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Abstract This paper studies a continuous time queueing system with multiple types of customers and

a first-come-first-served service discipline. Customers arrive according to a semi-Markov arrival process

and the service times of individual types of customers have PH -distributions. A GI /M /1 type Markov

process for a generalized age process of batches of customers is constructed. The stationary distribution

of the GI /M /1 type Markov process is found explicitly and, consequently, the distributions of the age

of the batch in service, the total workload in the system, waiting times, and sojourn times of different

batches and different types of customers are obtained. The paper gives the matrix representations of the

PH -distributions of waiting times and sojourn times. Some results are obtained for the distributions of

queue lengths at departure epochs and at an arbitrary time. These results can be used to analyze not

only the queue length, but also the composition of the queue. Computational methods are developed

for calculating steady state distributions related to the queue lengths, sojourn times, and waiting times.

Key words GI /M /1 type Markov process, matrix analytic methods, queueing systems, queue length,

semi-Markov chain, waiting times.

1 Introduction

Waiting times and sojourn times are important performance measurements for queueing
systems. The study of waiting times and sojourn times was extensive and, in some cases,
thorough for many queueing models. For instance, for the classical queueing models M/M/ 1,
M/G/1, MAP/G/1, and MMAP [K ]/G[K ]/1, the distributions of waiting times were found
in the form of (generalized) Pollaczek-Khintchine formula[1−13]. For the classical GI /M /c,
GI /PH /1, GI /PH /c, and SM /PH /1 queue, it has shown that the waiting times and sojourn
times have matrix exponential distributions[2,14−18]. The objective of this paper is to extend
some of these results in [16–18] to a queueing model with multiple types of customers.

For the classical GI/M /1 queue, it is well known that the waiting time has a distribution
similar to the exponential distribution[2]. That result was extended to the GI/PH /1 queue by
Sengupta[16], who showed that the waiting times and sojourn times have matrix exponential
distributions. The queue length distributions at departure epochs and at an arbitrary time
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were obtained as by-products as well. In [18], the above results were further generalized to a
queueing model with a semi-Markov arrival process. In [15], Sengupta’s results were extended
to queues with a semi-Markov arrival process and multiple servers (SM /PH /c). In this paper,
we consider a queueing system with multiple types of customers, which is an extension of the
model defined in Examples 4 and 6 in [18]. The results obtained in [16, 18] are extended to
the queueing model of interest. In addition to the extensions, some new issues arise and are
addressed. For instance, the waiting time distributions are found not only for an arbitrary
customer, but also for individual types of customers. A generalized age process that is more
general than the Markov processes used in previous papers is constructed and analyzed.

The study of queueing systems with multiple types of customers and an FCFS service
discipline can be summarized as follows. For the continuous time MMAP [K ]/G[K ]/1 queue
for which the arrival process is Markovian and the service times have general distribution,
Pollaczek-Khintchine type results were found for the waiting time distributions and algorithms
were developed for computing these distributions[3−4,11−12]. The queue length distributions
are extremely difficult to obtain because there are different types of customers with differ-
ent service time distributions in the system. By utilizing the distributions of waiting times,
Takine[11] found the queue length distributions for such queueing models. For the discrete
time MMAP [K ]/G[K ]/1 queue, He[19] used the generalized total workload process to obtain
distributions of the waiting times. For the discrete time SM [K ]/PH [K ]/1 queue, He[20] and
Van Houdt and Blondia[21] utilized the (generalized) age process to obtain the distributions
of waiting times and sojourn times. This paper can be considered as an extension of [20–22]
from the discrete time case to the continuous time case. As mentioned before, this paper can
also be considered as an extension of [16, 18] from the one type customer case to the multiple
type customer case. In this paper, a number of results are obtained for the distributions of
waiting times, sojourn times, and queue lengths for individual types of customers. Algorithms
are developed for computing these distributions and related performance measures. For some
special cases, the algorithms are involved with only matrix operations and can be implemented
in a straightforward manner. The results about the waiting time, sojourn times, and queue
strings can be used to analyze not only the queue length, but also the relationship between
different types of customers in the queue as well as the composition of the queue (see examples
in Section 6). Applications of some of the algorithms developed in the paper can be found
in [23].

In summary, on one hand, this paper extends the main results in [20–22] from the discrete
time case to the continuous time case. This paper also studies the queue length processes that
were not investigated in [20–22]. On the other hand, this paper extends some of the results
in [16, 18] from queueing systems with a single type of customers to queueing systems with
multiple types of customers. Compared to [16, 18], this paper studies a queueing model with
a fairly general formalism for the arrival process with multiple types of customers. This paper
demonstrates that a queueing system with that arrival process is still tractable. In addition,
this paper introduces a generalized age process that plays a central role in the study of queueing
performance measures. An open problem in [16] is resolved in this paper as well.

The rest of the paper is organized as follows. In Section 2, the queueing model of interest is
introduced. In Section 3, a generalized age process is introduced and its stationary distribution
is obtained. Section 4 utilizes the results obtained in Section 3 to find distributions of waiting
times and sojourn times. In Section 5, some results are obtained for the queue length distri-
butions. In Sections 2 to 5, we use the MMAP [K ]/PH [K ]/ 1 queue as an example to show
that more detailed results can be obtained. Finally, in Section 6, three numerical examples are
analyzed to show the usefulness of the theory developed in this paper and to gain insight into
the queueing model of interest.
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2 The Continuous Time SM [K ]/PH [K ]/1/FCFS Queue

The queueing system of interest has K types of customers, where K is a positive integer.
All customers, regardless of their types, join a single queue and are served by a single server on
a first-come-first-served (FCFS) basis. In the rest of this section, we give a detailed description
of the customer arrival process and service process. A discrete time version of this model was
introduced in [20].

The customer arrival process The customer arrival process is a continuous time semi-
Markov process with marked transitions[1,4,24−26]. Customers are distinguished into K types
and arrive in batches. To characterize the batches of customers, we define a set of strings of
integers:

ℵ = {Jn : Jn = j1j2 · · · j|Jn|, 1 ≤ ji ≤ K, 1 ≤ i ≤ |Jn|, 1 ≤ n ≤ N}, (1)

where N is the total number of different strings in set ℵ and |J | is the number of integers in
the string J, which is called the length of J. For the queueing system, a string J = j 1j 2· · · jn
∈ℵ represents a batch that has n customers. These n customers are of types j 1, j 2, · · · , and
jn, respectively. For instance, if K = 6 and J = 35525, i.e., j 1=3, j 2=5, j 3=5, j 4=2, and j 5=5,
then there are five customers in the batch J and the types of these customers are 3, 5, 5, 2,
and 5, respectively. We call J a string representation of that batch. Thus, there are in total N
different types of batches.

Consider a continuous time semi-Markov chain {(ξn, τn), n≥0} with ma phases. The
variable ξn is the phase of the semi-Markov chain right after the n-th transition. The variable
τn is the time between the (n–1)-th transition and the n-th transition (i.e., the inter-transition
time). The arrivals of batches of customers are associated with transitions of the semi-Markov
process in the following manner. Let Jn be the string representation of the batch associated
with the n-th transition. Define, for t≥0,

P{ξn = j, τn ≤ t, Jn = J |ξn−1 = i} = dJ,i,j(t), 1 ≤ i, j ≤ ma, n ≥ 1, J ∈ ℵ. (2)

The variable dJ,i,j(t) is the probability that a batch J arrives before time t after the arrival
of the last batch at time zero and the phase of the underlying semi-Markov process becomes j
right after the transition, given that the phase was i at time 0. We assume that dJ,i,j(0)=0.
Let Da,J(t) be an ma × ma matrix with (i, j )-th element dJ,i,j(t). Matrices {Da,J(t), t≥0,
J∈ℵ} provide all information about the semi-Markov arrival process with marked transitions.
Define

Da(t) =
∑

J∈ℵ
Da,J(t); Da,J = lim

t→∞Da,J(t), J ∈ ℵ; Da =
∑

J∈ℵ
Da,J = lim

t→∞ Da(t). (3)

The matrix Da is the probability transition matrix of the embedded Markov chain at transition
epochs of the semi-Markov process {(ξn, τn), n≥0}. We assume that Da is irreducible. Let θa

be the invariant probability vector of the stochastic matrix Da, i.e., θaDa = θa and θae = 1,
where e is a column vector with all elements being one. In steady state, the inter-transition
time of the semi-Markov process (i.e., the interarrival time of batches) can be calculated as
follows:

Eθa [τ ] = θa

∫ ∞

0

tDa(dt)e. (4)
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The arrival rate of batches of customers is given as λ = (Eθa [τ ])−1, i.e., the average number
of batches arrived per unit time. The probability that an arbitrary batch is of the type J is
θaDa,Je for J∈ℵ. The arrival rate of type J batches is given by λJ = λθaDa,Je, i.e., the average
number of type J batches arrived per unit time. The arrival rate of type k customers is given
by

λ(k) =
∑

J∈ℵ
N(J, k)λJ , 1 ≤ k ≤ K, (5)

where N (J, k) is the number of appearances of the integer k in the string J. Note that λk is
the arrival rate of the batch k, and λ(k) is the arrival rate of type k customers.

