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DISTRIBUTIONS

Qi-Ming He,1 Hanqin Zhang,2 and Juan C. Vera3

1Department of Management Sciences, University of Waterloo, Waterloo, Ontario, Canada
2Institute of Applied Mathematics, Academy of Mathematics and Systems Science,
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� We show that the two bivariate exponential distributions constructed in Bladt and Nielsen[5]

have the maximum and minimum correlation coefficients for any given order. We also generalize
their constructions to the case where the matrix representations of the two (marginal) exponential
distributions have different orders and show that the new constructions also have the maximum
and minimum correlation coefficients. Our main tool is a majorization result for a special set
of PH-generators.

Keywords Bivariate exponential distribution; Correlation coefficient; Majorization;
Multivariate distribution; Phase-type distribution.

Mathematics Subject Classification Primary 62H05; Secondary 60E10.

1. INTRODUCTION

Bivariate exponential distributions were introduced by Kibble in
1941 and later studied by a number of researchers and practitioners.
Bivariate exponential distributions have been extended to multivariate
exponential distributions.[3,6,10,17,18,25] Together with other types of
multivariate distributions (Weibull, Gamma, phase-type, etc.), multivariate
exponential distributions have been widely used in statistics, reliability,
and risk analysis.[7–9,11,14,16,26]
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188 He et al.

A number of methods have been introduced for the construction of
bivariate exponential distributions. Most of them impose some restriction
on the correlation coefficient. For example, Kibble[13] and Marshall and
Olkin[18,19] restrict the correlation to be nonnegative. Such a restriction
limits the applications of bivariate exponential distributions. In addition,
some of the constructions are too complex for applications.

Recently, Bladt and Nielsen[5] introduced a class of bivariate
exponential distributions through multivariate phase-type
distributions.[2,15,21–23] They give a detailed analysis on two special
bivariate exponential distributions and find their correlation coefficients
explicitly. They have shown that the correlation coefficients of their
constructed bivariate exponential distributions approach the (absolute)
maximum 1 or minimum 1 − �2/6, if the orders of their corresponding
multivariate phase-type (MPH) representations go to infinity. Moreover,
their construction of bivariate exponential distributions can give any
correlation coefficient between 1 − �2/6 and 1. They leave it open to
prove that their constructions are extreme cases that give the maximum
and minimum correlation coefficients for any given order of the matrix
representations.

In this article, we first show that the bivariate exponential distributions
constructed in Bladt and Nielsen[5] indeed give the maximum and
minimum correlation coefficients within the class of bivariate exponential
distributions they introduced. Then we introduce a broader class of
bivariate exponential distributions by generalizing their constructions.
We also find the maximum and minimum correlation coefficients
corresponding to bivariate exponential distributions in the expanded
class. Our results confirm that the constructions introduced in Bladt
and Nielsen[5] are extreme cases, a conclusion that can be useful in the
application of such multivariate phase-type distributions.

In the proofs of the main results, a majorization result related to
some restricted PH-generators plays a key role. The majorization result
provides a theoretical basis for showing that the constructions by Bladt
and Nielsen[5] (Section 3) and the generalization given in this article
(Section 4) are truly extreme cases, in the class of bivariate exponential
distributions they belong to. A proof of the majorization result is given in
this article. The majorization result is of its own interest with applications
to phase-type distributions (e.g., He et al.[12]).

The remainder of the article is organized as follows. In Section 2,
we briefly introduce the bivariate exponential distributions constructed in
Bladt and Nielsen[5]. Section 3 shows that the constructions given in Bladt
and Nielsen[5] have the maximum and minimum correlation coefficients.
A technical lemma on a majorization result for PH-generators is proved
in this section. In Section 4, we generalize the results in Section 3 to
a broader class of bivariate exponential distributions. We show that the
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On Some Properties of Bivariate Exponential Distributions 189

maximum/minimum correlation coefficient is a monotone function of the
orders of corresponding matrix representations. Section 5 concludes the
article.

