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Abstract This paper studies Coxian representations of generalized Erlang distributions. A nonlinear program

is derived for computing the parameters of minimal Coxian representations of generalized Erlang distributions.

The nonlinear program is also used to characterize the triangular order and the admissible region of generalized

Erlang distributions. It is shown that the admissible region associated with a triangular order may not be

convex. For generalized Erlang distributions of ME -order 3, a minimal Coxian representation is found explicitly.

In addition, an algorithm is developed for computing a special type of ordered Coxian representations - the

bivariate Coxian representation - for generalized Erlang distributions.
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1 Introduction

A generalized Erlang distribution of order m is defined as the distribution of a nonnegative
random variable with probability distribution function

F (t) = α0 +
m∑

i=1

αi

(
1−

i−1∑

j=0

(λt)j

j!
e−λt

)
, t ≥ 0, (1)

where {α0, α1, . . . , αm} are real numbers with a unit sum (i.e., α0+α1+. . . +αm = 1) and λ is
a positive real number. It is easy to see that equation (1) can be written as

F (t) = 1− α exp{Em,λt}e, t ≥ 0, (2)

where α = (α1, . . . , αm), Em,λ is an m×m matrix with all diagonal elements being −λ, the
(j + 1, j)-th element λ for 1 ≤ j ≤ m− 1, and all other elements 0, and e is a column vector of
ones. The representation (α, Em,λ) is called a matrix-exponential (ME ) representation of F (t)
(see Lipsky [14]).

By Theorem 1.1 in O’Cinneide[17] and Theorem 4.1 in O’Cinneide[18], if the density function
F ′(t) is positive for t > 0, the generalized Erlang distribution F (t) is a Coxian distribution
and has an ordered Coxian representation of the form (β, S (x)) of order m+N, i.e., F (t) =
1 − βexp{S (x)t}e for t ≥ 0, where N is a nonnegative integer, x = (x1, x2, . . . , xm+N ) is a
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vector of size m+N, x1 ≥ x2 ≥ . . . ≥ xm+N > 0, β is a substochastic vector of size m+N (i.e.,
β1 ≥ 0, β2 ≥ 0, . . . , βm+N ≥ 0, β1 + β2 + . . . + βm+N ≤ 1), and

S(x) =




−x1

x2 −x2

. . . . . .
xm+N −xm+N


 . (3)

The objective of this paper is to find an ordered Coxian representation (β, S (x)) of the
smallest order for F (t). This issue is interesting because Coxian representations, as special
phase-type (PH ) representations[15], have a probabilistic interpretation that makes it easy to
use generalized Erlang distributions in stochastic modeling.

The generalized Erlang distribution is a natural generalization of the exponential dis-
tribution and has been used in the studies of queueing models, risk and insurance models
(Asmussen[1,2], Haddad et al.[9], Latouche and Ramaswami[13], Lipsky[14], Neuts[15], Sasaki et
al.[21]). The set of generalized Erlang distributions is a subset of ME -distributions (Lipsky[14]

and Asmussen and Bladt[3]) and is, under a mild condition, a subset of PH-distributions and
Coxian distributions. Thus, a generalized Erlang distribution always has ME -representations
and, under a mild condition, also has PH -representations and Coxian representations.

As indicated by equations (1) and (2), it is easy to construct an ME -representation for a
generalized Erlang distribution. Proposition 2.1 of this paper indicates that it is also easy to
find an ME -representation of the smallest order for a generalized Erlang distribution. Unfor-
tunately, the use of ME -representations in stochastic modeling is limited. On the other hand,
a Coxian representation or a PH -representation of a generalized Erlang distribution links the
distribution to the absorption time of a Markov chain. Such a probabilistic interpretation of
the PH and Coxian representations makes them useful in stochastic modeling. Furthermore,
Coxian representations are featured by a bi-diagonal PH -generator that has a simple struc-
ture and is suitable for numerical computation. Consequently, finding a Coxian representation,
especially a Coxian representation of the smallest order, is an interesting issue.

Theorem 4.1 in O’Cinneide[18] implies that a generalized Erlang distribution with a pos-
itive density function on (0, ∞) has Coxian representations. An algorithm developed in He
and Zhang[12] can be used for computing Coxian representations of the smallest order for gen-
eralized Erlang distributions. The algorithm requires solving a series of nonlinear programs.
In this paper, a nonlinear program is established for determining parameters in the minimal
Coxian representations of generalized Erlang distributions. The algorithm developed in He
and Zhang[12] is modified and becomes significantly more efficient for generalized Erlang dis-
tributions. Characterization results are obtained for the triangular order of generalized Erlang
distributions. It is shown that the admissible region up to a triangular order may not be
convex. Yet the triangular order along any ray originated from a stochastic point (vector) is
nondecreasing. Explicit results are obtained for a number of special cases as well.

The rest of the paper is organized as follows. In Section 2, preliminary results are presented.
In Section 3, a set of necessary and sufficient conditions is identified for a Coxian representation
to be minimal. Then an algorithm is developed for computing a minimal Coxian represen-
tation. Section 4 is concerned with the characterization of the triangular order. In Section
5, the minimal Coxian representations of generalized Erlang distributions of ME -order 3 are
obtained explicitly. In Section 6, a special form of Coxian representations - bivariate Coxian
representation - is studied.