The Service Process All batches are served by a single server on an FCFS basis. After
a batch of customers arrived, all customers in that batch join the queue according to the order
in the batch. In most part of this paper, the services of the customers in a batch are considered
together. The service times of individual customers have continuous time PH -distributions and
are independent of each other and the arrival process. For a type k customer, its service time
sk has a PH -distribution with a matrix representation {mk, αk, Tk}, where mk is the number
of phases of the PH -distribution, αk is a probability vector, and Tk is a subgenerator (i.e., the
diagonal elements of Tk are negative, all other elements are nonnegative, and Tke ≤ 0). We
assume that the service time of any customer is positive, i.e., αke = 1, 1≤k≤K. See [7] for
more about PH -distribution. Denote by T k

0= –Tk e. We assume that each PH -distribution
is irreducible, i.e., Tk + T k

0αk is irreducible. The service time of a batch is the sum of the
service times of all customers within the batch. Since the set of PH -distributions is closed under
convolution, the service time sJ of a type J batch also has a continuous time PH -distribution
with a matrix representation {mJ , αJ , TJ}, where, for J = j 1j 2· · · jn ∈ ℵ,

mJ =
n∑

i=1

mji ; αJ = (αj1 , 0, · · · , 0);

TJ =

⎛

⎜⎜⎜⎜⎜⎝

Tj1 T 0
j1αj2

Tj2 T 0
j2αj3

. . . . . .
Tjn−1 T 0

jn−1
αjn

Tjn

⎞

⎟⎟⎟⎟⎟⎠
, T 0

J =

⎛

⎜⎜⎜⎜⎜⎜⎝

0
...
...
0

T 0
jn

⎞

⎟⎟⎟⎟⎟⎟⎠
. (6)

The mean service time of a type k customer is given by E [sk] = –αkTk
−1e. The mean

service time of a type J batch is given by E [sJ ] =
∑|J|

i=1 E[sji ]. The service rate of a batch J
is defined as μJ = (E [sJ ])−1.

The service rate of type k customers is μk= (E [sk])−1. The traffic intensity of the queueing
system can be defined in terms of batch arrival rates and batch service rates (or customer arrival
rates and service rates):

ρ =
∑

J∈ℵ

λJ

μJ
=

K∑

k=1

λ(k)

μk
. (7)

By Loynes[27], the queueing system is stable if and only if ρ<1. Therefore, throughout
this paper, we assume ρ < 1 to ensure system stability. We note that many classical queueing
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systems, such as the MMAP [K ]/PH [K ]/1 queue, the GI /PH /1 queue, and the GI/M/ 1 queue,
are special cases of the SM [K ]/PH [K ]/1 queue.

Example 2.1 The Continuous Time MMAP[K ]/PH [K ]/1 Queue This queueing
system has a batch Markovian arrival process with matrix representation {D0, DJ , J∈ℵ},
where D0 is an ma× ma subgenerator, {DJ , J∈ℵ} are ma ×ma nonnegative matrices. The
matrix DJ is the (matrix) arrival rate of type J batches. For more about MMAP [K ], see [3–
4, 24, 26]. The relationship between the two sets of parameters of the arrival process is:
Da,J(dt) = exp{D0t}dtDJ , J ∈ ℵ, t ≥ 0. Let D = D0 + ΣJDJ be the infinitestimal generator
of the underlying Markov process of the arrival process. We assume that D is irreducible and
D �= D0. Denote by θ the invariant probability vector of the stochastic matrix D. It is easy to
see θa = –θD0/ λ, where λ = –θD0e = θΣJDJe. In addition, we have λJ = θDJe. As shall
be shown, more detailed results can be obtained for this special case.

3 Analysis of the Generalized Age Process

The following analysis of the generalized age process is parallel to that of the discrete time
case studied in [20]. Thus, some details will be omitted and some proofs are given in the
appendix.

3.1 The Generalized Age Process

The basic idea to analyze the sojourn times originated from the following fundamental
relationship for waiting times in queues. Let wn be the (actual) waiting time of the n-th batch.
Then we have

wn+1 = max{0, wn + sJn − τn+1}, n ≥ 0, (8)

where τn+1 is the length of the time between the n-th batch and the (n+1)-th batch, Jn is
the type of the n-th batch, and sJn is the service time of the n-th batch. We define the age
of a batch at time t as the total time the batch has been in the queueing system, given that
the batch is in the system at time t. The generalized age process {ag(t), t≥0} of the batch in
service or to be served next (if the system is empty) is defined as

ag(t) = wn(t) + sJn(t) − τn(t)+1 + t − ηn(t), (9)

where n(t) is the ordinal number of the last batch served before time t and ηn(t) is the departure
time of the n(t)-th batch. Detailed discussion on the process {ag(t), t ≥0} can be found in [20]
for the discrete time case. In general, the variable ag(t) records the age of the batch currently
in service if ag(t) ≥ 0 at time t. If ag(t) < 0, −ag(t) records the remaining time of the current
idle period. It is easy to see that ag(t) satisfies the following equation, for small δt,

ag(t + δt) =
{

ag(t) + δt, if no service is completed in (t, t + δt),
ag(t) − τn(t+δt)+1 + δt, if a service is completed in (t, t + δt). (10)

In order to construct a Markov chain, we introduce some auxiliary variables related to the
phase of the arrival and service processes. We define a process {Ia(t), t≥0} from the Markov
chain {ξn, n≥0} defined in Section 2 as: Ia(t) = ξn if the n-th batch is the last batch departed
at or before t, i.e., Ia(t) may change its value only at service completion epochs. Let Is(t) be
the phase of the service at time t (if any) and J (t) be the type of the batch in service at time
t (if any). If there is no service at t, J (t) is the type of the next batch to be served and Is(t)
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the initial service phase of the batch to be served. Putting these variables together, we obtain
a Markov process {(ag(t), Ia(t), J (t), Is(t)), t≥0}. We call ag(t) the level variable and {Ia(t),
J (t), Is(t)} auxiliary variables that take a finite number of values in the set:

{(i, Jn, j) : 1 ≤ i ≤ ma, 1 ≤ j ≤ mJn , 1 ≤ n ≤ N}, (11)

in which the states are ordered lexicographically. Equation (10) shows that the process {ag(t),
t≥0} is skip-free to the right. Thus, {(ag(t), Ia(t), J (t), Is (t)), t≥0} is a Markov process of
GI /M /1 type with no boundary at the level 0. Denote by

mtot =
N∑

n=1

mJn ,

α(Jn) = (0, · · · , 0, αJn , 0, · · · , 0), 1 ≤ n ≤ N,

Ttot =

⎛

⎜⎜⎜⎝

TJ1

TJ2

. . .
TJN

⎞

⎟⎟⎟⎠ , T 0
tot = −Ttote =

⎛

⎜⎜⎜⎝

T 0
J1

T 0
J2
...

T 0
JN

⎞

⎟⎟⎟⎠ ,

(12)

where α(Jn) is a row vector of the size mtot, 1≤n≤N, and Ttot is an mtot×mtot matrix. The
vector α(Jn) is obtained by putting the vector αJn in the positions from

∑n−1
i=1 mJi + 1 to∑n

i=1 mJiand zero in all other positions in a vector of the size mtot.
Similar to [16], the transition of the Markov chain {(ag(t), Ia(t), J (t), Is(t)), t≥0} is

specified as follows:
1) The process ag(t) increases linearly at rate one, except when downward jumps occur.

