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SHIPMENT CONSOLIDATION BY PRIVATE CARRIER: THE DISCRETE
TIME AND DISCRETE QUANTITY CASE

James H. Bookbinder, Qishu Cai, and Qi-Ming He

Department of Management Sciences, University of Waterloo, Waterloo, Ontario, Canada

� This article studies the dispatch of consolidated shipments. Orders arrive to a depot at
discrete time epochs following a discrete time batch Markov arrival process (BMAP). The weight
of an order is measured in discrete units and may be correlated with the arrival time. As
soon as the total weight of the accumulated orders reaches a threshold, which is a function
of the time elapsed since the last dispatch, all orders are consolidated and a shipment is
dispatched. A discrete time Markov chain for the accumulated weight of orders in the system is
introduced and analyzed. The distributions of the accumulated weight at an arbitrary time, total
accumulated weight in a consolidation cycle, and excess of weight per shipment are obtained.
By introducing an absorption Markov chain and a terminating Markovian arrival process,
we find the distributions of the consolidation cycle length, the waiting time of an arbitrary
order, and the number of orders that occur in a cycle. An efficient computational procedure is
developed for evaluating dispatch policies. The model with a quantity policy and a phase-type
weight distribution is studied in detail. An extensive numerical analysis is conducted to test
the efficiency of the algorithm and to gain insight into these shipment consolidation models.

Keywords Dispatch; Freight consolidation; Markov chain; Matrix-analytic methods.

Mathematics Subject Classification 90B06; 60J10.

1. INTRODUCTION

Consider a series of small loads that arrive independently at point A,
the origin, and are all destined to point B. Each load may represent an
order for goods that will be assembled or picked from stock by a distributor
(whose warehouse is at A). The quantity or weight of each order is a
random variable, with known distribution.
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Shipment Consolidation by Private Carrier 665

A shipment consolidation policy must decide when those orders will
be sent from point A to B. Each order could be sent individually, as
soon as it is ready. That would give excellent service, but at the highest
transportation cost. Consolidation of orders at point A is thus preferred
by the logistics firm whose own vehicle will transport those loads. The cost
of transport over the fixed distance A-B is known and constant, hence the
transportation cost per order would only be half as large, if even two orders
were dispatched on the same truck.

More generally, we could delay the sending of a consolidated load until
the total weight of those orders is a least Q ; this is termed a “quantity”
policy. We could instead implement a “time” policy, whereby a truck is
dispatched from A to B every T periods. Because of randomness, some
consolidation cycles under this policy will result in vehicles that are almost
full, while other cycles will yield lighter vehicle loads. As long as the value
of T is not too large, however, reasonable service can be given even to the
first-arriving order, whose waiting time (before dispatch) is thus at most T .

A “hybrid” policy, often called a “time-and-quantity” policy, is also
frequently employed in practice. Here a truck would be sent based on
whichever occurs first: Either a total weight of Q is attained, or a time T
has elapsed since the present consolidation cycle began. We remark that,
even when the respective cost parameters are the same in each case, the
optimal choices for (Q ,T ) in the time-and-quantity policy may differ from
the optimal Q ∗ in the quantity policy and/or T ∗ for the optimal time
policy.

The previous paragraph alludes to an optimization model whose
objective is the minimization of total cost per unit time. In addition to
transportation cost, inventory carrying cost is included. This linear term is
proportional to the dollar value of the orders that are held and to the time
interval that each is held. Inventory carrying cost, as a measure of customer
disutility of waiting, encourages better decisions on service through its
incorporation in the objective function.

In this article, we consider the case of “private carriage,” transportation
in one’s own truck (e.g., Bookbinder and Higginson[1]). Not every
manufacturing or logistics organization operates its own private fleet,
but many such firms do, often employing a mixture of private carriage
and “common carriage.” In the latter case, the goods are moved by a
public, for-hire trucking company, that charges according to the weight
of each load. The freight rates for common-carrier transportation involve
a quantity-discount structure. Because of that complication, and in the
interests of brevity, we limit discussion in this article to transportation by
private carriage. (Our approach and computational procedures, however,
can be extended to the case of common carrier.)

Various methods of operations research have been applied to shipment
consolidation problems over the years. Higginson and Bookbinder[5]
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666 Bookbinder et al.

developed a computer simulation model, studying the three consolidation
policies mentioned above for a range of order-arrival rates and maximum
holding times. Higginson and Bookbinder[6] employed a Markovian
Decision Process. Bookbinder and Higginson[1] viewed the problem as
a Stochastic Clearing System, while the treatment in Çetinkaya and
Bookbinder[2] is that of Renewal Theory.

Which policy is “best”? The answer depends on the assumptions one
is willing to make, and the cases to which one is able to apply the
particular mathematical approach. For Poisson arrivals and orders of unit
weight, Çetinkaya and Bookbinder[2] and Ülkü and Bookbinder[13] found
that the quantity policy gives the best cost performance per unit time
in the case of private carriage. Higginson and Bookbinder[5] treated only
common carriage. They found that, for an empirically-supported Gamma
distribution of order weights, the cost performance of a time policy can
be better than that of a quantity policy for low order-arrival rates and
fairly long holding times T � In other cases, however, Higginson and
Bookbinder[5] found that the quantity policy usually gives the best cost
performance, while the hybrid (time-and-quantity) policy furnishes the
lowest mean delay per order.

Mütlü et al.[10] obtained analytical results on the optimal parameters
to employ in a hybrid policy. Thus, when that policy is appropriate, and
some particular assumptions hold, these renewal-theoretic results enable
confidence in setting the values Q and T . Çetinkaya[3] has given a literature
survey that is more thorough than is possible here. Publications cited by
her and by us do have some interesting results. Our goal in the present
article, however, is to furnish models that are more general, perhaps in
several ways. For instance, the consolidation references cited above assume
that orders arrive according to a Poisson process. Although our analysis
here is limited to the case of discrete time, and the weight of each order
is discrete, we treat the weight accumulation as a batch Markov arrival
process. The weight of each arriving order is possibly correlated with its
arrival time.

