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a b s t r a c t

This paper is concerned with the stability of a preemptive priority queueing system with customer
transfers. Conditions for the queueing system to be stable/unstable are found. An interesting result is
that the stability/instability conditions are independent of the service rates of lower priority customers
and the transfer rates.
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1. Introduction

The queueing model of interest has N types of customers: type
1, type 2, . . . , and typeN customers. Thepriority increases from type
1 customers to type N customers, with type 1 customers having
the lowest priority and type N customers the highest priority. This
paper finds simple conditions for the stability/instability of the
queueing model.
The queueing model of interest can find applications in the

design of emergency departments in healthcare systems and
custom inspection systems. For example, in a hospital emergency
department, patients are categorized into critical and non-critical
groups. A patient in critical condition will be attended by a doctor,
if one is available, as soon as the patient arrives. The status of
a patient in non-critical condition may deteriorate and become
critical. For a custom inspection system, perishable products such
as food require immediate attention. Other products may be
expedited while waiting and need to be inspected at the earliest
available time. In such systems, items have different service
priorities. The service priority of an item may increase while
waiting.
Queueing systems with customer priorities and queueing

systems with customer transfers have wide applications in
manufacturing, computer networks, telecommunication systems,
and vehicle traffic control. The study of such queueing systems is
extensive. Existingworks address issues related to system stability,
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optimal scheduling, routing, and performance analysis [1,9,10,
12,14–17]. For example, some of the existing works focus on
system stability conditions, some on the stationary analysis of the
queue length(s) and waiting times, and some on customer transfer
strategies. The queueing model of interest is also related to, but
not included in, stochastic transfer networks [2]. In addition, the
literatures focus on a product-form solution, rather than stability
conditions.
In the priority queueing system of interest, a customer transfer

scheme is given. The model is different from those in the existing
literature. As a consequence, the stability/instability conditions of
the system are different from those of the existing models. An
interesting result is that the stability/instability conditions depend
only on the ratio of the sum of the arrival rates and the service rate
of customers of the highest priority, i.e., the stability/instability
conditions are independent of the service rates of lower priority
customers and the transfer rates. That result can be useful in the
design of such queueing systems.
The mean-drift method is the main mathematical tools used

in this paper [5–8,11]. This method has been used in the past
in the study of classification of Markov processes and queueing
models. One of the keys in using this method is the construction
of the Lyapunov (test) functions. In this paper, several Lyapunov
functions are introduced and they lead to the findings of simple
conditions for system stability and instability.
The remainder of the paper is organized as follows. The

queueing model of interest is introduced in Section 2. The main
results – stability and instability conditions – are presented.
Section 3 gives proofs of the main results.

0167-6377/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
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2. Queueing model and main results

The queueing model of interest consists of s identical servers
serving N types of customers: type 1, type 2, . . . , and type N
customers. Type 1, 2, . . . , and N customers form queue 1, 2, . . . ,
and N , respectively. Type N customers have the highest service
priority, typeN−1 the second highest service priority, . . . , and type
1 the lowest service priority. When a server is available, it chooses
a customer from the non-empty queue of the highest priority and
begins to serve it. If some servers are serving type j customerswhen
a type k customer arrives, for j < k, there is no idle server, and type
j customers are the lowest priority customers in service, then one
of the type j customers in service is pushed back to queue j and the
server begins to serve the type k customer. The type j customerwill
resume or repeat its service if a server is available to serve type j
customers.
Type 1, 2, . . . , and N customers arrive according to indepen-

dent Poisson processes with parameters λ1, λ2, . . . , and λN , re-
spectively. The service times of type 1, 2, . . . , and N customers
are exponentially distributedwith parametersµ1, µ2, . . . , andµN ,
respectively. The arrival processes and service times are indepen-
dent. Since the service time of a type j customer is exponentially
distributed, it does not make a difference to assume that its inter-
rupted service, if it occurs, will be repeated or resumed. For the
same reason, if a server is available to serve type j customers, it
does notmatter (to system stability/instability)whichwaiting type
j customer enters the server to receive service.
While waiting in queue, a type j customer may change to a type