So ag(t) is skip free to the right.
2) The downward jumps in ag(t) correspond to service completions. If a batch completes

its service at time t, the magnitude of the downward jump of ag(t) is τn(t−)+1.
The transition probabilities are given as follows: If ag(t) = x ≥ 0, for u>0,

P{ag(t + δt) = x + δt, Ia(t + δt) = i′, J(t + δt) = J ′, Is(t + δt) = j′

|ag(t) = x, Ia(t) = i, J(t) = J, Is(t) = j}
=

{
1 − (diag(Ttot))(i,J,j),(i,J,j) δt + o(δt), if (i, J, j) = (i′, J ′, j′);
(I ⊗ (Ttot − diag(Ttot)))(i,J,j),(i′,J′,j′) δt + o(δt), otherwise; (13)

P{x − u ≤ ag(t + δt) < x, Ia(t + δt) = i′, J(t + δt) = J ′, Is(t + δt) = j′

|ag(t) = x, Ia(t) = i, J(t) = J, Is(t) = j}

=

(
N∑

n=1

Da,Jn(u) ⊗ (T 0
totα(Jn))

)

(i,J,j),(i′,J′,j′)

δt + o(δt),

(14)
where diag (Ttot) is a matrix whose diagonal elements are the diagonal elements of the matrix
Ttot and all other elements are zero, the notation “⊗” is for Kronecker product of matrix (see
[28–29]). If ag(t) = x < 0, for x+δt < 0,

P{ag(t + δt) = x + δt, Ia(t + δt) = i′, J(t + δt) = J ′, Is(t + δt) = j′

|ag(t) = x, Ia(t) = i, J(t) = J, Is(t) = j}
=

{
1, if i = i′, J = J ′, j = j′;
0, otherwise.

(15)
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3.2 Ergodicity of the Generalized Age Process

As the first step to analyze the Markov process {(ag(t), Ia(t), J (t), Is(t)), t≥0}, we show
that if the queueing system is stable (i.e., ρ<1), the Markov chain is ergodic. Define

A(t) = I ⊗ Ttot +
N∑

i=1

Da,Ji(t) ⊗ (T 0
totα(Ji)), t ≥ 0;

A∗(s) =
∫ ∞

0

exp{−st}A(dt); (16)

A = lim
t→∞A(t) = lim

s→0
A∗(s) = I ⊗ Ttot +

N∑

n=1

Da,Jn ⊗ (T 0
totα(Jn)).

The off-diagonal elements of A(t) can be interpreted as the rates of transitions. It is easy to
see that A is a generator, i.e., Ae = 0. We assume that A is irreducible. Denote by χ(s) the
Perron-Frobenius eigenvalue of the matrix A∗(s) (i.e., the eigenvalue with the largest modulus).

Denote by βk the invariant probability vector of Tk +T k
0αk, i.e., βk(Tk +T k

0αk) = 0,
1≤k≤K. Since Tk + T k

0αk is irreducible, every element of the vector βk is positive[28−29]. By
Neuts[7], βkT k

0= μk. Denote by βJ the invariant probability vector of TJ + T J
0αJ , for J∈ℵ.

By βkTk + μkαk = 0, it can be verified, for J∈ℵ,

βJ = μJ

(
βj1

μj1

,
βj2

μj2

, · · · ,
βj|J|

μj|J|

)
, where μJ =

(
1

μj1

+
1

μj2

+ · · · + 1
μj|J|

)−1

. (17)

Recall that |J | is the number of integers in the string J. Similar to the definition of α(J ) in
Equation (12), we define β(J ) as β(J ) = (0, · · · , 0, βJ , 0, · · · , 0), which is a row vector of the
size mtot. Denote by

θtot =
λ

ρ

N∑

n=1

(θaDa,Jn) ⊗
(

β(Jn)
μJn

)
. (18)

The following lemmas are useful in the proof of Theorem 3.3 and in the next few sections.
Their proofs are given in the appendix.

Lemma 3.1 Assume that A is irreducible. The vector θtot is the unique invariant probability
vector of A.

Lemma 3.2 Assume that the matrix A is irreducible. At s = 0, we have χ(0) = 0 and
θtotA∗(1)(0)e = χ(1)(0) = 1/ρ. Consequently, χ(1)(0) > 1 if and only if ρ < 1 (Note that χ(1)(0)
is the first derivative of the function χ(s) at s=0).

Theorem 3.3 Assume that the Markov process {(ag(t), Ia(t), J(t), Is(t)), t ≥ 0} and the
matrix A are irreducible. The Markov chain is positive recurrent if and only if ρ < 1.

Proof By Theorem 2.3 in [16], the Markov process is positive recurrent if and only if
θtotA∗(1)(0)e > 1. In [16], the level variable of the age process takes nonnegative values. In our
case, ag(t) can be negative. Since there is no service if ag(t) < 0, the process will definitely
reach the level zero from any negative level in finite time. Therefore, the result in [16] can be
applied to the Markov process of interest. By Lemma 3.2, θtotA

∗(1)(0)e > 1 is equivalent to ρ
< 1, which leads to the desired result. This completes the proof of Theorem 3.3.
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3.3 The Steady State Distribution of the Generalized Age Process

Now, we assume ρ<1 so that the Markov process {(ag(t), Ia(t), J (t), Is(t)), t≥0} is positive
recurrent. Denote by π(x ) the density function of the steady state distribution of {(ag(t), Ia(t),
J (t), Is(t)), t≥0}, where π(x ) = (· · · , πi,J,j(x ), · · · ) is a row vector of the size mamtot and

πi,J,j(x)dx = lim
t→∞

1
t

∫ t

0

P{x < ag(u) < x + dx, Ia(u) = i, J(u) = J, Is(u) = j }du. (19)

Since {(ag(t), Ia(t), J (t), Is(t)), t≥0} has the so called GI /M /1 structure for nonnegative
levels (ag(t)≥0), by Lemma 2.4 in [16], its steady state distribution has a matrix exponential
solution:

π(x) = π(0) exp{Tx}, x ≥ 0, (20)

where T is an (mamtot)×(mamtot) matrix and is the minimal solution to equation

T = I ⊗ Ttot +
∑

J∈ℵ

∫ ∞

0

exp{Tx} (Da,J(dx) ⊗ T 0
totα(J)

)
. (21)

We refer to [16] for more about Equation (21) and the matrix T. A stable iterative algorithm
was developed in [16] for computing the matrix T as well. Using the above equations, explicit
expressions can be found for π(0) and π(x ) for x < 0.

Theorem 3.4 Assume ρ< 1. We have

π(x) = ρθtotT

∫ ∞

0

exp{T t}A(t − x)dt, x < 0; π(0) = −ρθtotT ; (22)
∫ 0

−∞
π(x)dx = ρθtot

(∫ ∞

0

xA(dx) + T−1A − I

)
;

∫ 0

−∞
π(x)dxe = 1 − ρ.

Proof When ag(t) < 0, ag(t) is increasing linearly in t at the rate one. Thus, π(x ) is
increasing in x if x < 0. The difference π(x )– π(x–δ) comes from the downward jumps of ag(t).
Therefore, we have, for x<0,

π(1)(x) =
∫ ∞

0

π(t)A(dt − x) = π(0)
∫ ∞

0

exp{T t}A(dt− x), (23)

where π(1)(x ) is for the derivative of π(x ) at x. Equation (23) leads to

π(0) − π(x) =
∫ 0

x

π(1)(u)du

= π(0)
∫ 0

x

∫ ∞

0

exp{T t}A(dt− u)du

= π(0)
∫ ∞

0

exp{T t}
∫ 0

x

(−A(t − du))dt

= π(0)
∫ ∞

0

exp{T t} (A(t − x) − A(t)) dt

= π(0)
∫ ∞

0

exp{T t}A(t− x)dt − π(0)
∫ ∞

0

exp{T t}A(t)dt. (24)
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Since
∫ ∞

0

exp{T t}A(t)dt = −T−1

∫ ∞

0

(d exp{T t})A(t)

= T−1

(
−A(0) −

∫ ∞

0

exp{T t}A(dt)
)

= −T−1

(
I ⊗ Ttot +

∫ ∞

0

exp{T t}A(dt)
)

= −T−1T = −I. (25)

Equation (24) leads to π(x) = −π(0)
∫∞
0 exp{T t}A(t−x)dt. Letting x →–∞ in that expression,

we obtain π(0)T−1A = 0, since π(x ) → 0 as x → –∞. Therefore, π(0) = cθtotT . To determine
the constant c, we evaluate the following integration of π(x ):

∫ 0

−∞
π(x)dx = −

∫ 0

−∞
π(0)