2. PRELIMINARIES

The following construction of bivariate exponential distributions is
given in Bladt and Nielsen[5]. This construction is based on the general
theory on multivariate phase-type distributions.[2,15] Consider a continuous
time Markov chain �X (t), t ≥ 0� with 2m + 1 states and an infinitesimal
generator 

S D 0
0 T −T e
0 0 0


 , (2.1)

where S , D, and T are m × m matrices, and e is the column vector of
ones. Matrices S and T are PH-generators (invertible matrix with negative
diagonal elements, nonnegative all off-diagonal elements, and nonpositive
row sums), D is a nonnegative matrix, S and D satisfy Se + De = 0, and the
state 2m + 1 is an absorption state.

Since both S and T are PH-generators, the Markov chain will eventually
be absorbed into the state 2m + 1, given any initial state. Let Y (m)

1
be the total time that the Markov chain �X (t), t ≥ 0� spent in states
�1, 2, � � � ,m� and Y (m)

2 the total time in states �m + 1,m + 2, � � � , 2m�, before
the absorption into the state 2m + 1. Assume that the Markov chain
�X (t), t ≥ 0� is initially in states �1, 2, � � � ,m� with a stochastic vector
� = (�1, �2, � � � , �m), i.e., the initial distribution of the Markov chain is
(�, 0, � � � , 0). We call (�, S ,D,T ) an MPH-representation of the multivariate
phase-type distribution (Y (m)

1 ,Y (m)
2 ).

The multidimensional Laplace–Stieltjes transform (LST) of (Y (m)
1 ,Y (m)

2 )
is given by

Lst(s1, s2) = E [exp�−s1Y
(m)
1 − s2Y

(m)
2 �]

= (�, 0)
((

s1I 0
0 s2I

)
−

(
S D
0 T

))−1 (
0

−T e

)
= �(s1I − S)−1D(s2I − T )−1(−T )e,

Re(s1) > 0, Re(s2) > 0, (2.2)

where I is the identity matrix. By Eq. (2.2), the covariance of (Y (m)
1 ,Y (m)

2 )
can be obtained as

Cov(Y (m)
1 ,Y (m)

2 ) = �(−S)−1(I − e�)(−S)−1D(−T )−1e� (2.3)
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190 He et al.

To construct a bivariate exponential distribution, the matrices S , T ,
and D are chosen according to the following assumption.

Assumption A. Assume that S and T are PH-generators of order m, D is
a nonnegative matrix of order m, Se + De = 0, and the matrices S , D, and
T satisfy

(i) Se = −�e;
(ii) e′T = −�e′;
(iii) −e′S ≥ 0; and
(iv) e′D = �e′,

where e′ is the transpose of e, and � and � are positive real numbers.

We choose � = −e′S/(m�) in the rest of the article. By Assumption A(i)
and (iii), this selection of � is valid. By Eq. (2.2), it is easy to see that the
LSTs of the marginal distributions Y (m)

1 and Y (m)
2 are given by �/(s1 + �)

and �/(s2 + �), respectively. Thus, the marginal distributions of (Y (m)
1 ,Y (m)

2 )
are exponential with parameters � and �, respectively. Consequently, we
call (Y (m)

1 ,Y (m)
2 ) a bivariate exponential distribution. Since � is determined by

S for the above construction, we use (S ,D,T ) as an MPH-representation
for bivariate exponential distribution (Y (m)

1 ,Y (m)
2 ).

Based on Eq. (2.3), the correlation coefficient of (Y (m)
1 ,Y (m)

2 ) can be
obtained as

Corr (Y (m)
1 ,Y (m)

2 ) = 1
m
�e′(−S)−1D(−T )−1e − 1� (2.4)

By Assumption A and Eq. (2.4), it is straightforward to verify that the
correlation coefficient is independent of the values of � and �, as long as
they are positive. Without loss of generality, we assume � = � = 1 in the
rest of the article.