2 Matrix Representations and Generalized Erlang Distributions

As indicated by equations (1) and (2), a generalized Erlang distribution has an ME -representation
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(α, Em,λ), which can be constructed easily from its distribution function, its density function,
or its Laplace-Stieltjes transform. Since we are interested in representations, without loss of
generality, we assume that α0 = 0 (i.e., αe = 1) in the rest of this paper.

It is well known that ME -representations of ME -distributions, PH -representations of PH -
distributions, and Coxian representations of Coxian distributions are not unique. This fact
leads to the concept of minimal representations. A minimal ME-representation of an ME -
distribution is the one of the smallest order. The ME-order of an ME -distribution is the
order of its minimal ME -representation. The following properties of the ME -representations
(α, Em,λ) of a generalized Erlang distribution characterize the minimal ME -representations of
generalized Erlang distributions.

Proposition 2.1. If (α, Em,λ) represents a probability distribution, then the first and the
last nonzero elements in α must be positive. The ME-representation (α, Em,λ) is a minimal
ME-representation if and only if that (α, Em,λ) is an ME-representation and αm > 0.

Proof. The first part of the proposition is obtained directly from equation (1) due to the
fact that the density function of the generalized Erlang distribution must be nonnegative. The
second part can be obtained from the fact that, if αm > 0, the term tm−1exp{−λt} is in the
density function of (α, Em,λ), which cannot be in the density function of generalized Erlang
distributions of order m − 1 or less. Then (α, Em,λ) has no equivalent ME -representation of
order m − 1 or less. Therefore, the ME -representation (α, Em,λ) is minimal. This completes
the proof of Proposition 2.1.

If β is a sub-stochastic vector and S (x) is defined in (3), where x= (x1, x2, . . . , xN ) with
all elements being positive real numbers, then (β, S (x)) is called a Coxian representation of
order N of a Coxian distribution (Note: This definition of Coxian distributions does not include
the Coxian distributions whose density function has positive roots. This definition is slightly
different from the one given in Cox[5]). If, in addition, x1 ≥ x2 ≥ . . . ≥ xN , then (β, S (x)) is
called an ordered Coxian representation of order N. A minimal Coxian representation of a Coxian
distribution is the Coxian representation of the smallest order of that Coxian distribution.
The order of a minimal Coxian representation is called the triangular order of the Coxian
distribution[19]). More details on Coxian representations and Coxian distributions can be found
in Cox[5,6], Cumani[7], Dehon and Latouche[8], He and Zhang[11,12], and O’Cinneide[18,18−20].

A generalized Erlang distribution may not be a PH -distribution or a Coxian distribution,
since its density function may have positive roots. Consequently, it may not have Coxian or
PH representations. By Theorem 1.1 in O’Cinneide[17] and Theorem 4.1 in O’Cinneide[18], the
positivity of the density function ensures that a generalized Erlang distribution is a Coxian
distribution and a PH -distribution and, consequently, has Coxian and PH representations.
That condition can be stated in the following form, which is assumed throughout this paper.

Assumption 1. The polynomial function gα(t) =
m∑

i=1

αi
ti−1

(i−1)! has no positive root.

The following spectral polynomial algorithm introduced in He and Zhang[10] is used in the
paper. Denote by x = (x1, x2, . . . , xN ) a vector of size N, with all elements being nonzero. For
an ME -representation (α, T, u) (i.e., 1 − αexp{Tt}u, for t ≥ 0, is a probability distribution
function), define 




p1 = −Tu/x1;
pn = (xn−1I + T )pn−1/xn, 2 ≤ n ≤ N ;
pN+1 = (xNI + T )pN ,

(4)

where I is the identity matrix. Let P(x) = (p1, p2, . . . , pN ). If pN+1 = 0 and T is invertible,
then equation (4) can be rewritten as TP(x) = P(x)S (x) and it can be shown P(x)e = u.
By Theorem 2.2 in He and Zhang[12], the bi-diagonal representation (β(x), S (x)) with β(x)
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= αP(x) is equivalent to (α, T, u), i.e., they represent the same probability distribution. A
condition for pN+1 = 0 is that all eigenvalues (counting multiplicities) of T are in the vector
x.

Suppose that (γ, T, u) is an ME -representation of a generalized Erlang distribution. Based
on the spectral polynomial algorithm, a simple method is developed in He and Zhang[12] for
computing a minimal ME -representation of the form (α, Em,λ).

The above results indicate that, if a generalized Erlang distribution is defined in the form of
probability distribution function, probability density function, Laplace-Stieltjes transform, or
ME -representation, a minimal ME -representation of the form (α, Em,λ) can be found. There-
fore, in the rest of the paper, we assume that a minimal ME -representation (α, Em,λ) of a
generalized Erlang distribution is available.

3 Minimal Coxian Representations

Given a minimal ME-presentation (α, Em,λ) of a generalized Erlang distribution, if α is nonneg-
ative and αm>0, then (α, Em,λ) is a minimal Coxian representation. If α is not nonnegative,
an algorithm developed in He and Zhang[12] can be used for computing an equivalent minimal
Coxian representation. The idea is to find x such that (β(x), S (x)), obtained by applying the
spectral polynomial algorithm to (α, T=Em,λ, u=e), is an equivalent Coxian representation.
In He and Zhang[12], a set of necessary and sufficient conditions on x has been identified for
(β(x), S (x)) to be a minimal Coxian representation. In this section, that set of conditions is
simplified, which leads to a significantly more efficient algorithm and a characterization of the
admissible region of triangular order.