j + 1 customer after an exponential time with parameter λT ,j, for
1 ≤ j ≤ N − 1. Since the time before transfer is exponentially
distributed, it does not make a difference to assume that the clock
until transfer is reset or continued, if a type j customer’s service is
interrupted. The times until transfers for individual customers are
independent of each other, and are independent of the arrival and
service processes. Note that a customer in service does not change
its type.
Define qj(t) the number of type j customers in queue j at time

t , which includes the customers in service (if there are customers
in service), j = 1, 2, . . . ,N . If all system parameters are positive,
it is easy to see that {(q1(t), q2(t), . . . , qN(t)), t ≥ 0} is an
irreducible continuous time Markov chain (CTMC) with a state
space {(q1, q2, . . . , qN), q1 ≥ 0, . . . , qN ≥ 0}. Denote by Q =
(Q(q1,q2,...,qN ),(y1,y2,...,yN )) the infinitesimal generator of the Markov
chain. We have, for (q1, q2, . . . , qN) 6= (y1, y2, . . . , yN),

Q(q1,q2,...,qN ),(y1,y2,...,yN )

=



λj, if yj = qj + 1, yi = qi, i 6= j, 1 ≤ j ≤ N;
min{s, qN}µN , if yj = qj, 1 ≤ j ≤ N − 1,
yN = qN − 1 ≥ 0;

min

{
s−

N∑
k=j+1

qk, qj

}
µj, if yj = qj − 1 ≥ 0, yi = qi,

i 6= j,
N∑

k=j+1

qk < s, 1 ≤ j ≤ N;

qjλT ,j, if yj = qj − 1 ≥ 0, yj+1 = qj+1 + 1, yi = qi, i 6= j,

j+ 1,
N∑

k=j+1

qk ≥ s, 1 ≤ j ≤ N − 1;

max

{
N∑
k=j

qk − s, 0

}
λT ,j, if yj = qj − 1 ≥ 0,

yj+1 = qj+1 + 1, yi = qi, i 6= j, j+ 1,
N∑

k=j+1

qk < s, 1 ≤ j ≤ N;

0, otherwise.

We say that the queueing system is stable if the Markov
chain {(q1(t), q2(t), . . . , qN(t)), t ≥ 0} is ergodic (i.e., irreducible
and positive recurrent). The Markov chain is called non-ergodic if
it is not ergodic. The ergodicity of the Markov chain {(q1(t), q2(t),
. . . , qN(t)), t ≥ 0} is characterized in the following theorem.

Theorem 1. Assume that all system parameters {λ1, . . . , λN , µ1,
. . . , µN , λT ,1, . . . , λT ,N , s} are positive and finite. The Markov chain
{(q1(t), q2(t), . . . , qN(t)), t ≥ 0} is irreducible.

(1.1) The Markov chain is ergodic if
∑N
j=1 λj < sµN .

(1.2) The Markov chain is non-ergodic if
∑N
j=1 λj > sµN .

(1.3) The Markov chain is non-ergodic if
∑N
j=1 λj = sµN and

max1≤j≤N−1{µj} ≤ µN .
(1.4) The Markov chain is recurrent if

∑N
j=1 λj = sµN and

min1≤j≤N−1{µj} ≥ µN .

Part (1.1) and part (1.2) indicate that the ergodicity/non-
ergodicity conditions of theMarkov chain (or the stability/instability
of the queueing system) are independent of the service rates of
lower priority customersµ1, µ2, . . . , andµN−1. Therefore, system
stability is determined by arrival rates (of all customers) and the
service rate of type N customers.
Note 1: Although we assume a preemptive service discipline,
all results hold for the system with a non-preemptive service
discipline. The proofs are similar but more tedious, though.

3. Proof of Theorem 1

In this proof of Theorem 1, the mean-drift method [6] is
utilized. Theorem 1.18 in Chen [3] for ergodicity of Markov chains,
Theorem 1 in Choi and Kim [4] for non-ergodicity, and Part (ii) of
Theorem 2.2 in Tweedie [13] for recurrence are applied.

