
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by: [Canadian Research Knowledge Network]
On: 13 February 2009
Access details: Access Details: [subscription number 783016891]
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,
37-41 Mortimer Street, London W1T 3JH, UK

Stochastic Models
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713597301

Light-Tailed Behavior in QBD Processes with Countably Many Phases
Qi-Ming He a; Hui Li b; Yiqiang Q. Zhao c

a Department of Industrial Engineering, Dalhousie University, Halifax, Nova Scotia, Canada b Department of
Mathematics, Mount Saint Vincent University, Halifax, Nova Scotia, Canada c School of Mathematics and
Statistics, Carleton University, Ottawa, Ontario, Canada

Online Publication Date: 01 January 2009

To cite this Article He, Qi-Ming, Li, Hui and Zhao, Yiqiang Q.(2009)'Light-Tailed Behavior in QBD Processes with Countably Many
Phases',Stochastic Models,25:1,50 — 75

To link to this Article: DOI: 10.1080/15326340802640974

URL: http://dx.doi.org/10.1080/15326340802640974

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713597301
http://dx.doi.org/10.1080/15326340802640974
http://www.informaworld.com/terms-and-conditions-of-access.pdf


Stochastic Models, 25:50–75, 2009
Copyright © Taylor & Francis Group, LLC
ISSN: 1532-6349 print/1532-4214 online
DOI: 10.1080/15326340802640974

LIGHT-TAILED BEHAVIOR IN QBD PROCESSES
WITH COUNTABLY MANY PHASES

Qi-Ming He1, Hui Li2, and Yiqiang Q. Zhao3

1Department of Industrial Engineering, Dalhousie University,
Halifax, Nova Scotia, Canada
2Department of Mathematics, Mount Saint Vincent University,
Halifax, Nova Scotia, Canada
3School of Mathematics and Statistics, Carleton University,
Ottawa, Ontario, Canada

� Generally speaking, analysis of tail asymptotics in two-dimensional queueing systems is very
challenging. Earlier work based on complex analysis led to determinations of exact forms of tail
asymptotics. Ideas of large deviations, a powerful tool for characterizing light-tailed decay rates
or analysis of rough tail asymptotics, have been utilized recently to develop probabilistic methods
to do exact tail asymptotic analysis. Another promising approach to do tail asymptotics analysis,
both exact and rough, is the matrix-analytic method. In this article, we combine the matrix-
analytic method with techniques from probability and analysis to characterize tail asymptotics in
a QBD process with infinitely many phases. The main results include conditions on: (1) exact
geometric decay; (2) light-tailed behavior without an exact geometric decay, which in general is
not the focus of the large deviations method; and (3) upper and lower bounds for stationary
probabilities. We apply the main results to two two-dimensional queueing systems, including a
polling system and a gated random-order server queue to characterize their light-tailed behavior
of the queue length processes.
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Light-Tailed Behavior in QBD Processes 51

1. INTRODUCTION

Analysis of queueing systems with a multi-dimensional state space
is very challenging, including characterization of tail asymptotics. For
two-dimensional systems, tail asymptotics of the stationary probability
distribution are often characterized through methods based on complex
analysis, large deviations techniques, probabilistic arguments, or matrix-
analytic approaches.

In terms of the uniformization method, analytical continuation and
analysis of singularities, exact tail aymptotics in a few two-dimensional
queueing systems have been reported, such as Flatto and McKean[1,2] for
the join-the-shortest-queue model and the parallel queues fed by arrivals
with two types of demands, and recently Leeuwaarden[12] for the tandem
queue with coupled processors. Tauberian theorems, which have been
applied to queueing models such as the generalized processor sharing
(GPS) networks for exact tail asymptotics, including both light-tailed and
heavy-tailed behavior, for example, in van Uitert[31] and references therein,
constitute another example in this category.

The large deviations technique is a powerful tool for studying rare
events. Additional work has been done recently to address nontrivial issues
in applying the general principle to queueing systems, such as Ridder
and Shwartz[24] on the join-the-shortest-queue model. The classical large
deviations principle does not intend to characterize the exact form of
tail asymptotics. McDonald[16], and Foley and McDonald[3–5] modified the
large deviations theory to extend the study to the exact tail asymptotics
for two-dimensional queueing systems including a generalized join-the-
shortest-queue model, and a modified Jackson network. In their studies,
not only has the exact geometric decay been characterized, but also
some forms of exact light-tailed decays have been recognized. Another
probabilistic approach is the probability sample path argument, which was
used to characterize heavy-tailed phenomena, for example, in Jelenković
and Lazar[8], but it requires intuitive knowledge about the tail behavior.

Another promising method, the matrix-analytic method, is a relatively
new one, which has been proven an efficient one for exact tail asymptotics
for Markov chains of GI /G/1 type with finitely many phases, and also
for exact geometric tail asymptotics for this type of Markov chain with
infinitely many phases. For models with infinitely many phases, studies
include Takahashi et al.[28], in which a sufficient condition was provided for
the quasi-birth-and-death (QBD) process; this condition was reformulated
in Haque[6], and Haque et al.[7] in a more favorable form for applications;
a sufficient condition was provided in Miyazawa[18] for Markov chains
of M/G/1 type; a slightly improved sufficient condition for Markov
chains of GI /G/1 type was reported in Miyazawa and Zhao[19]. All of
the above conditions were obtained under the positivity assumption on
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52 He et al.

the generating function of the underlying renewal blocks. Without this
assumption, Kroese et al.[11] provided a sufficient condition for exact
geometric decay, which has been improved in Motyer and Taylor[22], and
Li et al.[14]. Based on the above studies, Liu et al.[15] obtained two sufficient
conditions for the level-expanding QBD model. Applying these conditions,
researchers are able to characterize exact geometric tail asymptotics in
several two-dimensional queueing systems, such as join-the-shortest-queue
models (Takahashi et al.[28], Haque[6], Sakuma et al.[26], and Li et al.[14]),
priority systems (Haque[6], Miyazawa and Zhao[19], and Xue and Alfa[32]),
the parallel queues with two types of demands (Haque[6]), tandem queues
(Haque [6], Kroese et al.[11], and Tang and Zhao[29]), a retrial queue (Li and
Zhao[13]), among possible others.