Choose x = (x1, x2, . . . , xN , λ, . . . , λ) of size m+N and with positive elements. Since
all eigenvalues of Em,λ (counting multiplicities) are in the vector x, the representations (α,
Em,λ) and (β(x), S (x)) are equivalent. By Lemma 5 in He and Zhang[12], a minimal Coxian
representation is a Coxian representation (β(x), S (x)) such that β(x) = αP(x) ≥ 0 holds
and m+N is the triangular order. Therefore, finding a minimal Coxian representation of the
generalized Erlang distribution, if it exists, is equivalent to finding the minimal N and the
corresponding x such that αP(x) ≥ 0.

Lemma 3.1. For fixed N, that αP(x) ≥ 0 holds for x = (x1, x2, . . . , xN , λ, . . . , λ) with
min{x1, x2, . . . , xN}>λ if and only if there exist positive numbers {ηn, 1≤n≤N} such that
αA(η) ≥ 0, where η = (η1, . . . , ηN ) and A(η) is an m×(m+N) matrix whose elements {ai,n,
1≤i≤m, 1≤n≤m+N} are given as follows: a1,1 = 1, ai,1 = 0, 2≤i≤m, and, for 2≤n≤N+1,

a1,n = 1; ai,n = ηn−1ai−1,n−1 + ai,n−1, 2 ≤ i ≤ m; (5)

for N+2≤n≤m+N,
ai,n = 0, 1 ≤ i ≤ n−N − 1;
ai,n = ai−1,n−1, n−N ≤ i ≤ m.

(6)

If a solution to αA(η) ≥ 0 exists, we have ηn = λ/(xn−λ) or xn = λ + λ/ηn, 1 ≤ n ≤ N.
In addition, if η is a positive solution to αA(η) ≥ 0 and ηi ≥ ηi+1, then η′ = (η1, . . . , ηi−1,
ηi+1, ηi, ηi+2, . . . , ηN ) satisfies αA(η′) ≥ 0.

Proof. Let pi,n be the i -th element in the vector pn, the n-th column of P(x), 1≤i≤m and
1≤n≤m+N. By equation (4), it is easy to obtain, p1,1 = λ/x1, pi,1 = 0, 2≤i≤m, and, for
2≤n≤m+N,

p1,n =
(xn−1 − λ)

xn
p1,n−1;

pi,n =
λ

xn
pi−1,n−1 +

(xn−1 − λ)
xn

pi,n−1, 2 ≤ i ≤ m.

(7)
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Let ηn = λ/(xn − λ), 1 ≤ n ≤ N . Then we have p1,1 = η1/(1+η1), pi,1 = 0, 2≤i≤m. Equation
(7) becomes, for 2≤n≤N,

p1,n =
ηn

(1 + ηn)ηn−1
p1,n−1;

pi,n =
ηn

(1 + ηn)ηn−1
(ηn−1pi−1,n−1 + pi,n−1), 2 ≤ i ≤ m;

(8)

p1,N+1 = p1,N/ηN , pi,N+1 = (ηNpi−1,N + pi,N )/ηN , 2 ≤ i ≤ m; and, for N+2≤ n≤m+N,

pi,n = 0, 1 ≤ i ≤ n−N − 1;
pi,n = pi−1,n−1, n−N ≤ i ≤ m.

(9)

Combining equations (5), (6), (8) and (9), we obtain

P (x) = A(η)diag
( η1

1 + η1
,

η2

2∏
i=1

(1 + ηi)
, · · · , ηN

N∏
i=1

(1 + ηi)
,

1
N∏

i=1

(1 + ηi)
, · · · , 1

N∏
i=1

(1 + ηi)

)
, (10)

where diag(.) is for a diagonal matrix. If {ηn, 1≤n≤N } are positive, then αP(x) ≥ 0 if and
only if αA(η) ≥ 0. The first part of the lemma follows.

Suppose that η = (η1, η2, . . . , ηN ) is a positive solution to αA(η) ≥ 0 with ηi ≥ηi+1. Let
an(η) be the n-th column of the matrix A(η). For η′ = (η1, . . . , ηi−1, ηi+1, ηi, ηi+2, . . . , ηN ),
we have, for 1≤i≤N−1,

α an(η) = α an(η′), for 1 ≤ n ≤ N + m, n 6= i + 1;
α ai+1(η) = α

ai(η) + ηiKi, α ai+1(η′) = α ai(η) + ηi+1Ki,

(11)

where Ki is a function associated with variables {η1, η2, · · · , ηi−1}. Since αai(η) ≥ 0 and
αai+1(η)≥0, it is easy to see that αai(η)≥0 and αai+1(η′)≥0 holds if ηi ≥ηi+1. Consequently,
we have αA(η′)≥0. This completes the proof of Lemma 3.1.

Now, we are ready to state the main result of this section.

Theorem 3.2. For a generalized Erlang distribution (α, Em,λ) for which Assumption 1
holds, its triangular order equals the smallest integer N for which the nonlinear system αA(η)≥0
has a positive and finite solution. If {ηn, 1≤n≤N} is a positive and finite solution to αA(η)≥0,
then (β(x), S(x)) is a minimal Coxian representation, where x= λ(1+1/η1, 1+1/η2, . . . ,
1+1/ηN , 1, . . . , 1), β(x) = αP(x), and P(x) is obtained from x by using equation (4). Fur-
thermore, if elements in x are not in descending order, x can be sorted into descending order
and (β(x), S(x)) is a minimal ordered Coxian representation.