∫ ∞

0

exp{T t}A(t− x)dtdx

= −π(0)T−1

∫ 0

−∞

∫ ∞

0

(d exp{T t})A(t − x)dx

= −π(0)T−1

∫ 0

−∞

(
−A(−x) −

∫ ∞

0

exp{T t}A(dt − x)
)

dx

= π(0)T−1

(∫ ∞

0

A(x)dx +
∫ ∞

0

exp{T t}(A− A(t))dt

)

= π(0)T−1

(∫ ∞

0

A(x)dx − T−1A + I

)
, (26)

where Equation (25) is used in the last equality. Since
∫∞
−∞ π(x)dx = 1, Equation (25) leads to

1 =
∫ ∞

−∞
π(x)dxe

=
(

π(0)T−1

(∫ ∞

0

A(x)dx − T−1A + I

)
+
∫ ∞

0

π(x)dx

)
e

=
(

π(0)T−1

(∫ ∞

0

A(x)dx − T−1A + I

)
− π(0)T−1

)
e

= cθtot

(∫ ∞

0

A(x)dxe − T−1Ae

)

= −cθtot

∫ ∞

0

xA(dx)e = −c/ρ, (27)

where we used Lemma 3.2 and Ae= 0 for the last equality. By Equation (27), c = –ρ. The rest
of the results follow easily. This completes the proof of Theorem 3.4.

Theorem 3.4 shows that the system is busy with probability ρ, which is consistent with
intuition. Summarizing the results in Equation (20) and Theorem 3.4, we obtain the following
expressions for the density function of the stationary distribution of the Markov process {(ag(t),
Ia(t), J (t), Is(t)), t≥0}:

π(x) =

⎧
⎪⎨

⎪⎩

ρθtotT

∫ ∞

0

exp{T t}A(t− x)dt, x < 0,

−ρθtotT exp{Tx}, x ≥ 0.

(28)
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Example 3.1 The Continuous Time MMAP[K ]/PH [K ]/1 Queue (Example 2.1
continued) For this case, Equation (21) for the matrix T can be simplified to

T = I ⊗ Ttot +
∫ ∞

0

exp{T t} (exp{D0t} ⊗ I) dt

(
∑

J∈ℵ
DJ ⊗ T 0

totα(J)

)

= I ⊗ Ttot + L

(
∑

J∈ℵ
DJ ⊗ T 0

totα(J)

)
, (29)

where

L = −T−1 − T−1

∫ ∞

0

exp{T t} (exp{D0t} ⊗ I) dt (D0 ⊗ I)

⇒ TL + L (D0 ⊗ I) = −I. (30)

Denote by φ(L) the direct-sum of the matrix L, i.e., putting the rows of the matrix L
(from top to bottom) into a single row vector (see page 19 in [7]). Then the last equality in
Equation (30) is equivalent to

φ(L) = −φ(I) (T ′ ⊗ I + I ⊗ D0 ⊗ I)−1
, (31)

where T ′ is the transpose of the matrix T and φ (I ) is the direct-sum of the matrix I. Therefore,
for computing the matrix T by the iteration method given in [16], each iteration is reduced to
solve a linear equation. This property makes the computation of T easier, since integration is
avoided.

We would like to point out that Equation (30) is a (generalized) Sylvester matrix equation,
it can be solved more efficiently by using a Hessenberg/Schur algorithm (see [30]). In addition,
the vector θtot can be simplified to

θtot =
θ

ρ

∑

J∈ℵ
(DJ) ⊗

(
β(J)
μJ

)
. (32)

4 Age, Total Workload, Sojourn Times, and Waiting Times

4.1 Distributions of Age and Total Workload

Let ag be the generic random variable of the generalized age at an arbitrary epoch. By
Equation (28), the distribution of ag is obtained easily as

P{ag < x} =

⎧
⎨

⎩
ρθtot

(∫ ∞

−x

A(u)du −
∫ ∞

0

exp{T t}A(t− x)dt

)
e, x < 0,

1 − ρθtot exp{Tx}e, x ≥ 0.
(33)

The total workload (virtual waiting time) is defined as the total service time of all waiting
batches plus the remaining service time of the batch in service (if any). Based on Equation (8),
we introduce the generalized total workload process:

vg(t) = wn(t) + sJn(t) − (t − ξn(t)), (34)

where n(t) be the ordinal number of the last batch arrived at or before time t, and ξn(t) is
the arrival time of the n(t)-th batch. Then the total workload is given by max{0, vg(t)}. It is
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well-known in the literature that max{0, vg(t)} and max{0, ag(t)} have the same distribution
in steady state. For more details about the process vg(t), see [19].

The relationship between the generalized age process and the generalized total workload
process is shown in the following lemma. The following lemma was proved for discrete time
queueing models in [20] (Lemma 4.1 in [20]), which is also valid for continuous time cases.

Lemma 4.1 In a busy cycle (starting with the first service in a busy period and ending
at the beginning of the next busy period), the number of times that ag(t) up-crosses x equals
the number of times that vg(t) down-crosses x, for any real number x. Consequently, in steady
state, vg(t) and ag(t) have the same distribution.

4.2 Distributions of Sojourn Times

We define the sojourn time of an arbitrary batch (an arbitrary type J batch) as the time
between its arrival and its service completion (of all customers in the batch). Let d be the
generic random variable for the sojourn time of an arbitrary batch in steady state. Let dJ be
the generic random variable for the sojourn time of an arbitrary type J batch in steady state.
Let d (k) be the generic random variable for the sojourn time of an arbitrary type k customer in
steady state, which is the time between its arrival (i.e., the arrival of its btach) and its service
completion (not the service completion of its batch).

We decompose T 0
tot into {T 0

tot,J : J∈ℵ}, where T 0
tot,J is obtained by setting all T 0

H in
the vector T 0

totto a zero vector if H �= J. Apparently, we have T 0
tot =

∑
J∈ℵ

T 0
tot,J . For 1≤k≤K,

we construct column vector T 0
tot,(k) from T 0

tot by setting all T 0
j in T 0

tot to a zero vector if
j �= k. We also have T 0

tot =
∑K

k=1 T 0
tot,(k).

Lemma 4.2 θtot(e⊗T 0
tot) = λ/ρ, θtot(e⊗T 0

tot,J) = λJ/ρ, J∈ℵ, and θtot(e⊗T 0
tot,(k)) =

λ(k)/ρ, 1 ≤k≤K.
Consider the sojourn time of an arbitrary type J batch. Note that the sojourn time of a

batch equals the age of that batch at its service completion epoch. Conditioning on the service
completion of a type J batch, we obtain, for x ≥ 0,

P{dJ ≤ x} =
1
λJ

∫ x

0

π(t)
(
e ⊗ T 0

tot,J

)
dt

= − ρ

λJ
θtotT

∫ x

0

exp{T t}dt
(
e ⊗ T 0

tot,J

)

= 1 − ρ

λJ
θtot exp{Tx} (e ⊗ T 0

tot,J

)
. (35)

Note that in Equation (35), we used the fact that the departure rate of type J batches
equals the arrival rate of type J batches. Similarly, we obtain, for 1≤k≤K and x≥0,

P{d ≤ x} = 1 − ρ

λ
θtot exp{Tx} (e ⊗ T 0

tot

)
,

P{d(k) ≤ x} = 1 − ρ

λ(k)
θtot exp{Tx}

(
e ⊗ T 0

tot,(k)

)
. (36)

By Lemma 4.2, it is easy to verify that the distributions given in Equations (35) and (36)
are probability distributions with no mass at zero. Equations (35) and (36) indicate that the
sojourn times have matrix exponential distributions[15]. In [18], it has shown that the waiting
time of an arbitrary customer and the sojourn times have continuous time PH -distributions for
the continuous time SM/PH /1 queue (also see [15–17]). These results can be extended to our
queueing model.
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Theorem 4.3 Assume that the queueing system is stable. Let Δ = diag (θtot) and Q =
Δ−1T ′Δ. For an arbitrary batch, the random variable d has a PH-distribution with a matrix
representation

{
mamtot, ρ

(
Δ(e ⊗ T 0

tot)
)′

/λ, Q
}
. For an arbitrary type J batch, the random

variable dJ has a PH-distribution with a matrix representation
{
mamtot, ρ

(
Δ(e ⊗ T 0

tot,J)
)′

/λJ ,

Q
}
. For an arbitrary type k customer, the random variable d(k) has a PH-distribution with a

matrix representation
{
mamtot, ρ(Δ(e ⊗ T 0

tot,(k)))′/λ(k),Q
}
.