Proof of (1.1). The proof of (1.1) includes three steps: (i) Construc-
tion of a Lyapunov function (test function); (ii) Calculation of the
mean drift; and (iii) Application of Theorem 1.18 in [3].
We begin with the selection of the parameters in the Lyapunov

function. Define

h(x) = x
N∑
j=1

λj +
sµN
x
−

(
sµN +

N∑
j=1

λj

)
, x > 0. (1)

By routine calculations, it is easy to obtain h(1) = h(x∗) = 0,

where x∗ = sµN
(∑N

j=1 λj

)−1
> 1, and h(1)(1) = λ1 + · · · +

λN − sµN < 0. Since the function h(x) is convex for x > 0, we
have h(x) < 0 for 1 < x < x∗. Choose constants {a1, a2, . . . , aN}
satisfying the following conditions:

(1) 1 < aN < aN−1 < · · · < a1 < x∗;

(2) h(aN)+
N∑
j=1

λj(aj − aN) ≡ −ε < 0.
(2)

Note that conditions in Eq. (2) can be satisfied since h(aN) < 0.
For convenience, let q = (q1, . . . , qN), y =(y1, . . . , yN), and

e(j) be the row vector with all elements being zero except that the
jth element is one.
Now, we are ready to introduce the following Lyapunov

function:

f (q) =


N∏
j=1

a
qj
j , qj ≥ 0, 1 ≤ j ≤ N;

0, otherwise.

It is easy to show that f (q) is a compact function (see [3]), i.e.,
for any finite d > 0, the set {q : f (q) ≤ d, q ≥ 0} is closed and
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bounded (if the variables q1, . . . , and qN take real values). Note that
q ≥ 0 is equivalent to q1 ≥ 0, . . . , and qN ≥ 0. It is also easy to see
that set {q : f (q) ≤ d, q ≥ 0} has a finite number of elements if
variables q1, . . . , and qN take integer values and d is finite.
Next, we calculate the mean drift at a given state q =

(q1, . . . , qN), which is defined for the continuous time Markov
chain as

∑
y≥0 Qq,yf (y), where Qq,y = Q(q1,...,qN ),(y1,...,yN ). We need

to consider the following three cases: (i) qN ≥ s, (ii) qN < s and∑N
j=1 qj ≥ s, and (iii)

∑N
j=1 qj < s.

If qN ≥ s, we have the following calculations:∑
y≥0
Qq,yf (y)

= sµN f (q− e(N))+
N∑
j=1

λjf (q+ e(j))+
N−1∑
j=1

qjλT ,j

× f (q+ e(j+ 1)− e(j))

−

(
sµN +

N∑
j=1

λj +

N−1∑
j=1

qjλT ,j

)
f (q)

= f (q)

(
sµN
aN
+

N∑
j=1

λjaj +
N−1∑
j=1

qjλT ,j
aj+1
aj

−

(
sµN +

N∑
j=1

λj +

N−1∑
j=1

qjλT ,j

))

= f (q)

(
sµN
aN
+

N∑
j=1

λjaj +
N−1∑
j=1

qjλT ,j

(
aj+1
aj
− 1

)

−

(
sµN +

N∑
j=1

λj

))

≤ f (q)

(
sµN
aN
+

N∑
j=1

λjaj −

(
sµN +

N∑
j=1

λj

))

= f (q)

(
h(aN)+

N−1∑
j=1

λj(aj − aN)

)
. (3)

Note that the fact aj+1 < aj is used for the inequality in Eq. (3).
If qN < s and

∑N
j=1 qj ≥ s, there exists k such that

∑N
j=k+1 qj

< s,
∑N
j=k qj ≥ s, for 1 ≤ k ≤ N − 1. For this case, we have∑

y≥0
Qq,yf (y)

= min

{
s−

N∑
j=k+1

qj, qk

}
µkf (q− e(k))

+

N∑
j=k+1

qjµjf (q− e(j))+
N∑
j=1

λjf (q+ e(j))

+

(
N∑
j=k

qj − s

)
λT ,kf (q+ e(k+ 1)− e(k))

+

k−1∑
j=1

qjλT ,jf (q+ e(j+ 1)− e(j))

−

(
min

{
s−

N∑
j=k+1

qj, qk

}
µk +

N∑
j=k+1

qjµj

+

N∑
j=1

λj +

(
N∑
j=k

qj − s

)
λT ,k +

k−1∑
j=1

qjλT ,j

)
f (q)

= f (q)

