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Abstract This paper deals with a multi-class priority queueing system with customer
transfers that occur only from lower priority queues to higher priority queues. Condi-
tions for the queueing system to be stable/unstable are obtained. An auxiliary queue-
ing system is introduced, for which an explicit product-form solution is found for
the stationary distribution of queue lengths. Sample path relationships between the
queue lengths in the original queueing system and the auxiliary queueing system are
obtained, which lead to bounds on the stationary distribution of the queue lengths in
the original queueing system. Using matrix-analytic methods, it is shown that the tail
asymptotics of the stationary distribution is exact geometric, if the queue with the
highest priority is overloaded.

Keywords Priority queueing system · Tail asymptotics · Matrix-analytic methods ·
Sample path relationship
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1 Introduction

This paper studies a priority queueing system with multi-types of customers subject
to transferring from lower priority queues to higher priority queues. The queueing
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system of interest is an extension of the one studied in Xie et al. [32]. Xie et al. [32]
find simple stability/instability conditions for the queueing system, which are also
valid for the extended queueing system. In this paper, the stationary distribution of
queue lengths is analyzed.

The study of the queueing system is motivated by potential applications in the
design of emergency departments in healthcare systems, custom inspection systems,
and systems alike. For such systems, customers (patients or products) can be catego-
rized into groups with different service priorities. A common feature of the systems
is that customers can transfer and only transfer from a lower priority group to higher
priority groups. This feature is important in the modeling, design, and analysis of
such queueing systems. In fact, our analysis, both in Xie et al. [32, 33] and in this pa-
per, takes advantage of this useful feature. Studies on similar queueing models with
applications in healthcare management and call center management can be found in
Argon et al. [2], Brandt and Brandt [4], Gomez-Corral et al. [12], and Wang [30].

This paper is related to the study of priority queueing systems and the study of
queueing systems with customer transfers. Priority queueing systems have been stud-
ied extensively ([8, 28], and references therein). Queueing systems with customer
transfers have also been studied extensively ([1, 10, 13, 31, 34–36], and references
therein). Both types of queueing systems are classical queueing systems with appli-
cations in manufacturing, service, and telecommunications industries. The queueing
system studied in this paper is a hybrid of those two types of queueing systems. To
our knowledge, this type of queueing systems has not been analyzed, except for He et
al. [14] and Xie et al. [32], where system stability/instability conditions are obtained.

While the system stability/instability conditions given in Xie et al. [32, 33] are
simple and explicit, there is no explicit solution to the stationary distribution of the
queue lengths for the queueing system. Thus, this paper focuses on bounds and tail as-
ymptotics of the stationary distribution of queue lengths. In the first part of the paper,
sample path upper bounds on the queue lengths are found through the introduction
of an auxiliary queueing system. The auxiliary queueing system possesses an explicit
product-form solution to its stationary distribution of queue lengths, which is a type
of solution existing for many queueing networks [5, 15]. The explicit product-form
solution of the auxiliary queueing systems provides upper bounds on the stationary
distribution of queue lengths. In the second part of the paper, matrix-analytic methods
are applied for finding the tail asymptotics of the stationary distribution of the queue
lengths, if the queue with the highest priority is overloaded (i.e., the queue length
is large). We refer to Kroses et al. [16], Latouche and Ramaswami [17], Miyazawa
and Zhao [22], Neuts [24], and Takahashi et al. [29] for tail asymptotics and matrix-
analytic methods. By using conditions given in Li et al. [18], it is shown that the tail
asymptotics is exact geometric, the decay rate is found explicitly, and the limit can be
found explicitly up to a constant multiplier. Those results are useful in understanding
the behavior of the queueing system if one queue is overloaded. In the last part of the
paper, all the results obtained in the first and second parts of the paper are general-
ized to a model in which the arrivals of customers from outside to the queue with the
highest priority follow a Markov arrival process. Results indicate that the estimation
of the decay rate for tail asymptotics can be improved by utilizing Markov arrival
processes (MAP) in queueing analysis.
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In addition to the main contributions of this paper on the analysis of the stationary
distribution of queue lengths, there are two by-products we would like to mention.
First, the explicit product-form solution obtained for the auxiliary queueing system
is of its own importance in the analysis of the system. We also find necessary and
sufficient conditions for the system to be stable. Second, the existing sufficient con-
ditions for tail asymptotics given in Li et al. [18] are applied to the queueing system
after a transformation of a Markov chain constructed for the queueing system. This
demonstrates that the conditions for tail asymptotics in the existing literature can be
applied to a much larger class of Markov chains.

The paper is organized as follows. The queueing system of interest is introduced in
Sect. 2. In Sect. 3, an auxiliary queueing system is introduced and an explicit product-
form solution is found for the stationary distribution of queue lengths. Relationships
between the queue lengths of the original and the auxiliary queueing systems are es-
tablished. It is shown that the stationary distribution of queue lengths of the auxiliary
system provides upper bounds on the stationary distribution of queue lengths of the
original queueing system. Section 4 shows that the tail asymptotics of the stationary
distribution is exact geometric, if the queue with the highest priority is overloaded.
In Sect. 5, all results are generalized to a queueing system with a Markovian arrival
process for customers to the highest priority queue from outside. Section 6 concludes
the paper.

2 The priority service queueing system

The queueing system introduced in this section is called a priority service queueing
system and is an extension of the one defined in Xie et al. [32].

The queueing system consists of s identical servers serving N types of customers:
type 1, type 2, . . . , and type N customers. Type 1,2, . . . , and N customers form
queue 1,2, . . . , and N , respectively. Type N customers have the highest service pri-
ority, type N −1 the second highest service priority, . . . , and type 1 the lowest service
priority. When a server is available, it chooses a customer from the non-empty queue
of the highest priority and begins to serve it. If some servers are serving type j cus-
tomers when a type k customer arrives from outside or is transferred from another
queue, for j < k, there is no idle server, and type j customers are the lowest priority
customers in service, then one of the type j customers in service is pushed back to
queue j and the server begins to serve the type k customer. The type j customer will
resume (or repeat) its service when a server is available to serve type j customers.
Thus, higher priority customers preempt lower priority customers from service.

Type 1,2, . . . , and N customers arrive (from outside of the queueing system) ac-
cording to N independent Poisson processes with parameters λ1, λ2, . . . , and λN , re-
spectively. The service times of type 1,2, . . . , and N customers (regardless of where
they come from, outside or another queue) are exponentially distributed with para-
meters μ1,μ2, . . . , and μN , respectively. The arrival processes and service times are
independent. Since the service time of a type j customer is exponentially distributed,
it does not make a difference to assume that its interrupted service will be repeated
or resumed. For the same reason, if a server is available to serve type j customers, it
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does not matter (to system stability/instability or queue length) which waiting type j

customer enters the server to receive service.
While waiting in queue j , a type j customer may change to a customer of higher

priority after an exponential time with parameter λT,j , for 1 ≤ j ≤ N − 1. Upon
transfer, a type j customer becomes a type k customer with probability pj,k , for
j + 1 ≤ k ≤ N . Note that pj,j+1 +pj,j+2 + · · ·+pj,N = 1 for 1 ≤ j ≤ N − 1. Since
the time before transfer is exponentially distributed, it does not make a difference to
assume that the clock until transfer is reset or continued, if a type j customer’s ser-
vice is interrupted. The times until transfer for individual customers are independent
of each other, and are independent of the arrival and service processes. Note that a
customer in service does not change its type.

Remark 2.1 The queueing system studied in Xie et al. [32] is a special case with
pj,j+1 = 1 for 1 ≤ j ≤ N − 1.

