	t�exp�−xjt�+#n∗ exp�−xn∗t��

where �cj 	t�� 1 ≤ j ≤ n∗� are some polynomials of
a finite order. By the proof of Lemma 3, we must
have #n∗ = 0. Thus, the ordered Coxian repre-
sentations ((#1�#2� � � � � #n∗−1�� S	x1�x2� � � � � xn∗−1�� and
(�� S	x�� represent the same probability distribution.
This further implies that (�� S	x�) is not a mini-
mal Coxian representation, which gives a contradic-
tion. Therefore, for a minimal Coxian representation
(�� S	x�), we must have xj ≥  Nm for 1 ≤ j ≤ n∗. The
case xn∗−1 = xn∗ can be proved similarly. �

Based on Lemma 5, Theorem 4, and Lemma 6, a
Coxian representation can be constructed from any
feasible solution to the following nonlinear system
(NLS):

	1� x1 ≥ x2 ≥ · · · ≥ xn ≥  Nm� x1 ≥  1�

	2� 	 1� 2� � � � � Nm� is part of 	x1�x2� � � � � xn��

	3� hi� j ≥ 0� 1≤ j ≤ n�

	4� 	8� holds�

(9)

Next, we discuss how to find a feasible solution to
NLS (9). First, we can replace constraint (1) in (9) by
x1 ≥  1, and xi ≥  Nm� 2 ≤ i ≤ n. The solution to the
modified nonlinear system (if exists) can be used to
construct a Coxian representation, which may not be
an ordered Coxian representation. By Property 5.1 in
He and Zhang (2006b), we can use the spectral poly-
nomial algorithm to find an ordered Coxian represen-
tation of the same order from that solution. Second,
we rewrite (8) as the following recursive equations:

hi�1 = F 	i�	0�� 1≤ i≤ n�

hi� j = xj−1hi� j−1+hi+1� j−1�

3≤ j + i≤ n+ 1� j ≥ 2� i≥ 1�
(10)

Equation (10) can be obtained in a straightforward
manner from (8). Equalities in (10) are polynomials

of degree 2 in �x1�x2� � � � � xn� and �hi� j � h2� � � � � hn+1�,
which is significantly smaller than that of (8). This
may bring efficiency in solving the nonlinear system.
Let H = �hi� j � 2 ≤ i + j ≤ n + 1�. Combining Lem-

mas 5 and 6, Theorem 4, the above observations,
and (10), we introduce the following nonlinear pro-
gram (NLP) to find an ordered Coxian representation
(�� S	x�) for (��T ) and a given n 	≥Nm�:

min
	x�H�

n∑
i=1
xi

s.t. 	1� x1 ≥  1�xi ≥  Nm� for 2≤ i≤ n�

	2� 	 1� 2� � � � � Nm� is part of
	x1�x2� � � � � xn��

	3� h1� j ≥ 0� 1≤ j ≤ n�

	4� 	10� holds�

(11)

If NLP (11) has a solution, that solution corre-
sponds to a Coxian representation of order n for
(��T ) (Lemma 5). By using the spectral polynomial
algorithm, we can find an ordered Coxian represen-
tation of order n from that solution. Otherwise, the
triangular order of (��T � is larger than n.
The derivative F 	j�	0� can be extremely large or

small for large or even moderate j , which can cause
problems in computation. One suggestion to solve
the problem is to rescale the time, i.e., to scale T to
%T where % is a positive number. For instance, we
can choose %−1 =max1≤i≤m���i��. Numerical examples
demonstrate that such a change of scale makes the
algorithm more stable.
From numerical experiments, we learned that

choosing an appropriate initial search point is impor-
tant for solving NLP (11) efficiently. An initial search
point we use is x = 	�� � � � ��� 1� 2� � � � � Nm�, where
�> 1.
It is easy to see that the (minimal) ordered Coxian

representation of (��T � may not be unique. In fact,
any feasible solution to (11) corresponds to an ordered
Coxian representation of (��T �. Also, the optimal
solution to (11) can be different if a different objective
function is used. In (11), the objective function is a
simple linear function. Such a linear function is cho-
sen to make it easier to solve (11). The following prop-
erty supports the nonuniqueness of minimal ordered
Coxian representation.

