
  
 

 
Stability Conditions of a Preemptive Repeat Priority  

Queue with Customer Transfers  
 

Qi-Ming He1, Jingui Xie2, Xiaobo Zhao2 
 
1    Department of Industrial Engineering, Dalhousie University 
    Halifax,  N.S., Canada B3J 2X4 
    Email:  qi-ming.he@dal.ca 
2   Department of Industrial Engineering 
    Tsinghua University, Beijing, China 
     Emails:  xiejingui@tsinghua.org.cn   and   xbzhao@tsinghua.edu.cn 
 
Abstract:  This paper is concerned with the stability of a preemptive repeat priority 
queueing system with multiple types of customers and customer transfers between queues. 
 Using the mean-drift method and matrix-analytic methods, simple conditions for the 
queueing system to be stable or instable are found.  The conditions indicate that system 
stability depends only on the service rate of customers of the highest priority and arrival 
rates of individual types of customers.  That implies that the service rates and the transfer 
rates of all lower priority customers have no impact on system stability - a result that can 
be useful in the design of such queueing systems.  
Keywords:  Priority queue; Markov chain; Mean-drift method; Stability; Ergodicity; 
Matrix-analytic methods.  
 
1     Introduction  

Queueing models have found extensive applications in manufacturing, 
telecommunications, and service industries.  Queueing models also find 
applications in healthcare, public safety, and social justice systems (Larson, 
1987).  In a hospital emergency department, patients are categorized into critical 
and non-critical groups.  A patient in the critical group will be attended by a 
doctor, if one is available, as soon as the patient arrives.  The condition of a 
patient in the non-critical group may deteriorate while waiting, and become 
critical.  Then the patient has to be attended as soon as a doctor is available.  In a 
fire/911 department, emergence cases are also categorized.  The dispatch of 
ambulances and fire-trucks is arranged accordingly.  In the design of such systems, 
allocation of resource is a key issue, especially the allocation of some scarce 
resource.  One of the goals of resource allocation is to ensure that the system is 
stable in the sense that the queue lengths will not grow too long.  Motivated by the 
applications in healthcare and public safety sectors, this paper introduces a 
preemptive repeat priority MMAP[N]/PH[N]/S queue with customer transfers 
and finds its stability/instability conditions. 

Queueing systems with customer priorities and queueing systems with 
customer transfers have been studied extensively.  Existing works address issues 
related to system stability, optimal scheduling, routing, and performance analysis 
(e.g., Adan, Wessels, and Zijm, 1991, Whitt, 1986, and Zhao and Grassmann, 
1995).  Some of the existing works focus on system stability conditions, some on 
the stationary analysis of the queue length(s) and waiting times, and some on 



  
 

customer transfer strategies.   
In the preemptive repeat priority MMAP[N]/PH[N]/S queue of interest, only 

lower priority customers can transfer to higher priority customers.  The model is 
different from those in the existing literature.  Consequently, the 
stability/instability conditions of the system are different from that of the existing 
models.  The results obtained in this paper imply that system stability/instability 
depends only on the service rate of customers of the highest priority and arrival 
rates of individual types of customers.  That implies that system 
stability/instability is independent of the service rates and transfer rates of lower 
priority customers.  The results also imply that the correlations between the 
arrival processes of customers have no impact on system stability/instability.  The 
results can be useful in the design of such queueing systems.  In Xie, He, and 
Zhao (2008), similar results are shown for a simpler model M[N]/M[N]/S, where 
customers arrive according to independent Poisson processes and service rates 
and transfer rates are exponentially distributed.  Compared to that of Xie, He, and 
Zhao (2008), the queueing model considered in this paper has fairly general 
assumptions on its arrival process, service times, and transfer times.  Thus, this 
model captures features, such as the correlations between arrivals, that do not 
exist in the simpler model.  Therefore, the applicability of the results is extended 
significantly.  