Define qj (t) the number of type j customers in queue j at time t , which
includes the type j customers in service (if there are type j customers in ser-
vice), for 1 ≤ j ≤ N . If all system parameters are positive, it is easy to see that
{(q1(t), q2(t), . . . , qN(t)), t ≥ 0} is an irreducible continuous time Markov chain
(CTMC) with state space {(q1, q2, . . . , qN), q1 ≥ 0, . . . , qN ≥ 0}.

Denote by Q = (Q(q1,q2,...,qN ),(y1,y2,...,yN )) the infinitesimal generator of the
Markov chain. In each state, there are possibly three types of transitions: (1) the ar-
rival of a customer from outside; (2) the completion of a service; and (3) the transfer
of a customer. It is easy to see that the arrival rates from outside are {λ1, λ2, . . . , λN }.
The service completion rates depend on how many customers are in service, which
further depends on how many servers are available to serve a queue and how many
customers in that queue. In state (q1, q2, . . . , qN), the number of type j customers
in service is given by max{0,min{s − ∑N

k=j+1 qk, qj }}. Thus, the total service rate

in queue j is given by max{0,min{s − ∑N
k=j+1 qk, qj }}μj . The transfer rates de-

pend on how many customers are waiting in queues. In state (q1, q2, . . . , qN), the
number of customers waiting in queue j is given by min{qj ,max{∑N

i=j qi − s,0}}.
Thus, the transfer rate from queue j to queue k is given by min{qj ,max{∑N

i=j qi −
s,0}}λT,jpj,k for k = j + 1, . . . ,N . In summary, we have, for (q1, q2, . . . , qN) �=
(y1, y2, . . . , yN),

Q(q1,q2,...,qN ),(y1,y2,...,yN )

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λj , if yj = qj + 1, yi = qi, i �= j,

1 ≤ j ≤ N;
max{0,min{s − ∑N

k=j+1 qk, qj }}μj , if yj = qj − 1 ≥ 0, yi = qi, i �= j,

1 ≤ j ≤ N;
min{qj ,max{∑N

i=j qi − s,0}}λT,jpj,k, if yj = qj − 1 ≥ 0, j < k,

yk = qk + 1, yi = qi, i �= j, k,

j + 1 ≤ k ≤ N, 1 ≤ j ≤ N − 1;
0, otherwise,

(2.1)
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and, for (q1, q2, . . . , qN) = (y1, y2, . . . , yN),

Q(q1,q2,...,qN ),(q1,q2,...,qN )

= −
{

N∑

j=1

λj +
N∑

j=1

max

{

0,min

{

s −
N∑

k=j+1

qk, qj

}}

μj

+
N−1∑

j=1

min

{

qj ,max

{
N∑

k=j

qk − s,0

}}

λT,j

}

. (2.2)

The queueing system is stable if the Markov chain {(q1(t), q2(t), . . . , qN(t)), t ≥
0} is ergodic (i.e., irreducible and positive recurrent). The queueing system is un-
stable if the Markov chain is non-ergodic. The ergodicity of the Markov chain
{(q1(t), q2(t), . . . , qN(t)), t ≥ 0} is characterized in the following theorem.

Theorem 2.1 Assume that all system parameters {λ1, . . . , λN ,μ1, . . . ,μN,λT,1, . . . ,

λT ,N−1, s} are positive. Then the Markov chain {(q1(t), q2(t), . . . , qN(t)), t ≥ 0} is
irreducible. The Markov chain is: (1) ergodic if

∑N
k=1 λk < sμN ; and (2) non-ergodic

if
∑N

k=1 λk > sμN .

Proof The proof is the same as that of Theorem 1 in Xie et al. [32] except for a few
minor changes. The proof is based on the mean-drift method [8, 9, 11, 20] and on the
conditions for the ergodicity and non-ergodicity of continuous time Markov chains
given in Chen [6] and Choi and Kim [7]. For details, see Xie et al. [32, 33]. We note
that it is unnecessary to assume that all system parameters are positive. We make that
assumption for convenience. �

Throughout this paper, we shall assume
∑N

k=1 λk < sμN so that the queueing
system is stable and the corresponding Markov chain {(q1(t), q2(t), . . . , qN(t)), t ≥
0} has a (unique) stationary distribution. Unfortunately, the stationary distribution
cannot be obtained explicitly and is difficult to analyze directly. In the rest of the
paper, we find bounds and tail asymptotics for the stationary distribution.

3 Designated service queueing system

In this section, an auxiliary system is introduced and analyzed. Some results (e.g.,
Corollary 3.4) are used in analyzing the stationary distribution of queue lengths of
the priority service queueing system.

Consider a queueing system that is the same as the one defined in Sect. 2 except
that servers only serve queue N . We call this queueing system a designated service
queueing system. It is readily seen that, in the designated service queueing system,
all customers are eventually transferred to type N customers before being served. For
j ≤ N − 1, queue j looks like a G/M/∞ queueing system with service rate λT,j .

Denote by qu,1(t), qu,2(t), . . ., and qu,N (t) the queue lengths of type 1,2, . . . ,N

customers in the designated service queueing system at time t , respectively. It is



260 Queueing Syst (2009) 62: 255–277

easy to see that {(qu,1(t), qu,2(t), . . . , qu,N (t)), t ≥ 0} is a continuous time Markov
chain with state space {(q1, q2, . . . , qN), q1 ≥ 0, . . . , qN ≥ 0}. Denote by Q̄ =
(Q̄(q1,q2,...,qN ),(y1,y2,...,yN )) the infinitesimal generator of the Markov chain. We have,
for (q1, q2, . . . , qN) �= (y1, y2, . . . , yN),

Q̄(q1,q2,...,qN ),(y1,y2,...,yN )

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

λj , if yj = qj + 1, yi = qi, i �= j, 1 ≤ j ≤ N;
min{s, qN }μN, if yN = qN − 1 ≥ 0, yj = qj , 1 ≤ j ≤ N − 1;
qjλT,jpj,k, if yj = qj − 1 ≥ 0, j < k, yk = qk + 1,

yi = qi, i �= j, k, j + 1 ≤ k ≤ N, 1 ≤ j ≤ N − 1;
0, otherwise,

(3.1)

and, for (q1, q2, . . . , qN) = (y1, y2, . . . , yN),

Q̄(q1,q2,...,qN ),(q1,q2,...,qN ) = −
{

N∑

j=1

λj + min{s, qN }μN +
N−1∑

j=1

qjλT,j

}

. (3.2)

First, we find the total customer arrival rate for each queue. Denote by p̄∗
i,j the

probability that a type i customer will ever become a type j customer (before even-
tually becoming a type N customer in the designated service queueing system) for
i < j . Denote by λ̄∗

j the total customer arrival rate to queue j in the designated service

queueing system. It is clear that λ̄∗
j only includes customers arriving from outside to

queues 1 to j . The following relationships can be proved easily.

Lemma 3.1 For p̄∗
i,j , we have p̄∗

i,j = ∑j

k=i+1 pi,kp̄
∗
k,j = ∑j−1

k=i p̄∗
i,kpk,j for i < j ,

and p̄∗
j,j = p̄∗

j,N = 1 for 1 ≤ j ≤ N . For λ̄∗
j , we have λ̄∗

j = λj + ∑j−1
k=1 λ̄∗

kpk,j =
∑j

k=1 λkp̄
∗
k,j for 1 ≤ j ≤ N . In particular, we have λ̄∗

1 = λ1 and λ̄∗
N = ∑N

k=1 λk .