Proof The proof is based on Equation (36) and is similar to the proof of Theorem 5 in [18].
For completeness, a proof is given the appendix.

4.3 Distributions of Waiting Times

In this section, we use the fact that the waiting time of a batch equals ag(t) just before it
enters the server to find the waiting times of batches. Equivalently, the waiting time of a batch
is ag(t) right after the departure of a (arbitrary) batch. We focus on the waiting time w of
an arbitrary batch and the waiting time wJ of an arbitrary type J batch. By the definition of
ag(t), we have, for x ≥ 0,

P{wJ ≤ x} = 1 − P{wJ > x} = 1 − 1
λJ

∫ ∞

x

π(t) (Da,J(t − x) ⊗ I) dt
(
e ⊗ T 0

tot

)

= 1 +
ρ

λJ
θtotT

∫ ∞

x

exp{T t} (Da,J(t − x) ⊗ I) dt
(
e ⊗ T 0

tot

)

= 1 − ρ

λJ
θtot

∫ ∞

x

exp{T t} (Da,J(dt − x) ⊗ I)
(
e ⊗ T 0

tot

)

= 1 − ρ

λJ
θtot

∫ ∞

0

exp{T (t + x)} (Da,J(dt) ⊗ I)
(
e ⊗ T 0

tot

)

= 1 − ρ

λJ
θtot exp{Tx}RJ

(
e ⊗ T 0

tot

)
, (37)

where RJ =
∫∞
0

exp{T t} (Da,J(dt) ⊗ I). Similarly, the waiting time distribution of an arbitrary
batch can be obtained as:

P{w ≤ x} = 1 − ρ

λ
θtot exp{Tx}R (

e ⊗ T 0
tot

)
, (38)

where R =
∫∞
0 exp{T t}

( ∑
J∈ℵ

Da,J(dt) ⊗ I
)

=
∑

J∈ℵ
RJ .

It is easy to verify that the distribution functions given in Equations (37) and (38) are proper
probability distributions with a mass at zero. From Equations (37) and (38), it can be shown
that wJ and w have PH -distributions and their matrix representations can be constructed
explicitly.

Theorem 4.4 Assume that the queueing system is stable, i.e., ρ < 1. Let Δ = diag (θtot)
and Q = Δ−1T ′Δ. The waiting time w has a PH-distribution with a matrix representation
{mamtot, ρ(ΔR(e⊗T 0

tot))′/λ, Q}. For the waiting time wJ of an arbitrary type J batch, it has
a PH-distribution with a matrix representation {mamtot, ρ(ΔRJ(e⊗T 0

tot))′/λJ , Q}.
Proof The proof is based on Equation (38) and is similar to that of Theorem 5 in [18].
The above results can be used to find the distributions of the waiting times of individual

types of customers. Let w (k) be the generic random variable for the waiting time of a type k
customer in steady state. For 1≤k≤K, we have
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P{w(k) ≤ t} =
∑

J∈ℵ

λJ

λ(k)

|J|∑

t=1

P{wJ + sj1 + sj2 + ... + sjt−1 ≤ t}δ{jt=k}, t ≥ 0, (39)

where δ{.} is the indicator function, i.e., δ{j=k} = 1 if j=k ; 0, otherwise. Since wJ has a PH -
distribution and service times are PH -distributed, the random variable wJ +sj1 +sj2 +· · ·+sjt−1

has a PH -distribution. Since the total number N of different batches is finite, Equation (39)
indicates that w (k) has a PH -distribution. The construction of the PH -representation of w (k)

is straightforward but tedious. Therefore, details are omitted.
The sojourn time dJ of a type J batch is the sum of its waiting time and its service time,

i.e., dJ = wJ + sJ . Thus, we can also find the distribution of dJ by wJ and sJ . That poses
a question of consistence between the results obtained in this section and that of Section 4.2,
i.e., the consistence of distributions of dJ obtained in Section 4.2 and wJ+sJ . This was an
unresolved problem in [16] (see Remark 7 in [16]).

Corollary 4.5 If the queueing system is stable, then E[exp{−sdJ}] = E[exp{−swJ}]E[exp{−
ssJ}].

The proof of Corollary 4.5 is in the appendix. Corollary 4.5 shows that the results obtained
in Section 4.2 and this section are consistent. The relationship given in Corollary 4.5 is useful
for checking the accuracy of computational results.

Example 4.1 The Continuous Time MMAP[K ]/PH [K ]/1 Queue (Example 2.1 con-
tinued) For this special case, RJ =

∫∞
0

exp{T t} (Da,J(dt) ⊗ I) = L(DJ ⊗ I), where the matrix

L is given in Example 3.1. We also have R =
∫∞
0

exp{T t}
( ∑

J∈ℵ
Da,J(dt)⊗I

)
= L

( ∑
J∈ℵ

DJ ⊗I
)
.

5 Distributions of Queue Lengths

In this section, some results on the queue length distributions are obtained by utilizing the
results on the waiting times and sojourn times. The basic idea is that the queue at any time
epoch consists of the batches arrived during the waiting time and service time of the batch
currently in service. The queue can be observed at the batch level or at the customer level.
Since information about the queue at the customer level can be obtained from the queue at
the batch level, our focus is on the queue of batches of customers. We start with a special case
where detailed results on the queue can be obtained.

Example 5.1 The SM [K ]/PH [K ]/1 Queue with ma = 1 This queueing model is a
direct extension of the model studied in [16]. Although this is a special case, it has not been
considered before. Thus, the following results are new. Denote by

Da,H1···Hn(t) = Da,H1 ∗ · · · ∗ Da,Hn(t), for H1, · · · , Hn ∈ ℵ, (40)

where “*” is for the convolution of functions. The probability that n batches {H 1, H 2, · · · , Hn}
arrived in the order H 1, H 2, · · · , and Hn in [0, t ] is given by Da,H1···Hn(t)−Da,H1···Hn ∗Da(t).

Let x (H 1H 2 · · ·Hn) be the probability that the queue consists of a type H 1 batch, a type
H 2 batch, · · · , and a type Hn batch (arrived in that order) right after the departure of an
arbitrary batch; xJ(H 1H 2· · ·Hn) be the probability that the queue is H 1H 2· · ·Hn right after
the departure of an arbitrary type J batch; yq(H 1H 2· · ·Hn) be the probability that the waiting
queue is H 1H 2· · ·Hn at an arbitrary time (excluding all customers in the batch in service (if
any)), y(H 1H 2· · ·Hn) be the probability that the queue is H 1H 2· · ·Hn at an arbitrary time
(including the batch (if any) in service). For all these cases, the n batches {H 1, H 2, · · · , Hn}
arrived in the order H 1, H 2, · · · , and Hn. Note that the customers in queue right after the
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departure of a batch are these customers who arrived during the sojourn time of that batch.
By conditioning on the age of the batch just departed, we obtain, for J∈ℵ,

xJ(H1H2 · · ·Hn)

= − ρ

λJ
θtotT

∫ ∞

0

exp{T t} ((Da,H1···Hn(t) − Da,H1···Hn ∗ Da(t))e ⊗ T 0
tot,J

)
dt

=
ρ

λJ
θtot

∫ ∞

0

exp{T t} ((Da,H1···Hn(dt) − Da,H1···Hn ∗ Da(dt)) e ⊗ T 0
tot,J

)

=
ρ

λJ
θtot(I − R)RH1 · · ·RHn

(
e ⊗ T 0

tot,J

)
, (41)

where RJ =
∫∞
0 exp{T t}Da,J(dt) and R =

∑
J∈ℵ

RJ . Note that the definitions of the matrices RJ

and R are consistent with the definitions given right after Equations (37) and (38), respectively.
Also note that the last equality in Equation (41) holds because ma = 1. Similar to Equation
(41), we have

x(H1H2 · · ·Hn) =
ρ

λ
θtot(I − R)RH1 · · ·RHn

(
e ⊗ T 0

tot

)
,

yq(H1H2 · · ·Hn) =
{

1 − ρθtotRe, if n = 0,
ρθtot(I − R)RH1 · · ·RHne, if n > 0; (42)

y(H1H2 · · ·Hn) =
{

1 − ρ, if n = 0,
ρθtot(I − R)RH2 · · ·RHn (e ⊗ e(H1)) , if n > 0,

where e(J ) is a column vector of the size mtot such that all elements are zero except the elements
corresponding to the string J, which are set to be one. With the distributions given in Equations
(41) and (42), various performance measures of queue at a departure epoch and at an arbitrary
time can be found at both the batch level and the customer level. The above results can be
used to analyze relationship between waiting customers and the composition of the queue (see
Example 6.3). Details are omitted.

