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Abstract 
Markovian arrival processes were introduced by Neuts in 1979 (Neuts 1979) and have been used 

extensively in the stochastic modeling of queueing, inventory, reliability, risk, and telecommunications 
systems. In this paper, we introduce a constructive approach to define continuous time Markovian 
arrival processes. The construction is based on Poisson processes, and is simple and intuitive. Such a 
construction makes it easy to interpret the parameters of Markovian arrival processes. The construction 
also makes it possible to establish rigorously basic equations, such as Kolmogorov differential 
equations, for Markovian arrival processes, using only elementary properties of exponential 
distributions and Poisson processes. In addition, the approach can be used to construct continuous time 
Markov chains with a finite number of states 
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1. Introduction 
Markovian arrival processes are a popular 

tool for modeling arrival processes of stochastic 
systems such as queueing systems, reliability 
systems, telecommunications networks, 
inventory and supply chain systems, and risk 
and insurance systems. The popularity of 
Markovian arrival processes comes from i) its 
versatility in modeling stochastic systems; ii) its 
Markovian property that leads to Markovian 
structures; and iii) the maneuverability in the 
resulting Markov chains. In this paper, we 
introduce a simple, yet mathematically rigorous, 
approach to constructing Markovian arrival 

processes. As a result, learning and using 
Markovian arrival processes requires only basic 
knowledge of exponential distributions and 
Poisson processes.  

Counting processes are important stochastic 
processes for science and engineering. In order 
to capture the characteristics of real stochastic 
processes, a number of counting processes have 
been introduced. Some well-known counting 
processes are Poisson processes, compound 
Poisson processes, Markov modulated Poisson 
processes, renewal processes, and semi-Markov 
processes (Cinlar 1969). An interesting and 
useful way to generate counting processes is by 



He: Construction of Continuous Time Markovian Arrival Processes 
352  J Syst Sci Syst Eng 

modeling the transitions of Markov chains 
(Rudemo 1973). By utilizing this idea in a 
systematic manner, Neuts introduced Markovian 
arrival processes as generalizations of Poisson 
processes, compound Poisson processes, and 
Markov modulated Poisson processes (Neuts 
1979). Since their introduction in 1979, 
Markovian arrival processes have been used in 
the study of various queueing models in the 
1980’s (see Neuts (1981, 1989) and the 
references therein). The name of Markovian 
arrival processes evolved from versatile 
Markovian point process (Neuts 1979), to Neuts 
process (Ramaswami 1981), and then to 
non-renewal arrival process (Lucantoni, 
Meier-Hellstern & Neuts 1990), until it settled at 
(batch) Markovian arrival processes in 
Lucantoni (1991). Lucantoni (1991) also 
introduced a simple matrix representation for 
Markovian arrival processes, which made it easy 
to interpret parameters of Markovian arrival 
processes and to use Markovian arrival 
processes in stochastic modeling. Asmussen & 
Koole (1993) showed that (batch) Markovian 
arrival processes can approximate any stochastic 
arrival processes, which provided a theoretical 
basis for the use of Markovian arrival processes. 
In the 1990’s, Markovian arrival processes were 
generalized to marked Markovian arrival 
processes that can be used to model arrival 
processes with multi-types of arrivals (He 1996, 
He & Neuts 1998). Such an extension led to the 
study of a number of queueing models with 
multi-types of customers (He 1996, 2001, 
Takine 2001), where the arrival processes of 
different types of customers are correlated. 
Meanwhile, applications of Markovian arrival 
processes were found in telecommunications 

networks, inventory-production management, 
risk and insurance analysis. The wide 
applicability of Markovian arrival processes 
stimulated the study of the characterization of 
Markovian arrival processes (e.g., Narayana & 
Neuts 1992, Neuts 1992, 1995, Neuts, Liu & 
Narayana 1992). For the development and 
application of Markovian arrival processes, we 
refer to Latouche & Ramaswami (1999) and 
Chakravarthy (2001).  

The focus of this paper is on a constructive 
approach to define continuous time Markovian 
arrival processes. This new approach is based on 
Poisson processes, instead of continuous time 
Markov chains used in the classical definition. 
With the new definition, it is easy to understand 
the parameters of Markovian arrival processes 
intuitively. The new definition is simple and 
intuitive, yet it is mathematically rigorous. Basic 
results on Markovian arrival processes, such as 
the well-known (generalized) Kolmogorov 
differential equations, can be proved rigorously 
based on the new definition and some 
elementary properties of exponential 
distributions. In addition, the new definition 
leads to an easy way to simulate Markovian 
arrival processes. Therefore, the new definition 
makes it easy to introduce and to use Markovian 
arrival processes in stochastic modeling for both 
researchers and practitioners.  

The remainder of the paper is organized as 
follow. In Section 2, exponential distributions, 
Poisson processes, and their properties are 
introduced. A constructive approach to define 
continuous time Markov chains with a finite 
number of phases is introduced in Section 3. 
Section 4 gives the definitions of Markovian 
arrival processes and batch Markovian arrival 
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processes. Section 5 gives the definition of 
marked Markovian arrival processes. Some 
interesting examples of marked Markovian 
arrival processes are also presented in Section 5. 
Section 6 concludes the paper. 

2. Preliminaries 
In this section, we define exponential 

distributions and Poisson processes. Properties 
used in later sections are collected. All the 
properties can be proved by routine calculations. 
We refer to Ross (2007) for the proofs of the 
properties.  
Definition 2.1 A nonnegative random variable X 
has an exponential distribution if its probability 
distribution function is given by  

( ) { } 1 exp{ }, 0F t P X t t tλ= ≤ = − − ≥    (1) 

where λ is a positive real number. We call X an 
exponential random variable with parameter λ.  
Proposition 2.1 Properties of exponential 
distributions used in this paper are collected.  
i) Assume that X has an exponential 

distribution with parameter λ. Then 
P{X>t+s|X>s} = P{X>t} holds for t ≥ 0 and 
s≥0, which is called the memoryless property. 