Proof. Note that i) By Lemma 6 in He and Zhang[12], in the minimal Coxian representation
(if it exists), we must have min{x1, x2, . . . , xN}>λ; ii) If αP(x)≥0 for x, by the last part of
Lemma 3.1, αP(x)≥0 holds if x is sorted in descending order. The proof of Theorem 3.2 is
consequently completed.

To find a solution to αA(η)≥0, nonlinear programs can be utilized. For instance, we have
used the following nonlinear program for numerical experimentations:

min
N∑

n=1

ηn

s.t. α A(η) ≥ 0,

0 < η1 ≤ η2 ≤ · · · ≤ ηN . (12)
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Note that the last constraint in (12) is due to the last part of Lemma 3.1. It is clear
that the determination of η is independent of the value of λ. Equation (10) indicates that the
determination of β(x) = αP(x) is also independent of the value of λ. Thus, finding a minimal
Coxian representation and determining the triangular order of a generalized Erlang distribution
are independent of the value of λ.

Based on Theorem 3.2 and the nonlinear program (12), the following computational proce-
dure can be used to find a minimal Coxian representation for a generalized Erlang distribution.

Step 1. Find a minimal ME -representation (α, Em,λ). If the minimal ME -representation is
a Coxian representation, a solution is found and the search process is terminated. Oth-
erwise, check if the polynomial function gα(t) (defined in Assumption 1) has no positive
roots. If it is true, then set N to 1 and go to Step 2; Otherwise, there is no solution and
the search process is terminated.

Step 2. Solve the nonlinear program (12) to find {η1, η2, . . . , ηN}.
Step 3. If a solution is found, go to Step 4; otherwise, set N =: N+1 and go to Step 2.

Step 4. Let x= λ(1 + 1/η1, 1 + 1/η2, · · · , 1 + 1/ηN , 1, · · · , 1) and use the spectral polynomial
algorithm to find (β(x), S (x)), which is a minimal Coxian representation.

By O’Cinneide[18], the algorithm will be terminated in a finite number of iterations if As-
sumption 1 holds.

The nonlinear system αA(η)=0 and the nonlinear program (12) have N positive variables
and m+N polynomial functions of degree m−1 or less. Although the number of variables
increases as N increases, the degrees of the polynomial functions are always no more than
m−1. On the other hand, the nonlinear program in He and Zhang[12], in general, has polynomial
functions of degree m+N . Therefore, the specialized algorithm in this paper is more efficient
than the one given in He and Zhang[12].

Using the nonlinear system αA(η)≥0, explicit results on the triangular order and the mini-
mal Coxian representation can be obtained for some special cases.

Corollary 3.3. Assume that (α, Em,λ) of a generalized Erlang distribution satisfying As-
sumption 1 is a minimal ME-representation.

a) The triangular order is m or m+1 if and only if

max
2≤n≤m

{α−n−1

α+
n

}
≤ min

2≤n≤m

{α+
n−1

α−n

}
, (13)

with the convenience a+
n−1/0 = ∞ and 0/a+

n = 0, where α+
n = max{0, αn} and α−n =

max{0, −αn}. For any η between the left and right hand sides of equation (13), an
ordered Coxian representation can be constructed from vector x= λ(1 + 1/η, 1, · · · , 1) by
using the spectral polynomial algorithm.

b) Let N∗ = max{n : ∃ i, min{αi, αi+1, · · · , αi+n−1} < 0,max{αi, αi+1, · · · , αi+n−1} ≤
0, n ≥ 1}. Then the triangular order is greater than or equal to N∗ + m.

Proof. a) The result holds if the triangular order is m. For N = m+1, the nonlinear system
αA(η) ≥ 0 becomes

α1 ≥ 0;
αn + αn+1η ≥ 0, 1 ≤ n ≤ m− 1;
αm ≥ 0.

(14)
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Thus, if αn+1 ≥ 0, then η ≥ (−αn)/αn+1; or if αn+1 < 0, then η ≤ αn/(−αn+1). The result is
obtained immediately.

b) This part is obtained directly from the observation that, in each inequality in the
nonlinear system αA(η)≥0, there are at most N consecutive elements from the sequence
{α1, α2, · · · , αm} involved. This completes the proof of Corollary 3.3.

Example 3.1. Consider the generalized Erlang distribution (α, Em,λ) with α = (1, –0.3,
0.2, –0.2, 0.3), m=5, and λ = 1. It can be verified that Assumption 1 is satisfied. Thus, this
generalized Erlang distribution has Coxian representations of finite order. It is easy to check
that the condition in part a) of Corollary 3.3 is not satisfied. Thus, the triangular order is
greater than 6. For N = 2, the nonlinear system αA(η) ≥ 0 becomes

1 ≥ 0;
1− 0.3η1 ≥ 0;
1− 0.3(η1 + η2) + 0.2η1η2 ≥ 0;
− 0.3 + 0.2(η1 + η2)− 0.2η1η2 ≥ 0;
0.2− 0.2(η1 + η2) + 0.3η1η2 ≥ 0;
− 0.2 + 0.3(η1 + η2) ≥ 0;
0.3 ≥ 0.