In Bladt and Nielsen,[5] (S ,D,T ) are chosen as follows:

S ∗ =




−1
1 −2

� � �
� � �

m − 2 −(m − 1)
m − 1 −m


 ,

T ∗ =




−m
m − 1 −(m − 1)

� � �
� � �

2 −2
1 −1


 , (2.5)

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
W

at
er

lo
o]

 a
t 1

3:
03

 0
2 

M
ay

 2
01

2 



On Some Properties of Bivariate Exponential Distributions 191

Dmin = I , Dmax =



1
�

�
�

1


 �

Denote by Corrmin(m,m) and Corrmax(m,m) the correlation coefficients
of (Y (m)

1 ,Y (m)
2 ) with MPH-representations (S ∗,Dmin,T ∗) and (S ∗,Dmax,T ∗),

respectively. The following results are given in Theorems 4.7 and 4.8 in
Bladt and Nielsen[5]

Corrmin(m,m) = 1 −
m∑
i=1

1
i2

m→∞−→ 1 − �2

6
;

Corrmax(m,m) = 1 − 1
m

m∑
i=1

1
i

m→∞−→ 1�

(2.6)

The correlation coefficients Corrmin(m,m) and Corrmax(m,m) are plotted
in Figure 1 for m = 1, 2, � � � , 100. It is clear that Corrmin(m,m) is a negative
decreasing function of m and Corrmax(m,m) is a positive increasing function
of m. If D = e′e/m, then the correlation coefficient of (S ∗,D,T ∗) is zero,
which is between Corrmin(m,m) and Corrmax(m,m). In the next two sections,
we show that the correlation coefficient corresponding to any (S ,D,T )
satisfying Assumption A is between Corrmin(m,m) and Corrmax(m,m).

As it is shown in Theorem 4.10 in Bladt and Nielsen,[5] for any
� ∈ (1 − �2/6, 1), a bivariate exponential distribution can be constructed

FIGURE 1 Corrmin(m,m) and Corrmax(m,m) for m = 1, 2, � � � , 100 (color figure available online).
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192 He et al.

to have correlation coefficient �. A similar construction can be obtained
by defining, for � ∈ [Corrmin(m,m),Corrmax(m,m)],

D(�) =
(

Corrmax(m,m) − �

Corrmax(m,m) − Corrmin(m,m)

)
Dmin

+
(

� − Corrmin(m,m)

Corrmax(m,m) − Corrmin(m,m)

)
Dmax� (2.7)

Then the correlation coefficient corresponding to (S ∗,D(�),T ∗) is �.

3. MAIN RESULTS

The objective of this section is to show that the two selections of
(S ,T ,D) constructed in Bladt and Nielsen[5] give the maximum and
minimum of the correlation coefficient, among all (S ,D,T )s that satisfy
Assumption A.

First, we limit our attention to bivariate exponential distributions
(Y (m)

1 ,Y (m)
2 ) with an MPH-representation (S ∗,D,T ∗).

Theorem 3.1. For S ∗ and T ∗ given in Eq. (2.5), and any D satisfying
Assumption A, we have Corrmin(m,m) ≤ Corr (Y (m)

1 ,Y (m)
2 ) ≤ Corrmax(m,m).

Proof. Since S ∗e + De = 0, by Assumption A(i), we obtain De = e.
Combining this result with Assumption A(iv), it is clear that D is a doubly
stochastic matrix. By Birkhoff’s theorem for doubly stochastic matrices,[20]

we have

D =
∑
	∈


c	P	, (3.1)

where 
 denotes the set of all permutations of the set �1, 2, � � � ,m�, �c	, 	 ∈

� are nonnegative real numbers with unit sum, and P	 is the permutation
matrix associated with permutation 	 (i.e., P	 = (�(i=	(j))) i , j = 1, 2, � � � ,m),
where �(�) is the indicator function. Let a∗ = e′(−S ∗)−1 and b∗ = (−T ∗)−1e.
Since both S ∗ and T ∗ are PH-generators, matrices −S ∗−1 and −T ∗−1 are
nonnegative, and vectors a∗ and b∗ are nonnegative (see Eqs. (3.3) and
(3.4)). The correlation coefficient given in Eq. (2.4) becomes

Corr (Y (m)
1 ,Y (m)

2 ) = 1
m
a∗Db∗ − 1

= −1 + 1
m

∑
	∈


c	a∗P	b∗




≥ −1 + 1
m

min
	∈


�a∗P	b∗�;