The memoryless property says that the 
distribution of the residual time X–s, given 
X>s, denoted by X–s|X>s, is independent of 
the time s that has elapsed.  

ii) Assume that X1, X2, and X3 are three 
independent exponential random variables 
with parameters λ1, λ2, and λ3, respectively. 
We have, for small t, 

2 2
1 2 1 2{ } 0.5 ( ) ( );P X X t t o t o tλ λ+ ≤ = + =  

1 1 2 1 3{ min{ , } , }P X X X t X X t= ≤ + >  

1 ( )t o tλ= +                    (2) 

iii) Assume that {Xj, 1 ≤ j ≤ n} are independent 
exponential random variables with 
parameters {λj, 1 ≤ j ≤ n},  respectively. 
Then X=min{X1,…,Xn} is exponentially 
distributed with parameter λ1+…+λn. (See 
Figure 1 for n = 2.) 

iv) Assume that {Xj, 1 ≤ j ≤ n} are independent 
exponential random variables with 
parameters {λj, 1 ≤ j ≤ n}, respectively. Then 
P{X1 = min{X1,… , Xn}} = λ1/(λ1+…+λn). 

v) Assume that {Xn, n ≥ 0} are independent 
exponential random variables with the same 
parameter λ. Assume that random variable N, 
independent of {Xn, n ≥ 0}, has a geometric 

 

X
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Figure 1 X = min{X1, X2} and its residual at time s  
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distribution with parameter p on positive 
integers {1, 2, …}, i.e., P{N=n} = pn–1(1–p), 
n ≥ 1.  Define 1

N
n nY X==∑ . Then Y has an 

exponential distribution with parameter 
(1–p)λ. 
Let {N(t), t ≥ 0} be a counting process, i.e., 

N(t) is the number of events occurring in [0, t]. 
An event can be a transition, the arrival of a 
customer, a demand, or the arrival of a group of 
customers. In fact, an event can be defined in 
any way or as anything meaningful. Poisson 
processes are special counting processes. The 
following definition is a constructive way to 
define Poisson processes (see Figure 2).  
Definition 2.2 A counting process {N(t), t ≥ 0} 
is called a Poisson process if { ( ) }N t n≤ =  

1 2 1{ }n nX X X X t++ + + + > , for n≥0 and t≥0, 
where {X1, X2, …, Xn, …} are independent 
exponential random variables with parameter λ.  
Proposition 2.2 For a Poisson process {N(t), t≥0} 
with parameter λ, we have  
i) N(0) = 0. 
ii) E(N(t)) = λt. Parameter λ is the average 

number of events per unit time. 
iii) Let Y be the time elapsed until the first event 

after time t (see Figure 3). Then Y has an 
exponential distribution with parameter λ. 
This is called the memoryless property of 
Poisson processes.  

3. Construction of CTMCs 
In this section, we construct continuous time 

Markov chains (CTMCs) based on Poisson 
processes defined in Section 2.  
Definition 3.1 Let {αi, 1≤ i ≤ m} be nonnegative 
numbers with a unit sum (i.e., α1+…+αm = 1), 
{qi,j, 1 ≤ i ≠ j ≤ m} nonnegative real numbers, 
and m a finite positive integer (m≥2). Assume 

1: , 0m
j j i i jq= ≠ >∑ , for 1 ≤ i ≤ m. A stochastic 

process {I(t), t≥0} on phases {1, 2, …, m} is 
defined as follows. 
1) Define m(m–1) independent Poisson 

processes with parameters {qi,j, 1≤ i ≠ j ≤ m}. 
If qi,j = 0, the corresponding Poisson process 
has no event at all.  

2) Determine I(0) by the probability 
distribution {αi, 1 ≤ i ≤ m}. 

3) At time t > 0, if I(t) = i, then I(t) stays in 
phase i until the first event occurs in the m–1 
Poisson processes corresponding to {qi,j, 1 ≤ 
j ≤ m, j ≠ i}, for 1 ≤ i ≤ m. If the event occurs 
at s (> t) and it comes from the Poisson 
process corresponding to qi,j, the process 
transits from phase i to phase j at time s, i.e., 
I(s–) = i and I(s) = j.  
The process {I(t), t≥0} is well-defined since, 

according to ii) in Proposition 2.1 and iii) in 
Proposition 2.2, the probability that two or more 
events from the same Poisson process or from 
different Poisson processes occur at the same 
time is zero. Figure 4 depicts a sample path of a 
process {I(t), t≥0} with m = 3 (the solid line), 
which is generated by six Poisson processes 
(dashed lines). Note that for each phase i, 1 ≤ i ≤ 
3, there are two Poisson processes associated 
with it. Events of the Poisson processes are 
marked by “*”. In Figure 4, we have I(0) = 3. 
The first event of the two Poisson processes 
associated with q3,1 and q3,2 occurs at s = 0.5045, 
and comes from the Poisson process associated 
with q3,1. Then the process {I(t), t≥0} transits to 
phase 1 at s = 0.5045. The rest of the sample 
path is interpreted similarly. 

Next, we show that the process {I(t), t≥0} is 
a CTMC. 
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Figure 2 A sample path of a Poisson process 

 

Figure 3 Memoryless property of Poisson processes   
Lemma 3.1 For the process {I(t), t≥0}, we have 
i) The sojourn time of {I(t), t≥0} in phase i has 

an exponential distribution with parameter 

, ,1:
m

i i i jj j iq q= ≠= −∑ , for 1 ≤ i ≤ m; and  

ii) The probability that the next phase is j is 
given by ri,j ≡ qi,j/(–qi,i), given that the 
current phase is i, for 1 ≤ i ≠ j ≤ m. 