(15)

The set of solutions of the nonlinear system (15) are not empty and are plotted in the red
colored area in Figure 3.1. For example, η1 = 3 and η2 = 0.65 satisfy all inequalities in (15)
and lead to a Coxian representation corresponding to x= (12.6923, 6.5625, 5, 5, 5, 5, 5). An
ordered Coxian representation (β(x), S (x)) of order 7 with β(x) = (0.3939, 0.3717, 0.0377,
0.0078, 0.0078, 0.1378, 0.0433) can be obtained. Hence, the triangular order of the example is
7.

Figure 3.1. The feasible regions (red colored areas) of the nonlinear system (15)

4 Characterization of the Triangular Order

In this section, we use the nonlinear system αA(η) ≥ 0 to characterize the triangular order.
Since the parameter λ does not play a role in this nonlinear system, the characterization of the
triangular order is independent of the value of λ. Define

Ω(m,N) = {α : αe = 1, α ∈ Rm,∃ η = (η1, ..., ηN ) > 0, αA(η) ≥ 0}, (16)
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the set in which the triangular order of (α, Em,λ) is m+N or less. We call Ω(m,N) the admissible
region of triangular order m+N. It can be shown that Ω(m,N) ⊆ Ω(m,N+1) for 0≤N<∞ (see
Proposition 5.1 in [10]). Then Ω∗m = ∪N>0Ω(m,N) is the set of all generalized Erlang distribu-
tions that are also Coxian. It is well-known that the set Ω∗m is convex for all positive integer
m. For m =3, it has been shown in O’Cinneide[17] that Ω(3,N) is convex for N ≥ 0 (see Figure
5.1). Unfortunately, in general, the set Ω(m,N) is not convex.

Example 4.1. For m = 4, consider α = (0.8, −0.4, 0.2, 0.4) and β = (0.4, 0.2, −0.4, 0.8).
By part a) of Corollary 3.3, the triangular orders of (α, E(4,λ)) and (β, E(4,λ)) are 5. Let γ
= (α + β)/2 = (0.6, −0.1, −0.1, 0.6). By part b) of Corollary 3.3, the triangular order of (γ,
E(4,λ)) is at least 6. In fact, it can be verified that the triangular order of (γ, E(4,λ)) is 6. Thus,
Ω(4,5) is not convex.

Although the set Ω(m,N) is in general not convex, a number of geometric properties of
Ω(m,N) can be identified.

Lemma 4.1. Let α(t) = v0 + tvd for t ≥ 0, where v0 ∈ Ω(m,0) (Note that Ω(m,0) denotes
the probability polytope of dimension m), vd = α – v0, and α ∈ Ω(m,N). Then α(t) ∈ Ω(m,N)

for 0≤t≤1.

Proof. By definition, α(t)A(η) = v0A(η) + tvdA(η). Since v0 ≥ 0 and A(η) ≥ 0, then v0A(η)
≥ 0. Consequently, α(1)A(η) ≥ 0 implies α(t)A(η) ≥ 0 for 0≤t≤1. This completes the proof.

Based on Lemma 4.1, several observations on the triangular order and Ω(m,N) can be made.
1) For any half line v0 + tvd starting from v0 ∈ Ω(m,0) and vde = 0, if v0 + t∗vd ∈ Ω(m,N)

for t∗ > 0, then v0 + tvd ∈ Ω(m,N) for 0 ≤ t ≤ t∗.
2) The set Ω(m,N) is the union of a set of pyramids that have the probability polytope Ω(m,0)

as their basis.
3) On any half line v0 + tvd, t ≥ 0, starting from v0, where v0 ∈ Ω(m,0) and vd e = 0, the

triangular order of generalized Erlang distribution (α(t), Em,λ) is a nondecreasing function of
t, provided that (α(t), Em,λ) is a generalized Erlang distribution.

Next, we characterize the boundary of Ω(m,N). Mainly, we are interested in the border
separating α with triangular order m+N and α with triangular order greater than m+N.
Define

L(m,N) = {α: The triangular order of (α, Em,λ) is m+N. There exists a nonzero vector γ
such that γe = 0 and, for any t > 0, if (α+tγ, Em,λ) also represents a Coxian distribution, the
triangular order is greater than m+N ; otherwise, (α+tγ, Em,λ) does not represents a Coxian
distribution.}
The set L(m,N) is characterized partially as follows.

Theorem 4.2. For generalized Erlang distributions, we have

{α : α ∈ Ω(m,N) and solution to αA(η) ≥ 0 and η > 0 is unique} ⊂ L(m,N). (17)

Proof. Suppose that the solution to αA(η) ≥ 0 is unique for a given α in Ω(m,N). Then there
exists n such that αan(η) = 0. If that is not true, then αan(η) > 0 for all 1≤n≤m+N. Consider
η+tθ for any nonnegative vector θ. By Taylor expansion of the function A(η), we have αA(η
+ tθ) = α(A(η) + tA1 + . . . + tNAN ) > 0 if t is sufficiently small, which is a contradiction.