In this article, we consider an irreducible, positive recurrent, and
aperiodic QBD process, in discrete-time, with infinitely many phase
(background) states. More specifically, we assume that the state space is
given by

S = �(0, j) : j ∈ S0� ∪ �(i , j) : i = 1, 2, � � � , j = 0, 1, 2, � � � �,

where S0 is a countable set. For a state (i , j) ∈ S , we refer i and j as
to the level and phase (background) variables, respectively. Partition the
transition matrix of the QBD process according to the level as

P =




B0 A0

C0 B A
C B A

C B A
� � �

� � �
� � �

� � �
� � �

� � �



� (1)

Denote the unique positive stationary vector of P , partitioned according
to the level too, by � = (�0, �1, �2, � � � ) = (�i ,j), where �0 = (�0,j)j∈S0 and
for i = 1, 2, � � � , �i = (�i ,0, �i ,1, �i ,2 � � � ). Then, according to Tweedie [30], we
have the following (operator-) matrix-geometric form solution for �:

�i+1 = �1Ri , for i ≥ 1, (2)

and �0 and �1 are the unique solution to

�0 = �0B0 + �1C0,

�1 = �0A0 + �1(B + RC),
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Light-Tailed Behavior in QBD Processes 53

�0e + �1

( ∞∑
i=0

Ri

)
e = 1,

where e is the column vector of ones with a proper size, and R is the
minimal nonnegative solution to R = A + RB + R 2C , often referred to as
the rate matrix.

Our focus of this article is to characterize the tail behavior in the
stationary probabilities �i ,j . To be specific, light-tailed properties will be
studied here, including the decay rate (large deviations type of results)
along the level direction and for the marginal distribution, exact geometric
decay, bounds for tails of the stationary probabilities, and applications to
two interesting queueing models, a polling system, and a gated random-
order server queue. The method employed here is based on the matrix-
analytic method, combined with techniques used in probability and
analysis. This research was also motivated by the challenge of how to use
the matrix-analytic method to characterize exact but nongeometric tail
asymptotics. As the first step of this study, we are able to identify some
conditions, under which a light-tailed, but not exact geometric, decay
reveals. In a very recent symposium report by Miyazawa[20], determination
of the decay rate was addressed for a simpler class of QBD processes based
on connections between the level process and the background process. An
extended version of Ref.[20] is given in Miyazawa[21].

The rest of the article is organized into four sections. The main results
obtained in this article are stated in the next section, which are proved
in Section 3. Details of applications of the main results to two queueing
models are provided in Section 4.

2. MAIN RESULTS

To state the main results reported in this article, we adopt the following
definition.

Definition 2.1. We say that �i ,j has a light tail with the decay rate
0 ≤ � < 1 along the level direction if for each fixed j ,

lim
n→∞

log �n,j

n
= log �� (3)

We say that �i ,j decays exactly geometrically along the level direction if for
each fixed j , there exist an � independent of j with 0 < � < 1, and xj > 0
such that

lim
n→∞

�n,j

�n
= cxj (4)
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54 He et al.

for a constant c with 0 < c < ∞. In an obvious way, we can define the light-
tailed decay rate and exact geometric decay rate for a marginal distribution
of �i ,j .

Remark 2.1. (i) When � = 0 in equation (3), the decay of the probabi-
lities to zero is faster than any exponential one; (ii) the � in the definition
for exact geometric decay along the level direction is also the light-tailed
decay rate.

To state our main results, we also need the following concepts.

Definition 2.2. Let T = (ti ,j) be a countable nonnegative square matrix
and let T n = (t (n)i ,j ). For a fixed pair of i and j , the radius of convergence
or the convergence parameter �(T )

i ,j (or simply �i ,j) of ti ,j is defined by

�(T )
i ,j = sup

z≥0

{
z :

∞∑
n=0

t (n)i ,j z
n < ∞

}
� (5)

The radius of convergence or the convergence parameter �T (or simply �)
and the convergence norm �T (or simply �) of T are defined by
�T = infi ,j��

(T )
i ,j � and �T = 1/�T , respectively.

Remark 2.2. (i) If T is irreducible, then �i ,j is independent of i and j ;
(ii) if � = 0, then the convergence norm � is defined as ∞.

Definition 2.3. Let T = (ti ,j) be a countable nonnegative square matrix.
For � > 0, a nonnegative nonzero row vector x is called a �-subinvariant
(�-superinvariant) measure if �xT ≤ (≥)x and a �-invariant measure if
�xT = x; a nonnegative nonzero column vector y is called a �-subinvariant
(�-superinvariant) vector (or function) if �T y ≤ (≥)y and a �-invariant
vector (or function) if �T y = y. T is called �-positive if there exist �-
invariant measure x and vector y such that xy < ∞.

For convenience, we define

D(�) = A + �B + �2C � (6)

It is important to mention the following relationship between D(�)
and the matrix R , in terms of which conditions imposed on R stated in
the main results can be easily replaced by the counterpart conditions on
D(�). This has an obvious advantage since D(�) is given, but R is usually
unknown.
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Light-Tailed Behavior in QBD Processes 55

Lemma 2.1. For a nonnegative, nonzero square matrix T , if either of the
following conditions is satisfied:

(1) T has only one irreducible class,
(2) For each i, �T = infj��

(T )
i ,j �,

then the convergence norm �T is given by:

�T = inf�� > 0 : there exists a nonnegative nonzero x such that xT ≤ �x�� (7)

Remark 2.3. This lemma is an extension of the result for the irreducible
case, which is needed to deal with some applications, including those in
this article.

For D(�) with � > 0, define

�min = inf�� > 0 : there exists a nonnegative nonzero x

such that xD(�) ≤ �x�� (8)

Lemma 2.2. Let R be the rate matrix of the QBD process P defined in (1). If
either (1) or (2) in Lemma 2.1 is satisfied by R then we have �R = �min.

Lemma 2.3. Assume 0 < � < 1 and x ≥ 0 is a nonnegative nonzero row vector.
Matrix R satisfies (1) or (2) given in Lemma 2.1. Then,

(a) x is a 1/�-invariant vector of R if and only if x is a 1/�-invariant vector of
D(�);

(b) R has a 1/�-subinvariant measure if and only if D(�) has a 1/�-subinvariant
measure;

(c) R has a 1/�-supinvariant measure if and only if D(�) has a 1/�-supinvariant
measure.