Proof. i) is obtained by iii) of Proposition 2.1 
and iii) of Proposition 2.2. ii) is obtained by iv) 
of Proposition 2.1 and iii) of Proposition 2.2. 
This completes the proof of Lemma 3.1.      ■ 

Theorem 3.2 The stochastic process {I(t), t≥0} 
is a CTMC with m phases. The infinitesimal 
generator of CTMC {I(t), t≥0} is an m×m matrix 
Q = (qi,j).  
Proof. By definition, {I(t), t≥0} is a CTMC if, 
for t>s≥0, 

{ ( ) | ( ) , ( ) , 1 }uP I t j I s i I u i u s= = = ≤ <  
{ ( ) | ( ) }, 1 , ,uP I t j I s i i i j m= = = ≤ ≤   (3) 

Since all Poisson process have memoryless 
property, equation (3) holds. Thus, {I(t), t≥0} is 
a CTMC.  

 

 
Figure 4 Poisson processes and the corresponding CTMC  
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CTMCs can also be defined as: 1) The sojourn 
time in every phase has an exponential 
distribution; and 2) Transitions between phases 
are determined by a discrete time Markov chain. 
By Lemma 3.1, the sojourn time in each phase is 
exponentially distributed with parameter –qi,i, 1 
≤ i ≤ m. Also by Lemma 3.1, the transitions of 
phases are governed by a finite Markov chain 
with transition probabilities ri,j = qi,j /(–qi,i), for 1 
≤ i ≠ j ≤ m. Then the transition rates are given by 
qi,j = (–qi,i)ri,j, for 1 ≤ i ≠ j ≤ m. By definition, the 
matrix Q is the infinitesimal generator of {I(t), 
t≥0}. Once the initial state is chosen by α = 
(α1, …, αm), the Markov chain is determined 
probabilistically. This completes the proof of 
Theorem 3.2.  ■ 

Theorem 3.2 indicates that any CTMC with a 
finite number of states can be defined by 
Definition 3.1. Definition 3.1 leads to intuitive 
understanding of the parameters of CTMCs. 
Parameters {qi,j, 1 ≤ i ≠ j ≤ m} are the arrival 
rates of the m(m–1) Poisson processes used to 
define the CTMC and they reflect the 
frequencies of the transitions from one phase to 
another. This explains why {qi,j, 1 ≤ i ≠ j ≤ m} 
are called the transition rates and {–qi,i, 1 ≤ i ≤ m} 

are called the total transition rates in the 
literature. We call the m(m–1) Poisson processes 
the underlying Poisson processes of the CTMC 
{I(t), t≥0}.  

Definition 3.1 also leads to a simple and 
mathematically rigorous proof of the 
well-known Kolmogorov differential equations 
for CTMCs. Define pi,j(t) = P{I(t)=j |I(0)=i}, for 
t ≥ 0 and 1 ≤ i, j ≤ m. Denote by P(t) = (pi,j(t)), 
an m×m matrix, for t≥0.  
Theorem 3.3 For the CTMC {I(t), t≥0}, we 
have P′(t) = P(t)Q = QP(t), for t>0, and P(0) = 
I, where I is the identity matrix.  
Proof. Let { ,

ˆ
i jX , 1 ≤ i ≠ j ≤ m} be independent 

exponential random variables with parameters 
qi,j, respectively. Let {Xi,j, 1 ≤ i ≠ j ≤ m} be the 
times until the next event in the Poisson 
processes corresponding to parameters {qi,j, 1 ≤ i 
≠ j ≤ m}, respectively. By ii) of Proposition 2.2, 
{Xi,j, 1 ≤ i ≠ j ≤ m} are independent exponential 
random variables with parameter qi,j, 
respectively. Assume that {Xi,j, 1 ≤ i ≠ j ≤ m} 
and { ,

ˆ
i jX , 1 ≤ i ≠ j ≤ m} are independent. 

Denote by J(t, t+δt) the number of transitions 
occurring in the interval (t, t+δt]. Conditioning 
on I(t), we have the following calculations: 

,
1 0

( ) { ( ) | (0) } { ( ) , ( , ) | ( ) , (0) }
m

i j
k n

p t t P I t k I i P I t t j J t t t n I t k I iδ δ δ
∞

= =
+ = = = + = + = = =∑ ∑  

,
1 0

( ) { ( ) , (0, ) | (0) }
m

i k
k n

p t P I t j J t n I kδ δ
∞

= =
= = = =∑ ∑  

,
1

( ) { ( ) , (0, ) 0 | (0) }
m

i k
k

p t P I t j J t I kδ δ
=

= = = =∑  

,
1

( ) { ( ) , (0, ) 1 | (0) }
m

i k
k

p t P I t j J t I kδ δ
=

+ = = =∑  

,
1 2

( ) { ( ) , (0, ) | (0) }
m

i k
k n

p t P I t j J t n I kδ δ
∞

= =

⎛ ⎞
+ = = =⎜ ⎟

⎝ ⎠
∑ ∑                            (4) 
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Using ii), iii), and iv) of Proposition 2.1, we obtain 

, ,
1

( ) { ( ) , (0, ) 0 | (0) } ( ) { ( ) , (0, ) 0 | (0) }
m

i k i j
k

p t P I t j J t I k p t P I t j J t I jδ δ δ δ
=

= = = = = = =∑  

{ }, ,1 ,
( ) min { }i j j kk m k j

p t P X tδ
≤ ≤ ≠

= > , ,
1,

( ) 1 ( )
m

i j k j
k k j

p t q t o tδ δ
= ≠

⎛ ⎞⎛ ⎞
⎜ ⎟= − +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑  (5) 

,
1

( ) { ( ) , (0, ) 1 | (0) }
m

i k
k

p t P I t j J t I kδ δ
=

= = =∑  

{ }, , , , ,1 , 1 ,1,

ˆ( ) min { } , min { }
m

i k k j k l k j j ll m l k l m l jk k j
p t P X X t X X tδ δ

≤ ≤ ≠ ≤ ≤ ≠= ≠
= = < + >∑  

( ), ,
1,

( ) ( )
m

i k k j
k k j

p t q t o tδ δ
= ≠

= +∑  (6) 

and 

,
1 2

( ) { ( ) , (0, ) | (0) }
m

i k
k n

p t P I t j J t n I kδ δ
∞

= =
= = =∑ ∑ { }, , ,1 , ,1

( ) min { }
m

i k k l l jl m l k l jk
p t P X X tδ

≤ ≤ ≠ ≠=
= + ≤∑  

{ }, , ,
1 1 , ,

( )
m

i k k l l j
k l m l k l k

p t P X X tδ
= ≤ ≤ ≠ ≠

≤ + ≤∑ ∑ ( )o tδ=                   (7) 

 
Combining equations (4), (5), (6), and (7) 

yields 

( ), , ,( ) ( ) 1  i j i j j jp t t p t q tδ δ+ = +  

, ,
1,

( ) ( )
m

i k k j
k k j

p t q t o tδ δ
= ≠

+ +∑    (8) 

which leads to the Kolmogorov forward 
differential equation 

,
, ,

1

( )
( )

m
i j

i k k j
k

dp t
p t q

dt =
=∑             (9) 

The Kolmogorov backward differential 
equation can be shown similarly. This completes 
the proof of Theorem 3.3.                   ■ 

We remark that the advantage of Definition 
3.1 for CTMCs may disappear in the proof of 
the Kolmogorov differential equations if there 
are a countable number of phases. For CTMCs 
with a countable number of phases, there are 
technical issues, such as the existence of limits, 

in the above proof that needs advanced 
techniques to resolve. We also remark that the 
constructive approach cannot be extended to 
discrete time Markov chains, since multiple 
events can occur simultaneously for the discrete 
time case.  

Example 3.1 Consider a reliability system with 
two identical units and a repairman. If both units 
are functioning, then one is in work and the 
other one is on cold standby. If the unit in work 
fails, it is sent to the repairman for repair and the 
standby unit is put in work. If repair is 
completed before failure, the repaired unit is on 
cold standby. If failure occurs before repair 
completion, the failed unit has to wait for repair. 
A repaired unit is put in work immediately if the 
other unit has failed. The times to failure and 
repair times are exponentially distributed with 
parameters λ and μ, respectively.  
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The state of each component can be 0: in 
repair, 1: waiting for repair, 2: on cold standby; 
and 3: in work. The system has three phases 
(states): {(3, 2), (3, 0), (1, 0)}, since the two 
units are identical. Let I(t) be the status of the 
system at time t. The process {I(t), t≥0} can be 
defined by the following underlying Poisson 
processes.  
i) For phase (3, 2): A Poisson process (with 

parameter) λ. If an event occurs, the process 
{I(t), t≥0} transits to phase (3, 0). 

ii) For phase (3, 0): A Poisson process λ and a 
Poisson process μ. If an event from Poisson 
process λ occurs first, the process transits to 
phase (1, 0). If an event from Poisson 
process μ occurs first, the process transits to 
phase (3, 2).  

iii) For phase (1, 0): A Poisson process μ. If an 
event occurs, the process transits to phase (3, 
0). 
Then the infinitesimal generator is given by  

                (3, 2)    (3,0)      (1,0)
(3, 2) 0
(3,0)
(1,0) 0

Q
λ λ

μ λ μ λ
μ μ

−⎛ ⎞
⎜ ⎟= − −⎜ ⎟
⎜ ⎟−⎝ ⎠

   (10) 

If λ = 0.01 and μ = 0.5, the stationary 
distribution of the CTMC {I(t), t≥0} is θ = 
(0.9800, 0.0196, 0.0004), which, by definition, 
satisfies θQ = 0 and θe = 1, where e is the 
column vector of ones.  

4. Construction of MAPs and BMAPs 
In Section 3, only transitions between the 

underlying Poisson processes are considered. In 
this section, we define some special events, 
called arrivals, and keep track of the number of 
arrivals. The resulting process is a Markovian 

arrival process (MAP) or a batch Markovian 
arrival process (BMAP). We begin with the 
construction of MAPs.  
Definition 4.1 Let {αi, 1 ≤ i ≤ m} be 
nonnegative numbers with a unit sum, {d0,(i,j), 1 
≤ i ≠ j ≤ m} and {d1,(i,j), 1 ≤ i, j ≤ m} are 
nonnegative numbers, and m is a finite positive 
integer. Assume  

( )0,( , ) 0,( , ) 1,( , )1: 1
m m

i i i j i jj j i jd d d= ≠ == − +∑ ∑  < 0, 

for 1 ≤ i ≤ m. We define a stochastic process 
{(N(t), I(t)), t≥0} as follows.  
1) Define m(2m–1) independent Poisson 

processes with parameters {d0,(i,j), 1≤ i≠j ≤m} 
and {d1,(i,j), 1 ≤ i, j ≤ m}. If d0,(i,j) = 0 or d1,(i,j) 
= 0, the corresponding Poisson process has 
no event. 

2) Determine I(0) by the probability 
distribution {αi, 1 ≤ i ≤ m}. Set N(0) = 0. 

3) If I(t) = i, for 1 ≤ i ≤ m, I(t) and N(t) remain 
the same until the first event occurs in the 
2m–1 Poisson processes corresponding to 
{d0,(i,j), 1 ≤ j ≤ m, j ≠ i} and {d1,(i,j), 1≤ j ≤m}. 
If the next event comes from the Poisson 
process corresponding to d0,(i,j), the variable 
I(t) changes from phase i to phase j and N(t) 
does not change at the epoch, for 1 ≤ j ≤ m, 
j ≠ i; If the next event comes from the 
Poisson process corresponding to d1,(i,j), the 
phase variable I(t) transits from phase i to 
phase j and N(t) is increased by one at the 
epoch, i.e., an arrival occurs, for 1 ≤ j ≤ m.  