Choose a stochastic vector β ∈ Ω(m,0) and define γ = α− β. Consider α(t) = α + tγ = β
+ (1+t)γ. If α is not on the boundary, then α(t) ∈ Ω(m,N) if t is sufficiently small. By Lemma
4.1, there exists η′ such that (α+ tγ)A(η′) = 0 if t is sufficiently small. Since αA(η′) = 0 and
the solution is unique, we must have η = η′. Since (α + tγ)A(η) = αA(η) + tγA(η), for n such
that αan(η) = 0, we must have γan(η) = 0, which leads to αan(η) = βan(η) for all stochastic
vectors β. However, this cannot be true for all stochastic vectors β, since the vector an(η) is
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nonzero and nonnegative. Therefore, the vector α must be on the boundary, i.e., α ∈ L(m,N).
This completes the proof.

Combining Lemma 4.1 and Theorem 4.2, it is possible to plot the boundary L(m,N). The
idea is to find the triangular order for α on the half lines starting from a point in Ω(m, 0). For
given m and each N = 1, the set L(m,N) can be identified as follows.

i) For given α, solve the nonlinear program (12) to find a solution η∗, if it exists.

ii) Solve system (12) again with a modified objective function

ρ = max

N∑
n=1

|ηn − η∗n|

1 +
N∑

n=1
|ηn − η∗n|

. (18)

iii) If ρ is zero for the optimal solution (i.e., the solution to the nonlinear system αA(η) ≥ 0
is unique), the solution η∗ is in L(m,N).

To see boundary points, we consider the following half line:

α(t) = v0 + tvd, for t > 0,

where v0 ∈ Ω(m,0) and vd satisfies vde = 0. Then we plot ρ(t) defined in equation (18) for
α(t). For v0 = (0.25, 0.25, 0.25, 0.25) and vd = (0.1, –0.4, –0.1, 0.4), ρ(t) is plotted in Figure
4.1.

Figure 4.1. The function ρ(t).

Figure 4.1 shows that the function ρ(t) has a number of discontinuous points. Those are the
points at which the triangular order of generalized Erlang distribution (α(t), Em,λ) is increased
by one, i.e., α(t) is on a boundary. More specifically, we have

1) t < 0.625, the triangular order of (α(t), E(4,λ)) is 4 or less;

2) 0.625< t <1.1741, the triangular order of (α(t), E(4,λ)) is 5;

3) 1.1767< t <1.5907, the triangular order of (α(t), E(4,λ)) is 6;

4) 1.5933< t <1.7751, the triangular order of (α(t), E(4,λ)) is 7;
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5) 1.7751< t <1.8862, the triangular order of (α(t), E(4,λ)) is 8;

6) 1.8912< t <1.9594, the triangular order of (α(t), E(4,λ)) is 9;

7) 1.9619< t <2.0124, the triangular order of (α(t), E(4,λ)) is 10;

8) 2.0149< t <2.0515, the triangular order of (α(t), E(4,λ)) is 11;

9) 2.0520< t <2.0625, the triangular order of (α(t), E(4,λ)) is 12.

For t > 2.0625, α(t) is getting close to the boundary of Ω∗m and the triangular order of (α(t),
E(4,λ)) increases rapidly. For t > 2.35, (α(t), E(4,λ)) does not represent a probability distribu-
tion. The boundaries {L(m,N), 1 ≤ N < ∞} can be generated by choosing different (v0,vd).

Remark 4.1. The characterization of Ω∗m given in this section holds for the triangular order
of Coxian distributions and PH -generators with only real eigenvalues.

5 Explicit Solutions for Generalized Erlang Distributions of

MEMEME-Order 3

By Proposition 2.1, for a minimal ME -representation (α, Em,λ) of order 3, we must have α1 ≥
0 and α3 >0. Theorem 7.5 in O’Cinneide[19] states that the triangular order of (α, E3,λ) is 3,
if α2 is nonnegative, and is 3 + dα2

2/(2α1α3 − α2
2)e, if α2 is negative and α2

2 < 2α1α3, where
dxe represents the smallest integer that is greater than or equal to x. Otherwise, (α, E3,λ)
does not represent a Coxian distribution. In this section, we find a minimal ordered Coxian
representation explicitly, if α2

2 < 2α1α3.
The boundary line L(3,N) = {(α1, α2, α3): α2

2 = 2Nα1α3/(N + 1), α1 > 0, α2 < 0, and
α3 > 0, α1 + α2 + α3 = 1} for N≥1, which is identified explicitly as

L(3,N) =

{
(α1, α2, α3) :

{ 0 < α1 < 2− 2
N+2 ; α3 = 1− α1 − α2 > 0; α2 < 0;

α2 = −
[Nα1 ±

√
2N(N + 1)α1 −N2α2

1 − 2Nα2
1

N + 1

]
.

}}
, (19)

and is plotted in Figure 5.1.
We consider a special type of ordered Coxian representations for which x = (y, y, . . . , y, λ,

λ, λ), which is called a bivariate Coxian representation, where y appears N times in the vector.
Then the nonlinear system αA(η) ≥ 0 is reduced to, for z = η1 = η2 = . . . = ηN = λ/(y − λ),

α1 + α2(n− 1)z + α3(n− 1)(n− 2)z2/2 ≥ 0, 1 ≤ n ≤ N + 1;
α2 + α3Nz ≥ 0, n = N + 2;
α3 ≥ 0, n = N + 3.

(20)

Lemma 5.1. Assume that α2 is negative (and α1 ≥ 0 and α3 > 0). The nonlinear system
(20) has a positive solution z if and only if α2

2 ≤ 2Nα1α3/(N + 1). Consequently, the minimal
N for which there exists such a solution to the nonlinear system (20) satisfies 2 (N−1)

N α1α3 <

α2
2 ≤ 2 N

(N+1)α1α3. For this case, z = −α2/(Nα3) is a solution.