Matrix-analytic methods are used in this article (Neuts[11] and Latouche
and Ramaswami[7]). Such methods make it possible to construct Markov
chains for stochastic systems of interest and to develop efficient algorithms
for computing performance measures. In this article, Markovian arrival
processes are used to model the weight accumulation process through the
arrivals of individual orders, for which phase-type distributions are used
to model the weight. Utilizing the special QBD (quasi birth-and-death)
structure of the Markov chain introduced for the system, matrix-geometric
solutions are obtained for the weight accumulation process. Performance
measures such as the mean cycle length, mean waiting times of orders,
mean accumulated weight at an arbitrary time, and the mean level of
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Shipment Consolidation by Private Carrier 667

excess can be obtained. Consequently, dispatch policies are evaluated
efficiently.

The remainder of the article is organized as follows. In Section 2, the
stochastic model of interest is introduced. A discrete time Markov chain
is constructed in Section 3 for analyzing the weight accumulation process.
Based on that discrete Markov chain, an absorption Markov chain and a
terminating Markov arrival process are introduced. An efficient algorithm
is developed for computing performance measures. In Section 4, the
model with a quantity policy and a phase-type weight distribution is
investigated in detail. Numerical examples are presented in Section 5 to
test the efficiency of the algorithm and to gain insight into these shipment
consolidation models. Section 6 concludes the article.

2. THE MODEL OF INTEREST

The model of interest has a private carriage and a general dispatch
policy. Both the time and the weight of products are discrete. Orders arrive
to the system from outside. In each period, orders are received and then
a decision is made on whether or not a shipment should be dispatched.
To make that decision, the total accumulated weight is calculated. If that
amount exceeds a threshold, which in the general case is also a function
of the time since the last dispatch, all outstanding orders are consolidated
and a shipment is dispatched (i.e., all outstanding orders are cleared).
Then the next cycle of accumulation and dispatch begins in the following
period with zero initial weight. In the rest of this section, we give a detailed
description on the weight accumulation process, the general dispatch
policy, and the cost structure for the model of interest. We also briefly
discuss some special cases, which are typical in practice.

2.1. The Weight Accumulation Process

Without loss of generality, we assume that at most one order can arrive
in each period. Weight of orders accumulates according to a discrete time
batch Markovian arrival process (BMAP) with a matrix-representation (D0,
Dn , n = 1, 2, � � �), where D0 and Dn are m × m nonnegative matrices, and
m is a positive integer. The matrix Dn , for n > 0, is interpreted as the
(matrix) probability that an order of n units in weight arrives. Define D
as the sum of matrices (D0,D1, � � � ). Then D is a stochastic matrix. The
discrete time Markov chain associated with D is called the underlying Markov
chain of the weight accumulation process. Denote by Ia(t) the state of the
underlying Markov chain at the beginning of period t . We assume that
�Ia(t), t = 0, 1, 2, � � �� is an irreducible Markov chain. Then the matrix D
is irreducible. Let �a be the steady state distribution of the underlying
Markov chain. Then �a is the unique solution to the linear system �aD = �a
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668 Bookbinder et al.

and �ae = 1. Denote by �a the rate at which the weight accumulates, which
is called the weight arrival rate. Then we have �a = �a(

∑∞
n=1 nDn)e. Denote

by �b the rate at which orders arrive; that is called the order arrival rate.
Then we have �b = �a(

∑∞
n=1 Dn)e. (See Neuts[11] and Lucantoni[9] for more

details on BMAPs.)

Example 2.1. Orders arrive according to a discrete timeMarkovian arrival
process (MAP) with a matrix-representation (D0, D1). The weight of each
order has a general discrete distribution �p1, p2, � � � �, which is independent
of the order arrival process. For this case, the weight accumulation process
is a BMAP with matrix representation (D0, pnD1, n = 1, 2, � � � ).

Example 2.2. Orders arrive according to a discrete time Markov
arrival process with a matrix-representation (D0, D1). Weights of orders
are independent discrete random variables with a common discrete
time phase-type distribution (PH-distribution) (�, S) (See Neuts[12] and
Latouche and Ramaswami[7]). Here � is a stochastic vector (i.e., � ≥ 0 and
�e = 1) and S is a substochastic matrix (i.e., all elements are nonnegative
and all row sums are less than or equal to one). The distribution of the
weight of each order is given by pn = �Sn−1(I − S)e,n = 1, 2, � � �, where I
is the identity matrix.

2.2. General Dispatch Policy

A dispatch policy is given in terms of a function f (j), where j is the
time elapsed since the last shipment. As soon as the consolidated weight
exceeds or is equal to level f (j), all outstanding orders are consolidated
and a shipment is dispatched. We shall call this dispatch policy f (.), for
which we make the following assumptions:

(a) f (j) = q ≥ 0, for j ≥ jq , where jq is a given positive integer. For a
technical reason (see Theorem 3.1) and without loss of generality, we
assume jq ≥ 2 and f (j) ≥ 1 for j = 1, 2, � � �, jq − 1.

(b) f (j) is non-increasing.

Assumptions (a) and (b) are intuitive and are commonly used. We also
note that the popular quantity policy, f (j) = Q for all j ≥ 1, is a special case
of the general dispatch policy.

Example 2.3. Let f (j) = Q for 1 ≤ j ≤ jq − 1 and f (jq) = 0. That is: after
jq units of time, a shipment is dispatched, regardless of the amount of the
accumulated weight. We call f (.) a hybrid policy (e.g., Mütlü et al.[10]). If Q
is very large, the policy f (.) approximates a time policy. If jq is very large,
the policy f (.) approximates a quantity policy.
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Shipment Consolidation by Private Carrier 669

Naturally, in the “usual” time policy, the interval T between dispatches
is expressed solely in terms of j , without reference to q or Q . That is the
definition we employed in the Introduction. Similarly, in Section 1, we
described the typical quantity policy with reference only to Q , not to jq .
(See, for example, Higginson and Bookbinder[5] and Çetinkaya[2].)

2.3. The Cost Structure

Four types of costs – dispatch, holding, order receiving, and transport-
ation – are under consideration. Dispatch cost KD is a fixed cost charged
to each shipment. Holding cost is for the inventory or storage of products
waiting for shipment. Denote by h the holding cost per unit weight per
unit time. Order receiving cost is a fixed cost. Let KS be the receiving cost
per order. Finally, we denote by CT the transportation cost per unit weight.