((
s−

N∑
j=k+1

qj

)
µk

ak
+

N∑
j=k+1

qjµj
aj
+

N∑
j=1

λjaj

+

(
N∑
j=k

qj − s

)
λT ,kak+1
ak

+

k−1∑
j=1

qjλT ,jaj+1
aj

)

− f (q)

((
s−

N∑
j=k+1

qj

)
µk +

N∑
j=k+1

qjµj +
N∑
j=1

λj

+

(
N∑
j=k

qj − s

)
λT ,k +

k−1∑
j=1

qjλT ,j

)

= f (q)

((
s−

N∑
j=k+1

qj

)(
1
ak
− 1

)
µk +

N∑
j=k+1

qjµj

(
1
aj
− 1

)

+

N∑
j=1

λj(aj − 1)

)
− f (q)

((
N∑
j=k

qj − s

)(
1−

ak+1
ak

)
λT ,k

+

k−1∑
j=1

qjλT ,j

(
1−

aj+1
aj

))

≤ f (q)

(
N∑
j=1

λj(aj − 1)−

(
N∑
j=1

qj − s

)

× min
1≤j≤N−1

{(
1−

aj+1
aj

)
λT ,j

})
. (4)

Note that the last expression in Eq. (4) is independent of k. Thus,
Eq. (4) holds for qN < s and

∑N
j=1 qj ≥ s.

If
∑N
j=1 qj < s, we have∑

y≥0
Qq,yf (y)

=

N∑
j=1

qjµjf (q− e(j))+
N∑
j=1

λjf (q+ e(j))

−

(
N∑

j=k+1

qjµj +
N∑
j=1

λj

)
f (q)

= f (q)

(
N∑
j=1

qjµj

(
1
aj
− 1

)
+

N∑
j=1

λj
(
aj − 1

))

≤

(
N∑
j=1

λj
(
aj − 1

))
as1. (5)

Finally, we apply Theorem 1.18 in [3] to show that the Markov
chain is ergodic. According to Theorem1.18 in [3], we need to show
that∑
y≥0
Qq,yf (y)+ ηf (q) ≤ K (6)

holds for all states for some constant K ≥ 0 and η > 0.
For that purpose, we choose η satisfying 0 < η < ε, where ε

is defined in Eq. (2). Let Y = min1≤j≤N−1
{(
1− aj+1/aj

)
λT ,j

}
and

W = η+
∑N
j=1 λj(aj − 1). We choose q

∗ as q∗ = s+W/Y . Define

K = max

0, max{
q:qN<s,

N∑
j=1
qj≤q∗

}
{∑

y≥0
Qq,yf (y)+ ηf (q)

} .
It is easy to see that K is non-negative and finite, i.e., 0 ≤ K <

∞.
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For the chosen η and K , by their definitions, Eq. (6) holds if
qN < s and

∑N
j=1 qj ≤ q

∗. If qN < s and
∑N
j=1 qj > q

∗, we have∑
y≥0
Qq,yf (y)+ ηf (q)

≤ f (q)

(
N∑
j=1

λj(aj − 1)−

(
N∑
j=1

qj − s

)
Y + η

)
(7a)

= f (q)

(
W −

(
N∑
j=1

qj − s

)
Y

)
(7b)

= f (q)

(
(q∗ − s)Y −

(
N∑
j=1

qj − s

)
Y

)
(7c)

= f (q)Y

(
q∗ −

N∑
j=1

qj

)
≤ 0,

where inequality (7a) follows the last inequality of Eq. (4), equality
(7b) follows the definition of W , and equality (7c) follows the
definition of q∗, respectively.
For qN ≥ s, Eq. (3) leads to∑

y≥0
Qq,yf (y)+ ηf (q)

= f (q)

(
h(aN)+

N∑
j=1

λj(aj − aN)+ η

)
≤ −f (q)(ε − η) ≤ 0.

Consequently, we have shown that Eq. (6) holds for all states.
Therefore, by Theorem 1.18 in [3], the Markov chain is ergodic.