The random variable N(t) records the number 
of arrivals associated with the Poisson processes 
with parameters {d1,(i,j), 1 ≤ i, j ≤ m} occurring in 
[0, t] for t>0. Thus, the process {N(t), t≥0} is a 
counting process. We call the m(2m–1) Poisson 
processes the underlying Poisson processes of 
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the counting process. We call the process {I(t), 
t≥0} the phase process. Figure 5 depicts the 
sample paths of the underlying Poisson 
processes, the phase process {I(t), t≥0}, and the 
counting process {N(t), t≥0} for an MAP with m 
= 3. Poisson processes associated with {d0,(i,j), 1 
≤ i ≠ j ≤ m} are in blue dashed lines and Poisson 
processes associated with {d1,(i,j), 1 ≤ i, j ≤ m} 
are in red dashed lines. Events in blue star 
represent a transition without an arrival. Events 
in red star represent a transition with a potential 
arrival. 

In Figure 5, we have I(0) = 2. The first 
transition goes from phase 2 to 1 without an 
arrival at t = 0.2312. During the stay of the 
process {I(t), t≥0} in phase 1, there are two 
arrivals at t = 0.2882 and t = 0.4884. At t = 
1.0311, the process {I(t), t≥0} transits to phase 3 
without an arrival. At t = 2.0843, the process 
{I(t), t≥0} transits to phase 2 with an arrival. 
The rest of Figure 5 can be interpreted similarly.  

Similar to Lemma 3.1, the following results 
can be proved.  
Lemma 4.1 For the process {(N(t), I(t)), t≥0}, 
we have 

i) The sojourn time of {(N(t), I(t)), t≥0} in state 
(n, i) has an exponential distribution with 
parameter –d0,(i,i), for 1 ≤ i ≤ m;  

ii) The probability that the next phase is j and 
no arrival at the transition epoch is given by 
p0,(i,j) ≡ d0,(i,j)/(–d0,(i,i)), given that the current 
state is (n, i), for 1 ≤ i ≠ j ≤ m and n≥0.  

iii) The probability that the next phase is j and 
an arrival occurs at the transition epoch is 
given by p1,(i,j) ≡ d1,(i,j)/(–d0,(i,i)), given that the 
current state is (n, i), for 1 ≤ i, j ≤ m and 
n≥0.  
Let D0 = (d0,(i,j)), D1 = (d1,(i,j)), and D=D0+D1, 

three m×m matrices.  
Theorem 4.2 The stochastic process {I(t), t≥0} 
is a continuous time Markov chain with an 
infinitesimal generator D. 

Proof. The sojourn time of {I(t), t≥0} in phase i 
can be written as ,1 ,N

i i nnY Z==∑  where 

{ }, 0,( , ), 1,( , ),1 , 1 ,
min min { }, min { } ,i n i j n i j nj m j i j m

Z X X
≤ ≤ ≠ ≤ ≤

=

{X0,(i,j),n, X1,(i,j),n} are exponentially distributed 

with parameters {d0,(i,j),  d1,(i,j)}, respectively, all 

 

Figure 5 Sample paths of underlying Poisson processes, I(t), and N(t) of an MAP  
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the exponential distributions are independent, 
and N has a geometric distribution with 
parameter p1,(i,i). By ii) of Proposition 2.1, Zi,n 
has an exponential distribution with parameter 
–d0,(i,i). By v) of Proposition 2.1, Yi has an 
exponential distribution with parameter 
(–d0,(i,i))(1–p1,(i,i)) = –( d0,(i,i) + d1,(i,i)). Thus, the 
process {I(t), t≥0} is a CTMC. By ii) and iii) of 
Lemma 4.1, the probability that the process 
transits from phase i to phase j, given that a 
transition of phase was incurred, for i ≠ j, is 
given by (p0,(i,j) + p1,(i,j))/(1–p1,(i,i)), which implies 
that the transition rate from i to j is –(d0,(i,i) + 
d1,(i,i))(p0,(i,j) + p1,(i,j))/(1–p1,(i,i)) = –(p0,(i,j) + 
p1,(i,j))d0,(i,i) = d0,(i,i) + d1,(i,i). Thus, the 
infinitesimal generator of the CTMC {I(t), t≥0} 
is D = D0 + D1. This completes the proof of 
Theorem 4.2.           ■ 

In the literature, {I(t), t≥0} is called the 
underlying Markov chain of the corresponding 
MAP. In fact, in the literature, MAPs are defined 
on CTMCs, instead of Poisson processes.  
Theorem 4.3 The stochastic process {(N(t), I(t)), 
t≥0} is a continuous time Markov chain with an 
infinitesimal generator  

  

0 1

0 1

0 1

D D
D D

Q
D D

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

       (11) 

and an initial distribution ((α1,α2, …,αm),0,…,0). 
The pair (D0, D1) is called a matrix 
representation of the MAP.  
Proof. First, the state space of {(N(t), I(t)), t≥0} 
is {0, 1, 2, …}×{1, 2, …, m}. The variable N(t) 
is nondecreasing. Since all underlying Poisson 
processes are memoryless, the process {(N(t), 
I(t)), t≥0} is Markovian. By i) of Lemma 4.1, the 

sojourn time in state (n, i) is exponentially 
distributed with parameter –d0,(i,i). By ii) of 
Lemma 4.1, the transition probability from state 
(n, i) to state (n, j) is p0,(i,j), which implies that 
the transition rate from state (n, i) to state (n, j) 
is p0,(i,j)(–d0,(i,i)) = d0,(i,j), for 1 ≤ i ≠ j ≤ m. By iii) 
of Lemma 4.1, the transition probability from 
state (n, i) to state (n+1, j) is p1,(i,j), which 
implies that the transition rate from state (n, i) to 
state (n+1, j) is p1,(i,j)(–d0,(i,i)) = d1,(i,j), for 1 ≤ i, j 
≤ m. Therefore, the infinitesimal generator of 
CTMC {(N(t), I(t)), t≥0} is given in equation 
(11). This completes the proof of Theorem 4.3. 