To evaluate a dispatch policy f (.), the average total costs per unit time
C(f ) is used. Since shipments occur in cycles, the average total costs per
unit time in the steady state can be expressed as

C(f ) = KD + E [Holding cost per cycle]
E [cycle length] + KS�b + CT�a � (2.1)

In the rest of the article, the analysis will thus be focused on the cycle
length and the mean holding cost per unit time. In addition to C(f ), a
number of performance measures shall also be investigated to gain insight
into the consolidation and dispatch process.

3. THE MARKOV CHAIN OF INTEREST

To introduce a Markov chain for the weight accumulation process, we
first define two system variables:

• Let W (t) be the accumulated weight of all orders in the system at the
beginning of period t (any order that arrives during period t is not
included).

• Let J (t) be the time elapsed since the last shipment, if the elapsed time
is less than or equal to jq ; jq+1, otherwise.

The status of the system at the beginning of period t can be
represented by (J (t), W (t), Ia(t)). Note that J (t) = 1 implies that a new
cycle starts at the beginning of period t (i.e., there was a shipment
dispatched in the previous period). Thus, if J (t) = 1, we must have
W (t) = 0. Also note that at the beginning of each period, we only see
products that accumulated in previous periods. For technical reasons,
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670 Bookbinder et al.

if f (jq) = 0 and J (t) = jq + 1, we define W (t) = 0. In fact, J (t) cannot
reach the state jq + 1 from other states of J (t) for this case.

It is easy to see that the process �(J (t),W (t), Ia(t)), t = 0, 1, 2, � � � � has
the state space:

�1� × �0� × �1, 2, � � � ,m�, for J (t) = 1;
�j� × �0, 1, 2, � � � ,max�0, f (j − 1) − 1�� × �1, 2, � � � ,m�,
for 2 ≤ J (t) = j ≤ jq + 1�

We shall call J (t) the level variable and (W (t), Ia(t)) the phase variable.
The set of states with J (t) = j shall be called level j . Since �Ia(t), t =
0, 1, 2, � � �� is a Markov chain, and because W (t) depends only on the
current accumulated weight and future arrivals, and J (t) depends only on
W (t) and Ia(t), it is readily seen that �(J (t),W (t), Ia(t)), t = 0, 1, 2, � � � � is
a Markov chain.

Theorem 3.1. The process �(J (t),W (t), Ia(t)), t = 0, 1, 2, � � � � is a Markov
chain with transition probability matrix

PTW =

1
2
���
���
jq

jq + 1



A1,1 A1,2

A2,1 0 A2,3
���

� � �
� � �

���
� � �

� � �

Ajq ,1 0 Ajq ,jq+1

Ajq+1,1 Ajq+1,jq+1


, (3.1)

where

A1,1 = �Df (1),A1,2 = (D0 D1 D2 · · · · · · Df (1)−1); for 2 ≤ j ≤ jq − 1,

Aj ,1 =

0
1
���

f (j) − 2
f (j) − 1
f (j)
���

f (j − 1) − 1



�Df (j)�Df (j)−1
���

�D2�D1�D0
���

�D0


,
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Shipment Consolidation by Private Carrier 671

Aj ,j+1 =

0 1 · · · · · · f (j) − 1

0
1
���
���

f (j) − 1
f (j)
���

f (j − 1) − 1



D0 D1 · · · · · · Df (j)−1

D0 D1
� � � Df (j)−2

� � �
� � �

���
� � � D1

D0

0 0 · · · · · · 0
���

��� · · · · · · ���
0 0 · · · · · · 0


; (3.2)

for j = jq and j = jq + 1, if f (jq) > 0, the matrices Ajq ,1, Ajq ,jq+1, Ajq+1,1, and
Ajq+1,jq+1 are given by equation (3.2); if f (jq) = 0, then Ajq ,1 is given by equation
(3.2), Ajq ,jq+1 = 0, Ajq+1,1 = �D0, and Ajq+1,jq+1 = 0. Note that �Dn = ∑∞

j=n Dj ,
n = 0, 1, � � �.

Proof. The transitions between levels j = 1, 2, � � �, jq , can be identified
based on the following observations:

i) The value of J (t) always increases by 1, except for possible transitions
to level 1 when a shipment is dispatched.

ii) The value of W (t) is non-decreasing, except for possible transitions to
level 1 when a shipment is dispatched.

iii) If J (t) = j , the initial weight in period t is between 0 and f (j − 1) − 1,
and the ending weight is between 0 and f (j) − 1.

The transitions associated with level jq + 1 are based on the fact that for
the policy f (j), the dispatch quantity is the same for j ≥ jq . If f (jq) =
0, a shipment must be dispatched once the time elapsed since the last
shipment is jq . Thus, there is no transition from level jq to level jq + 1. The
transition probabilities are obtained accordingly. �

For the case of f (jq) = 0, states in level jq + 1 are overflow states. Those
states do not affect the analysis, since transition probabilities from level
jq to level jq + 1 are zero. In the following analysis, for convenience, we
assume that the Markov chain �(J (t),W (t), Ia(t)), t = 0, 1, 2, � � � � has jq + 1
levels.

Denote by �TW the steady state distribution of �(J (t),W (t), Ia(t)),
t = 0, 1, 2, � � � �. Then �TW is the unique solution to the linear system
�TW PTW = �TW and �TW e = 1. We decompose �TW as follows: �TW =
(�1, �2, � � � , �jq , �jq+1), and �j = (�j ,0, �j ,1, � � � , �j ,max�0,f (j−1)−2�, �j ,max�0,f (j−1)−1�),
for j = 2, 3, � � � , jq + 1. We note that all vectors ��1, �j ,w ,w =
0, 1, � � � ,max�0, f (j − 1) − 1�, and j = 2, 3, � � � , jq + 1� are row vectors of
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672 Bookbinder et al.

size ma . Because of the special structure in PTW , an efficient algorithm can
be developed for computing �TW , if �TW exists.

Algorithm I.

(I.1) Compute the matrices, R1 = I ,

Rj = Rj−1Aj−1,j , 2 ≤ j ≤ jq ;

Rjq+1 = RjqAjq ,jq+1(I − Ajq+1,jq+1)
−1; (3.3)

P1 =
jq+1∑
j=1

RjAj ,1�

(I.2) Solve the linear system �1P1 = �1 and �1
( ∑jq+1

j=1 Rje
) = 1 for �1.

(I.3) Compute �j = �1Rj , for j = 1, 2, � � �, jq + 1.