Note 5.1 In Example 5.1, we found the distributions of queue string at departure epochs
and at an arbitrary time if ma = 1. For ma ≥ 2, define

RH1H2···Hn =
∫ ∞

0

exp{T t} (Da,H1H2···Hn(dt) ⊗ I) ;

RH1H2···Hn,all =
∫ ∞

0

exp{T t} (Da,H1H2···Hn ∗ Da(dt) ⊗ I) .
(43)

Similar to Equation (41), we have

xJ (H1H2 · · ·Hn) =
ρ

λJ
θtot (RH1···Hn − RH1···Hn,all)

(
e ⊗ T 0

tot,J

)
. (44)

According to [16, 18], elements in the matrix RH can be interpreted as the expected number
of times an arriving batch sees a type H batch in the system in a busy period. Unfortunately,
unlike the case with ma = 1, the computation of RH1···Hn is difficult since RH1···Hn may not
be the product of the corresponding matrices {RH1 , RH2 , · · · , RHn}. Thus, the extension to
ma ≥ 2 is not straightforward. The computation of Equation (44) is an interesting problem for
future research.

Since it is difficult to find product form solution if ma ≥ 2 for the distribution of the queue
string, we consider the numbers of different types of batches in the system, for which the order
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of the batches is not important. Denote by q = (q1, q2, · · · , qN ) and n = (n1, n2, · · · , nN),
where {q1, q2, · · · , qN} and {n1, n2, · · · , nN} are nonnegative integers. Let x (q) be the
probability that the queue consists of q1 type J 1 batches, q2 type J 2 batches, · · · , and qN type
JN batches right after the departure of an arbitrary batch; xJ(q) be the probability that the
queue is q right after the departure of an arbitrary type J batch; yq(q) be the probability that
the waiting queue is q at an arbitrary time (excluding the customers in service(if any)). Let
P(n, t) be the (matrix) probability that there are n1 type J 1 batches, n2 type J 2 batches,
· · · , and nN type JN batches arrived in [0, t ]. Note that the customers in queue right after the
departure of a batch are these customers who arrived during the sojourn time of that batch.
By conditioning on the age of the batch just departed, we obtain, for q ≥ 0,

x(q) = − ρ

λ
θtotT

∫ ∞

0

exp{T t} (P (q, t)e ⊗ T 0
tot

)
dt,

xJ (q) = − ρ

λJ
θtotT

∫ ∞

0

exp{T t} (P (q, t)e ⊗ T 0
tot,J

)
dt, (45)

yq(q) =

⎧
⎪⎨

⎪⎩

1 − ρ − ρθtotT

∫ ∞

0

exp{T t}P (0, t)dte, q = 0,

−ρθtotT

∫ ∞

0

exp{T t}P (q, t)dte, q �= 0.

In general, if an explicit formula of the distribution function P(n, t) can be obtained,
explicit formulas for the distributions given in Equation (45) can be obtained. Such an example
is given below. The distribution of the total number of batches, the marginal distributions of
the numbers of individual types of batches, and the marginal distributions of the numbers of
individual types of customers and mean queue lengths can be obtained from the distributions
given in Equation (45). In addition, we point out that these distributions can also be obtained
directly by applying the above method (see Example 6.1).

Example 5.2 The Continuous Time MMAP[K ]/PH [K ]/1 Queue (Example 2.1
continued) For this example, we consider the computation of Equation (45). The probability
matrix P(n, t) satisfies

P (1)(n, t) = P (n, t)D0 +
N∑

i=1: ni≥1

P (n − e(i), t)DJi , (46)

where e(i) is a vector with all elements zero except the ith element which is one. By using
Equation (46), the joint distributions of the queue lengths can be obtained. To evaluate the
joint distributions of queue lengths, the key is to evaluate the following matrix, for n �= 0,

L(n) ≡
∫ ∞

0

d exp(T t) (P (n, t) ⊗ I) = −
∫ ∞

0

exp(T t) (P (n, dt) ⊗ I)

= −
∫ ∞

0

exp(T t)
((

P (n, t)D0 +
N∑

i=1: ni≥1

P (n − e(i), t)DJi

)
⊗ I

)
dt

= −T−1L(n) (D0 ⊗ I) − T−1
N∑

i=1: ni≥1

L(n − e(i)) (DJi ⊗ I) . (47)
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Thus, the matrices {L(n), n≥0} can be obtained by solving the following linear equations:

TL(0) + L(0) (D0 ⊗ I) = −T, (48)

TL(n) + L(n) (D0 ⊗ I) = −
N∑

i=1: ni≥1

L(n − e(i)) (DJi ⊗ I) , n �= 0.

Apparently, the direct-sum approach used in Example 3.1 can be used to solve Equation
(48) for L(n). The joint distributions of queue lengths at various time epochs can be obtained
as:

x(q) =
ρ

λ
θtotL(q)

(
e ⊗ T 0

tot

)
, q ≥ 0,

xJ (q) =
ρ

λJ
θtotL(q)

(
e ⊗ T 0

tot,J

)
, q ≥ 0, (49)

yq(q) =
{

1 − ρ − ρθtotL(0)e, q = 0,
−ρθtotL(q)e, q �= 0.

Based on Equation (49), combining with Example 3.1, a simple algorithm can be developed
for computing the queue length distributions of the number of different types of batches in the
queue for the MMAP [K ]/PH [K ]/1 queue. Simple formulas can be found for other queue length
related distributions and their means (see Example 6.1).

6 Numerical Examples

In this section, we report and analyze some numerical results for models introduced in
Example 2.1 and Example 5.1.

Example 6.1 (Example 2.1 continued) For Example 2.1, we further assume that there
are two types of customers and two types of batches {J 1 = 1, J 2 = 2}. System parameters are
given as: K = 2, ℵ = {1, 2}, ma = 2,

D0 =
(−2 1

0 −5

)
, D1 =

(
0 1

0.1 0

)
, D2 =

(
0 0

1.9 3

)
;

m1 = 2, α1 = (0.8, 0.2), T1 =
(−2 1.5

0 −1

)
; (50)

m2 = 2, α2 = (1, 0), T2 =
(−25 5

0 −25

)
.

By routine calculations, we have λ1 = 0.55, λ2 = 2.45, μ1 = 0.833, μ2 = 20.833, and ρ =
0.777. The mean sojourn time of type 1 customers is 4.079. The mean sojourn time of type 2
customers is 3.168. The mean waiting time of type 1 customers is 2.879. The mean waiting time
of type 2 customers is 3.120. Since most of type 1 customers are followed by at least one type 2
customer, the waiting time of a type 2 customer is longer than that of a type 1 customer, even
though the service of type 2 customers is quick. That shows the impact of type 1 customer’s
service times on the waiting times of type 2 customers.

For queue length distributions, equations in Example 5.2 can be used. We can also use the
following formulas to compute the mean queue lengths directly. For instance, the mean total
number of waiting customers at an arbitrary time is given by E[yq,all] = −ρθtotLalle, where



CONTINUOUS TIME SM [K]/PH [K]/1/FCFS QUEUE 149

⎧
⎪⎨

⎪⎩

TPall + Pall (D ⊗ I) = −I,

TLall + Lall (D ⊗ I) = −Pall

N∑

i=1

DJi ⊗ I.
(51)

The mean number of type 1 batches in the queue is 1.583 and the mean number of type 2
batches in the queue is 7.640. The mean total number of customers in queue (regardless of
their types) is 9.223. The number of waiting type 1 customers is small, but their impact on
the queueing process of type 2 customers is significant. Part of the joint distribution yq(q1,
q2) (defined in Equation (49)) of the queue lengths of types 1 and 2 customers are given in
Table 6.1.