The remainder of the paper is organized as follows.  The queueing model of 
interest is introduced in Section 2.  In Section 3, the main results – stability and 
instability conditions – are presented.  A brief discussion on the proof of the main 
results is given as well.  
 
2     Queueing model 

The queueing model of interest consists of S identical servers serving N 
types of customers: type 1, type 2, …, and type N customers.  Type 1, 2, …, and 
N customers form queue 1, 2, …, and N, respectively.  Type N customers have the 
highest service priority, type N–1 the second highest service priority, …, and type 
1 the lowest service priority.  The priority level of a type k customer is k.  The S 
servers are numbered as server 1, 2, …, and S.   

A type k customer can transfer to a type k+1 customer while it is waiting for 
service, for 1kN–1.  The time for a waiting type k customer to be transferred 
into a type k+1 customer is called the transfer time.  The clock of the transfer time 
of a customer is set to zero and begins to click as soon as the customer joins a 
queue waiting for service.  A customer in service does not change its type or its 
priority level.  

Customers are served on a preemptive repeat basis.  That implies that an 
interrupted service is repeated.  We also assume that the clock of the transfer time 
of a customer whose service is interrupted is reset to zero.  The service discipline 
is specified as follows.   

a) Suppose that, when a type k customer arrives, some of the servers are 
idle.  Then the type k customer enters one of the idle servers and begins 
its service immediately.  Exactly which server to enter does not affect 
system stability analysis.   



  
 

b) Suppose that, when a type k customer arrives, all servers are busy.  If the 
priority level of all customers in service is k or higher, then the type k 
customer joins queue k.  The clock of the customer’s transfer time is set 
to zero and begins to click.  If the priority level of some customers in 
service is lower than k, then one of the customers of the lowest priority 
in service is pushed out of its server and back into its queue, and the 
server begins to serve the type k customer immediately.  The clock of the 
transfer time of the customer pushed out is reset to zero and begins to 
click.  The service of this customer will be repeated when the customer 
enters a server later.  Exactly which customer of the lowest priority in 
service is pushed out does not affect system stability analysis, since the 
service times of lower priority customers do not affect system stability 
(see Theorem 1).  

c) Suppose that, when a server completes a service, at least one queue is 
not empty.  The server chooses a customer from the nonempty queue of 
the highest priority and begins to serve it immediately.  Exactly which 
customer to be chosen from that queue does not affect system stability 
analysis.  For mathematical convenience, a method for the server to 
choose a customer will be specified, after the distribution of the transfer 
time is defined later in this section. 

d) Suppose that, when a server completes a service, all queues are empty. 
 Then the server becomes idle.  

e) Suppose that, when a type k customer transfers to a type k+1 customer, 
there are type k customers in service.  Then one of the type k customers 
in service is pushed back into queue k.  The server begins to serve the 
transferred customer immediately.  The clock of the transfer time of the 
type k customer just pushed out is reset to zero and begins to click.  That 
customer will repeat it service when it enters a server later.  

Next, we define the arrival process, service times, and transfer times 
explicitly.  

The arrival process  The N types of customers arrive according to a 
marked Markov arrival process (MMAP[N]) (see Neuts, 1979, He and Neuts, 
1998).  The MMAP[N] has a matrix representation {D0, DJ, J}, where  is 
a set of strings of integers defined as  
           }0,0,0...,,,where,:{ 2121  JNN DJjjjjjjJJ  , (1) 
D0 and {DJ, J} are matrices of order ma, D0 is a matrix with negative diagonal 
elements and nonnegative off-diagonal elements, {DJ, J} are nonnegative 
elements,   00  

e
J JDD , and e is a column vector with all elements being 

one.  The matrix DJ, J, is for the arrival rates of type J batches that include j1 
type 1 customers, j2 type 2 customers, …, and jN type N customers, conditioning 
on the phase of a underlying continuous time Markov chain (CTMC) just prior to 
the arrival.  Let  