The validity of Algorithm I is guaranteed by the finiteness of the
number of states and the fact that states in level 1 can be reached from
other states.

Theorem 3.2. The steady state distribution of the Markov chain �(J (t),W (t),
Ia(t)), t = 0, 1, 2, � � � � exists and is given by �TW .

Proof. First, it is easy to verify that �TW is a solution to the linear system
�TW PTW = �TW and �TW e = 1. Since the underlying Markov chain �Ia(t),
t = 0, 1, 2, � � �� is irreducible, the Markov chain �(J (t),W (t), Ia(t)), t =
0, 1, 2, � � � � has a single closed set. Consequently, limiting probabilities exist
and are unique, and hence form the steady state distribution. This also
implies that the solution to the linear system is unique. Thus, �TW is the
steady state distribution. �

As an immediate consequence of Theorem 3.2, �a = ∑jq+1
j=1∑max�0,f (j−1)−1�

w=0 �j ,w (note: f (0) = 1), which can be used for checking
accuracy in computation. A number of performance measures can be
found directly or indirectly from �TW .

Excess Ow is defined as the amount of weight over a threshold function
g (j) at a dispatch epoch. Typical choices of the function g (j) include g (�)
= f (�) or a constant function g (j) = Qo , for all j . If the constant Qo were
the truck size, an excess would lead to extra transportation costs.

Denote by W the accumulated weight at the beginning of an arbitrary
period. Let Wc be the accumulated weight of an arbitrary shipment (i.e.,
the total weight accumulated during an arbitrary cycle). The distributions
of W , Ow , and Wc can be obtained from �TW in a straightforward manner.
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Shipment Consolidation by Private Carrier 673

Denote by PS the probability that a shipment takes place in an arbitrary
time period. The following results are obtained from Theorems 3.1
and 3.2.

Corollary 3.3. For the shipment consolidation model defined in Section 2, we
have

(i)

P �W = w� =
 jq+1∑

j=1:w≤f (j−1)−1

�j ,w

 e, w = 0, 1, 2, � � �, f (1) − 1�

(ii)

PS = �1e�

(iii)

P �Wc = i� = 1
PS

jq+1∑
j=1

 f (j−1)−1∑
w=0:i≥f (j) and i≥w

�j ,wDi−we

, i = 0, 1, 2, � � ��

(iv)

P �Ow = i� = 1
PS

jq+1∑
j=1

min�i+g (j),f (j−1)−1�∑
w=0:i+g (j)≥f (j)

�j ,wDi+g (j)−we

,

i = 0, 1, 2, � � �; and

Po = P �Ow > 0� = 1
PS

jq+1∑
j=1

(f (j−1)−1∑
w=0

�j ,w�Dmax�0,max�1+g (j),f (j)�−w�e

)
�

The means E[W ], E[Wc], and E[Ow] can be obtained from the distributions
accordingly.

Remark 3.1. By definition, immediately after a shipment takes place, the
clock for a new consolidation cycle is set to one (i.e., J (t) = 1). Thus, the
probability PS that a shipment takes place is equal to the probability that
the elapsed time since the last shipment is one (i.e., �1e). This gives an
intuitive interpretation to part (ii) of Corollary 3.3.

For a number of special cases, the computation of �TW and
performance measures can be simplified significantly.
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674 Bookbinder et al.

Case 1. Quantity Policy Model Consider a model with a quantity
policy f (.), i.e., f (j) = Q for all j ≥ 1. For this special case, we can set jq =
1. Then the Markov chain �(J (t),W (t), Ia(t)), t = 0, 1, 2, � � � � need have
only two levels: J (t) = 1 and 2. In addition, the size of matrices involved
in computation is m, instead of Qm required in Algorithm I.

Case 2. Hybrid Policy Model (Example 2.3) Consider a model with
a hybrid policy f (.), i.e., f (j) = Q for 1 ≤ j ≤ jq − 1 and f (j) = 0 for j ≥
jq ≥ 2. For this case, the Markov chain �(J (t),W (t), Ia(t)), t = 0, 1, 2, � � ��
need have only jq levels, instead of jq + 1. All levels, except for level 1, have
the same number of phases.

Case 3. Independent-Weights Model (Example 2.1) Consider the
weight arrival process defined in Example 2.1, where the order weights
are independent of the order arrival process. Then we have, �D0 =
D0 + D1 and �Dn = (1 − p1 − p2 − · · · − pn−1)D1, n = 1, 2, � � �. (Note p0 = 0.)
Consequently, construction of the transition probability matrix and all
expressions given in Corollary 3.3 can be reduced to finite summations.
Furthermore, the expressions of E [W ], E [Wc ], and E [Ow] can be simplified
to finite summations.

Next, we construct an absorption Markov chain to investigate the length
of a consolidation cycle Lc and the waiting time Lw of an arbitrary order.
Define

Tc =

1
2
���
���
jq

jq + 1



0 A1,2

0 A2,3

� � �
� � �
� � �

� � �

0 Ajq ,jq+1

Ajq+1,jq+1


, T 0

c =

1
2
���
���
jq

jq + 1



A1,1

A2,1
���
���

Ajq ,1

Ajq+1,1


, (3.4)

and Pc = (I , 0, � � � , 0)(I − Tc)
−1T 0

c . The matrix Pc is a stochastic matrix
that governs the transitions of the underlying Markov chain �Ia(t), t =
0, 1, 2, � � �� at the beginnings of consolidation cycles (or at the ends of
those cycles), i.e., the embedded Markov chain for the state of the
underlying Markov chain of the weight arrival process at the beginnings
of consolidation cycles. It is readily seen that PTW = Tc + (T 0

c , 0, � � � , 0).
Denote by �c the steady state distribution associated with Pc . Then �c is the
unique solution to the linear system �cPc = �c and �ce = 1.