Lemma 7. Suppose that

	�	0�� S	x	0��� and 	�	1�� S	x	1���

are two ordered Coxian representations of order n for
(��T ), where x	0� and x	1� are identical except for one
element (i.e., xi	0� = xi	1�� 1 ≤ i ≤ n and i �= i0). Then
for any convex combination x	�� = �x	1� + 	1 − ��x	0�
with 0≤ �≤ 1, there is an ordered Coxian representation
(�	��� S	x	���) of order n for (��T ).
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Proof. Because all elements of x	0� and x	1� are
positive, all elements of x	�� are positive. Since both
x	0� and x	1� are ordered sequences, x	�� is an
ordered sequence as well. By (8), �hi� j � 2≤ i+ j ≤ n+
1�, as functions of the elements of x, are linear func-
tions in each element of x. Define �hi� j 	0�� 2≤ i+ j ≤
n+1� by (10) for x	0�, �hi� j 	1��2≤ i+ j ≤ n+1� for x	1�,
and �hi� j 	��� 2 ≤ i + j ≤ n+ 1� for x	��. Since xi	�� =
xi	0�= xi	1�� 1≤ i≤ n and i �= i0, and xi0	��= �xi0	1�+
	1 − ��xi0	0�, we have hi� j 	�� = �hi� j 	1� + 	1 − �� ·
hi� j 	0�, 2≤ i+ j ≤ n+ 1. Therefore, �h1� j 	��� 1≤ j ≤ n�
are nonnegative. Let �	�� = 	#1	���#2	��� � � � � #n	���,
where #j	�� = h1� j 	��/	x1	��x2	�� · · ·xj	���� 1 ≤ j ≤ n.
Because � is part of x	0� and part of x	1�, it is easy to
see that � is part of x	�). Thus, ��	���x	��� satisfies
the conditions in Lemma 5. Therefore, (�	��� S	x	���)
is an ordered Coxian representation of (��T ). �

According to Aldous and Shepp (1987), for any
PH-distribution (��T ) of order m, we must have
cv	��T � ≥ 1/m, where cv	��T � is the coefficient
of variation of (��T ). That implies that m ≥
1/cv	��T � = 	�T −1e�2/&�T −2e − 	�T −1e�2'. Let N ∗ =
max�Nm� �1/cv	��T ���. Apparently, N ∗ is a lower
bound of the triangular order of (��T ).
Finally, we introduce an algorithm for computing a

minimal ordered Coxian representation of (��T ). For
this purpose, one needs to solve (11) for n=N ∗�N ∗ +
1� � � � � until a solution is found. Theorem 4 ensures
that the smallest n for which (11) has a solution is the
triangular order of (��T ). We summarize the compu-
tational steps as follows.

Minimal Coxian Representation Algorithm. As-
sume that the Laplace-Stieltjes transform of PH-
distribution (��T ) has only real poles.
Step 1. Find the spectrum of T . Use the spectral

polynomial algorithm to compute ��� S	��m�� and
Nm (defined in (5)). Remove all eigenvalues whose
corresponding elements in � are all zero.
Step 2. Use the spectral polynomial algorithm to

compute P	�� and ��P	��� S	��� from ��� S	��m��.
If �P	�� is nonnegative, (�P	��� S	��) is a minimal
ordered Coxian representation of order Nm for (��T ).
Otherwise, compute N ∗ and let n=N ∗.
Step 3. Calculate F 	j�	0� = −�T je� 1 ≤ j ≤ n + 1.

Solve (11).
Step 4. If there is no solution to (11), set n=( n+ 1

and go to Step 3. Otherwise, use Lemma 4 to com-
pute � from the optimal solution. Then (�� S	x�) is a
minimal Coxian representation of order n for (��T ). If
(�� S	x�) is not an ordered Coxian representation (i.e.,
the elements in x are not in nonincreasing order), use
the spectral polynomial algorithm to compute a min-
imal ordered Coxian representation from (�� S	x�).

According to Cumani (1982) and He and Zhang
(2006b), if T is triangular or symmetric, the search for

the triangular order is between N ∗ and m. In general,
by Theorem 4.1 in O’Cinneide (1991), the search pro-
cess will be terminated after a finite number of iter-
ations. However, there is no known upper bound for
the search process. Thus, finding an upper bound of
the triangular order is useful for the above algorithm
and is an interesting issue for future research.