Remark 2.4. Based on the aforementioned lemmas, matrix R can be
replaced by matrix D(�) and �R by �min, respectively, in every relevant
property of the following main results if either (1) or (2) in Lemma 2.1 is
satisfied.

The main results on tail asymptotics in this article include the
following.

2.1. Conditions for (Exact) Geometric Decay

Our first theorem gives a necessary condition for exact geometric
decay. This condition can be used to show light-tailed behavior without an
exact geometric decay.
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56 He et al.

Theorem 2.1.1. For the QBD process defined in (1), if �i ,j decays exactly
geometrically along the level direction with decay rate �, then x = (x0, x1, � � � )
(defined in equation (4)) is a 1/�-subinvariant measure of both D(�) and R. The
vector x is 1/�-invariant if each column of A, B, and C contains only finitely many
nonzero entries.

Remark 2.1.1. In Takahashi et al.[28], a sufficient condition based on
�-positivity was reported. As an extension of their study, in Li et al.[14], two
sufficient conditions (Theorems 2.1.1 and 2.2.1) are provided for exact
geometric decay, one for the �-positive case, and the other for non-�-
positive case in terms of a positive invariant measure x. Another sufficient
condition without requiring �-positivity is obtained in Kroese et al.[11].
A sufficient condition in terms of a positive invariant vector y is also
possible, which is provided below.

Theorem 2.1.2. For the QBD process defined in (1) and for 0 < � < 1, if

lim
n→∞

Rn

�n
= 0, (9)

and R has a positive 1/�-invariant vector y = (y0, y1, y2, � � � ), i.e., Ry = �y, such
that limn→∞ 1/yn = c for some constant 0 ≤ c ≤ ∞, and

∑∞
j=0 �1,j yj < ∞, then

lim
n→∞

�ne

�n
= c

�

∞∑
j=0

�1,j yj �

In the case that 0 < c < ∞, the marginal distribution for the level variable decays
exactly geometrically with the decay rate �.

Remark 2.1.2. (i) For any � > �R , (9) is always true; (ii) If (9) holds for
an irreducible R , then R is 1/�-null or 1/�-transient; (iii) in the case that
c = 0, the condition Ry = �y can be replaced by Ry ≤ �y.

Remark 2.1.3. Under the conditions of Theorem 2.1.2, it is easy to see
that if the marginal distribution �ke has a light tail, then so does the joint
distribution along the level direction; if �R is the decay rate of the marginal
distribution, then it is also the decay rate for the joint distribution along
the level direction.

A relationship between the exact geometric decay along the level
direction and in the marginal distribution for the level variable is described
in the following theorem.
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Light-Tailed Behavior in QBD Processes 57

Theorem 2.1.3. If limn→∞ �n,j/�
n = cxj for 0 ≤ c ≤ ∞, then

limn→∞ �ne/�
n = c

∑∞
j=0 xj , whenever �1,j/xj < M < ∞ uniformly and∑∞

j=0 xj < ∞. Furthermore, �ne has an exact geometric decay if 0 < c < ∞.

2.2. Bounds for the Joint Distribution �i,j

and for Marginal Distribution �ne

Theorem 2.2.1. For the QBD process defined in (1) and for 0 < � < 1,

(a) If R has a positive 1/�-subinvariant measure x = (x0, x1, x2, � � � ), or xR ≤
�x, such that �1,j/xj ≤ M, then

�n,j

�n
≤ M

�
xj , for all j = 0, 1, � � � �

If in addition
∑

i xi < ∞, then

�ne

�n
≤ U < ∞

for some constant U .
(b) If R has a positive 1/�-superinvariant measure x = (x0, x1, x2, � � � ), or xR ≥

�x such that m ≤ �1,j/xj , then

m
�
xj ≤ �n,j

�n
, for all j = 0, 1, � � � ,

and
�ne

�n
≥ L > 0

for some constant L.
(c) If R has a positive 1/�-invariant measure x = (x0, x1, x2, � � � ), or xR = �x

such that m ≤ �1,j/xj ≤ M, then

m
�
xj ≤ �n,j

�n
≤ M

�
xj , for all j = 0, 1, � � � �

If in addition
∑

i xi < ∞, then

0 < L ≤ �ne

�n
≤ U < ∞

for some constants L and U .

Bounds can be obtained for the marginal distribution �ne in terms of
conditions on subvariant or superinvariant vectors.
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58 He et al.

Theorem 2.2.2. For the QBD process defined in (1) and for 0 < � < 1,

(a) If R has a positive 1/�-subinvariant vector y = (y0, y1, y2, � � � ), or Ry ≤ �y
such that

∑
i �1,i yi < ∞ and 1/yj ≤ M < ∞ uniformly, then

�ne

�n
≤ U < ∞

for some constant U .
(b) If R has a positive 1/�-superinvariant vector y = (y0, y1, y2, � � � ), or Ry ≥ �y

such that 1/yj ≥ m > 0 uniformly (which implies that
∑

i �1,i yi < ∞), then

�ne

�n
≥ L > 0

for some constant L.
(c) If R has a positive 1/�-invariant vector y = (y0, y1, y2, � � � ), or Ry = �y such

that
∑

i �1,i yi < ∞ and 0 < m ≤ 1/yj ≤ M < ∞ uniformly, then

0 < L ≤ �ne

�n
≤ U < ∞

for some constants L and U .

Remark 2.2.1. It is worthwhile to point out that the convergence norm
�R for R always provides a lower bound for the decay rate (referring to
Lemma 3.2).

2.3. Light-Tailed Behavior Without an Exact Geometric Decay

The results given here came from a preliminary study intended to
characterize exact light-tailed asymptotics other than an exact geometric
tail.

Theorem 2.3.1. For the QBD process defined in (1), the joint distribution �n,j

has a light tail along the level direction with the decay rate �, but without an exact
geometric decay, if either of the following two conditions is satisfied:

(1) limn→∞ �n,j/	
n = 0 for all 	 ≥ � and limn→∞�n,j/	

n = ∞ for all 	 < �;
(2) limn→∞ �n,j/	

n = 0 for all 	 > � and limn→∞�n,j/	
n = ∞ for all 	 ≤ �.