Theorem 3.4. The distribution �c is given by �c = �1/(�1e). In steady state, the
distribution of the length of a consolidation cycle Lc has a discrete time phase-type
distribution with matrix representation ((�c , 0, � � �, 0),Tc). The distribution of Lw+1
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Shipment Consolidation by Private Carrier 675

has a phase-type distribution with matrix representation (�TW , Tc). In addition,
we have

E [Lc ] = 1/(�1e);
(3.5)

E [Lw] =
jq∑
j=1

j�je + jq�jq+1e + �jq+1(I − Ajq+1,jq+1)
−1e − 1�

Proof. Due to the special structure within the matrix Tc , the first row
of the inverse of I − Tc can be found explicitly as (R1,R2, � � � ,Rjq+1).
Immediately, we obtain Pc = ∑jq+1

j=1 RjAj ,1. The vector �c is the unique
solution to the linear system �c

(∑jq+1
j=1 RjAj ,1

) = �c and �ce = 1. Existence
of the steady state distribution is again guaranteed by the fact that Pc

has a single closed set of states. By Algorithm I, it is easy to see that
�c = �1/(�1e). The initial probability distribution of the Markov chain
�(J (t),W (t), Ia(t)), t = 0, 1, 2, � � � � at the beginning of a consolidation cycle
is given by (�c , 0, � � �, 0), since J (t) = 1 at the beginning of any cycle. Thus,
the length of a consolidation cycle has a phase-type distribution. The
average cycle length is obtained by straightforward simplification of the
expression (�c , 0, � � � , 0)(I − Tc)

−1e, which leads to E [Lc ] = �c
(∑jq+1

j=1 Rje
) =

(�1e + �2e + · · · + �jq+1e)/(�1e) = 1/(�1e).
For Lw , note that the waiting time is zero if an order arrives and a

shipment is dispatched in the same period. By some routine calculations,
the results can be obtained. �

Remark 3.2.

i) That E [Lc ] = 1/(�1e) can be explained intuitively. The probability that
the system is at the beginning of a consolidation cycle is �1e. Thus, the
mean time between consecutive visits to such states is given by 1/(�1e).

ii) From the mean total consolidated weight per cycle E [Wc ]
(Corollary 3.3) and the mean cycle length E [Lc ] (Theorem 3.4), the
mean weight shipped per unit time can be obtained as E [Wc ]/E [Lc ].
As indicated in Section 2, the mean weight that arrives per unit time is
given by �a . Then we must have �a = E [Wc ]/E [Lc ]. Such a relationship
is useful for checking the accuracy of numerical computations.

Finally in this section, we introduce a terminating Markov arrival process
(He and Neuts (1998)) to study the number of orders Nc received in a
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676 Bookbinder et al.

consolidation cycle. First, we decompose matrices Tc and T 0
c defined in

equation (3.4) as follows:

Tc ,0 =

1
2
���
���
jq

jq + 1



0 A1,2,0

0 A2,3,0

� � �
� � �
� � �

� � �

0 Ajq ,jq+1,0

Ajq+1,jq+1,0


, T 0

c ,0 =

1
2
���
���
jq

jq + 1



A1,1,0

A2,1,0
���
���

Ajq ,1,0

Ajq+1,1,0


;

(3.6)

Tc ,1 =

1
2
���
���
jq

jq + 1



0 A1,2,1

0 A2,3,1

� � �
� � �
� � �

� � �

0 Ajq ,jq+1,1

Ajq+1,jq+1,1


, T 0

c ,1 =

1
2
���
���
jq

jq + 1



A1,1,1

A2,1,1
���
���

Ajq ,1,1

Ajq+1,1,1


,

where Aj ,j+1,0 and Aj ,1,0 are respectively obtained from Aj ,j+1 and Aj ,1 by
keeping only block D0, while Aj ,j+1,1 and Aj ,1,1 are obtained respectively
from Aj ,j+1 and Aj ,1 by removing the block D0. By definition, we must have
Aj ,j+1 = Aj ,j+1,0 + Aj ,j+1,1, Aj ,1 = Aj ,1,0 + Aj ,1,1, Tc = Tc ,0 + Tc ,1, and T 0

c = T 0
c ,0 +

T 0
c ,1. We consider a terminating Markov arrival process defined by (Tc ,0,

Tc ,1, T 0
c ,0,T

0
c ,1), where Tc ,1 and T 0

c ,1 correspond to transitions with order
arrivals, and Tc ,0 and T 0

c ,0 correspond to transitions without order arrivals.
This Markov arrival process is called a terminating process since we only
count the number of order arrivals before or at the time the process enters
level one.

Theorem 3.5. Given an initial probability distribution ((�1/(�1e), 0, � � �, 0),
the number of orders that occur in a consolidation cycle Nw equals the total number
of arrivals in the terminating Markov arrival process (Tc ,0, Tc ,1, T 0

c ,0, T 0
c ,1).

Consequently, in steady state, we have

P �Nc = n� =



(
�1

�1e
, 0, � � � , 0

)
(I −Tc ,0)

−1T 0
c ,0e, n = 0;(

�1

�1e
, 0, � � � , 0

)
((I − Tc ,0)

−1Tc ,1)
n(I − Tc ,0)

−1T 0
c ,0e

+
(

�1

�1e
, 0, � � � , 0

)
((I − Tc ,0)

−1Tc ,1)
n−1(I − Tc ,0)

−1T 0
c ,1e, n ≥ 1�

(3.7)
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Shipment Consolidation by Private Carrier 677

The mean number of orders per cycle is given by

E [Nc ] = �1

�1e

 jq∑
j=1

RjAj ,j+1,1e+Rjq+1Ajq+1,jq+1,1e

 + �1

�1e

jq+1∑
j=1

RjAj ,1,1e

 �

(3.8)

Proof. The terminating process (Tc ,0, Tc ,1, T 0
c ,0, T

0
c ,1) is a special discrete

version of the terminating Markov arrival process defined in He and Neuts
(Ref.[4]) (See also Latouche et al. (Ref.[8])). The distribution and the mean
of Nc are obtained routinely. �

Remark 3.3.

i) The sum of the numerators in equation (3.8) is the probability that an
order arrives in an arbitrary time period, which is also the expected
number of arrivals in that period. Multiplying that sum by the mean
cycle length yields the total number of order arrivals in an arbitrary
cycle.

ii) By Theorems 3.4 and 3.5, the number of orders per unit time is given
by E [Nc ]/E [Lc ]. Then we must have �b = E [Nc ]/E [Lc ].

4. QUANTITY POLICY AND PHASE-TYPE WEIGHT MODEL

Consider a quantity policy model f (j) = Q for all j ≥ 1. The weight
arrival process is given by (D0, �Sn−1(I − S)eD1, n = 1, 2, � � �) defined in
Examples 2.1 and 2.2. We use an alternative approach to analyze this case.
We begin by showing an explicit result for the excess Ow .