Denote by {πu(q1, q2, . . . , qN), q1 ≥ 0, q2 ≥ 0, . . . , qN ≥ 0} the stationary distri-
bution of {(qu,1(t), qu,2(t), . . . , qu,N (t)), t ≥ 0}, if it exists, i.e.,

πu(q1, q2, . . . , qN) = lim
t→∞P

{
qu,1(t) = q1, qu,2(t) = q2, . . . , qu,N (t) = qN

}
. (3.3)

Theorem 3.2 Assume that all system parameters {λ1, . . . , λN ,μN,λT,1, . . . ,

λT ,N−1, s} are positive. The Markov chain {(qu,1(t), qu,2(t), . . . , qu,N (t)), t ≥ 0} is
ergodic if and only if

∑N
k=1 λk < sμN . If the stationary distribution exists, it is given

by

πu(q1, q2, . . . , qN)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
∏N−1

j=1 (
exp{−ρ̄T ,j }ρ̄qj

T ,j

qj ! ))

(sρ̄N )qN

qN !
(
∑s−1

j=0
(sρ̄N )j

j ! + (sρ̄N )s

s!(1−ρ̄N )
)
, 0 ≤ qN < s;

(
∏N−1

j=1 (
exp{−ρ̄T ,j }ρ̄qj

T ,j

qj ! ))
(sρ̄N )s

s! ρ̄
qN −s

N

(
∑s−1

j=0
(sρ̄N )j

j ! + (sρ̄N )s

s!(1−ρ̄N )
)
, qN ≥ s,

(3.4)
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where

ρ̄T ,j =
(

j∑

k=1

λkp̄
∗
k,j

)/

λT,j = λ̄∗
j /λT,j , 1 ≤ j ≤ N − 1;

ρ̄N =
(

N∑

j=1

λj

)/

(sμN) = λ̄∗
N/(sμN).

(3.5)

Remark 3.1 We would like to point out that the designated service queueing system is
different from the priority service queueing system defined in Sect. 2 with μ1 = · · · =
μN−1 = 0. The reason is that in the priority service queueing system with μ1 = · · · =
μN−1 = 0, a type j customer’s transferring process may be interrupted if a server
becomes available to serve the customer. Thus, Theorem 2.1 cannot be applied for
the stability/instability of the designated service queueing system. Nonetheless, the
stability conditions for both queueing systems are similar. The proof of the stability
condition for the designated service queueing system is much simpler.

Proof Since all customers will transfer to type N customers, the total customer ar-
rival rate to queue N is λ̄∗

N = ∑N
k=1 λk . Thus, for system stability or ergodicity of

the Markov chain, we must have
∑N

k=1 λk < sμN , i.e., ρ̄N < 1. On the other hand,
if ρ̄N < 1, we shall show that the joint probability distribution given in (3.4) is a sta-
tionary distribution of the Markov chain {(qu,1(t), qu,2(t), . . . , qu,N (t), t ≥ 0}. For an
irreducible Markov chain with a countable state space, that is equivalent to ergodicity
of the Markov chain. In addition, it can be shown that πudiag(−Q̄) < ∞ holds for
the stationary distribution πu to be given next, where diag(−Q̄) is a matrix obtained
by keeping all diagonal elements of −Q̄ and setting all other elements to zero. Thus,
the Markov chain is nonexplosive [3]. Therefore, ρ̄N < 1 is a necessary and sufficient
condition for system stability.

If ρ̄N < 1, we verify that the joint probability distribution given in (3.4) satis-
fies the equation πuQ̄ = 0, where πu = (πu(q1, . . . , qN)) in which the probabili-
ties {πu(q1, . . . , qN), q1 ≥ 0, . . . , qN ≥ 0} are arranged lexicographically. For conve-
nience, let q = (q1, . . . , qN) and e(j) be the row vector with all elements being zero
except that the j th element is one. For all states with qN ≥ s, we need to check

0 = −πu(q)

(

sμN +
N∑

j=1

λj +
N−1∑

j=1

qjλT,j

)

+ πu

(
q + e(N)

)
sμN

+
N∑

j=1:qj ≥1

πu

(
q − e(j)

)
λj

+
N−1∑

j=1

N∑

k=j+1:qk≥1

πu

(
q − e(k) + e(j)

)
(qj + 1)λT,jpj,k. (3.6)
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Using expressions given in (3.4), the right-hand side of (3.6) becomes

πu(q)

{

−
(

sμN +
N∑

j=1

λj +
N−1∑

j=1

qjλT,j

)

+
N∑

j=1

λj +
N−1∑

j=1:qj ≥1

λj

λT,j qj

λ̄∗
j

+ λN

sμN
∑N

j=1 λj

+
N−1∑

j=1

(qj + 1)λT,jpj,N

λ̄∗
j sμN

λT,j (qj + 1)(
∑N

j=1 λj )

+
N−1∑

j=1

(qj + 1)λT,j

N−1∑

k=j+1:qk≥1

pj,k

λ̄∗
j λT ,kqk

λT,j (qj + 1)λ̄∗
k

}

= πu(q)

{

−
(

sμN +
N−1∑

j=1

qjλT,j

)

+ λN

sμN

λ̄∗
N

+ sμN

λ̄∗
N

N−1∑

j=1

λ̄∗
jpj,N

+
N−1∑

j=1

λj

λT,j qj

λ̄∗
j

+
N−1∑

j=1

N−1∑

k=j+1

pj,k

λ̄∗
j λT ,kqk

λ̄∗
k

}

= πu(q)

{

−
(

sμN +
N−1∑

j=1

qjλT,j

)

+ sμN

λ̄∗
N

(

λN +
N−1∑

j=1

λ̄∗
jpj,N

)

+
N−1∑

j=1

λj

λT,j qj

λ̄∗
j

+
N−1∑

k=2

qkλT,k

λ̄∗
k

k−1∑

j=1

λ̄∗
jpj,k

}

= πu(q)

{

−
(

N−1∑

j=1

qjλT,j

)

+
N−1∑

k=1

qkλT,k

λ̄∗
k

(

λk +
k−1∑

j=1

λ̄∗
jpj,k

)}

= 0. (3.7)

Note that the relationships given in Lemma 3.1 are used in the above calculations.
The case with qN < s can be verified similarly as follows:

−πu(q)

(

qNμN +
N∑

j=1

λj +
N−1∑

j=1

qjλT,j

)

+ πu

(
q + e(N)

)
(qN + 1)μN

+
N∑

j=1:qj ≥1

πu

(
q − e(j)

)
λj

+
N−1∑

j=1

N∑

k=j+1:qk≥1

πu

(
q − e(k) + e(j)

)
(qj + 1)λT,jpj,k

= πu(q)

{

−
(

qNμN +
N∑

j=1

λj +
N−1∑

j=1

qjλT,j

)

+
N∑

j=1

λj +
N−1∑

j=1:qj ≥1

λj

λT,j qj

λ̄∗
j



Queueing Syst (2009) 62: 255–277 263

+ λN

qNμN

λ̄∗
N

+
N−1∑

j=1

(qj + 1)λT,jpj,N

λ̄∗
j qNμN

λT,j (qj + 1)λ∗
N

+
N−1∑

j=1

(qj + 1)λT,j

N−1∑

k=j+1:qk≥1

pj,k

λ̄∗
j λT ,kqk

λT,j (qj + 1)λ̄∗
k

}

= πu(q)

{

−
(

qNμN +
N−1∑

j=1

qjλT,j

)

+ λN

qNμN

λ̄∗
N

+ qNμN

λ̄∗
N

N−1∑

j=1

λ̄∗
jpj,N

+
N−1∑

j=1

λj

λT,j qj

λ̄∗
j

+
N−1∑

j=1

N−1∑

k=j+1

pj,k

λ̄∗
j λT ,kqk

λ̄∗
k

}

= 0. (3.8)

This completes the proof of Theorem 3.2. �

Theorem 3.2 indicates that the stationary distribution of the designated service
queueing system has the product-form of N − 1 independent Poisson distributions
and one (modified) geometric distribution. The marginal distribution of the queue
length of queue j has a Poisson distribution for 1 ≤ j ≤ N −1, which is the stationary
distribution of the queue length in an M/M/∞ queue with arrival rate λ̄∗

j and service
rate λT,j . The marginal distribution of the queue length of queue N is identical to that
of an M/M/s queue with arrival rate λ̄∗

N = ∑N
j=1 λj and service rate μN per server.