Lemma 2.3.1. If

lim
n→∞

�n,j

�nR
= 0,
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Light-Tailed Behavior in QBD Processes 59

and for each j , there exists an ij such that �ij ,j = 1/�R , where �i ,j is defined by (5),
then � does not have an exact geometric decay along the level direction. Instead, it
has a light tail with decay rate �R , or

lim
n→∞

log �n,j

n
= log �R �

Theorem 2.3.2. For the QBD process defined in (1) and for 0 < � < 1, assume
that

lim
n→∞

Rn/�n = 0� (10)

If R has a 1/�-subinvariant measure x = (x0, x1, x2, � � � ) and

lim
j→∞

�1,j

xj
= 0, (11)

then

lim
n→∞

�n,j/�
n = 0, (12)

which implies that �n is an asymptotic bound for �n,j . If in addition, the above-
mentioned conditions hold for � = �R , then � does not have an exact geometric decay
along the level direction. Instead, it has a light tail with decay rate �R .

Remark 2.3.1. When R is irreducible, condition limn→∞ Rn/�n = 0
implies that R is either 1/�-null or 1/�-transient.

We can similarly obtain the following characterization for the marginal
distribution.

Theorem 2.3.3. For the QBD process defined in (1), assume

lim
n→∞

Rn/�nR = 0� (13)

If either of the following two sets of conditions are satisfied:

Set I of conditions.

(1) R has a positive 1/�R -subinvariant measure x or xR ≤ �Rx;
(2) limj→∞ �1,j/xj = 0 and

∑∞
j=0 xj < ∞.

Set II of conditions.

(1) R has a positive 1/�R -subinvariant vector y or Ry ≤ �Ry;
(2) limj→∞ 1/yj = 0 and

∑∞
j=0 �1,j yj < ∞.
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then the marginal distribution �ne has a light tail with decay rate �R , or

lim
n→∞

�ne

�nR
= 0 and lim

n→∞
log �ne

n
= log �R , (14)

but �ne does not have an exact geometric decay.

2.4. Applications to Queueing Models

We can apply the above-mentioned results to many queueing models,
for example, to the join-the-shortest-queue model, the tandem queue, the
priority queueing system, the queueing system with two types of demand,
etc. to obtain various tail asymptotics results, which have been reported in
the literature. Instead of doing so, we apply the results to the polling system
and the gated random order service queue, respectively, to show a light-
tailed behavior in these two models, determine the decay rate, and confirm
the nongeometric decay for both cases, which have not been reported
before.

3. PROOFS

In this section, we provide proofs to all the main results stated in
Section 2.

Since basic properties on subinvariant and superinvariant measures
(vectors) are important to our proofs, and in the literature these properties
are stated only for irreducible matrices, we need to verify them for
reducible matrices due to the fact that the R matrix is often reducible even
when D(�) is irreducible. Instead of providing detailed verification, we only
state relevant results and offer necessary comments.

Proof of Lemma 2.1. Under Condition (1), the proof for the irreducible
case (for example, Theorem 6.3 of Seneta[27]) is also valid. Under
Condition (2), we prove the result by showing the following two facts: (a)
for every � > �T , there exists a 1/�-subinvariant measure x of T ; and (b) if T
has a 1/�-subinvariant measure, then � ≥ �T . Fact (a) is true from the well-
known fact that such a 1/�-subinvariant measure exists for any nonnegative
nonzero square matrix T . We show fact (b) by contradiction. Suppose that
there were a 1/�-subinvariant measure of T with � < �T . Let � < �∗ < �T
and 0 < 
 = 1/�∗ − 1/�. By the definition of �T and Condition (2), there
exists a pair (i , j) such that �(T )

i ,j < 
 + �T . Therefore, we would have

∞ =
∞∑
n=0

xi t
(n)
i ,j

(�∗)n
≤

∞∑
n=0

∑∞
k=0 xkt

(n)
k,j

(�∗)n
≤

∞∑
n=0

xj�n

(�∗)n
< ∞,

which is a contradiction. �
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Light-Tailed Behavior in QBD Processes 61

Proof of Lemma 2.2. First we show �R ≤ �min. It is enough to show that
for each 0 < � < 1, if D(�) has a 1/�-subinvariant measure, then so does
R . Consider the RG -factorization (for example, referring to Theorem 11
in Ref.[33]). In our case, we specifically have

�I − D(�) = [(�I − R)(I − �)](I − �G)

= (�I − R)[(I − �)(I − �G)]
= (�I − R)(I − �)(I − �G), (15)

where both I − � and I − �G for 0 < � < 1 are invertible for 0 < � < 1.
The above factorization is also associative with any nonnegative vector.
Therefore, if x is a 1/�-subinvariant measure of D(�), then

x[�I − D(�)] = x(�I − R)(I − �)(I − �G) ≥ 0�

Multiplying from the right on both sides by the nonnegative inverses∑
k �

k and
∑

k(�G)k leads to x(�I − R) ≥ 0.
Next, we show that for 0 < � < 1, if

∑
k(R/�)k < ∞, or (�I − R)

is invertible, then
∑

k(D(�)/�)
k < ∞. Once again, consider the RG -

factorization in (15). Since all states in the process corresponding to
the substochastic matrix � are transient (for example, in Zhao[33]), it
follows from Proposition 5.3 in Kemeny et al.[9] that

∑
k �

k < ∞, or
I − � is invertible. We also know that for 0 < � < 1,

∑
k(�G)k < ∞,

or I − �G is invertible (for example, in Li et al.[14]). Therefore, the
minimum nonnegative inverse of (�I − R)(I − �)(I − �G) exists and is
equal to [∑k(�G)k][∑k �

k][∑k(R/�)k] due to the fact that all the three
above mentioned inverses are minimum nonnegative. This proves that the
minimum nonnegative inverse of �I − D(�) exists, or

∑
k(D(�)/�)

k < ∞.
�

Remark 3.1. The idea in this proof was motivated by the comments by
Miyazawa, who also proved this lemma in Ref.[20].