Proof of (1.2). To prove (1.2), instead of Theorem 1.18 in [3], part
(c) of Theorem 1 in [4] is utilized. Note that the Lyapunov function
f (q) and constants {a1, . . . , aN} will be redefined for this case as
well as in the proofs of cases (1.3) and (1.4).
First note that, for the function h(x) defined in Eq. (1), we have

h(1) = h(x∗) = 0, where x∗ = sµN
(∑N

j=1 λj

)−1
< 1, and h(1)(1)

= λ1+· · ·+λN−sµN > 0. Thenwe have h(x) < 0 for x∗ < x < 1.
Choose constants {a1, . . . , aN} satisfying the following conditions:

(1) 0 < x∗ < aN < aN−1 < · · · < a1 < 1;

(2) h(aN)+
N∑
j=1

λj(aj − aN) ≤ 0.

Define

f (q) =

−
N∏
j=1

a
qj
j , qj ≥ 0, 1 ≤ j ≤ N;

0, otherwise.

According to part (c) of Theorem 1 in [4], the Markov chain is
non-ergodic if:

(1) sup
q≥0

∑
y≥0
Qq,y(f (q)− f (y))+ <∞;

(2)
∑
y≥0
Qq,yf (y) ≥ 0, if q ∈ B;

(3) ∃ q ∈ B, f (q) > sup
y6∈B
f (y),

(8)

where (x)+ = max{0, x} and B is a subset of states.
Condition (1) in Eq. (8) holds since 0 < a1, . . . , aN < 1 and

−1 ≤ f (q)− f (y) ≤ 1 for all possible q and y. Also note that, since

0 < aj < 1, we have λT ,jqja
qj
j → 0 if qj →∞. To verify conditions

(2) and (3) in Eq. (8), we consider two cases: qN ≥ s and qN < s. If
qN ≥ s, similarly to Eq. (3), we obtain∑
y≥0
Qq,yf (y) ≥ −

(
N∏
j=1

a
qj
j

)(
h(aN)+

N∑
j=1

λj(aj − aN)

)
≥ 0.

Let Z =
∑N
j=1 µj

(
1/aj − 1

)
and q∗ = sY−1Z + s, where Y is

defined in the proof of (1.1). If qN < s and
∑N
j=1 qj > q∗, there

exists k such that
∑N
j=k+1 qj < s,

∑N
j=k qj ≥ s, for 1≤ k ≤ N−1. By

the last equality in Eq. (4) and definitions of q∗, Y , and Z , we have∑
y≥0
Qq,yf (y)

=

(
N∏
j=1

a
qj
j

)((
N∑

j=k+1

qj − s

)(
1
ak
− 1

)
µk

−

N∑
j=k+1

qjµj

(
1
aj
− 1

)
+

N∑
j=1

λj(1− aj)

)

+

(
N∏
j=1

a
qj
j

)((
N∑
j=k

qj − s

)(
1−

ak+1
ak

)
λT ,k

+

k−1∑
j=1

qjλT ,j

(
1−

aj+1
aj

))

≥

(
N∏
j=1

a
qj
j

)((
N∑
j=1

qj − s

)
min

1≤j≤N−1

{(
1−

aj+1
aj

)
λT ,j

}

− s
N∑
j=1

µj

(
1
aj
− 1

))

=

(
N∏
j=1

a
qj
j

)((
N∑
j=1

qj − s

)
Y − sZ

)

≥

(
N∏
j=1

a
qj
j

) ((
q∗ − s

)
Y − sZ

)
= 0.

Thus, condition (2) in Eq. (8) holds if qN < s and
∑N
j=1 qj > q

∗.
Define

B = {q : qN ≥ s, q ≥ 0} ∪

{
q : qN < s and

N∑
j=1

qj > q∗, q ≥ 0

}
.

Then condition (2) in Eq. (8) holds for any state q in the set B.
It is easy to see supy∈B f (y) = 0. Since there are only a finite

number of states not in the set B, it is easy to obtain supy6∈B f (y) <
0. Then condition (3) in Eq. (8) holds for B. Therefore, the Markov
chain is non-ergodic if λ1 + · · · + λN > sµN .

Proof of (1.3). To prove (1.3), Theorem 1 in [4] is utilized again.
Define

f (q) =


N∑
j=1

qj, qj ≥ 0, 1 ≤ j ≤ N;

0, otherwise.

(9)

According to part (a) of Theorem 1 in [4], the Markov chain is
non-ergodic if:

(1) sup
q≥0

∑
y≥0
Qq,y(f (q)− f (y))+ <∞;

(2)
∑
y≥0
Qq,yf (y) ≥ 0, q ≥ 0.