The designated service queueing system provides bounds on the stationary distrib-
ution of the priority service queueing system. To obtain the bounds, we first establish
some sample path relationships between {(qu,1(t), qu,2(t), . . . , qu,N (t)), t ≥ 0} and
{(q1(t), q2(t), . . . , qN(t)), t ≥ 0} in Lemma 3.3.

Lemma 3.3 Assume that both the priority service queueing system and the de-
signated service queueing system are empty at time zero. For the queue length
processes {(q1(t), q2(t), . . . , qN(t)), t ≥ 0} and {(qu,1(t), qu,2(t), . . . , qu,N (t)),

t ≥ 0}, we have

(i) qj (t) ≤ qu,j (t) + js, for 1 ≤ j ≤ N and t ≥ 0
(ii) q1(t)+q2(t)+· · ·+qj (t) ≤ qu,1(t)+qu,2(t)+· · ·+qu,j (t)+js, for 1 ≤ j ≤ N

and t ≥ 0.

Proof Since we are only interested in how many customers there are in the queues,
the order of service does not affect the queue length distribution. Thus, we further
assume that, for queues 1 to N − 1, all customers (including transferred customers)
are served on a first-come-first-served basis; for queue N , upon a service completion,
a customer who is originally a type N customer (i.e., a customer arrives at the queue-
ing system as a type N customer) leaves the system if there is such a customer in
queue N .

Consider queue 1 at time t . Customers arrived in [0, t) can be categorized as fol-
lows. For all customers that have been transferred without receiving service (in the
priority service queueing system), they are no longer part of q1(t) (in the priority
service queueing system) nor part of qu,1(t) (in the designated service queueing sys-
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tem). For all customers that have been transferred, but was ever attended by servers
in the priority service queueing system before being transferred, they are no longer
part of q1(t) nor part of qu,1(t). Note that transfer times are exponentially distributed
so that we can assume that a transferring process is resumed after a service interrup-
tion. For all customers that have been served in the priority service queueing system,
they are no longer part of q1(t) but can be part of qu,1(t) in the designated service
queueing system. For all customers that are either in service or have been attended
by a server(s) but still in the transferring process, they are part of q1(t) but may not
be part of qu,1(t). There can be at most s such customers, since there are in total s

servers and customers are served on a first-in-first-served basis. Thus, we must have
q1(t) ≤ qu,1(t) + s.

For queue 2 at time t , customers still in the queue can be divided into two groups:
(i) customers who arrive to queue 2 at the same epochs for both systems; and (ii)
customers who arrive to queue 2 at different time epochs for the two systems. For
customers in the first group, similarly to the above analysis for queue 1, the queue
in the priority service queueing system is at most s customers more than that in the
designated service queueing system at time t . The second group includes at most s

customers who are transferred from queue 1 and have been attended by a server in
queue 1 (but their services were never completed.) The reason is that queue 2 must
have no waiting customer before a server can attend a customer in queue 1. These
customers can be part of q1(t), but may not be part of qu,1(t). Therefore, we must
have q2(t) ≤ qu,2(t) + 2s.

In general, for queue j , among customers who arrive to queue j at the same time
epochs for both systems, at most s of them can be in the priority service queueing
system, but not in the designated service queueing system. There are at most (j −1)s

transferred customers who arrive to queue j at different time epochs for the two
systems—at most s from queue k (<j) (those are customers in queue j who have
received incomplete service in queue k), k = 1,2, . . . , j − 1. Therefore, we must
have qj (t) ≤ qu,j (t) + js.

Part (ii) can be proved by the same argument that there can be at most s cus-
tomers that have received incomplete service in queue j , are still in the priority ser-
vice queueing system but not in the designated service queueing system. The rea-
son is that all such customers have to be served in one of the higher priority queues
j +1, j +2, . . . , and N , before a server can move down to serve queue j (to possibly
create another such customer in queue j ). This completes the proof of Lemma 3.3. �

It is well known that the sample path order implies stochastically smaller/larger
order (see [27] for more about stochastic orders of random variables). Thus, by
Lemma 3.3, qj (t) is stochastically smaller than qu,j (t) + js for j = 1,2, . . . ,N . In-
tuitively, under proper initial conditions, qj (t) should be stochastically smaller than
qu,j (t) for j = 1,2, . . . ,N . Unfortunately, that is not true in general. For example,
consider a system with N = 2, λ1 = 1, sufficiently small λ2, sufficiently small μ1,
sufficiently large μ2, and large λT,1 (relative to μ1). For this case, queue 1 in the
designated service queueing system is almost empty, but queue 1 in the priority ser-
vice queueing system can have a customer in service for a significant amount of time.
Consequently, on average, queue 1 in the priority queueing system could be longer
than the queue 1 in the designated service queueing system.
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Denote by {π(q1, q2, . . . , qN), q1 ≥ 0, . . . , qN ≥ 0} the stationary distribution of
{(q1(t), q2(t), . . . , qN(t)), t ≥ 0}. Lemma 3.3 leads to the following bounds on the
stationary distribution.

Corollary 3.4 Assume that system parameters {λ1, . . . , λN ,μ1, . . . ,μN,λT,1, . . . ,

λT ,N−1, s} are positive and
∑N

k=1 λk < sμN . We have, for q = (q1, . . . , qN) with
qN > (N + 1)s,

∑

w≥q

π(w) ≤
(

N−1∏

j=1

(
ρ̄

(qj −js)+
T ,j

(qj − js)+!
))

(sρ̄N )s

s!
(
∑s−1

j=0
(sρ̄N )j

j ! + (sρ̄N )s

s!(1−ρ̄N )
)

ρ̄
(qN−(N+1)s)
N

(1 − ρ̄N )
, (3.9)

where (qj − js)+ = max{0, qj − js} and w = (w1,w2, . . . ,wN).

Proof By Lemma 3.3, it is easy to see that, for q ≥ 0,
{
q(t) ≥ q

} ⊂ {
qu(t) ≥ q − (s,2s, . . . ,Ns)

}
. (3.10)

By Theorems 2.1, 3.2, and Lemma 3.3, the priority service queueing system and
the corresponding designated service system are stable. By Theorem 3.2, (3.10), and
routine calculations, we have
∑

w≥q

π(w) = lim
t→∞P

{
q(t) ≥ q

} ≤ lim
t→∞P

{
qu(t) ≥ q − (s,2s, . . . ,Ns)

}

=
∑

w≥q−(s,2s,...,Ns)

(
N−1∏

j=1

(

exp{−ρ̄T ,j }
ρ̄

w+
j

T ,j

w+
j !

))
(sρ̄N )s

s! ρ̄
wN−s
N

(
∑s−1

j=0
(sρ̄N )j

j ! + (sρ̄N )s

s!(1−ρ̄N )
)

=
(

N−1∏

j=1

( ∞∑

wj =(qj −js)+
exp{−ρ̄T ,j }

ρ̄
wj

T ,j

wj !

))
(sρ̄N )s

s! (
∑∞

wN=qN−Ns ρ̄
wN−s
N )

(
∑s−1

j=0
(sρ̄N )j

j ! + (sρ̄N )s

s!(1−ρ̄N )
)

=
(

N−1∏

j=1

(
ρ̄

(qj −js)+
T ,j

(qj − js)+!

(

exp{−ρ̄T ,j }
∞∑

wj =0

ρ̄
wj

T ,j (qj − js)+!
(wj + (qj − js)+)!