■ 
We remark that, in the literature, Lemma 4.1 

and Theorem 4.3 are used to define MAPs. Next, 
we show one more way to define MAPs. Let τn 
be the time between the n-th and the (n+1)-st 
arrivals. Let Xn = I((τ1+…+τn–1)+). Conditioning 
on the phase of {I(t), t≥0} at time t, we obtain, 
for 1 ≤ i, j ≤ m, 

1{ ( ) , | (0) }nP I t t j t t t I iδ τ τ δ+ = < + + ≤ + =  

, 1,( , )
1

( ) ( ),
m

i k k j
k

p t d t o tδ δ
=

= +∑   (12) 

which leads to  

( )1 0 10 ,
{ , | } exp{ } .

t
n n n

i j
P X j t X i D s D dsτ+ = ≤ = = ∫
Then the semi-Markov chain {Xn, τn, n≥0} 
defines an MAP through the relationship {N(t) ≤ 
n} = {τ1+τ2+…+τn ≥ t}.  

The above four definitions of MAPs are 
equivalent. Similarly, there are four definitions 
for BMAPs (Definition 4.2) and MMAPs 
(Definition 5.1) to be introduced next.  

Define pi,j(n, t) = P{N(t) = n, I(t)=j | I(0)=i}, 
for 1 ≤ i, j ≤ m, and n ≥ 0, the conditional 
distribution of the number of arrivals in [0, t]. 
Denote by P(n, t) = (pi,j(n, t)), an m×m matrix, 



He: Construction of Continuous Time Markovian Arrival Processes 
J Syst Sci Syst Eng  361 

for t≥0 and n≥0. Similar to Theorem 3.3, based 
on Propositions 2.1 and 2.2, the following 
differential equations can be proved: P′(0, t) = 
P(0, t)D0, P(0, 0) = I, P′(n, t) = P(n, t)D0 + 
P(n–1, t)D1, P(n, 0) = 0, for n≥1, which leads to 
a result on the distribution of the number of 
arrivals.  
Theorem 4.4 For an MAP {(N(t), I(t)), t≥0} 
with a matrix representation (D0, D1), define 

*
0( , ) ( , ),n

nP z t z P n t∞
==∑  for z≥0. Then 

*
0 1( , ) exp{( ) }P z t D zD t= + . 

Proof. Multiplying by zn on both sides of P′(n, t) 
= P(n, t)D0 + P(n–1, t)D1, and summing up over 
n, yields  

*
* *

0 1
( , ) ( , ) ( , )P z t P z t D zP z t D
t

∂ = +
∂

   (13) 

which leads to the expected result. This 
completes the proof of Theorem 4.4.        ■ 

Based on Theorem 4.4, the average number 
of arrivals per unit time, called the (stationary) 
arrival rate, can be found as λ = θD1e, where θ 
is the stationary distribution of D (assuming that 
D is irreducible), i.e., θD = 0 and θe = 1.  
Example 4.1 (Example 3.1 continued) For the 
model introduced in Example 3.1, we are 
interested in the number of repairs in [0, t]. We 
define the events of Poisson processes 
associated with repairs as arrivals 
(corresponding to D1). The rest of the Poisson 
processes correspond to D0. Let N(t) be the 
number of repairs completed in [0, t]. Then it is 
easy to see that {(N(t), I(t)), t≥0} is an MAP with 
a matrix representation 

0

                 (3,2)   (3,0)   (1,0)  
(3, 2) 0
(3,0) 0 ,
(1,0) 0 0

D
λ λ

λ μ λ
μ

−⎛ ⎞
⎜ ⎟= − −⎜ ⎟
⎜ ⎟−⎝ ⎠

 

1

             (3,2)(3,0)(1,0)  
(3, 2) 0 0 0
(3,0) 0 0
(1,0) 0 0

D μ
μ

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

           

(14) 

If λ = 0.01 and μ = 0.5, the stationary 
distribution of {I(t), t≥0} is θ = (0.9800, 0.0196, 
0.0004) and the arrival rate θD1e = 0.009996, 
i.e., repair completion occurs 0.009996 times per 
unit time.  

In Definition 3.1, events of underlying 
Poisson processes trigger only one thing: a 
transition of phase for the CTMC {I(t), t≥0}. In 
Definition 4.1, events of underlying Poisson 
processes are categorized in two types: One type 
of events triggers only a transition of phase and 
the other type of events triggers a transition of 
phase and an arrival. To extend Definition 4.1, 
we consider events that trigger a batch of 
arrivals.  
Definition 4.2 Let {αi, 1 ≤ i ≤ m} be 
nonnegative numbers with a unit sum, {d0,(i,j), 1 
≤ i ≠ j ≤ m}, {dn,(i,j), 1 ≤ i, j ≤ m} are nonnegative 
numbers, for 1 ≤ n ≤ N < ∞, and m is a finite 
positive integer. Assume  

( )0,( , ) 0,( , ) ,( , )1: 1 1
m N m

i i i j n i jj j i n jd d d= ≠ = == − +∑ ∑ ∑  

< 0, for 1 ≤ i ≤ m. We define a stochastic process 
{(N(t), I(t)), t≥0} as follows. 
1) Define m((N+1)m–1) independent Poisson 

processes with parameters {d0,(i,j), 1 ≤ i ≠ j ≤ 
m} and {dn,(i,j), 1 ≤ i, j ≤ m, 1 ≤ n ≤ N}. If 
dn,(i,j) = 0, the corresponding Poisson process 
has no event. 