J JDDD 0

.  Then D is the infinitesimal generator of the 

underlying CTMC of the arrival process.  We assume that the matrix D is 
irreducible, i.e., the underlying CTMC is irreducible.  Let Ia(t) be the phase of the 
underlying CTMC at time t.  Denote by a the nonnegative row vector satisfying 



  
 

aD= 0 and ae = 1.  Since D is irreducible, every element of a is positive.  Then 
the stationary arrival rate of type k customers is given by  


J Jkak Dj e , 

for 1kN.   
Define  


J J

J DzDzD ||
0

* )( , where |J| = j1 + j2 +…+ jN , which is the 

number of customers (regardless of their types) in the batch J.  We assume that 
there exists ẑ > 1 such that D*(z) is a finite matrix for zz ˆ0  .  This assumption 
is not restrictive, since it is satisfied if the set  has a finite number of elements 
or the batch size has a discrete phase-type distribution (Neuts, 1981).  

To make it easy to understand MMAP[N], we give two examples of 
MMAP[N]. 
Example 2.1  Assume that all customers arrive individually, i.e., all batch sizes 
are one.  For this case,  = {100, 0100, …, 001}.  A string J = 00100, 
whose k-th number is 1, represents a batch that has a single type k customer in it. 
 Example 2.2  Assume that N=2 and  = {10, 01, 11, 22}.  For this case, 
customers arrive in four forms: a single type 1 arrival (J=10) , a single type 2 
arrival (J=01), a batch with one type 1 customer and one type 2 customer (J=11), 
and a batch with 2 type 1 customers and 2 type 2 customers (J=22).   

MMAP[N] is a versatile process that can be used to model complicated 
multi-type arrival processes with correlations between individual arrivals and/or 
with special arrival patterns.  According to Asmussen and Koole (1993), 
MMAP[N] can approximate any multi-type arrival processes.   

The service times  The service times of the type k customers have the same 
phase-type distribution with a PH-representation (k, Tk) of order mk, 1kN, 
where k is a stochastic vector, i.e., k is nonnegative and ke = 1 (which implies 
that the service time is positive with probability 1), and Tk is a PH-generator, i.e., 
Tk is invertible, diagonal elements of Tk are negative, off-diagonal elements of Tk 
are nonnegative, and the vector Tk

0 = –Tke is nonnegative.  The mean service time 
of type k customers is k

–1 = –kT–1e, 1kN.  Then k is the service rate of type 
k customers.  Without loss of generality, we assume that the PH-representation 
(k, Tk) is irreducible, which is equivalent to that the infinitesimal generator Tk + 
Tk

0k, is irreducible.  The irreducibility of the PH-representation is assumed to 
ensure that a CTMC to be defined for the queue length processes is irreducible.  
Let k be the nonnegative vector satisfying k(Tk +Tk

0k) = 0 and ke = 1.  Then 
all elements of k are positive.  In fact, it can be verified that k = –kkTk

–1.  Let 
Ii(t) be the phase of the underlying CTMC of the service undergoing in server i at 
time t, 1iS.  If server i is idle, we define Ii(t) = 0.  Note that the range of Ii(t) 
depends on the type of the customer in service at time t.  We refer to Neuts (1981) 
for more about phase-type distributions.   

The transfer times  The transfer time of a type k customer to a type k+1 
customer has a Coxian distribution with a Coxian representation (k, Sk) of order 
nk, 1kN–1, where k = (k,1, k,2, …, ), knk  is a stochastic vector (i.e., k ≥ 

0 and ke = 1, which implies that the transfer time is positive with probability one) 
and Sk is a Coxian generator given as follows: 
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It is easy to see that Coxian distribution is a special case of PH-distribution.  
Without loss of generality, we assume that k,1>0 for 1kN–1.  Similar to the 
irreducibility condition made on the PH-representations of service times, this 
assumption is made to ensure that a CTMC to be defined for the queue length 
processes is irreducible.  For the Coxian distribution, the phase of its underlying 
CTMC always moves up by one at a transition epoch.  This property is used in the 
definitions of the queue length processes.  For type N customers, there is no 
transfer.  We introduce a underlying CTMC with a single phase and no transition, 
i.e., nN = 1, sN,1 = 0, and N,1=1. 