Theorem 4.1. Assume that the threshold function for excess is g (j) = Qo for
all j . If Qo ≥ Q , the excess at a dispatch epoch has a phase-type distribution
with matrix representation (�(S + S0�)Q−1SQo−Q+1, S), where S0 = e − Se. In
addition, we have E [Ow] = �(S + S0�)Q−1SQo−Q+1(I − S)−1e, and P �Ow >
0� = �(S + S0�)Q−1SQo−Q+1e. If Qo < Q , then Ow = Q − Qo + Ow,Q , where
Ow,Q is the excess if Qo = Q .

Proof. Consider a Markov arrival process with matrix presentation
(S , S0�) (i.e., a PH-renewal process (see Neuts Ref.[12]). If we treat Qo

as time, then the excess at Qo is the time until the next arrival of that
Markovian arrival process. If Qo ≥ Q , the distribution of the phase at Qo

is �(S + S0�)Q−1SQo−Q+1. Then the excess at Qo has a discrete time phase-
type distribution with matrix representation (�(S + S0�)Q−1SQo−Q+1, S).
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678 Bookbinder et al.

The mean excess and the probability that an excess occurs are obtained
accordingly. Results for the case Qo < Q are obtained by noticing that a
dispatch occurs if and only if the accumulated weight is greater than or
equal to Q . �

By taking advantage of the partial memoryless property of the phase-
type distributions, a new discrete time Markov chain can be introduced for
the weight process. The idea is: After every order arrival, stop the clock
of the order arrival process and start a fictitious clock for the underlying
discrete time Markov chain for the weight distribution. The fictitious clock
is stopped, and the clock of the order arrival process resumes, when
the underlying Markov chain of the phase-type distribution reaches its
absorption state.

More specifically, let �Iw(t), t = 0, 1, 2, � � � � be the phase of the
underlying Markov chain for the phase-type distribution (�, S) before
absorption. Then a new Markov chain can be constructed in the following
way.

1) If an order arrives, the underlying Markov chain �Iw(t), t = 0, 1, 2, � � ��
is turned on, initialized by �, immediately and the underlying Markov
chain �Ia(t), t = 0, 1, 2, � � �� is frozen.

2) If the underlying Markov chain �Iw(t), t = 0, 1, 2, � � � � enters its
absorption state, it is terminated, and the Markov chain �Ia(t), t =
0, 1, 2, � � �� is unfrozen.

Define

Îa(t) : Îa(t) = Ia(t), if the clock of the order arrival process is on;
otherwise, Îa(t) is the last value of Ia(t) before Ia(t) is frozen.

Îw(t) : Îw(t) = Iw(t), if the clock of the phase-type distribution is on; but
Îw(t) = 0, if the clock of the order arrival process is on.

Ŵ (t) : Ŵ (t) = W (t), if the clock of the order arrival process is on;
otherwise, if the clock of the phase-type distribution is on, Ŵ (t)
increases by one per unit time if Ŵ (t − 1) < Q − 1, and becomes 0
if Ŵ (t − 1) = Q − 1.

Note that W (t) takes values �0, 1, 2, � � �,Q − 1�. Then the process
�(Ŵ (t), Îa(t), Îw(t)), t = 0, 1, 2, � � �� is a Markov chain with transition

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
W

at
er

lo
o]

 a
t 0

7:
35

 1
8 

N
ov

em
be

r 
20

11
 



Shipment Consolidation by Private Carrier 679

probability matrix PTW = D for Q =1, and, for Q ≥ 2,

PTW =

(0, ia )
(1, ia )
(1, ia , iw )
(2, ia )
(2, ia , iw )

�
�
�

(Q − 2, ia )
(Q − 2, ia , iw )
(Q − 1, ia )
(Q − 1, ia , iw )



D0 (0,D1 ⊗ �)(
0
0

) (
D0 0

I ⊗ S0 0

) (
0 D1 ⊗ �

0 I ⊗ S

)

�
�
�

(
D0 0

I ⊗ S0 0

) (
0 D1 ⊗ �

0 I ⊗ S

)
�
�
�

� � �
� � �(

0
0

) (
D0 0

I ⊗ S0 0

) (
0 D1 ⊗ �

0 I ⊗ S

)
(

D1

I ⊗ (Se)

) (
D0 0

I ⊗ S0 0

)



(4.1)

Let �TW be the steady state distribution of PTW , i.e., �TW PTW =
�TW and �TW e = 1. We decompose �TW as follows: �TW = (�0, (�1,a , �1,w),
(�2,a , �2,w), � � �, (�Q−2,a , �Q−2,w), (�Q−1,a , �Q−1,w)). The steady state distribution
�TW can be computed by using the following algorithm.

Algorithm I(PH).

(I(PH).1) Compute the matrices X0 = I ,

X1 = X0

(
0 D1 ⊗ �

) (
I −

(
D0 0

I ⊗ S0 0

))−1

,

Xw = Xw−1

(
0 D1 ⊗ �
0 I ⊗ S

) (
I −

(
D0 0

I ⊗ S0 0

))−1

, 2 ≤ w ≤ Q − 1;

(4.2)

P1 = D0 + XQ−1

(
D1

I ⊗ Se

)
�

(I(PH).2) Solve the linear system �0P1 = �0 and �0(
∑Q−1

j=0 Xj)e = 1 for �0.
(I(PH).3) Compute (�i ,a , �i ,w) = �0Xi , for i = 1, 2, � � �,Q − 1.

Compared to Algorithm I, Algorithm I(PH) computes matrices only of
the size m or mmb , where mb is the size of S . Similar to Theorem 3.4, the
mean cycle length between shipments can be found as follows.

Theorem 4.2. The mean time between two consecutive entrances to level zero
from level Q − 1 of the Markov chain �(Ŵ (t), Îa(t), Îw(t)), t = 0, 1, 2, � � �� is
given by 1/(�0D1e). Consequently, the mean cycle length of consolidated shipments
is E [Lc ] = 1/(�0D1e) + 1 − Q .
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680 Bookbinder et al.