We can further prove the following relationship between xR and xD(�).

Lemma 3.1. If x is a 1/�-subinvariant measure of D(�), then xR ≤ xD(�) ≤
�x. Furthermore, if x > 0, then � ≥ �R , and therefore �min ≥ �R .

Proof of Lemma 3.1. By the same argument as used by Neuts[23], we
can show that R is the limit of the matrix sequence �R [k]; k ≥ 0�, where
R [0] = 0 and R [k + 1] = A + R [k] + R 2[k]C . If xD(�) ≤ �x, then

xR [k + 1] = x[A + R [k] + R 2[k]C ] ≤ xD(�) ≤ �x �
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Therefore, xR [k] ≤ xD(�) ≤ �x for all k, which implies xR ≤ xD(�) ≤ �x.
The inequality � ≥ �R directly follows from Theorem 6.3 in Seneta[27] if R
is irreducible. The proof can be modified to nonirreducible case. �

Proof of Lemma 2.3. (a) It is clear from the factorization (15); (b)
follows from Lemma 2.2, while (c) can be similarly proved. �

Proof of Theorem 2.1.1. It follows from �P = � that �n−1A + �nB +
�n+1C = �n for n ≥ 2. Dividing the both sides of the equation by �n yields

1
�

�n−1

�n−1
A + �n

�n
B + �

�n+1

�n+1
C = �n

�n
� (16)

If each column of A, B, and C contains only finitely many nonzero entries,
then taking the limit (or the upper limit) on the both sides of (16) leads
to the conclusion that x is an 1/�-invariant measure of D(�). In general,
by Fatou’s lemma (16) leads to xD(�) ≤ x. �

Proof of Theorem 2.1.2. Based on the matrix-geometric form solution
given in (2), we have

�n+1,j

�n+1
= 1

�

∞∑
i=0

�1,i

r (n)i ,j

�n
, (17)

where r (n)i ,j are entries of Rn . Since y is the 1/�-invariant vector of R ,

∞∑
j=0

r (n)i ,j yj
yi�n

= 1, for all i ≥ 0� (18)

Let

ai ,n =
∞∑
j=0

1
yj

r (n)i ,j yj
yi�n

�

It follows from (18) and limj→∞ 1/yj = c that ai ,n is uniformly bounded
in both i and n. Notice also the assumption that limn→∞ Rn/�n = 0, then
for each i , we can apply the Toeplitz limit theorem (e.g., referring to
Lemma 2.2.1 in Li et al.[14]) to ai ,n to have limn→∞ ai ,n = c . Now, by using
the dominated convergence theorem, we obtain

lim
n→∞

�n+1e

�n+1
= 1

�

∞∑
i=0

�1,i yi lim
n→∞

ai ,n = c
�

∞∑
i=0

�1,i yi �
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In the case of c = ∞, we have limn→∞ ai ,n = ∞ by the Toeplitz limit
theorem again, which completes the proof. �

Proof of Theorem 2.1.3. First assume that 0 ≤ c < ∞. Since limn→∞
�n,j/�

n = cxj , x is an 1/�-subinvariant measure of R by Theorem 2.1.1 and
Lemma 2.3, which implies that

∞∑
i=0

xir
(n)
i ,j

xj�n
≤ 1�

Let

bj ,n =
∞∑
i=0

�1,i

xi

xi r
(n)
i ,j

xj�n
�

Then,

�n+1e

�n+1
= 1

�

∞∑
j=0

xj
∞∑
i=0

�1,i

xi

xi r
(n)
i ,j

xj�n
= 1

�

∞∑
j=0

xj bj ,n �

Clearly,

lim
n→∞

�n+1,j

�n+1
= cxj = xj

�
lim
n→∞

∞∑
i=0

�1,i

xi

xi r
(n)
i ,j

xj�n
= xj

�
lim
n→∞

bj ,n ,

or limn→∞ bj ,n = c�. From �1,i/xi < M , we also have bj ,n ≤ M < ∞. It follows
from the dominated convergence theorem that

lim
n→∞

�n+1e

�n+1
= 1

�

∞∑
j=0

xj lim
n→∞

bj ,n = c
∞∑
j=0

xj �

If c = ∞, we have

�ne

�n+1
>

�n,1

�n
→ ∞ as n → ∞,

which completes the proof. �

Proof of Theorem 2.2.1. Based on the matrix-geometric form solution
given in (2), we have (17), or

�n+1,j

�n+1
= xj

�

∞∑
i=0

�1,i

xi

xi r
(n)
i ,j

xj�n
, (19)

where r (n)i ,j are entries of Rn .
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(a) It follows from that xR ≤ �x that xRn ≤ �nx, which implies that

∞∑
i=0

xir
(n)
i ,j

xj�n
≤ 1� (20)

Replacing the condition �1,j/xj ≤ M and (20) in the equality (19) leads
to the conclusion.
Part (b) can be proved similarly, and part (c) can be obtained from
(a) and (b). �

Proof of Theorem 2.2.2. (a) It follows from that Ry ≤ �y that Rny ≤
�ny, which implies that

∞∑
j=0

r (n)i ,j yj
yi�n

≤ 1� (21)

Replacing the conditions
∑

i �1,i yi < ∞ and 1/yj ≤ M < ∞ uniformly, and
(21) in the equality (17) leads to

�n+1e

�n+1
= 1

�

∞∑
i=0

�1,i

( ∞∑
j=0

r (n)i ,j

�n

)

= 1
�

∞∑
i=0

�1,i

( ∞∑
j=0

1
yj

r (n)i ,j yj
yi�n

)
yi ≤ M

�

∞∑
i=0

�1,i yi < ∞�

Part (b) can be proved similarly, and part (c) can be obtained from (a)
and (b). �

Proof of Theorem 2.3.1. First, we assume that the conditions in (1)
hold. Write

�n,j

	n
= e log

�n,j
	n = e

n

(
log �n,j

n −log 	

)
�

It follows from the assumption

lim
n→∞

�n,j

	n
= 0, for all 	 ≥ � (22)

that we must have

lim
n→∞

log �n,j

n
def= log �j ≤ log �,
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Light-Tailed Behavior in QBD Processes 65

or �j ≤ �, since otherwise there would exist �j > 	 > � and a subsequence
��nk ,j/	

nk � such that limk→∞ log �nk ,j/nk > log 	, which implies

lim
k→∞

�nk ,j

	nk
= lim

k→∞
e log

�nk ,j
	nk = lim

k→∞
enk

( log �nk ,j
nk

−log 	
)

= ∞,

which contradicts to the assumption (22) for all 	 ≥ �. Suppose that
�j < �, or

lim
n→∞

log �n,j

n
< log ��

Then, there would exist a 	 < � such that �n,j/	
n ≤ 1, when n is sufficiently

large, which contradicts to the second condition in (a). Hence, �j = � must
hold. That is, �n,j has a light tail along level direction with the decay rate �.
Clearly, �n,j does not have an exact geometric decay since limn→∞

�n,j

�n
= 0.