Proof. Suppose that α2
2 ≤ 2Nα1α3/(N + 1) holds. Let z = −α2/(Nα3). We verify that z

satisfies the nonlinear system (20). It is easy to see that inequality in (20) holds for n = 1, N +2,
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Figure 5.1. Boundaries {L(3,N), N ≥ 1} of {Ω(3,N), N ≥ 1}.

and N + 3. For other cases, we have the following calculations:

α1 + α2(n− 1)
(−α2)
Nα3

+ α3
(n− 1)(n− 2)

2
(−α2)2

N2α2
3

=
2N2α1α3 − (n− 1)(2N − n + 2)α2

2

2N2α3

≥2N2α1α3 − (n− 1)(2N − n + 2)2Nα1α3/(N + 1)
2N2α3

≥α1

(
1− (n− 1)(2N − n + 2)

N(N + 1)

)

≥0 (21)

It is easy to see that (n–1)(2N –n+2), as a function of n, is maximized at either n = N+1 or n
= N+2. For both cases, the last inequality in equation (21) holds. Therefore, we have found a
positive solution to the nonlinear system (20).

On the other hand, suppose that there is a positive solution z to the nonlinear system (20).
We need to show that α2

2 ≤ 2Nα1α3/(N + 1). For that purpose, we first show that the sets of
roots of the quadratic functions fn(z) = α1 + α2(n − 1)z + α3(n − 1)(n − 2)z2/2 interlacing
each other for n>2. It is easy to obtain the roots of fn(z) as

z±(n) =
1

n− 2

(
− α2

α3
±

√
α2

2

α2
3

− 2
α1

α3

(n− 2)
(n− 1)

)
. (22)

It can be verified that the real part of z+(n) is decreasing in n. By routine calculations, we
obtain

fn(z±(n + 1)) =
α3

(n− 1)

√
α2

2

α2
3

− 2
α1

α3

(n− 1)
n

(
± α2

α3
−

√
α2

2

α2
3

− 2
α1

α3

(n− 1)
n

)
. (23)

If z+(n) is non-real for some n such that 3≤ n ≤ N+1, we must have α2
2 < 2(n−2)α1α3/(n−

1) ≤ 2Nα1α3/(N + 1). Thus, the result is obtained. Otherwise, both z+(n) and z−(n) are real
for 3 ≤ n≤N+1. Equation (23) shows that fn(z+(n + 1)) < 0 and fn(z−(n + 1)) > 0. Since
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α3 > 0, the function fn(z) is convex, for 3 ≤ n ≤ N+1. Therefore, those roots are interlacing,
i.e., z−(n+1) ≤z−(n) ≤ z+(n+1) ≤ z+(n). Consequently, the nonlinear system (20) does not
hold in the interval (z−(N+1), z+(3)). By the inequality in (20) for n = 2, we obtain z ≤
−α1/α2. By the inequality in (20) for n = N +2, we obtain z ≥ −α2/(Nα3). Thus, to ensure
the existence of a solution to nonlinear system (20), we must have

either
α1

(−α2)
> z+(3) or z−(N + 1) >

(−α2)
Nα3

, (24)

which leads to α2
2 ≤ 2Nα1α3/(N + 1). This completes the proof of Lemma 5.1.

Note 5.1: The necessity of Lemma 5.1 can be proved by using Theorem 7.4 in O’Cinneide[19].
Lemma 5.1 concludes that there is always a minimal ordered Coxian representation of

the special form for the case with ME -order 3. Combining Lemma 5.1 of this paper and
Theorem 7.3 in O’Cinneide[19], an explicit and complete solution for the minimal ordered Coxian
representation problem of generalized Erlang distributions of ME -order 3 can be obtained.

Theorem 5.2. Consider a representation (α, Em,λ) with m = 3 and λ > 0.

a) If {α1, α2, α3} are nonnegative, then the triangular order of (α, E3,λ) is 3 or less.

b) If α1 > 0, α2 < 0, α3 > 0, and α2
2 < 2α1α2, then the triangular order of (α, E3,λ) is 3+N,

where N=dα2
2/(2α1α3−α2

2)e and a minimal ordered Coxian representation (β, S (x)) can
be constructed from x = (y, y, . . . , y, λ, λ, λ) by using the spectral polynomial algorithm
defined in equation (4), where y = λ(1–Nα3/α2).

c) If α1 > 0, α2 < 0, α3 > 0, and α2
2 = 2α1α2, then (α, E3,λ) is a matrix-exponential

distribution, but is neither a PH-distribution nor a Coxian distribution.

d) For all other cases, (α, E3,λ) does not represent a probability distribution.

6 Bivariate Coxian Representations

Section 5 shows that there is a minimal Coxian representation with x = (y, y, . . . , y, λ, λ,
λ), a bivariate Coxian representation, for a generalized Erlang distribution of ME -order 3, if
Assumption 1 is satisfied. A natural question is whether or not a minimal Coxian representation
with x = (y, y, . . . , y, λ, . . . , λ) exists for all generalized Erlang distributions satisfying
Assumption 1. Unfortunately, Example 3.1 has no such a solution for N = 2 (see Figure 3.1),
since no feasible solution is on the diagonal line in Figure 3.1. Thus, for Example 3.1, there is
no bivariate Coxian representation of the triangular order.