6. Three Numerical Examples
In this section, we demonstrate the effectiveness of
the algorithm developed in §§3, 4, and 5, show some
geometric properties associated with ordered Coxian
representations, and explain why finding a minimal
ordered Coxian representation is not straightforward.
Note that all distributions under consideration have a
zero mass at t = 0.
Example 1. We show that the triangular order of

a PH-representation whose Laplace-Stieltjes transform
has three poles can be arbitrarily large, as pointed out
by O’Cinneide (1991). We consider a PH-generator T
of order three given by

T =




−7 0 0�3

3 −4 0

0 3�5 −4


 � (12)

The eigenvalues of T are �−�1 = −6�4933�−�2 =
−5�4056�−�3 = −3�1012�. Let ��1��2��3� be the cor-
responding eigenvectors normalized by �1e = �2e =
�3e = 1. Then �	�i� T �e�� 1 ≤ i ≤ 3� represent three
exponential distributions with parameters ��1��2��3�,
respectively. Similarly to Example 3.2 in He and
Zhang (2006a) (also see examples in Dehon and
Latouche 1982), we construct a PH-invariant polytope
conv�q1�q12�q123� from ��1��2��3� as follows:

q1 =�1�

q12 =
�2

�2−�1
�1+

�1
�1−�2

�2�

q123 =
�3�2

	�3−�1�	�2−�1�
�1+

�1�3
	�1−�2�	�3−�2�

�2

+ �1�2
	�1−�3�	�2−�3�

�3�

Let Q be a 3× 3 matrix with q1 as its first row, q12 as
its second row, and q123 as its third row. It can be shown
that QT = S	��Q. Since S	�� is a PH-generator, we
say that the polytope conv�q1�q12�q123� isPH-invariant
under T .
A polytope is a convex set with a finite number

of extreme points. See Rockafellar (1970) for more
about convex sets and polytopes. The concept of
PH-invariant polytopes was introduced in O’Cinneide
(1991), who discusses more about PH-invariant
polytopes.
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According to Dehon and Latouche (1982), conv
�q1�q12�q123� contains all � corresponding to prob-
ability distributions (��T �e) with a bidiagonal
PH-representation of order three or smaller. Denote
by !3 the set of all vectors � with a unit sum corre-
sponding to probability functions that are affine com-
binations of exponential distributions �	�i� T �e�� 1 ≤
i ≤ 3�. Denote by ei the unit row vector with
all elements being zero except the i-th element,
which is one, 1 ≤ i ≤ 3. By definition, all probabil-
ity vectors are in the polytope conv�e1�e2�e3�. We
have conv�e1�e2�e3� ⊆ !3 and conv�q1�q12�q123� ⊆
!3. In Figure 1, the probability vector polytope
conv�e1�e2�e3�, the polytope conv�q1�q12�q123�, and
the convex set !3 are plotted.
For any PH-representation (��T ) with T given

in (12), if � is in conv�q1�q12�q123�� 	��T � has an
ordered Coxian representation of order three or
smaller. Otherwise, (��T �e) does not have an ordered
Coxian representation of order three. He and Zhang
(2006b) show that PH-representation (��T ) of order
three always has an ordered Coxian representation
of order four or smaller. For instance, the triangu-
lar order of PH-distribution 	e1�T � is four, three for
	e2�T �, and three for 	e3�T �. Note that the triangu-
lar order of 	e1�T � is larger than its PH-order (which
is three). If � is not in conv�q1�q12�q123� nor in
conv�e1�e2�e3�, then the triangular order of (��T �e)
is at least four and can be arbitrarily large.
Next, we consider the following vectors � in !3

and use the nonlinear program developed in §§3,
4, and 5 to find the triangular order and a min-
imal ordered Coxian representation of (��T �e). If
� = �i� i = 1�2, or 3, we have n∗ = 1. If � =
y�i + 	1 − y��3, for 0 < y < 1 and i = 1 or 2, we
have n∗ = 2. If � = y�1 + z�3 + 	1 − y − z��3 for
0 < y�z�y + z < 1, we have n∗ = 3. Now, we
choose � outside of conv�q1�q12�q123� as follows: �=
0�5	1�0�0� + 0�5q123 + %	1�−1�0�, where % is to be

Ω3

α9 α7 α5 α4

α3

q1 = α1

q123

q12

e2

e3

e1

α2

α10 α8 α6

Figure 1 �3 and PH-Invariant Polytopes for Example 1

determined. For the following �, we use NLP (11) to
find the triangular order n∗ of (��T �e):