We can similarly prove the result under assumption (2). �

Notice that �R always provides a lower bound for the decay rate as
stated below, which is also used in the proof to Theorem 2.3.2.

Lemma 3.2. For the QBD process defined in (1), the convergence norm �R serves
as a lower bound for the decay rate of the joint probabilities �n along the level
direction.

Proof of Lemma 3.2. It is a direct consequence of the definition of �R
and the matrix-geometric form solution for �n . �

Proof of Lemma 2.3.1. By Theorem 2.3.1, it is sufficient to show that for
� < �R , limn→∞ �n,j/�

n = ∞. By the definition of �(R)i ,j and the assumption
that there exists an ij such that �ij ,j = 1/�R , for � < �R , r (n)ij ,j /�

n is
unbounded; or limn→∞ r (n)ij ,j /�

n = ∞. The theorem follows now from

lim
n→∞

�n+1,j/�
n+1 = lim

n→∞
1
�

∞∑
k=0

�1,k

r (n)k,j

�n
≥ lim

n→∞
1
�
�1,ij

r (n)ij ,j

�n
= ∞� �

Proof of Theorem 2.3.2. By �n+1 = �1Rn and the condition in (11), we
obtain

�n+1,j

�n+1
=

∞∑
i=0

�1,i r
(n)
i ,j

�n+1
=

N∑
i=0

�1,i

r (n)i ,j

�n+1
+

∞∑
i=N+1

�1,i

xi

xi r
(n)
i ,j

�n+1
,
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where N is an integer such that for any i > N , �1,i/xi ≤ 
, where 
 is a
positive number.

By the condition in (10), for fixed j and 1 ≤ i ≤ N , r (n)i ,j /�n ≤ 
 holds
for all large enough n. Since xR ≤ �x, we have xRn ≤ �nx for all n, which
implies

∞∑
i=0

xir
(n)
i ,j

�n
≤ xj �

Therefore, for fixed j and all large enough n, we obtain

�n+1,j

�n+1
≤ 


�

N∑
i=0

�1,i + 


∞∑
i=N+1

xir
(n)
i ,j

�n+1
≤

(
1 + xj
�

)

�

Since 
 can be chosen arbitrarily small for fixed j , equation (12) is proved.
When equation (12) is true for � = �R , the results directly follow from

Lemma 2.3.1. �

Proof of Theorem 2.3.3. First, we assume that Set I of conditions holds.
It follows from the matrix-geometric form solution that

�n+1e

�n+1
r

= �1r ne
�n+1
r

=
∑∞

j=0

∑∞
i=0 �1,i r

(n)
i ,j

�n+1
r

�

For any given 
 > 0, we choose N such that �1,i/xi < 
 for i > N , and K
such that

∑∞
j=K+1 xj < 
. Also, we choose L such that r (n)i ,j /�nR < 
/(K + 1)

for 0 ≤ i ≤ N , 0 ≤ j ≤ K , and n > L. Then, for n > L, we have

�n+1e

�n+1
r

=
K∑
j=0

N∑
i=0

�1,i

r (n)i ,j

�n+1
r

+
∞∑
j=0

∞∑
i=N+1

�1,i

xi

xi r
(n)
i ,j

�n+1
r

+
∞∑

j=K+1

N∑
i=0

�1,i

xi

xi r
(n)
i ,j

�n+1
r

≤
{



N∑
i=0

�1,i + 


∞∑
j=0

xj + max
1≤i≤N

{
�1,i

xi

} ∞∑
j=K+1

xj

}
1
�R

≤
{
1 +

∞∑
j=0

xj + max
i≥1

{
�1,i

xi

}}



�R
�

Since 
 can be made arbitrarily small, the first result in (14) is proven.
The second result is a direct consequence of the first result in (14) and
Lemma 3.2.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
a
n
a
d
i
a
n
 
R
e
s
e
a
r
c
h
 
K
n
o
w
l
e
d
g
e
 
N
e
t
w
o
r
k
]
 
A
t
:
 
1
3
:
1
1
 
1
3
 
F
e
b
r
u
a
r
y
 
2
0
0
9



Light-Tailed Behavior in QBD Processes 67

Next, we assume that Set II of conditions holds. Similar to the above
proof, the result can be obtained using the following expression:

�n+1e

�n+1
r

=
K∑
j=0

N∑
i=0

�1,i

r (n)i ,j

�n+1
r

+
∞∑
j=0

∞∑
i=N+1

�1,i

r (n)i ,j yj
�n+1
r

1
yj

+
∞∑

j=K+1

N∑
i=0

�1,i

r (n)i ,j yj
�n+1
r

1
yj
� �

4. APPLICATIONS

The results obtained in previous sections can be applied to various
queueing systems, including the following two examples.