We assume that the arrival process, service times, and transfer times are 
independent.   
 
3.   Main results 

Based on the above definitions, we define a CTMC for queue 1, queue 2, …, 
and queue N.  For any type k customers waiting for service, the underlying CTMC 
of its transfer time must be in a state i, 1 i  nk.  Thus, the queue k of type k 
customers can be decomposed into nk + 1 subqueues: queue (k, 0) consists of type 
k customers in service, queue (k, 1) consists of type k customers waiting in queue 
k and the underlying CTMCs of their transfer times are in state 1, …, and queue 
(k, nk) consists of type k customers waiting in queue k and the underlying CTMCs 
of their transfer times are in state nk.  When a server is available to serve a type k 
customer, we assume that one of the type k customers whose underlying CTMC is 
in the highest phase is chosen for service.   

Define qk,i(t) the number of type k customers in queue (k, i) at time t, 0ink, 
k = 1, 2, …, N.  Let qk(t) = (qk,0(t), qk,1(t), …, ))(, tq

knk , 1kN.  Because of the 

preemption property, we must have qj,i(t) = 0 for j ≥ k+1 and 1  i  nj, if qk,0(t) 
> 0.  Define 
 q(t) = (q1(t), q2(t), …, qN–1(t), qN(t)), and  
 X(t) = (q(t), Ia(t), I1(t), …, Is(t)). 
The first part of X(t) (i.e., q(t)) provides information on the lengths of the N 
queues as well as transferring times of customers in queues.  The rest of X(t) (i.e., 
(Ia(t), I1(t), …, Is(t))) provides information on the underlying phases of the arrival 
process and service times.  It can be verified, under our assumptions, the CTMC 
{X(t), t ≥ 0} is irreducible.  Denote by  the state space of  {X(t), t ≥ 0}.  A 
typical state in  has the form x = (q, ia, i1, …, is) with q = (q1, q2, …, qN–1, qN) 
and qk = (qk,0, qk,1, …, ), knkq , 1kN.   

We call the queueing system stable if the CTMC {X(t), t ≥ 0} is ergodic 
(irreducible and positive recurrent).  The CTMC is called non-ergodic if it is not 



  
 

ergodic.  We call the queueing system instable if the CTMC {X(t), t ≥ 0} is 
non-ergodic.  The ergodicity of the CTMC {X(t), t ≥ 0} is characterized in the 
following theorem.  
Theorem 1  Assume that D is irreducible, D*(z) is a finite matrix for zz ˆ0   
with 1ˆ z , the PH-representations of all service times are PH-irreducible, and 
k,1>0 for 1kN.  Then the CTMC {X(t), t ≥ 0} is irreducible.   
1.1) The CTMC {X(t), t ≥ 0} is ergodic if N

N

k k S  1
.   

1.2) The CTMC {X(t), t ≥ 0} is non-ergodic if N
N

k k S  1
. 

Part 1.1) and part 1.2) indicate that the ergodicity/non-ergodicity conditions 
of the CTMC (or the stability/instability of the queueing system) are independent 
of the service rates and the transfer rates of lower priority customers.  In addition, 
the correlations between individual arrival processes, the service rates of lower 
priority customers, and the transfer rates of lower priority customers have no 
impact on system stability. 

A complete proof of Theorem 1 can be found in He, Xie, and Zhao (2009). 
 In the proof, matrix-analytic methods (Neuts 1981) and the mean-drift method 
(Meyn and Tweedie, 1996) are utilized.  Theorem 1.18 for ergodicity of Markov 
chains given in Chen (1991) and Theorem 1 for non-ergodicity given in Choi and 
Kim (2004) are applied. 
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