)))

×
(sρ̄N )s

s!
ρ̄

(qN −(N+1)s)

N

(1−ρ̄N )

(
∑s−1

j=0
(sρ̄N )j

j ! + (sρ̄N )s

s!(1−ρ̄N )
)

≤
(

N−1∏

j=1

(
ρ̄

(qj −js)+
T ,j

(qj − js)+!

(

exp{−ρ̄T ,j }
∞∑

wj =0

ρ̄
wj

T ,j

wj !

)))

×
(sρ̄N )s

s!
ρ̄

(qN −(N+1)s)

N

(1−ρ̄N )

(
∑s−1

j=0
(sρ̄N )j

j ! + (sρ̄N )s

s!(1−ρ̄N )
)
, (3.11)

which leads to (3.9). This completes the proof of Corollary 3.4. �
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Remark 3.2 Similarly to the designated service queueing system, another queueing
system—all service queueing system—can be introduced, which provides explicit
lower bounds on the stationary distribution of queue lengths of the priority service
queueing system. See Xie et al. [33] for details.

4 Tail asymptotics of the stationary distribution: queue N overloaded

We consider limqN→∞ π(q1, q2, . . . , qN) in this section, i.e., the tail asymptotics
of the stationary distribution, if queue N is overloaded. For the designated service
queueing system, the stationary distribution has a product-form. Thus, the tail as-
ymptotics, if queue N is overloaded, is exact geometric and the decay rate is ρ̄N .
This implies that the tail asymptotics of queue N in the priority service queueing
system can be geometric and the decay rate might be close to ρ̄N . In this section, we
show that the tail asymptotics is exact geometric and the decay rate is in fact ρ̄N .

In order to apply matrix-analytic methods, we reorder the queue length variables as
(qN(t), (q1(t), . . . , qN−1(t))). We call qN(t) the level variable and (q1(t), q2(t), . . . ,

qN−1(t)) the (vector) phase variable. The states {(qN , (q1, . . . , qN−1)),0 ≤ qj <

∞,1 ≤ j ≤ N} are ordered lexicographically. Level n consists of states {(qN,(q1, . . . ,

qN−1)): qN = n,0 ≤ qj < ∞,1 ≤ j ≤ N −1}. The infinitesimal generator associated
with the Markov chain can be rewritten as

Q =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Q0,0 Q0,1
Q1,0 Q1,1 Q1,2

. . .
. . .

. . .

Qs−2,s−1 Qs−1,s−1 Qs−1,s

Qs,s−1 Q0 Q1
Q−1 Q0 Q1

. . .
. . .

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (4.1)

We partition the stationary distribution vector π according to the level variable
qN(t) as (π [0],π[1],π [2], . . .), where the elements of the vector π[n] are proba-
bilities {π(q1, q2, . . . , qN−1, n), q1 ≥ 0, q2 ≥ 0, . . . , qN−1 ≥ 0} ordered lexicograph-
ically. By Theorem 1 in Miller [21], the stationary distribution of the Markov chain
has a matrix-geometric solution given as

π[n] = π[s]Rn−s , n ≥ s;

(
π[0],π [1], . . . ,π [s])

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Q0,0 Q0,1
Q1,0 Q1,1 Q1,2

. . .
. . .

. . .

Qs−1,s−2 Qs−1,s−1 Qs−1,s

Qs,s−1 Q0 + RQ−1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

= 0;

s−1∑

n=0

π[n]e + π[s](I − R)−1e = 1,

(4.2)
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where I is the identity matrix, e is the column vector of ones, and the matrix R is the
minimal nonnegative solution to the equation:

Q1 + RQ0 + R2Q−1 = 0. (4.3)

To find tail asymptotics for {π[n], n ≥ 0}, we apply Theorem 2.1 in Li et al. [18].
Unfortunately, for state (qN , (q1, . . . , qN−1)) with qN ≥ s, the absolute value of the

diagonal element in Q0 is sμN + ∑N
j=1 λj + ∑N−1

j=1 qjλT,j , which is unbounded
since {q1, . . . , qN−1} can be arbitrarily large. In order to apply Theorem 2.1 in Li
et al. [18], we consider a discrete time Markov chain with the following transition
probability matrix:

P = D−1Q + I ≡

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A0,0 A0,1
A1,0 A1,1 A1,2

. . .
. . .

. . .

As−2,s−1 As−1,s−1 As−1,s

As,s−1 A0 A1
A−1 A0 A1

. . .
. . .

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(4.4)

where D is a diagonal matrix for which the diagonal elements are the absolute values
of the diagonal elements of the matrix Q (i.e., D = −diag(Q), where diag(Q) is a
matrix obtained by keeping all diagonal elements of Q and setting all other elements
in Q to zero). It is easy to see that P is an irreducible stochastic matrix. Let

θ = πD/(πDe). (4.5)

Lemma 4.1 The vector θ is the stationary distribution of Markov chain P if and only
if π is the stationary distribution of the continuous time Markov chain Q.

Proof If both θ and π are finite, then it is easy to see that they are the stationary
distribution of P and Q, respectively. Thus, we only need to show that πDe and
θD−1e are finite if πe and θe are finite, respectively. Note that the inverse D−1 is
well defined since D is a diagonal matrix with positive diagonal elements. It is easy to
see that θD−1e is finite if θe is finite. If πe is finite, (3.9) indicates that π is bounded
from above by the product of some Poisson functions (up to a constant multiplier).
By the definition of D, it is easy to verify that πDe is finite. This completes the proof
of Lemma 4.1. �

Define

A∗(z) = z−1A1 + A0 + zA−1, for z > 0. (4.6)

Further, define a row vector x with elements {x(q1, . . . , qN−1),0 ≤ qj < ∞,1 ≤
j ≤ N − 1} ordered lexicographically and a column vector y with elements
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{y(q1, . . . , qN−1),0 ≤ qj < ∞,1 ≤ j ≤ N − 1} ordered lexicographically, where

x(q1, . . . , qN−1) =
N−1∏

j=1

(
ρ̄

qj

T ,j

qj ! exp{−ρ̄T ,j }
)

;

y(q1, . . . , qN−1) = ρ̄
(−q1−q2−···−qN−1)

N .

(4.7)

Note that the vector x represents a finite measure and we have normalized x to
have a unit sum. Define D1 = −diag(Q0). The diagonal elements of D1 are sμN +∑N

j=1 λj + ∑N−1
j=1 qjλT,j .

Lemma 4.2 The vectors x and y satisfy xD1A∗(ρ̄N ) = xD1 and A∗(ρ̄N )y = y. In
addition, we have xD1y < ∞.

Proof Note that A−1 = D−1
1 Q−1,A0 = D−1

1 Q0 + I , and A1 = D−1
1 Q1. We show

that x(ρ̄NQ−1 + Q0 + Q1/ρ̄N) = 0. For state (q1, . . . , qN−1), we have

x(q1, . . . , qN−1)ρ̄NsμN − x(q1, . . . , qN−1)

(

sμN +
N∑

j=1

λj +
N−1∑

j=1

qjλT,j

)

+
N−1∑

j=1:qj ≥1

x(q1, . . . , qj − 1, . . . , qN−1)λj

+
N−1∑

j=1

N−1∑

k=j+1:qk≥1

x(q1, . . . , qj + 1, . . . , qk − 1, . . . , qN−1)(qj + 1)λT,jpj,k

+ x(q1, . . . , qN−1)
λN

ρ̄N

+
N−1∑

j=1

x(q1, . . . , qj + 1, . . . , qN−1)
(qj + 1)λT,jpj,N

ρ̄N

= x(q1, . . . , qN−1)

{

−
(

sμN +
N−1∑

j=1

qjλT,j

)

+
N−1∑

j=1

qjλT,j λj

λ̄∗
j

+
N−1∑

j=1

N−1∑

k=j+1

pj,k

qkλT,kλ̄
∗
j

λ̄∗
k

+ λN

ρ̄N

+
N−1∑

j=1

pj,N λ̄∗
j

ρ̄N

}

= x(q1, . . . , qN−1)

{

−
(

sμN +
N−1∑

j=1

qjλT,j

)

+
N∑

j=1

λj

ρ̄N

+
N−1∑

j=1

qjλT,j

λ̄∗
j

(

λj +
j−1∑

k=1

λ̄∗
kpk,j

)}

= 0. (4.8)
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Then the vector xD1 satisfies xD1A∗(ρ̄N ) = x(ρ̄NQ−1 + Q0 + Q1/ρ̄N ) +
xD1 = xD1.