4.1. Polling System

We consider an exhaustive polling system with one server switching
between two waiting lines that contain type 1 and type 2 customers,
respectively. At any time, if the server is serving a type k customer, k =
1, 2, it will keep serving type k customers, and switch over to serving the
other type of customer only when the queue for type k customers becomes
empty. The server goes into idle state only if there is no customer in
the system; and it becomes activated immediately upon the arrival of a
new arrival. We assume that there is no switchover time for the server
between the two types of customers. The arrival processes for both types
of customers are Poisson and the service times are exponential with rates
�1, �2, 
1, and 
2, respectively. Let q1(t) and q2(t) be the queue length of
type 1 and type 2 customers in the system at time t , and let S(t) be the
status of the server at time t , where

S(t) =



0, when the server is idle,
1, when the server is serving a type 1 customer,
2, when the server is serving a type 2 customer�

It is easy to see that �(q1(t), (S(t), q2(t))); t ≥ 0� is a Markov chain with a
state space �(0, 0, 0)� ∪ �(0, 2, j); j = 1, 2, � � � � ∪ �(n, (1, j));n = 1, 2, � � � , and
j = 0, 1, 2, � � � � ∪ �(n, (2, j));n = 1, 2, � � � , and j = 1, 2, � � � �. It is well known
that the Markov chain is ergodic if and only if �1/
1 + �2/
2 < 1, which is
assumed to be true throughout this section. Let � = (�0, �1, �2, � � � ) be the
stationary probability vector of the Markov chain partitioned according to
the level, where

�0 = (�0,0, �0,2,1, �0,2,2, �0,2,3, � � � ),
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�n = (�n,1, �n,2), n ≥ 1,

with

�n,1 = (�n,1,0, �n,1,1, �n,1,2, � � � ),

�n,2 = (�n,2,1, �n,2,2, �n,2,3, � � � )�

In the following, we first focus on the tail asymptotics of �n,2,j for every
fixed j , or the characterization of the tail asymptotics for the number
of type-1 customers when the server is serving a type-2 customers. The
analysis of tail asymptotics of �n,1,j for every fixed j can be similarly done
by interchange q1 and q2.

Let P = I + Q /(�1 + �2 + 
1 + 
2), where I is the identity matrix.
Then, P is a transition probability matrix having the same stationary
probability vector � of Q . Without loss of generality, we assume that �1 +
�2 + 
1 + 
2 = 1. Then, the detail of A, B, and C in the probability matrix
P in (1) are given by

A = �1I , B = I +
[
B1 0
B3 B2

]
, C =

[

1I

0

]

with

B1 =




2 �2


2 �2
� � �

� � �
� � �


 , B2 =




1 �2

2 
1 �2


2 
1 �2
� � �

� � �
� � �


 ,

B3 =




2

0
0

� � �


 �

The stationary distribution � has a matrix-geometric form solution
�n = �1Rn−1, n = 1, 2, � � � , where

R =
[
R1 0
R3 R2

]

according to the specific structures of A, B, and C . Notice that R1, R2, and
R3 are the minimal nonnegative solutions to

R1 = �1I + R1B1 + R 2
1
1, (23)
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Light-Tailed Behavior in QBD Processes 69

R2 = �1I + R2B2, (24)

R3 = R3B1 + R2B3 + 
1(R3R1 + R2R3)� (25)

For the tail asymptotics of �n,2,j for every fixed j , we can concentrate
on the analysis of the matrix R2, which can be expressed as

R2 = �1(I − B2)
−1 = �1

∞∑
n=0

Bn
2 � (26)

Lemma 4.1.1. (a) B2 is irreducible; (b) the convergence norm of B2 is �B2 =

1 + 2

√
�2
2; and (c) B2 is 1/�B2 -transient and has the following 1/�B2 -invariant

measure x = (xi) and vector y = (yi):

xi = i
(√

�2


2

)i

, yi = i
(√


2

�2

)i

, i ≥ 1�

Proof of Lemma 4.1.1. (a) is obvious. By Lemma 2.1 in Kijima[10], (b) is
true, and B2 is 1/�B2 -transient. (c) is obtained by a direct calculation. �

Based on the above lemma, we have the following properties on R2.

Lemma 4.1.2. (a) R2 is irreducible; (b) the convergence norm of R2 is given by

�R2 = �1

�1 + (√

2 − √

�2
)2 ;

and (c) R2 is 1/�R2 -transient, and x and y given in Lemma 4.1.1 are also a
1/�R2 -invariant measure and vector of R2, respectively.

Proof of Lemma 4.1.2. The proof is obvious by noticing (24) and (26).
�

Theorem 4.1.1. Both �n,2 and the marginal distribution �n,2e have a light-
tailed decay as n the number of type-1 customers in the system goes to infinity with
the same �R2 as their decay rate, but neither of them has an exact geometric decay.

Proof of Theorem 4.1.1. Since R2 is 1/�R2 -transient, equation (10) is
satisfied for � = �R2 . Therefore, according to Theorem 2.3.2, �n,2 has the
nongeometric light-tailed decay rate �R2 . The proof is complete by a similar
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argument by applying Theorem 2.3.3 to the marginal vector �n,2e. In order
to apply Theorem 2.3.3, we introduce x̃ = (x̃i) as

x̃i =
(√

�2


2

)i

�

Then x̃R ≤ �R2 x̃, i.e., x̃ is a 1/�R2 -subinvariant measure of R2, which satisfies∑
i x̃i < ∞. Now, all conditions of Theorem 2.3.3 are satisfied. �

If we interchange the role of q1(t) and q2(t) in the above analysis, the
following conclusion can be reached.

Corollary 4.1.1. Both �n,1 and the marginal distribution �n,1e have a light-
tailed decay as n the number of type-2 customers in the system goes to infinity with
the same decay rate

�2

�2 + (√

1 − √

�1
)2 ,

but neither of them has an exact geometric decay.

4.2. Gated Random Order Service Queue

Consider an M/M/1 queue with a service room and a waiting room,
which was considered by Resing and Rietman[25] using the compensation
procedure to compute the joint stationary probability distribution. Our
focus is on the analysis of tail asymptotics.