2) Determine I(0) by the probability 
distribution {αi, 1 ≤ i ≤ m}. Set N(0) = 0. 

3) If I(t) = i, for 1 ≤ i ≤ m, I(t) and N(t) remain 
the same until the first event occurs in the 
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(N+1)m–1 Poisson processes corresponding 
to {d0,(i,j), 1 ≤ j ≤ m, j ≠ i} and {dn,(i,j), 1≤j≤m, 
1 ≤ n ≤ N}. If the next event comes from the 
Poisson process corresponding to d0,(i,j), the 
variable I(t) changes from phase i to phase j 
and N(t) does not change at the epoch, for 1 
≤ j ≤ m, j ≠ i; If the next event comes from 
the Poisson process corresponding to dn,(i,j), 
the phase variable I(t) transits from phase i 
to phase j and N(t) is increased by n at the 
epoch, i.e., that a batch of n arrivals is 
associated with the event, for 1 ≤ j ≤ m and 
1 ≤ n ≤ N. 

An example of BMAP is shown in Figure 6. 
In Figure 6, a batch of size 2 arrives at t = 

1.8408 when the phase goes from 1 to 3.  

Similar to Theorems 4.2 to 4.4, it can be 
shown that {I(t), t≥0} and {(N(t), I(t)), t≥0} are 
CTMCs. That {(N(t), I(t)), t≥0} is a BMAP with 
matrix representation (D0, D1, …, DN), where Dn 
= (dn,(i,j)), for 0 ≤ n ≤ N. The infinitesimal 
generator of {I(t), t≥0} is D = D0 + …+DN. The 
conditional distributions of the number of 
arrivals in [0, t] can be obtained from 

( ){ }*
0( , ) exp N n

nnP z t z D t== ∑ . The arrival rate 

is λ = θ(D1+2D2+…+NDN)e, where θ is the 
stationary distribution of D (assuming that D is 
irreducible).  

 
Figure 6 Sample paths of underlying Poisson processes, I(t), and N(t) of a BMAP 

5. Construction of MMAPs and 
Examples 
Definitions 3.1, 4.1, and 4.2 demonstrate that, 

by assigning different meanings to events of 
different Poisson processes, more versatile 
arrival processes can be introduced. In this 
section, we further extend those definitions to 
construct Markovian arrival processes with 
different types of arrivals, called Marked 
Markovian arrival processes (MMAPs).  

Let C 0 be a finite set of indices. Examples 
of C 0 are: i) C 0 = {man, woman, {man, woman, 
child}}; ii) C 0 = {1, 2, 11, 12, 21, 22, 122, 212}; 
iii) C 0 = {1, 11, 111, …, 1…1}, and iv) C 0 = 
{failure, repair}.  
Definition 5.1 Let {αi, 1 ≤ i ≤ m} be 
nonnegative numbers with a unit sum, {d0,(i,j), 1 
≤ i ≠ j ≤ m}, {dh,(i,j), 1 ≤ i, j ≤ m, h ∈ C 0} are 
nonnegative numbers, and m is a finite positive 
integer. Assume  
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( )0,( , ) 0,( , ) ,( , )1, 1
m m

i i i j h i jj j i h jd d d= ≠ ∈ =≡ − +∑ ∑ ∑0C

<0, for 1 ≤ i ≤ m. We define a stochastic process 
{(Nh(t), h ∈ C 0, I(t)), t≥0} as follows.  
1) Define independent Poisson processes with 

parameters {d0,(i,j), 1 ≤ i ≠ j ≤ m} and {dh,(i,j), 
1 ≤ i, j ≤ m, h ∈ C 0}. If d0,(i,j) = 0 or dh,(i,j)=0, 
the corresponding Poisson process has no 
event.  

2) Determine I(0) by the probability 
distribution {αi, 1 ≤ i ≤ m}. Set Nh(0) = 0, 
for h ∈ C 0. 

3) If I(t)=i, for 1 ≤ i ≤ m, I(t) and {Nh(t), h∈C 0} 
remain the same until the first event occurs 
in the Poisson processes corresponding to 
{d0,(i,j), 1 ≤ j ≤ m, j ≠ i} and {dh,(i,j), 1 ≤ j ≤ m, 
h ∈ C 0}. If the next event comes from the 
Poisson process corresponding to d0,(i,j), the 
variable I(t) changes from phase i to phase j 
and {Nh(t), h ∈C 0} do not change at the 
epoch, for 1 ≤ j ≤ m, j ≠ i; If the next event 
comes from the Poisson process 
corresponding to dh,(i,j), the phase variable I(t) 
changes from phase i to phase j, Nh(t) is 
increased by one (or by a pre-specified 
number, such as the batch size) at the epoch, 
and Nl(t) remains the same for l≠h and l∈C 0, 
for 1 ≤ i, j ≤ m, h ∈ C 0. 

Similar to Theorems 4.2 to 4.4, it can be 
shown that {I(t), t≥0} and {(Nh(t), h ∈ C 0, I(t)), 

t≥0} are CTMCs. The infinitesimal generator of 
{I(t), t≥0} is 00 .hh CD D D∈= +∑  The 

transition rates for {(Nh(t), h ∈ C 0, I(t)), t≥0} 

are D0 for transitions from (n, i) to (n, j), Dh 
from (n, i) to (nl, l ∈ C 0, nh+1, j), for h ∈ C 0, 
where n = (nk, k ∈ C 0). That {(Nh(t), h ∈ C 0, 