For A∗(ρ̄N )y = y, equivalently, we show that (ρ̄NQ−1 +Q0 +Q1/ρ̄N )y = 0. For
state (q1, . . . , qN−1), we have

ρ̄N sμNy(q1, . . . , qN−1) −
(

sμN +
N∑

j=1

λj +
N−1∑

j=1

qjλT,j

)

y(q1, . . . , qN−1)

+
N−1∑

j=1

y(q1, . . . , qj + 1, . . . , qN−1)λj

+
N−1∑

j=1:qj ≥1

N−1∑

k=j+1

pj,ky(q1, . . . , qj − 1, . . . , qk + 1, . . . , qN−1)qjλT,j

+ y(q1, . . . , qN−1)
λN

ρ̄N

+
N−1∑

j=1

pj,Ny(q1, . . . , qj − 1, . . . , qN−1)
qjλT,j

ρ̄N

= y(q1, . . . , qN−1)

{

−
(

sμN +
N−1∑

j=1

qjλT,j

)

+
N−1∑

j=1

λj

ρ̄N

+
N−1∑

j=1

N−1∑

k=j+1

pj,kqjλT,j + λN

ρ̄N

+
N−1∑

j=1

pj,NqjλT,j

}

= y(q1, . . . , qN−1)

{

−
(

N−1∑

j=1

qjλT,j

)

+
N−1∑

j=1

qjλT,j

(

pj,N +
N−1∑

k=j+1

pj,k

)}

= 0. (4.9)

Finally, we have

xD1y =
∑

(q1,q2,...,qN−1)≥0

exp

{

−
N−1∑

j=1

ρ̄T ,j

}(
N−1∏

j=1

ρ̄
qj

T ,j

qj !

)

ρ̄
−(q1+···+qN−1)

N

×
(

sμN + λ̄∗
N +

N−1∑

j=1

qjλT,j

)

= exp

{

−
N−1∑

j=1

ρ̄T ,j

}
∑

(q1,q2,...,qN−1)≥0

(
N−1∏

j=1

(ρ̄T ,j /ρ̄N )qj

qj !

)

×
(

sμN + λ̄∗
N +

N−1∑

j=1

qjλT,j

)
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= exp

{
N−1∑

j=1

ρ̄T ,j

(
1

ρ̄N

− 1

)}(

sμN + λ̄∗
N +

N−1∑

j=1

ρ̄T ,j

ρ̄N

λT,j

)

< ∞. (4.10)

This completes the proof of Lemma 4.2. �

Lemma 4.2 indicates that xD1 and y are a positive invariant measure and a positive
invariant vector of the matrix A∗(ρ̄N ), respectively.

Theorem 4.3 Assume that system parameters {λ1, . . . , λN ,μ1, . . . ,μN,λT,1, . . . ,

λT ,N−1, s} are positive. If
∑N

k=1 λk < sμN , we have

lim
qN→∞

π [qN ]
ρ̄

(qN−s)
N

= π[s − 1]D2r
xD1r

x, (component-wise) (4.11)

where r = (I − A0 − D−1
1 RD1A−1 − ρ̄NA−1)y and D2 = −diag(Qs−1,s−1). The

constants π[s − 1]D2r and xD1r are positive and finite.

Proof We consider the discrete time Markov chain P and its stationary distribution
θ . Similarly to π , we partition θ into (θ [0], θ [1], θ [2], . . .). First, note that the matrix
D−1

1 RD1 is the minimal nonnegative solution to A1 +XA0 +X2A−1 = 0. By Theo-
rem 2.1 in Li et al. [18], to prove (4.11), we need to check the following conditions:

(i) The matrix A1 + A0 + A−1 is irreducible and aperiodic
(ii) The Markov additive process with blocks {A1,A0,A−1} are 1-arithmetic

(iii) 0 < ρ̄N < 1
(iv) xD1y < ∞
(v) θ[s − 1]As−1,sy < ∞.

Condition (v) is a condition associated with the set of boundary states, which consists
of states in levels 0 to s − 1, i.e., {(q1, . . . , qN−1, qN), q1 ≥ 0, . . . , qN−1 ≥ 0,0 ≤
qN ≤ s − 1}. Condition (v) is obtained from condition (v) in Li et al. [18] as follows:

(
θ [0], θ [1], . . . , θ [s − 1])

⎛

⎜
⎜
⎜
⎝

0
...

0
As−1,s

⎞

⎟
⎟
⎟
⎠

y = θ [s − 1]As−1,sy. (4.12)

Conditions (i) and (ii) can be checked in a straightforward manner. Condition (iii) is
an assumption. Condition (iv) is from Lemma 4.1. We verify Condition (v) by using
Corollary 3.4. Note that θ [s − 1] = π [s − 1]D2/(πDe) and As−1,s = D−1

2 Qs−1,s .
By (3.9), we obtain

θ [s − 1]As−1,sy

= π[s − 1]Qs−1,sy/(πDe)
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= 1

πDe

∑

(q1,q2,...,qN−1)≥0

(
λNπ(q1, . . . , qN−1, s − 1)y(q1, . . . , qN−1)

)

+ 1

πDe

∑

(q1,q2,...,qN−1)≥0

(
N−1∑

j=1

π(q1, . . . , qj + 1, . . . , qN−1, s − 1)

× (qj + 1)λT,jpj,Ny(q1, . . . , qN−1)

)

≤ c(sN) + λN

πDe

∑

qj ≥Ns,1≤j≤N−1

((
N−1∏

j=1

(
ρ̄

(qj −js)

T ,j

(qj − js)!
))

ρ̄
−(q1+···+qN−1)

N

)

+ 1

πDe

N−1∑

j=1

∑

qj ≥Ns,1≤j≤N−1

((
N−1∏

i=1

(
ρ̄

(qi−js)
T ,j

(qi − js)!
))

× ρ̄T ,j (qj + 1)λT,jpj,N ρ̄
−(q1+···+qN−1)

N

)

< ∞, (4.13)

where c(sN) is the summation for items associated with states {(q1, . . . , qN−1, s −
1),0 ≤ qj ≤ sN,0 ≤ j ≤ N − 1}. By Theorem 2.1 in Li et al. [18], we obtain

lim
qN→∞ ρ̄

−(qN−s)
N θ [qN ] = θ [s − 1]r

xD1r
xD1. (4.14)

Since πD/(πDe) = θ (which implies that π[s − 1]D2/(πDe) = θ [s − 1] and
π[n]D1/(πDe) = θ [n] for n ≥ s), (4.11) is obtained from (4.14). This completes
the proof of Theorem 4.3. �

Theorem 4.3 confirms that the stationary distribution decays exponentially with
decay rate ρ̄N and the tail asymptotics is exact geometric, if queue N is overloaded.
Theorem 4.3 has an intuitive interpretation. If queue N is long, all servers are busy
in serving queue N . Then all other queues will evolve like M/M/∞ queues for a
long time and have a conditional distribution x, which is confirmed by the vector x
on the right-hand side of (4.11). Note that x is the marginal probability distribution
of queues 1 to N − 1 in the designated service queueing system (see Theorem 3.2).