Although there is no bivariate Coxian representation of the triangular order for some cases,
our numerical experimentations show that many do. More importantly, if Coxian represen-
tations exist, bivariate Coxian representations exist and it is much more efficient to compute
bivariate Coxian representations. Therefore, it is worth to investigate solutions of this form. In
this section, we show that for any generalized Erlang distribution with Coxian representations,
there are always bivariate Coxian representations. Such solutions may not be of the triangular
order, though.

Let z = η1 = η2 = . . . = ηN . Then the nonlinear system αA(z) ≥ 0 is reduced to

αan(z) =





min{n,m}∑
i=1

αi




n− 1

i− 1


 zi−1, 1 ≤ n ≤ N ;

min{n,m}∑
i=n−N

αi

(
N

i− n + N

)
zi−n+N , N + 1 ≤ n ≤ m + N.

(25)
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The next theorem shows that if a generalized Erlang distribution is also a PH -distribution,
then it has bivariate Coxian representations.

Theorem 6.1. For a generalized Erlang distribution, it has a bivariate ordered Coxian
representation if and only if Assumption 1 holds.

Proof. The result is equivalent to: the nonlinear system (25) has a positive solution for some
N if and only if Assumption 1 holds. If a generalized Erlang distribution has a bivariate ordered
Coxian representation, it represents a PH -distribution. Consequently, the polynomial function
defined in Assumption 1 has no positive root.

On the other hand, suppose that the polynomial function defined in Assumption 1 has no
positive root. Let (α, Em,λ) be a minimal ME -representation. We need to show that the
nonlinear system (25) has a finite positive solution. For all cases with n ≤ N, the left hand side
of equation (25), i.e., the polynomial function αan(z), is positive, if z is positive and sufficiently
small, since the first nonzero element in α must be positive. For all cases with n > N, the
polynomial function αan(z) is positive, if z is sufficiently large, since the last nonzero element
in α is positive. Next, we show that the two regions are overlapping.

Since the first nonzero element in α must be positive, without loss of generality, we assume
that α1 > 0. For n ≤ N+1, denote by xn the smallest positive solution of αan(z) = 0. By
equation (25), we have, for N>m and n≤ N+1,

0 =
m∑

i=1

αi
n(n− 1) · · · (n− i + 1)

(i− 1)!
xi−1

n

m∑

i=1

αi(nxn)i−1

(i− 1)!

(
1− 1

n

)
· · ·

(
1− i− 1

n

)

=(nxn)m−1
(
αm +

m−1∑

i=1

αi

(nxn)m−i(i− 1)!

( 1
(1− i/n)(1− (i + 1)/n) · · · (1− (m− 1)/n)

))
.

(26)

If lim
n→∞

sup(nxn) = ∞, equation (26) becomes αm = 0, which is a contradiction (Proposition

2.1). Therefore, we must have either lim
n→∞

sup(nxn) < ∞ or xn is infinite for large enough n

(i.e., αan(z) has no positive root). If lim
n→∞

sup{nxn} = 0, then equation (26) leads to α1 = 0,

which is a contradiction to the assumption α1 > 0. Then we must have 0 < lim
n→∞

sup(nxn) < ∞
and a subsequence of {nxn, n≥1} that converges to a positive finite number. By equation (26),
that positive finite number is a root of the polynomial function defined in Assumption 1, which
is a contradiction. Therefore, if n is sufficiently large, αan(z) has no positive root. That is:
αan(z) is positive in (0, ∞) if n is sufficiently large.

For N+1 < n ≤ N+m, we have, for any positive z > 0,

αan(z) =
(

N
N + m− n

)[
αmzm−1 +

m−1∑

i=N+m−n+1

αiz
i−1

(
N

N − n + i

)

(
N

N + m− n

)
]

=
(

N
N + m− n

) [
αmzm−1 +

m−1∑

i=N+m−n+1

αiz
i−1 (m + N − n)!(n−m)!

(N − n + i)!(n− i)!

]

N→∞−→
(

N
N + m− n

)
αmzm−1 > 0. (27)

Therefore, the function αan(z) is positive for any given positive z if N is sufficiently large.
Combining the above two cases, there exists a z such that all αan(z) is positive if N is

sufficiently large. Consequently, the generalized Erlang distribution has bivariate Coxian rep-
resentations. This completes the proof of Theorem 6.1.
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It is clear that the minimal bivariate Coxian representation corresponds to the smallest N
such that the nonlinear system (25) has a positive solution. The order of this solution is an
upper bound of the triangular order. If a bivariate Coxian representation exists, the nonlinear
program (12) can be solved by finding all the roots of the polynomial in (25) and the intersections
of the intervals for which the functions are nonnegative. This approach is numerically efficient.
Details are omitted.

Example 6.1 (Example 3.1 continued). For this example, a bivariate ordered Coxian
representation (β(x), S (x)) of order 8 can be found: z = 1, x = (10, 10, 10, 5, 5, 5, 5, 5),
and β(x) = (0.5, 0.175, 0.075, 0.0625, 0.0, 0.0625, 0.0875, 0.0375). Since it is demonstrated
in Figure 3.1 that there is no bivariate Coxian representation of order 7, this bivariate Coxian
representation is a minimal bivariate Coxian representation.
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