Table 6.1 The joint queue length distribution yq(q1, q2)

q1 \q2 0 1 2 3 4

0 0.2834 0.0545 0.0390 0.0286 0.0210
1 0.0040 0.0103 0.0165 0.0187 0.0185
2 0.0004 0.0014 0.0032 0.0054 0.0073
3 0.0000 0.0002 0.0005 0.0011 0.0019
4 0.0000 0.0000 0.0001 0.0002 0.0004

Table 6.1 shows that the distributions of the queue lengths of the two types of customers
are dependent. For type 1 customers, their queue length is short. But the presence of type 1
customers increases the queue length of type 2 customers significantly. This can be seen from
the fact that the probability of the queue length of type 2 customers is increasing when q2

increases from 0 to 3 if q1 is positive.
Example 6.2 (Example 2.1 continued) In this example, we consider a queue with 5 types

of customers that may arrive in batches. There are 6 different types of batches: J 1 = 1, J 2 =
2, J 3 = 3, J 4 = 4, J 5 = 14, and J 6 = 12345. The Markov arrival process is defined as: ma =
2,

D0 =
(−5 1

0 −3

)
, D1 =

(
0.05 0.05
0.2 0.1

)
, D2 =

(
0.1 0.2
0.1 0.6

)
,

D3 =
(

0 0.2
0.2 0.3

)
, D4 =

(
2 1

0.5 0.4

)
, D14 =

(
0.05 0.05
0.05 0.05

)
, D12345 =

(
0.3 0
0 0.5

)
.

(52)
The service times of the 5 types of customers are exponentially distributed with parameters

{m1=1, α1 = 1, T 1 = –4}, {m2=1, α2 = 1, T 2 = –5}, {m3=1, α3 = 1, T 3 = –6}, {m4=1, α4

= 1, T 4 = –7}, and {m5=1, α5 = 1, T 5 = –8}, respectively. The service time of the batch J 5

= 14 is the sum of the (independent) service times of the 2 customers in the batch. The service
time of the batch J 6 = 12345 is the sum of the (independent) service times of all 5 customers
in the batch. The PH -representations of the batch service times are

m14 = 2, α14 = (1, 0), T14 =
(−4 4

0 −7

)
,

m12345 = 5, α12345 = (1, 0, 0, 0, 0), T12345 =

⎛

⎜⎜⎜⎜⎝

−4 4 0 0 0
0 −5 5 0 0
0 0 −6 6 0
0 0 0 −7 7
0 0 0 0 −8

⎞

⎟⎟⎟⎟⎠
.

(53)
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For this example, the mean batch waiting times are E [w1] = 2.7675, E [w2] = 2.7692, E [w3]
= 2.7687, E [w4] = 2.7949, E [w14] = 2.7778, and E [w12345] = 2.7721. We can further find the
waiting times of individual types of customers. The mean numbers of type 1, type 2, type 3,
type 4, type 14, type 12345 batches in queue are 0.6665, 1.6108, 1.1387, 4.2515, 0.2777, and
1.2221, respectively. It is easy to see that the mean waiting times are almost the same, but the
numbers of different batches in queue can be quite different.

What is more interesting about this example is that, even though the service times of
individual types of customers are exponential, the number of phases needed to formulate the
Markov process {(ag(t), Ia(t), J (t), Is(t)), t≥0} is mtot = 22. Thus, most of the matrices
involved in computation are 22 by 22 matrices. The computation time of this example is
significantly longer than that of Example 6.1. In fact, our numerical experimentations indicate
that the computation time increases significantly if some of the service times have more phases
or if there are more types of customers or types of batches. How to reduce the dimension of
the matrices involved is an interesting topic for future research.

Example 6.3 (Example 5.1 continued) For Example 5.1, we further assume that the
arrival process is deterministic defined by ma = 1, for 1≤n≤N,

DJn(t) =
{

0, t < tn,
pn, t ≥ tn,

(54)

where {tn, 1≤n≤N } are positive constants and {pn, 1≤n≤N } are probabilities summing to
one. It is easy to see that the total batch arrival rate λ = (Σnpntn)−1. The arrival rates
of individual batch types are {λn = pnλ, 1≤n≤N }. By routine calculations, we have θtot =
λ
ρ

[∑N
n=1

pnβ(Jn)
μn

]
. Equation (21) for computing the matrix T can be simplified to T = Ttot +

∑N
n=1 pn exp{T tn}T 0

totα(Jn). After computing T, the distributions of sojourn times and waiting
times can be found. For queue string distributions, the matrices {RJn , 1≤n≤N } can be obtained
by RJn = pn exp{T tn}. By Equations (41) and (42), the probabilities for queue strings can be
computed.

For instance, we assume that K=2, N=3, ℵ={1, 2, 12}, {d1=0.9, d2=1.2, d12=1.5},
{p1=0.2, p2=0.5, p12=0.3},

m1 = 2, α1 = (0.4, 0.6), T1 =
(−2 1

1 −5

)
;

m2 = 3, α2 = (1, 0, 0), T2 =

⎛

⎝
−1.5 1 0

1 −3 0.1
0.1 0.2 −5

⎞

⎠ ;
(55)

m12 = 5, α12 = (0.4, 0.6, 0, 0, 0), T12 =

⎛

⎜⎜⎜⎜⎝

−2 1 1 0 0
1 −5 4 0 0
0 0 −1.5 1 0
0 0 1 −3 0.1
0 0 0.1 0.2 −5

⎞

⎟⎟⎟⎟⎠
.

Note that the service time of a batch J=12 is the sum of the (independent) service times of
a type 1 customer and a type two customer. For this system, ρ = 0.9377. The mean waiting
times of the three types of batches are given by E [w1] = 6.7989, E [w2] = 6.5310, and E [w12]
= 6.2730, respectively. The mean sojourn times of the three types of batches are given by
E [d1] = 7.2656, E [d2] = 7.6810, and E [d12] = 7.8897, respectively. By using Equation (42),
the distributions of the queue strings can be calculated. The probability yq(J ) of the waiting
queue string at an arbitrary time is given in the following table.
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Table 6.2 The probability yq(H ) of waiting queue string

H 0 1 2 12 - - - - -

yq(H ) 0.1949 0.0252 0.0609 0.0353 - - - - -
H 1, H 2 1,1 1,2 1,12 2,1 2,2 2,12 12,1 12,2 12,12

yq(H 1H 2) 0.0045 0.0109 0.0062 0.0109 0.0261 0.0151 0.0062 0.0151 0.0087
H 1, H 2, H 3 1,1,1 1,1,2 1,2,1 1,2,2 2,1,1 2,1,2 2,2,1 2,2,12 1,1,12
yq(H 1H 2H 3) 0.0008 0.0019 ≈0 0.0002 0.0019 0.0046 0.0002 0.0002 0.0011

Note that in Table 6.2, H, H 1, H 2, and H 3 are strings in ℵ. Table 6.2 provides information
about the size of the queue as well as the relationship between individual customers in the
queue. For instance, the queue string 112 has two constructions: {1, 1, 2} with three batches
and {1, 12} with two batches. Table 6.2 shows that the probability to have a queue 112 at an
arbitrary time is 0.0081. If the queue is seen as112, it is more likely to have two batches {1,
12} (with probability 0.0062) than three batches {1, 1, 2} (with probability 0.0019). Thus, if
the waiting queue string is 112, it is more likely that the second type 1 customer arrived with
the only type 2 customer in queue.
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Appendix The Proofs of Some Lemmas, Corollaries, and Theorems

The Proof of Lemma 3.1 By the definition of the traffic intensity ρ given in Equation (7),
it is easy to verify that θtote= 1. Then we have the following calculations:

θtotA

=
λ

ρ

( N∑

i=1

(θaDa,Ji) ⊗
(

β(Ji)
μJi

))(
I ⊗ Ttot +

N∑

j=1

Da,Jj ⊗ (T 0
totα(Jj))

)

=
λ

ρ

N∑

i=1

(θaDa,Ji) ⊗
(

β(Ji)Ttot

μJi

)
+

λ

ρ

N∑

i=1

N∑

j=1

(
θaDa,JiDa,Jj

)⊗
(

β(Ji)
μJi

T 0
totα(Jj)

)

=
λ

ρ

N∑

i=1

(θaDa,Ji) ⊗
(

0, · · · , 0,
βJiTJi

μJi

, 0, · · · , 0
)

+
λ

ρ

N∑

j=1

((
N∑

i=1

θaDa,Ji

)
Da,Jj

)
⊗ α(Jj)

=
λ

ρ

N∑

i=1

(θaDa,Ji) ⊗
(

0, · · · , 0,
βJiTJi

μJi

+ αJi , 0, · · · , 0
)

=
λ

ρ

N∑

i=1

(θaDa,Ji) ⊗
(

0, · · · , 0,
βJiTJi

+ βJiT
0
Ji

αJi

μJi

, 0, · · · , 0
)

=
λ

ρ

N∑

i=1

(θaDa,Ji) ⊗ (0, · · · , 0, 0 , 0, · · · , 0) = 0. (56)

Note that βJT J
0 = 1/E [sJ ] = μJ

[7] and βJ (TJ + T J
0αJ ) = 0. Therefore, θtot is an
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invariant probability vector of A. Since A is irreducible, θtot is the unique invariant probability
vector of A. This completes the proof of Lemma 3.1.