I(t)), t≥0} is called an MMAP with a matrix 

representation (D0, Dh, h ∈ C 0), where Dh = 
(dh,(i,j)),  for h∈C 0.  The  conditional  joint 

distributions of the numbers of arrivals in [0, t] 
can be obtained from 

( ){ }*
0( , , ) exph h hhP z h t D z D t∈∈ = +∑ 0

0
CC . 

The arrival rate of type h arrivals is eh hDλ = θ , 

where θ is the stationary distribution of D 
(Assuming that D is irreducible).  
Example 5.1 (Examples 3.1 and 4.1 continued) 
For the model introduced in Example 3.1, we are 
interested in the number of repairs and the 
number of failures in [0, t]. We define the events 
of Poisson processes associated with repairs as 
type r arrivals (corresponding to Dr) and the 
events of Poisson processes associated with 
failures as type f arrivals (corresponding to Df). 
Set C 0 = {failure, repair}. Let Nr(t) be the 
number of repairs completed in [0, t] and Nf(t) 
the number of failures occurring in [0, t]. Then it 
is easy to see that {(Nr(t), Nf(t), I(t)), t≥0} is an 
MMAP with a matrix representation 

 
0

                (3,2)   (3,0)   (1,0)  
(3, 2) 0 0
(3,0) 0 0 ,  
(1,0) 0 0

D
λ

λ μ
μ

−⎛ ⎞
⎜ ⎟= − −⎜ ⎟
⎜ ⎟−⎝ ⎠

 

             (3,2)(3,0)(1,0)
(3,2) 0 0 0
(3,0) 0 0 ,
(1,0) 0 0

rD μ
μ

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

             (3, 2)(3,0)(1,0)
(3, 2) 0 0
(3,0) 0 0
(1,0) 0 0 0

fD
λ

λ
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 

(15) 

If λ = 0.01 and μ = 0.5, the stationary 
distribution of {I(t), t≥0} is θ = (0.9800, 0.0196, 
0.0004), the arrival rate of failures is θDf e = 
0.009996, and the arrival rate of repairs is θDr e 
= 0.009996.  

The model considered in Examples 3.1, 4.1, 
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and 5.1 can be extended to the case in which the 
two units have different distributions for their 
times to failure and their repair times. The 
extended model can be analyzed in a similar 
way.  
Example 5.2 (Examples 3.1, 4.1, and 5.1 
continued) For the model introduced in Example 
3.1, assume that the times to failure have a 
common PH-distribution with matrix 
representation (α, T) (see Neuts (1981)) and the 
repair times have a common PH-distribution 
with matrix representation (β, S). Then an 
MMAP {(Nr(t), Nf (t), I(t)), t≥0} can be 
constructed for the numbers of failures and 
repairs, which has a matrix representation  

0

                (3, 2)       (3,0)       (1,0)  
(3, 2) 0 0
(3,0) 0 0 ,  
(1,0) 0 0

T
D T I I S

S

⎛ ⎞
⎜ ⎟= ⊗ + ⊗⎜ ⎟
⎜ ⎟
⎝ ⎠

  

0

0

                   (3, 2)        (3,0)    (1,0) 
0 0 0(3, 2)

(3,0) S 0 0 ,
(1,0) 0 (S ) 0

rD I
⎛ ⎞
⎜ ⎟

= ⊗⎜ ⎟
⎜ ⎟⊗⎝ ⎠α β

 

0

0

                 (3, 2)   (3,0)         (1,0)

0 (T ) 0(3, 2)
(3,0) 0 0 T
(1,0) 0 0 0

fD I

⎛ ⎞⊗
⎜ ⎟
⎜ ⎟= ⊗
⎜ ⎟
⎜ ⎟
⎝ ⎠

α β
      

(16) 

where “⊗” is for Kronecker product of matrices, 
T0 = –Te and S0 = –Se.  

The set of MMAPs is versatile. MAPs and 
BMAPs are special MMAPs. Well-known arrival 
processes such as Poisson processes, 
Markov-modulated Poisson processes, and 
PH-renewal processes are also special MMAPs. 

MMAPs can be used to model arrival processes 
with special features. Here are some simple 
examples.  

Example 5.3  

i) Cyclic arrival: 0
2 0

,
0 3

D
−⎛ ⎞

= ⎜ ⎟−⎝ ⎠
 

1
0 2

,
0 0

D ⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 and 2
0 0

.
3 0

D ⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 Type 1 

and type 2 customers arrive cyclically.  

ii) Bursty vs smooth: 0
1 0

,
0 100

D
−⎛ ⎞

= ⎜ ⎟−⎝ ⎠
 

1
0 0

,
1 99

D
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 2
0 1
0 0

D
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

. Type 1 

process is bursty, while type 2 is smooth.  

iii) Individual vs group: 0
5 0

,
0 10

D
−⎛ ⎞

= ⎜ ⎟−⎝ ⎠
 

1
4 0

,
0 9

D ⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 2,1
0 1
1 0

D ⎛ ⎞
= ⎜ ⎟
⎝ ⎠

. Every type 2 

arrival is accompanied by a type 1 arrival.  
iv) Type 2 always follows type 1:  

0
5 0

,
0 10

D
−⎛ ⎞

= ⎜ ⎟−⎝ ⎠
 1

4 1
,

0 0
D

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 

2
0 0

10 0
D

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

. 

v) Orders in individual batches:  

0
5 0

,
0 10

D
−⎛ ⎞

= ⎜ ⎟−⎝ ⎠
 3,1,1,2,2,1

4 0
,

0 9
D ⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 

1,2,1,3,,1,2
0 1
1 0

D
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

, if the orders within 

batches do matter.  
We remark that, for all above examples, the 

interarrival times between the same type of 
arrivals and different types of arrivals can be 
more generally distributed by using phase-type 
distributions and by introducing more phases in 
the MMAPs properly. 



He: Construction of Continuous Time Markovian Arrival Processes 
J Syst Sci Syst Eng  365 

 

6. Conclusion 
This paper presented an elementary approach 

to introduce MAPs. The alternative approach is 
based on Poisson processes, makes it easy to 
understand parameters of MAPs intuitively, and 
provides more insight into how MAPs are 
generated. As shown by examples, the approach 
also makes it easy to use MAPs in stochastic 
modeling.  
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