(10)
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Condition (1) in Eq. (10) holds since (i) −1 ≤ f (q) − f (y) ≤ 1
if Qq,y 6= 0 and (ii) f (q) − f (q + e(j + 1) − e(j)) = 0. To verify
condition (2) in Eq. (10), we consider the following three cases.
If qN ≥ s, similarly to Eq. (3), we obtain∑

y≥0
Qq,yf (y)

=

N∑
j=1

λj

(
1+

N∑
i=1

qi

)
+ sµN

(
N∑
i=1

qi − 1

)

+

N−1∑
j=1

qjλT ,j
N∑
i=1

qi −

(
sµN +

N∑
j=1

λj +

N−1∑
j=1

qjλT ,j

)
N∑
i=1

qi

=

N∑
j=1

λj − sµN = 0. (11)

If qN < s and
∑N
j=1 qj ≥ s, there exists k such that

∑N
j=k+1 qj < s

and
∑N
j=k qj ≥ s, for 1 ≤ k ≤ N−1. Similarly to Eq. (4), we have∑

y≥0
Qq,yf (y)

=

N∑
j=1

λj

(
1+

N∑
i=1

qi

)
+

(
s−

N∑
j=k+1

qj

)

×µk

(
N∑
i=1

qi − 1

)
+

N∑
j=k+1

qjµj

(
N∑
i=1

qi − 1

)

+

(
N∑
j=k

qj − s

)
λT ,k

N∑
i=1

qi +
k−1∑
j=1

qjλT ,j
N∑
i=1

qi

−

(
N∑
j=1

λj +

(
s−

N∑
j=k+1

qj

)
µk +

N∑
j=k+1

qjµj

+

(
N∑
j=k

qj − s

)
λT ,k +

k−1∑
j=1

qjλT ,j

)(
N∑
i=1

qi

)

=

N∑
j=1

λj −

(
s−

N∑
j=k+1

qj

)
µk −

N∑
j=k+1

qjµj

≥

N∑
j=1

λj −

(
s−

N∑
j=k+1

qj

)
µN −

N∑
j=k+1

qjµN

=

N∑
j=1

λj − sµN = 0. (12)

Note that the condition max1≤j≤N−1{µj} ≤ µN is used in
Eq. (12).
If
∑N
j=1 qj < s, similarly to Eq. (5), we have∑

y≥0
Qq,yf (y)

=

N∑
j=1

λj

(
1+

N∑
i=1

qi

)
+

N∑
j=1

qjµj

(
N∑
i=1

qi − 1

)

−

(
N∑
j=1

λj +

N∑
j=1

qjµj

)(
N∑
i=1

qi

)

=

N∑
j=1

λj −

N∑
j=1

qjµj

≥

N∑
j=1

λj −

N∑
j=1

qjµN ≥

N∑
j=1

λj − sµN = 0.

Condition (2) in Eq. (10) holds. Therefore, the Markov chain is
non-ergodic.

Proof of (1.4). According to part (ii) of Theorem 2.2 in [13], the
Markov chain is recurrent if∑

y≥0
Qq,yf (y) ≤ 0 (13)

holds for all but a finite number of states q, for the non-negative
and unbounded function f (q) defined in Eq. (9). To verify the
condition in Eq. (13), we consider two cases. If qN ≥ s, Eq. (11)
implies Eq. (13). If qN < s and

∑N
j=1 qj ≥ s, similarly to Eq. (12),

we have, for all 1 ≤ k ≤ N − 1 such that
∑N
j=k+1 qj < s and∑N

j=k qj ≥ s,∑
y≥0
Qq,yf (y) =

N∑
j=1

λj −

(
s−

N∑
j=k+1

qj

)
µk −

N∑
j=k+1

qjµj

≤

N∑
j=1

λj −

(
s−

N∑
j=k+1

qj

)
µN −

N∑
j=k+1

qjµN

=

N∑
j=1

λj − sµN = 0. (14)

Note that the condition min1≤j≤N−1{µj} ≥ µN is used in
Eq. (14). Thus, Eq. (13) holds for all but states in the set {q :
q1 + · · · + qN < s, q ≥ 0}, which only has a finite number of
states. Consequently, the Markov chain is recurrent.
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