Theorem 4.3 implies that, if queue N is overloaded, the priority service queue-
ing system behaves similarly to the designated service queueing system, which is
independent of the service rates of lower priority customers in the priority service
queueing system. But that does not mean that the service rates of lower priority cus-
tomers have no impact on the stationary distribution π . In general, probability π [qN ]
is affected strongly by the service rates if qN is small. Even if qN is large, π[qN ] is
affected by the service rates as demonstrated below. We rewrite (4.11) as

π[qN ] ≈ cxρ̄
(qN−s)
N , if qN → ∞, (4.15)
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where c = π[s − 1]D2r/(xD1r). In (4.15), xρ̄
(qN−s)
N does not depend on the service

rates of lower priority customers, but the constant c does. Unfortunately, it is difficult
to find an explicit expression for c. Alternatively, we use simulation to estimate c

and to compare c with cu, where cu satisfies πu[qN ] = cuxρ̄
(qN−s)
N for the designated

service queueing system (see Theorem 3.2) for qN ≥ s. Since x is a stochastic mea-
sure, (4.11) leads to π [qN ]e ≈ cρ̄

(qN−s)
N , if qN → ∞. We can use those relationships

to compare queue N in the priority service queueing system and in the designated
service queueing system. Some results are given in the following example.

Example 4.1 Consider a priority service queueing system with λ1 = 2, λ2 = 1,
μ1 = 5, μ2 = 3.5, λT,1 = 0.5, and s = 1. Simulation results indicate that c/cu ≈ 0.41.
Thus, compared to the corresponding designated service queueing system, queue 2
becomes overloaded significantly less frequently in the priority service queueing sys-
tem, which is a direct consequence of the fast service in queue 1 (μ1 = 5 > μ2 = 3.5).
If the service rate at queue 1 is changed from μ1 = 5 to μ1 = 0.1, simulation results
indicate that c/cu ≈ 1.16. Since the service in queue 1 is too slow (μ1 = 0.1 < μ2 =
3.5), queue 1 in the priority service queueing system actually holds customers longer
in the system. Thus, queue 2 becomes overloaded more frequently in the priority
service queueing system.

It is well known that the transitions at boundary states have significant influence
on the decay rate (e.g., see [16]). Theorem 4.3 shows that, for the priority service
queueing system, services at lower priority queues have no influence on the decay
rate. However, Example 4.1 indicates that services at lower priority queues still have
influence on the tail asymptotics through the constant c.

5 An extension

In this section, we consider a priority service queueing system with a Markov arrival
process for type N customers. We shall keep and use most of the notation defined in
Sects. 2 to 4 and explain any change in notation whenever it occurs.

In the priority service queueing system defined in Sect. 2, while keeping all other
assumptions the same, we change the arrival process of type N customers from a
Poisson process to a Markov arrival process (MAP). Type N customers arrive from
outside of the system according to a MAP with matrix representation (C0,C1), where
C0 and C2 are m × m matrices, m is a positive integer, C1 has negative diagonal el-
ements and nonnegative off-diagonal elements, and C1 is a nonnegative matrix. The
MAP of type N customers is independent of the arrival processes of other types of
customers. Define C = C0 + C1. The matrix C is the infinitesimal generator of the
underlying continuous time Markov chain of the arrival process. We assume that
the underlying Markov chain is irreducible, which implies that the matrix C is irre-
ducible. Denote by I (t) the state of the underlying Markov chain at time t ; α the
stationary distribution of {I (t), t ≥ 0} (i.e., α satisfies αC = 0, α ≥ 0, and αe = 1).
In fact, the elements of vector α are all positive since C is irreducible. The (aver-
age) arrival rate of type N customers from outside is given by λN = αC1e. We refer
readers to Neuts [23] and Lucantoni [19] for more about MAP.
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The state of the extended priority service queueing system can be represented by
(q1(t), q2(t), . . . , qN(t), I (t)), where (q1(t), q2(t), . . . , qN(t)) is defined in Sect. 2.
Combining the proof of Theorem 1 in He et al. [14] and the proof of Theorem 2.1 in
this paper, if system parameters {λ1, . . . , λN−1,μ1, . . . ,μN,λT,1, . . . , λT ,N−1, s} are
positive and C is irreducible, it can be shown that the Markov chain {(q1(t), q2(t), . . . ,

qN(t), I (t)), t ≥ 0} is (1) ergodic if
∑N

k=1 λk < sμN , and (2) non-ergodic if
∑N

k=1 λk > sμN . Therefore, we assume
∑N

k=1 λk < sμN so that the extended pri-
ority service queueing system is stable.

The designated service queueing system defined in Sect. 3 can be extended ac-
cordingly. For the extended queueing system, Lemma 3.1 continues to hold. The
sample path relationships between the queue lengths in the two queueing systems
(Lemma 3.3) hold as well. For the stationary distributions of queue lengths, we need
the following results.

Consider a continuous time Markov chain with an infinitesimal generator given as

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

C0 − λ̄(N−1)I C1 + λ̄(N−1)I

μNI C0 − (μN + λ̄(N−1))I C1 + λ̄(N−1)I

. . .
. . .

. . .

sμNI C0 − (sμN + λ̄(N−1))I C1 + λ̄(N−1)I

. . .
. . .

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(5.1)

where λ̄(N−1) = λ̄∗
N − λN . It is readily seen that the Markov chain is a quasi birth-

and-death (QBD) process. Denote by (ψu(0),ψu(1), . . .) the stationary distribution
of the Markov chain, where ψu(n) is a vector of size m for n ≥ 0.

Lemma 5.1 Assume that C is irreducible and system parameters {μN, λ̄(N−1), s}
are positive. Under the condition

∑N
k=1 λk < sμN , the stationary distribution

(ψu(0),ψu(1), . . .) exists and is given as follows:

ψu(n) = ψu(s)R
n−s
u , for n ≥ s;

ψu(0)(C0 − λ̄(N−1)I ) + μNψu(1) = 0;
ψu(0)(C1 + λ̄(N−1)I ) + ψu(1)(C0 − λ̄(N−1)I + μNI) + 2μNψu(2) = 0;
...

ψu(s − 1)(C1 + λ̄(N−1)I ) + ψu(s)(C0 − λ̄(N−1)I − sμNI) + sμNψu(s)Ru = 0;(
ψu(0) + · · · + ψu(s − 1)

)
e + ψu(s)(I − Ru)

−1e = 1,

(5.2)

where Ru is the minimal nonnegative solution to the following matrix equation:

C1 + λ̄(N−1)I + Ru(C0 − λ̄(N−1)I − sμNI) + sμNR2
u = 0. (5.3)

Proof Under the condition
∑N

k=1 λk < sμN , ergodicity of the Markov chain is ob-
tained by applying Neuts’ condition [24]. The stationary distribution is the stan-
dard matrix geometric solution for QBD process [24]. This completes the proof of
Lemma 5.1. �
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Remark 5.1 We would like to point out that the Markov chain defined by (5.1) is
associated with the queue length process of a MAP/M/s queue, where the arrival
process is a MAP with matrix representation (C0 − λ̄(N−1)I,C1 + λ̄(N−1)I ), service
times are exponentially distributed with parameter μN , and there are s servers.