Proof of Lemma 3.2 Let u(s) and v(s) be the left and right eigenvectors corresponding
to χ(s), respectively, i.e., u(s)A∗(s) = χ(s)u(s) and A∗(s)v(s) = χ(s)v(s). The two vectors
u(s) and v(s) are normalized by u(s)v(s) = 1 and u(s)e= 1. It is easy to see that A∗(s) is
irreducible and all the elements of the vectors u(s) and v(s) are positive for s>0. According
to [7], the vectors u(s) and v(s) can be chosen as differentiable functions.

It is easy to see χ(0) = 0. Furthermore, we have u(0) = θtot (by the definition of u(s) and
Lemma 3.1) and v(0) = e. By u(s)e= 1, we obtain u(1)(s)e= 0. By taking derivatives on
both sides of u(s)A∗(s) = χ(s)u(s), we obtain u(1)(s)A∗(s) + u(z )A∗(1)(s) = χ(−1)(s)u(s)
+ χ(s)u(1)(s). Letting s=0 and multiplying e on both sides of the equation, we obtain
u(0)A∗(1)(0)e = χ(1)(0), i.e., θtot

∫∞
0

tdA(t)e = χ(1)(0). Using Equations (17) and (18), we
have

θtot

∫ ∞

0

tA(dt)e =
λ

ρ

( N∑

i=1

(θaDa,Ji) ⊗
(

β(Ji)
μJi

))( N∑

j=1

∫ ∞

0

tDa,Ji(dt)e ⊗ T 0
tot

)

=
λ

ρ

N∑

j=1

( N∑

i=1

(
θaDa,Ji

∫ ∞

0

tDa,Ji(dt)e
)
·
(

βJiT
0
Ji

μJi

))

=
λ

ρ

N∑

j=1

(
θa

∫ ∞

0

tDa,Ji(dt)e
)

=
λ

ρ
θa

∫ ∞

0

tD(dt)e =
λ

ρ
Eθa [τ ] =

1
ρ
. (57)

Note that the definition of λ (see Equation (4)) is used to obtain the last equality. Therefore,
χ(1)(0) = 1/ρ. Then χ(1)(0) > 1 if and only if ρ < 1.

Proof of Lemma 4.2 By definition,

θtot

(
e ⊗ T 0

tot

)
=

λ

ρ

(
N∑

i=1

(θaDa,Ji) ⊗
(

β(Ji)
μJi

))(
e ⊗ T 0

tot

)

=
λ

ρ

N∑

i=1

(θaDa,Jie)(βJiT
0
Ji

)
μJi

=
λ

ρ

N∑

i=1

θaDa,Jie =
λ

ρ
. (58)

Similarly, it can be shown that θtot(e⊗T 0
tot,J ) = λJ/ρ, and θtot(e⊗T 0

tot,(k)) = λ(k)/ρ. This
completes the proof of Lemma 4.2.

Proof Theorem 4.3 First, by definition, we have

P{d < x} = 1 − θtotΔ−1 exp{ΔTΔ−1x}
(ρ

λ
Δ
(
e ⊗ T 0

tot

))

= 1 − e′ exp{ΔTΔ−1x}
(ρ

λ
Δ
(
e ⊗ T 0

tot

))

= 1 −
(ρ

λ
Δ
(
e ⊗ T 0

tot

))′
exp{Δ−1T ′Δx}e. (59)
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Thus, we only need to verify the followings:

Qe = Δ−1T ′Δe =
(
θtotTΔ−1

)′
=

(
θtotTΔ−1

)′
= − (

π(0)Δ−1
)′

/ρ ≤ 0;

0 ≤
(ρ

λ
Δ
(
e ⊗ T 0

tot

))′
;

(ρ

λ
Δ
(
e ⊗ T 0

tot

))′
e =

ρ

λ
θtot

(
e ⊗ T 0

tot

)
= 1. (60)

That proves the results for the sojourn time of an arbitrary batch. Similarly, we can prove the
results for the other two cases. This completes the proof of Theorem 4.3.

Proof of Corollary 4.5 The LSTs of the dJ , wJ , and sJ are given by

E
[
e−sdJ

]
= − ρ

λJ
θtot(sI − T )−1T (e ⊗ T 0

tot,J);

E
[
e−swJ

]
= 1 − s

ρ

λJ
θtot(sI − T )−1RJ (e ⊗ T 0

tot); (61)

E
[
e−ssJ

]
= αJ(sI − TJ)−1T 0

J .

We first show the following equalities:

T (e ⊗ T n
totT

0
tot,J) = e ⊗ T n+1

tot T 0
tot,J + RJ

(
e ⊗ T 0

tot

)
αJT n

J T 0
J , n ≥ 0;

βJT n+1
J T 0

J = − (
βJT 0

J

)
αJT n

J T 0
J , n ≥ 0. (62)

For the first equality in Equation (62), we have

T (e ⊗ T n
totT

0
tot,J)

=
(

I ⊗ Ttot +
∑

H∈ℵ

∫ ∞

0

exp{T t} (Da,H(dt) ⊗ T 0
totα(H)

) )
(e ⊗ T n

totT
0
tot,J)

=
(

I ⊗ Ttot +
∫ ∞

0

exp{T t} (Da,J(dt) ⊗ T 0
totα(J)

))
(e ⊗ T n

totT
0
tot,J)

= e ⊗ T n+1
tot T 0

tot,J +
∫ ∞

0

exp{T t} (Da,J(dt) ⊗ I) (e ⊗ T 0
tot)α(J)T n

totT
0
tot,J

= e ⊗ T n+1
tot T 0

tot,J + RJ(e ⊗ T 0
tot)

(
αJT n

J T 0
J

)
. (63)

The second equality in Equation (62) is shown as follows:

βJ(TJ + T 0
JαJ ) = 0 ⇒ βJ (TJ + T 0

JαJ)T n
J T 0

J = 0 (64)

⇒ βJT n+1
J T 0

J = − (
βJT 0

J

)
αJT n

J T 0
J .
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Using equalities in Equation (62), we have

E
[
e−sdJ

]
= − ρ

λJ
θtot(sI − T )−1T (e ⊗ T 0

tot,J)

= − ρ

λJ
θtot(sI − T )−1

(
e ⊗ TtotT

0
tot,J + RJ

(
e ⊗ T 0

tot

)
αJT 0

J

)

= − ρ

λJ
θtot

(
I + (sI − T )−1T

)

s

(
e ⊗ TtotT

0
tot,J + RJ

(
e ⊗ T 0

tot

)
αJT 0

J

)

= −ρθtot

λJ

[
e ⊗ TtotT

0
tot,J

s
+ (sI − T )−1RJ

(
e ⊗ T 0

tot

)
αJT 0

J

+
(sI − T )−1T

(
e ⊗ TtotT

0
tot,J

)

s

]

= −ρθtot

λJ

∞∑

n=1

1
sn

[
e ⊗ T n

totT
0
tot,J + s(sI − T )−1RJ

(
e ⊗ T 0

tot

)
αJT n−1

J T 0
J

]

= −ρθtot

λJ

( ∞∑

n=1

e ⊗ T n
totT

0
tot,J

sn
+ s(sI − T )−1RJ

(
e ⊗ T 0

tot

)
αJ (sI − TJ)−1T 0

J

)

=
∞∑

n=1

αJT n−1
J T 0

J

sn
− ρθtot

λJ
s(sI − T )−1RJ

(
e ⊗ T 0

tot

)
αJ(sI − TJ)−1T 0

J

=
(

1 − s
ρθtot

λJ
(sI − T )−1RJ

(
e ⊗ T 0

tot

))
αJ(sI − TJ)−1T 0

J

= E
[
e−swJ

]
E
[
e−ssJ

]
. (65)

This completes the proof of Corollary 4.5.