This model is a variation of the standard M/M/1 queue by adding
a gated waiting room to the system. The original buffer (queue) is
then called the service room. Specifically, upon arrival of a customer, if
the service room is nonempty, the arriving customer enters the gated
waiting room and waits until all customers in the service room complete
their services. When the service room becomes empty, all customers in
the waiting room are instantaneously transferred into the service room
in random order, in which they will receive their services. However,
if upon arrival, the service room is empty, the arriving customer goes
directly into the service room and receives its service immediately. Assume
that customers arrive according to a Poisson process with rate � and
the service times of the customers are exponential with the same rate

, satisfying the stability condition: � = �/
 < 1. Let X1(t) and X2(t)
be the number of customers in the waiting room and in the service
room including the customer receiving the service at time t , respectively.
Then, �(X1(t), (X2(t))); t ≥ 0� is a Markov chain with a state space �(0, j);
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Light-Tailed Behavior in QBD Processes 71

j = 0, 1, 2, � � � � ∪ �(i , j); i , j = 1, 2, � � � �. Let the stationary probability vector
� of the Markov chain be partitioned as � = (�0, �1, �2, � � � ), where

�0 = (�0,0, �0,1, �0,2, � � � ) and �n = (�n,1, �n,2, � � � ), n ≥ 1,

which satisfy the following stationary equations:

(� + 
)�0,0 = 
�0,1 + 
�0,0,

(� + 
)�0,1 = ��0,0 + 
�1,1 + 
�0,2,

(� + 
)�0,n = 
�n,1 + 
�0,n+1, n ≥ 2,

(� + 
)�k,n = ��k−1,n + 
�k,n+1, k,n ≥ 1�

Upon uniformization, we can convert the infinitesimal generator to a
transition probability matrix P given as

P =




B0 A0

C1 B A
C2 B A
���

� � �
� � �

���
� � �



,

where

B = 1
1 + �

E and A = �

1 + �
I

with

E =



0
1 0

1 0
� � �

� � �


 �

The details of the other matrices are not of interest in our analysis.
The stationary distribution � has a matrix geometric form solution:
�n = �1Rn−1, n = 1, 2, � � � , where R is the minimal nonnegative solution to
R = A + RB.

Lemma 4.2.1. For the gated random order service queue, we have the following:

(a) R = �

1+�

∑∞
k=0

(
1

1+�

)k
E k.

(b) limn→∞ Rn

�n
= 0 for �

1+�
< � ≤ 1.
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(c) For �

1+�
< � ≤ 1, R has a 1/�-invariant measure w = (w1,w2, � � � ) given by

wk+1 = 	k�w1, where

	� = �(1 + �) − �

�
�

In particular, when � = �, we have 	� = �. That is, x = (1, �, �2, � � � )
satisfies xR = �x. In the case that 0 < � ≤ �

1+�
, R has no positive 1/�-

subinvariant measure.
(d) limk→∞

�1,k
xk

= limk→∞
�1,k
�k−1 = 0 and limk→∞

�1,k
wk

= limk→∞
�1,k

	k−1
� w1

= ∞ for
�

1+�
< � < �.

Proof of Lemma 4.2.1. (a) Let R ∗ = �

1+�

∑∞
k=0(

1
1+�

)kE k , the summation
in (i). Then, R ∗ is finite and nonnegative by noticing that Ee ≤ e and
therefore Ene ≤ e, for all n ≥ 0. By direct calculations, we can easily check
that R ∗ is a solution to

R = A + RB = �

1 + �
I + 1

1 + �
RE , (27)

which implies that

R ∗
(
I − 1

1 + �
E

)
= �

1 + �
I � (28)

To see that R ∗ is the minimal nonnegative solution to R = A + RB, notice
that by equation (28), any nonnegative solution R must satisfy (after N
iterations)

R = �

1 + �

N∑
k=0

(
1

1 + �

)k

E k +
(

1
1 + �

)N

RN+1E �

Taking N to infinity on the both sides, we obtain

R = R ∗ + lim
N→∞

(
1

1 + �

)N

RN+1E ≥ R ∗,

since R is nonnegative. Thus, R ∗ is the minimal nonnegative solution.

(b) Based on (i) and mathematical induction, we can show that

Rn =
(

�

1 + �

)n ∞∑
k=0

(
n − 1 + k

k

) (
1

1 + �

)k

E k , for all n ≥ 1�
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Let Rn = (r (n)i ,j ). From the structure of E , we have

r (n)j+k,j =
(

�

1 + �

)n (
n − 1 + k

k

) (
1

1 + �

)k

, k = 0, 1, 2, � � � ,

and r (n)i ,j = 0 whenever i < j , from which the property in (ii) is immediate.

(c) This can be verified by direct calculations based on w = wR ,
where R is given in (i).

(d) It follows from the result in Resing and Rietman[25] that

�1,k = �k−1
∞∑

m=1

am,kbm ,

where

am,k =
(

1 − �m

1 − �m+1

)k−1

and bm =
(
�(1 − �m)

1 − �m+1

)(
�3+m

(1 − �m+1)(1 − �m)

)
�

Clearly,
∑∞

m=1 bm < ∞ and for each m, limk→∞ am,k = 0, and am,k ≤ 1.
Therefore, by the dominated convergence theorem,

lim
k→∞

�1,k

xk
= �−1

∞∑
m=1

bm lim
k→∞

am,k = 0�

For �

1+�
< � < �, by Lemma 4.2.1(3), we have wk+1 = 	k�w1. Clearly,

�

	�
>

1 since 	� = �(1+�)−�

�
< �. It follows that there exists a positive integer m0

such that

1 − �m0−1

1 − �m0

�

	�
> 1

since

lim
m→∞

1 − �m−1

1 − �m
= 1�

Hence, we have

�1,k

	k−1
�

= �k−1

	k−1
�

∞∑
m=1

bm

(
1 − �m−1

1 − �m

)k−1

≥ �k−1

	k−1
�

bm0

(
1 − �m0−1

1 − �m0

)k−1

−→ ∞, as k → ∞,

since bm > 0 for every m. This completes the proof of the lemma. �
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Theorem 4.2.1. Both the joint distribution �n and the marginal distribution
�ne have a light-tailed decay with the same decay rate �, but neither of them has an
exact geometric decay.

Proof of Theorem 4.2.1. Lemma 4.2.1(b), (c) and (d) imply condition
(10). Therefore, we can apply Theorem 2.3.2 to conclude the light-
tailed behavior along the level direction. The conclusion for the marginal
distribution can be similarly done by applying Theorem 2.3.3. �

As a conclusion, we make the following remarks. We expect that the
main result or idea presented in this article can be used to analyze other
interesting models. In combination with the large deviations method, it
is promising to extend the aforementioned study to multi-dimensional
systems.
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