For the extended designated service queueing system, denote by {πu(q1, q2,

. . . , qN), q1 ≥ 0, q2 ≥ 0, . . . , qN ≥ 0} the stationary distribution of queue lengths and
the state of the underlying Markov chain {I (t), t ≥ 0}, where πu(q1, q2, . . . , qN) =
(πu(q1, q2, . . . , qN ,1), . . . , πu(q1, q2, . . . , qN ,m)) is a row vector of size m. Then, it
can be shown that (3.4) is generalized to

πu(q1, q2, . . . , qN) =

⎧
⎪⎪⎨

⎪⎪⎩

(
∏N−1

j=1 (
exp{−ρ̄T ,j }ρ̄qj

T ,j

qj ! ))ψu[qN ], 0 ≤ qN < s;

(
∏N−1

j=1 (
exp{−ρ̄T ,j }ρ̄qj

T ,j

qj ! ))ψu[s]RqN−s
u , qN ≥ s.

(5.4)

Equation (5.4) shows that the marginal distribution of queue N in the extended
designated service queueing system is the same as that of the MAP/M/s queue de-
fined in Remark 5.1.

For the extended priority service queueing system, denote by {π(q1, q2, . . . , qN),
q1 ≥ 0, q2 ≥ 0, . . . , qN ≥ 0} the stationary distribution of the queue lengths and
the underlying process I (t), where π(q1, q2, . . . , qN) = (π(q1, q2, . . . , qN ,1), . . . ,

π(q1, q2, . . . , qN ,m)) is a vector of size m. Using the relationship given in (3.11), an
upper bound on

∑
w≥q π(w)e can be found as follows:

∑

w≥q

π(w)e ≤
(

N−1∏

j=1

(
ρ̄

(qj −js)+
T ,j

(qj − js)+!
))

ψu[s]RqN−s(N+1)
u (I − Ru)

−1e,

for qN ≥ (N + 1)s. (5.5)

For tail asymptotics of the stationary distribution of queue lengths, Theorem 4.3
can be generalized in a straightforward manner. For brevity, we only present changes
in notation and results. We begin with the transition blocks in the infinitesimal gen-
erator Q given in (4.1). For Markov chain {(q1(t), q2(t), . . . , qN(t), I (t)), t > 0}, the
transition blocks in Q are changed as follows:

(1) Q−1 is replaced by Q−1 ⊗ I

(2) Q0 is replaced by Q0 ⊗ I − λNI ⊗ I + I ⊗ C0
(3) Q1 is replaced by Q1 ⊗ I − λNI ⊗ I + I ⊗ C1

where “⊗” stands for the Kronecker product of matrices. For the transformation of
the infinitesimal generator Q to transition probability P in (4.4), we have

(4) D is replaced by (D − λNI) ⊗ I

(5) D1 is replaced by (D1 − λNI) ⊗ I

(6) D2 is replaced by (D2 − λNI) ⊗ I .

Note that matrices Q−1,Q0,Q1,D,D1, and D2 are defined in Sect. 4.
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Denote by ρu the Perron–Frobenius eigenvalue (the eigenvalue with the largest
modulus) of the matrix Ru (see (5.3)). Denote by β the normalized nonnegative
eigenvector of Ru corresponding to eigenvalue ρu, i.e., βRu = ρuβ,β ≥ 0 and
βe = 1 (see [26] for more about nonnegative matrices). It is well known that ρu < 1
if

∑N
k=1 λk < sμN . Multiplying by β on both sides of (5.3), yields

β
(
C1 + λ̄(N−1)I + ρu(C0 − λ̄(N−1)I − sμNI) + sμNρ2

uI
) = 0. (5.6)

The matrix in (5.6) is an irreducible M-matrix. Thus, every element of β is posi-
tive. In addition, there exists a normalized nonnegative right eigenvector η satisfying

(
C1 + λ̄(N−1)I + ρu(C0 − λ̄(N−1)I − sμNI) + sμNρ2

uI
)
η = 0. (5.7)

Furthermore, the vector η can be so chosen that every element of η is positive, and
ηe = 1.

With positive vectors β and η, {x,y, ρ̄N } in Lemma 4.2 are changed as follows:

(7) x is replaced by x ⊗ β

(8) y is replaced by y ⊗ η and
(9) ρ̄N is replaced by ρu in (4.7).

Finally, Theorem 4.3 is generalized as follows.

Theorem 5.2 Assume that system parameters {λ1, . . . , λN−1,μ1, . . . ,μN,λT,1, . . . ,

λT ,N−1, s} are positive and the underlying Markov process {I (t), t ≥ 0} is irre-
ducible. If

∑N
k=1 λk < sμN , then

lim
qN→∞

π [qN ]
ρ

(qN−s)
u

= cx ⊗ β, (component-wise) (5.8)

where the elements of π[n] are the stationary probabilities {π(q1, q2, . . . , qN−1, n, i),

q1 ≥ 0, q2 ≥ 0, . . . , qN−1 ≥ 0,1 ≤ i ≤ m} ordered lexicographically and c is a con-
stant. The decay rate ρu can be calculated by ρu = (λ1 +· · ·+λN−1 +βC1e)/(sμN).

If m = 1 (i.e., the arrival process of type N customers is Poisson), we must have
ρu = ρ̄N . For the general case, ρu = ρ̄N may not hold. Intuitively, during the peri-
ods that queue N is overloaded, the stationary distribution of the underlying Markov
chain {I (t), t ≥ 0} is changed from α to β , as indicated by the right-hand side of (5.8).
Thus, the arrival rate of type N customers from outside is changed from λN = αC1e
to βC1e. Consequently, the traffic intensity of queue N is changed from ρ̄N to ρu.

Example 5.2 Consider a priority service queueing system with N = 2, λ1 = 1,
μ2 = 4, s = 1, and

C0 =
(−10 1

0.1 −0.1

)

, C1 =
(

9 0
0 0

)

. (5.9)

The arrival process of type 2 customers is a bursty process. By routine calculations,



276 Queueing Syst (2009) 62: 255–277

we obtain λ2 = 0.8182, ρ̄N = 0.4545, Ru = ( 0.8893 1.6107
0.0024 0.2476

)
, and ρu = 0.8952. Thus,

ρu is significantly larger than ρ̄N , which is the decay rate if the arrivals of type 2
customers from outside follow a Poisson process. On the other hand, if

C0 =
(−4 1

0.4 −1

)

, C1 =
(

0 3
0 0.6

)

, (5.10)

we obtain λ2 = 0.8182, ρ̄N = 0.4545, Ru = ( 0.1689 0.8311
0.0222 0.3778

)
, and ρu = 0.4447. For this

case, ρu is smaller than ρ̄N .

Example 5.2 indicates that the use of queueing models with Poisson inputs may ei-
ther underestimate the decay rate (ρu > ρ̄N) or overestimate the decay rate (ρu < ρ̄N)

significantly. For finite background state Markov chains associated with classical
queueing models with versatile input processes, Neuts [25] offers an in-depth dis-
cussion on the decay rate of the stationary distribution.

6 Discussion

It is interesting to investigate how the queueing system behaves if a lower prior-
ity queue(s) is overloaded. Intuitively, if a lower priority queue is overloaded (e.g.,
N = 2), transfers to queue N become intensive and the distribution of queue N may
be different from the (modified) geometric distribution for the M/M/s queue. How-
ever, in the designated service queueing system, queue N has the same distribution
as that of the M/M/s queue if lower priority queues are overloaded. For the pri-
ority service queueing system, simulation results indicate that the tail asymptotics
π(q1, q2) ≈ cx(q1)ρ̄

(q2−s)

2 (if N = 2) may not hold if q1 is large and q2 is small
(i.e., queue 1 is overloaded), which is different from the designated service queueing
system. Finding the tail asymptotics for this case is not straightforward. Technically,
the corresponding Markov chain Q, if q1 is chosen as the level variable, becomes
level-dependent after re-blocking. Thus, matrix-analytic methods and Markov addi-
tive method cannot be applied and another method has to be used for such cases. Tail
asymptotics, if a lower priority queue is overloaded, is an interesting issue for future
research.
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