%= 0( �4 = 	0�4714�−0�1458�0�6744�� n∗ = 4�
%= 0�7( �5 = 	1�1714�−0�8458�0�6744�� n∗ = 5�
%= 0�8( �6 = 	1�2714�−0�9458�0�6744�� n∗ = 6�
%= 0�9( �7 = 	1�3714�−1�0458�0�6744�� n∗ = 8�
%= 1�0( �8 = 	1�4714�−1�1458�0�6744�� n∗ = 12�
%= 1�1( �9 = 	1�5714�−1�2458�0�6744�� n∗ = 31�
%= 1�2( �10 = 	1�6714�−1�3458�0�6744��

n∗ = nonexistent�
The vectors ��i� 4 ≤ i ≤ 10� are plotted in Figure 1

as well. It is clear that when � approaches the bound-
ary of !3, the triangular order of (��T �e) can be
very large. When % = 1�2, the corresponding �10 is
outside of !3. Thus (�10�T �e) does not represent a
probability distribution. Numerical experimentations
demonstrate that the minimal Coxian representation
algorithm is efficient if � is not close to the boundary
of !3.
For Example 1, the original PH-generator T is not

an ordered Coxian generator. In the next two exam-
ples, we consider cases for which T is an ordered
Coxian generator. As will be shown, finding a min-
imal Coxian representation can be equally compli-
cated even if the original representation is an ordered
Coxian representation.
Example 2. We consider a PH-generator S	�� of

order four given by

S	��=




−10 0 0 0

5 −5 0 0

0 1�5 −1�5 0

0 0 1 −1


 �

Eigenvalues of S	�� are −�1 = −10, −�2 = −5,
−�3 = −1�5, −�4 = −1 and the corresponding eigen-
vectors are �1 = 	1�0�0�0�, �2 = 	0�5�0�5�0�0�,
�3 = 	0�15�0�255�0�595�0�, �4 = 	0�1�0�18�0�48�0�24�,
respectively. All eigenvectors are normalized to have
a unit sum. According to He and Zhang (2006b),
conv��1��2��3��4� is a PH-invariant polytope under
S	��. Again, by using the method developed in
Dehon and Latouche (1982), the PH-invariant poly-
tope conv��1��2��3��4� can be expanded to a PH-
invariant polytope conv�q1�q12�q123�q1234� as follows:

q1 =�1� q12 =
�2

�2−�1
�1+

�1
�1−�2

�2�

q123 =
�3�2

	�3−�1�	�2−�1�
�1+

�1�3
	�1−�2�	�3−�2�

�2

+ �1�2
	�1−�3�	�2−�3�

�3�
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q1234 =
�4�3�2

	�4−�1�	�3−�1�	�2−�1�
�1

+ �4�3�1
	�4−�2�	�3−�2�	�1−�2�

�2

+ �4�2�1
	�4−�3�	�2−�3�	�1−�3�

�3

+ �3�2�1
	�3−�4�	�2−�4�	�1−�4�

�4�

For this example, because S	�� is itself an ordered
Coxian generator, it can be verified that q1 =
e1�q12 = e2�q123 = e3, and q1234 = e4. According to
Dehon and Latouche (1982), the simplex ,1�2�3�4 =
conv�e1�e2�e3�e4� consists of all probability vectors �
such that (�� S	���e) is a representation of an ordered
Coxian distribution of order four or smaller. Let
!1�2�3�4 be the set of all vectors � with a unit sum
such that (�� S	���e) is an ME-representation of a
distribution.
We consider four sub-affine sets generated by ��1�

�2��3�, ��1��2��4�, ��1��3��4�, and ��2��3��4�,
respectively. Denote the sub-affine sets as aff��1�
�2��3�, aff��1��2��4�, aff��1��3��4�, and aff��2��3�
�4�. By Dehon and Latouche (1982), the set of all
probability distributions in each sub-affine set can
be identified, which are denoted by !1�2�3, !1�3�4,
!1�2�4, and !2�3�4, respectively. These subsets of prob-
ability distributions and polytopes are plotted in
Figure 2. Similarly to the expansion from conv{�1,
�2��3��4� to conv�q1�q12�q123�q1234�, we can ex-
pand the PH-invariant polytopes conv��1��2��3�,
conv��1��2��4�, conv��1��3��4�, and conv��2��3�
�4� to ,1�2�3 = conv�q1�q12�q123�, ,1�2�4 = conv�q1�
q12�q124�� ,1�3�4 = conv�q1�q13�q134�, and ,2�3�4 =
conv�q2�q23�q234�, respectively. All the ordered Cox-
ian representations of order three with eigenvalues
chosen from �−�1�−�2�−�3�−�4� are in these PH-
invariant polytopes.
Intuitively, for a probability vector � in some

subspace, it is possible that (�� S	���e) has an
ordered Coxian representation of lower order. In
fact, if a probability vector � is in aff��1��2��3�,
aff��1��2��4�, or aff��1��3��4�, then (�� S	���e) has
an ordered Coxian representation of order three
or smaller. The reason is that !1�2�3 ∩ ,1�2�3�4 =
,1�2�3�!1�2�4 ∩ ,1�2�3�4 = ,1�2�4, and !1�3�4 ∩ ,1�2�3�4 =
,1�3�4, as shown in Figure 2.
However, if a probability vector � is in aff��2��3�

�4�, it is possible that F 	t� of (�� S	���e) has an ordered
Coxian representation of order four whose Laplace-
Stieltjes transform has poles �−�2�−�3�−�4� and the
triangular order of F 	t� is four, i.e., F 	t� ∈ ,1�2�3�4 but
F 	t�� ,2�3�4. The reason is that ,2�3�4 ⊂!2�3�4 ∩ ,1�2�3�4
and ,2�3�4 �=!2�3�4 ∩ ,1�2�3�4, as shown in Figure 2. In
fact, !2�3�4 ∩ ,1�2�3�4 = conv�q2�q23�q234�q0�, where q0

q12

q2

q1

q123

q124

q134

q234

q1234

q0

q13
q23

–0.5
00

0

0.2

0.4

0.6

0.8

1.0

0.5
0.5 1.0

1.0

Figure 2 �1�2�3��1�2�4��1�3�4��2�3�4, and PH-Invariant Polytopes for
Example 2

is in the set conv�q1�q1234� (the point “∗” in Figure 2).
Any ordered Coxian distribution in the interior of the
set conv�q2�q234�q0� has a triangular order four.
In summary, for any Coxian distribution in

,1�2�3�,1�3�4, and ,1�2�4, the number of the poles of its
Laplace-Stieltjes transform equals its triangular order.
For a Coxian distribution in ,2�3�4, it is possible that
the number of the poles of its Laplace-Stieltjes trans-
form is smaller than its triangular order.
Example 3. We consider a Coxian distribution

(�� S	��) with m = 5, � = 	0�0787�0�0778�0�0184�
0�1174�0�7076�, and

S	��=




−20 0 0 0 0

10 −10 0 0 0

0 7.5 −7.5 0 0

0 0 5 −5 0

0 0 0 1.5 −1.5



� (13)

where �= 	20�10�7�5�5�1�5�. It can be shown that the
PH-distribution (�� S	��) has an ME-representation
(�� S		7�5�5�1�5���e) of order three with poles
�−7�5�−5�−1�5� and � = 	0�21�−0�11�0�9�. By
Lemma 2, the triangular order of (�� S	��) must be
at least four.
To see if (�� S	��) has an ordered Coxian repre-

sentation of order four, we consider ordered Cox-
ian generators with eigenvalues �−10�−7�5�−5�−1�5�
and �−20�−7�5�−5�−1�5�, where −10 and −20
are the eigenvalues of the original PH-generator
given in (13). Using the spectral polynomial algo-
rithm, it can be shown that (�� S	��) is equiva-
lent to ME-representations (�1� S		10�7�5�5�1�5���e)
and (�2� S		20�7�5�5�1�5���e), where �1 = 	0�1575�
−0�0025�0�0800�0�7650� and �2 = 	0�0787�0�1038�
−0�0150�0�8235�. Unfortunately, none of them is
a PH-representation. Therefore, we need to try a
value other than −10 and −20. By considering
−15, i.e., � = 	15�7�5�5�1�5�, we find �3 = 	0�1050�
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0�0683�0�0167�0�8100�, which implies that (�3� S		15�
7�5�5�1�5��) is an alternative PH-representation of
(�� S	��). Since (�3� S		15�7�5�5�1�5��) is an ordered
Coxian representation, the triangular order of
(�� S	��) is four. Furthermore, using Lemma 7, we
find that we can replace −15 by any number between
−10�88 and −18�00 to generate an alternative ordered
Coxian representation of (�� S	��).
An interesting observation is that the eigen-

value −15 is not an eigenvalue of the original gen-
erator S	��. Thus, to find a minimal ordered Coxian
representation for (�� S	��), we must find the eigen-
value −15 (or a number between −10�88 and −18�00),
which is not straightforward.

7. Discussion on Future Research
An interesting issue for future research is to explore
the structure of NLP (11) to develop more efficient
ways to solve it. Also, we would like to find an upper
bound on the triangular order, which makes it pos-
sible to combine all the nonlinear programs into a
single nonlinear program to find a minimal Coxian
representation.
Another area of future research is to extend the

spectral polynomial method to parameter estimation
and fitting of PH-distributions, which are of great
practical significance. Possible results in this area
may complement to those in Asmussen et al. (1996),
Bobbio et al. (2002, 2004), Feldmann and Whitt (1998),
and Johnson and Taaffe (1989; 1990a, b).
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