Proof. Similar to the proof Theorem 3.4 and by the structure of PTW ,
the transition probability matrix of the embedded Markov chain at the
end of each consolidation cycle is given by P2 = (I − D0)

−1XQ−1

(
D1

I⊗Se

)
. Let

�0 be the invariant vector of P2, i.e., �0P2 = �0 and �0e = 1. By equation
(4.10), it can be shown that �0(I − D0)

−1 = ��0, which leads to �0 = �0(I −
D0)/(�0(I − D0)e) and � = 1/(�0(I − D0)e). Similar to Theorem 3.4, the
mean time between two consecutive entrances from level Q − 1 to level
zero can be obtained as 1/(�0(I − D0)e). Intuitively, the probability that
the Markov chain just entered level zero is �0(I − D0)e. Thus, the average
time between two consecutive entrances to level zero from level Q − 1 is
1/(�0(I − D0)e). Since the fictitious time between two consecutive visits
to level zero from level Q − 1 is exactly Q − 1 (i.e., the accumulated
weight increases to Q ), the average cycle length of shipments is obtained
as E [Lc ] = 1/(�0(I − D0)e) − (Q − 1), which, together with (D0 + D1)e = e,
leads to the expected result. �

The consolidated weight per cycle equals Q plus possible overshot
above the level Q . By Theorem 4.1, the consolidated weight per cycle
is expressed as Q plus a phase-type variable with matrix representation
(�(S + S0�)Q−1S , S). The mean consolidated weight per cycle is given by

E [Wc ] = Q + �(S + S0�)Q−1S(I − S)−1e� (4.3)

To find the accumulated weight at an arbitrary time, we consider the
steady state distribution for the process �(W (t), Ia(t)), t = 0, 1, 2, � � � � (i.e.,
censoring out all the phases associated with the underlying Markov chain
�Iw(t), t = 0, 1, 2, � � � �). Define

�TW ,a = (�0,�1,�2, � � �,�Q−2,�Q−1)

= (�0, �1,a , �2,a , � � �, �Q−2,a , �Q−1,a)/((�0 + �1,a + �2,a

+ · · · + �Q−2,a + �Q−1,a)e)� (4.4)

By definition, �TW ,a is the steady state distribution of the total weight
W (t) at an arbitrary time. Then we obtain E [W ] = ∑Q−1

i=0 i�ie. In addition,
we must have �a = �0 + �1 + �2 + · · · + �Q−2 + �Q−1, which is useful for
checking computational accuracy.

5. NUMERICAL ANALYSIS

By the definition given in Section 2, the average total costs per unit
time for a dispatch policy f (.) can be obtained by using equation (2.1) with
E [cycle length] = E [Lc ] and E [holding cost per cycle] = hE [W ]E [Lc ]. Based on
results given in Corollary 3.3 and Theorem 3.4, the steps for computing
C(f ) can be summarized as follows.
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Shipment Consolidation by Private Carrier 681

5.1. Computational Procedure

Parameters: (D0,Dn ,n = 1, 2, � � �), f (�), g (�),KD , h,KS , and CT .

1) Determine �a , �a , and �b ;
2) Use Algorithm I to compute the vector �1 and (R1,R2, � � �,Rjq+1);
3) Use Corollary 3.3 to calculate E [W ], P �Ow > 0�, and E [Ow];
4) Use Theorems 3.4 and 3.5 to obtain E [Lc ], E [Lw], and E [Nc ]; and finally,
5) Use equation (2.1) to compute C(f ).

The weight arrival processes for Examples 5.1 and 5.2 are given as
follows. The selected arrival processes are quite different in terms of the
correlation between arrival times and batch sizes and the variance of
batch sizes. We discuss how such characteristics affect the performance of
dispatch policies.

5.2. Correlated Arrival Process (CAP)

In this process, the arrival times and the weights of orders are
correlated. The matrix representation of the BMAP is

D0 =


0 0�3 0 0 0
0 0�1 0�6 0 0
0 0 0�1 0�6 0
0 0 0 0�1 0�7
0�8 0 0 0 0

 , D1 =


0 0�1 0 0 0
0 0 0�1 0 0
0 0 0 0�1 0
0 0 0 0 0�1
0�1 0 0 0 0

 ,

D2 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0�1 0
0 0 0 0 0�1
0�1 0 0 0 0

 , D3 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0�1 0
0 0 0 0 0
0 0 0 0 0

 , (5.1)

D4 =


0 0�1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , D5 =


0 0�5 0 0 0
0 0 0�2 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 �

The order arrival rate is �b = 0�3354 and the weight arrival rate is �a =
1�0354. Note that large orders occur only if the phase of the underlying
Markov chain is either 1 or 2.
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682 Bookbinder et al.

5.3. Heavy Tailed Arrival Process (HTAP)

In this process, the order arrival times and the order weights are
independent. The weight distribution has a heavy tail. Orders arrive
according to an MAP with matrix representation

D0 =


0 0�2 0 0 0
0 0�1 0�2 0 0
0 0 0�1 0�4 0
0 0 0 0�1 0�5
0�6 0 0 0 0�1

 , D1 =


0 0�8 0 0 0
0 0 0�7 0 0
0 0 0 0�5 0
0 0 0 0 0�4
0�3 0 0 0 0

 � (5.2)

Let � be a random variable whose distribution is the normalized Riemann
Zeta function �pn = 1/(�2�5n2�5), n = 1, 2, � � ��, where �2�5 = 1�3415 is the
normalization factor. The weight wo of an order is defined as wo = 2�. The
order arrival rate is �b = 0�5347, the average weight per order is E [wo] =
1�9325, and the weight arrival rate is �a = �bE [wo] = 1�0333. The standard
deviation of wo is 12.01.

5.4. Light Tailed Arrival Process LTAP

This arrival process is similar to the HTAP, except that the weight
of an order has a phase-type distribution with matrix representation
(�, S), where � = (0�1 0�9), S = (

0�15 0�3
0�2 0�3

)
. It is well-known that phase-type

distributions are light tailed. The order arrival rate is �b = 0�5347, the
mean weight per order is E [wo] = 1�9533, and the weight arrival rate
is �a = 1�0444. Here, the standard deviation of wo is 1.3458, which is
significantly smaller than that in the case of HTAP.

Example 5.1. We consider models where the weight arrival processes are
CAP, HTAP, and LTAP, and a quantity policy with threshold Q . We assume
that the excess threshold Qo is fixed at 20 for all cases. Cost parameters
are: KD = 10 and h = 0�1. Since the order-receiving cost and transportation
cost are approximately the same for all models and all policies, without
loss of generality, we assume KS = 0 and CT = 0.

Applying Algorithm I, the average total costs per unit time are
computed for Q = 1, 2, � � � , 40, and the results are plotted in Figure 1.

Figure 1 demonstrates that, as a function of Q , C(f ) is unimodal, but
may not be convex. The optimal Q s, for which C(f ) is minimized, are
13, 12, and 14 for models with CAP, HTAP, and LTAP, respectively. It is
interesting to see that the HTAP case has the lowest cost for many Q s. By
looking into the individual costs per unit time, it seems that the HTAP
case has a smaller holding cost per unit time. The extremely large standard
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Shipment Consolidation by Private Carrier 683

FIGURE 1 C(f ) for quantity policies (color figure available online).

deviation of weight per order can cause the accumulated weight, in a short
period of time, to go from a small amount to a large amount that exceeds
Q . Thus, a shipment is likely to be dispatched right after a large order
arrives. Consequently, the mean holding cost can be smaller for the HTAP
case. At the optimal threshold Q ∗s, the performance measures are given
in Table 1.

As shown in Table 1, the mean excess for the HTAP case is significantly
larger than that of the other two cases. For LTAP, since demands arrive in
a bursty manner, the probability of excess is also significant. On the other
hand, there is no excess at all for the CAP case. For all three cases, the
optimal quantity is significantly smaller than the excess threshold Qo = 20
(65%, 60%, and 70% for the CAP, HTAP, and LTAP cases, respectively).
Yet there is still considerable excess for HTAP and LTAP. Thus, if there is
a cost associated with the excess, the mean total cost for HTAP and LTAP
may increase significantly.

Example 5.2. Consider the same model as in Example 5.1, except
that the dispatch policy is now a hybrid policy. We assume f (1) = · · · =
f (jq − 1) = Q = 30 and f (j) = 0 for j ≥ jq . Note that Q = 30 is a little bit

TABLE 1 Costs associated with the optimal quantity policies

Q ∗ E [Lc ] E [Lw ] E [W ] Po E [Ow ] C(f )

CAP 13 14.05 7.59 5.30 0 0 1.2415
HTAP 12 14.92 8.06 5.07 0.073 1.9815 1.1773
LTAP 14 14.30 7.42 6.09 0.006 0.0117 1.3081
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684 Bookbinder et al.

TABLE 2 Costs associated with the optimal hybrid policies.

j∗q E [Lc ] E [Lw ] E [W ] Po E [Ow ] C(f )

CAP 14 13.995 6.498 6.722 0.148 0.537 1.3867
HTAP 16 15.653 7.420 6.416 0.165 2.713 1.2805
LTAP 14 13.993 6.497 6.776 0.125 0.461 1.3922

more than double the optimal quantities obtained in Example 5.1. Again,
we set Qo = 20 for the excess level. The average total costs per unit time
are computed for jq = 1, 2, � � �, 30, and the results are plotted in Figure 2.

The optimal jq is 14, 16, and 14 for the respective three cases. The
HTAP case has the smallest mean cost: Its weight per order can be very
large, hence the accumulated weight can exceed Q and all that weight
be shipped out before the scheduled time jq . Thus, the HTAP case avoids
carrying large inventory, as compared to the other two cases. Details on
the individual optimal results are given in Table 2.

The chance of getting an excess, and the mean excess of the HTAP
case, are significantly larger than those of the other two cases. If there is a
cost associated with an excess weight, HTAP may have a higher cost.

There are cases for which the optimal hybrid policy is better than the
optimal quantity policy. As shown by the next example, there are also cases
for which a generally-structured policy performs better than both the best
quantity policy and the best hybrid policy.

FIGURE 2 C(f ) for hybrid policies (color figure available online).
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Shipment Consolidation by Private Carrier 685

Example 5.3. Consider a model with Kd = 10, h = 0�1, and weight
accumulation process:

D0 =
(
0�2 0�1
0�1 0�8

)
, D1 =

(
0�2 0�1
0 0�1

)
, D2 =

(
0�2 0
0 0

)
,

D3 =
(
0�1 0
0 0

)
, D4 =

(
0�1 0
0 0

)
� (5.3)

We set Qo = 20. The optimal quantity policy is Q∗ = 10 with C(f ) =
0�9238, E [Lc ] = 20�039, E [Lw] = 14�543, Po = 0, and E [Ow] = 0. The
optimal hybrid policy with Q = 30 is j ∗q = 20 with C(f ) = 1�003, E [Lc ] =
19�951, E [Lw] = 9�481, Po = 0�115, and E [Ow] = 0�589.

By a manual search, the following generally-structured dispatch policy
is found to be better than the respective optimal choice for both
the quantity and hybrid policies. For f (j) = 16, 1 ≤ j ≤ 5; f (j) = 15, 6 ≤
j ≤ 10; f (j) = 10, 11 ≤ j ≤ 13; f (j) = 9, 14 ≤ j ≤ 16; and f (j) = 8, 17 ≤ j ≤
20, we have C(f ) = 0�897, E [Lc ] = 19�499, E [Lw] = 12�781, Po = 0, and
E [Ow] = 0. As shown, the generally-structured policy has a smaller mean
total cost. This example indicates that the optimal policy may not be a
quantity policy nor a time policy. The time elapsed since the last dispatch
must be taken into consideration when it comes to cost reduction.

6. CONCLUSIONS

In this article, shipment consolidation has been studied for the case
of private carriage, and an arrival process more general than those in
the existing literature. The discrete weight of an individual order may be
correlated with its arrival time. Efficient algorithms were developed for
computing the performance measures for several policies (quantity, time,
hybrid policies) commonly used in industrial practice. We did give one
example of a more general dispatch policy where the average total cost was
better than that of the preceding policies. But it would be interesting to
develop algorithms for finding the best general dispatch policy to minimize
the average total costs.

Moreover, it would be worthwhile to develop analyses and algorithms
corresponding to those of the present article, now for the case of common
carrier transportation. We have already begun that research. For example,
the matrix-analytic methods, and the special QBD structure of the Markov
chain introduced for the system, enable us to obtain a distribution for the
weight of an individual load. That is crucial for calculating the expected
cost of common carriage.
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