≤ −1 + 1
m

max
	∈


�a∗P	b∗��

(3.2)
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On Some Properties of Bivariate Exponential Distributions 193

By routine calculations, we obtain

(−S ∗)−1 =




1
1
2

1
2

1
3

1
3

1
3

���
���

���
� � �

1
m

1
m

1
m · · · 1

m


 ,

(−T ∗)−1 =




1
m
1
m

1
m−1

1
m

1
m−1

1
m−2

���
���

���
� � �

1
m

1
m−1

1
m−2 · · · 1


 � (3.3)

Consequently, we obtain

a∗ = e′(−S ∗)−1 =
(
1 + 1

2
+ · · · + 1

m
,
1
2

+ · · · + 1
m
, � � � ,

1
m − 1

+ 1
m
,
1
m

)
;

b∗ = (−T ∗)−1e =
(
1
m
,
1
m

+ 1
m − 1

, � � � ,
1
m

+ 1
m − 1

+ · · · + 1
2

+ 1
)′

�

(3.4)

Since the elements of a∗ are in descending order, i.e., a∗
1 > a∗

2 > · · · > a∗
m

and the elements of b∗ are in ascending order, i.e., b∗
1 < b∗

2 < · · · < b∗
m , it

can be shown that (e.g., Lemma 2.1 in Chapter 5 in Minc[20])

a∗Dminb∗ =
m∑
i=1

a∗
i b

∗
i ≤ a∗P	b∗ =

m∑
i=1

a∗
i b

∗
	(i) ≤

m∑
i=1

a∗
i b

∗
m−i+1 = a∗Dmaxb∗,

(3.5)

for any permutation 	 ∈ 
. By Eq. (3.2) and Eq. (3.5), we obtain

Corr (Y (m)
1 ,Y (m)

2 ) ≥ −1 + 1
m

min
	∈


�a∗P	b∗�

= −1 + 1
m
a∗Dminb∗ = Corrmin(m,m);

(3.6)

Corr (Y (m)
1 ,Y (m)

2 ) ≤ −1 + 1
m

max
	∈


�a∗P	b∗�

= −1 + 1
m
a∗Dmaxb∗ = Corrmax(m,m)�

The proof of Theorem 3.1 is completed. �
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194 He et al.

Next, we consider all (S ,D,T )s satisfying Assumption A. To prove the
results, we need the concept of majorization for vectors (see Marshall
and Olkin[19] and Minc[20]). For vector x = (x1, x2, � � � , xm), rearrange
the elements of x in descending order and denote the elements as
x[1] ≥ x[2] ≥ · · · ≥ x[m]. For example, x[1] = max�x1, x2, � � � , xm� and x[m] =
min�x1, x2, � � � , xm�. A vector x is majorized by vector y, denoted as x ≺ y, if
xe = ye and x[1] + x[2] + · · · + x[k] ≤ y[1] + y[2] + · · · + y[k], for 1 ≤ k ≤ m − 1.

Lemma 3.2. Assume that T is an m × m matrix such that T satisfies
Assumption A with � = 1 (i.e., T is a PH-generator satisfying e′T = −e′). Then
−T −1e is majorized by b∗, where b∗ is given in Eq. (3.4).

Proof. Denote by e(i) the column vector with zero everywhere but one
in the ith place. Since the matrix −T is an M -matrix, −T −1 is nonnegative
(see Berman and Plemmons[4] and Minc[20]). Let b = −T −1e. By permuting
the rows and columns of T , it is always possible to obtain b in ascending
order. To prove that −T −1e is majorized by b∗, it is sufficient to show
that b1 + b2 + · · · + bk ≥ b∗

1 + b∗
2 + · · · + b∗

k = k/m + (k − 1)/(m − 1) + · · · +
1/(m − k + 1), for 1 ≤ k ≤ m. Note that −e′T −1e = e′b∗ = m.

For fixed k ≤ m, let z = (e(1)′ + e(2)′ + · · · + e(k)′)(−T −1). Since
ze = b1 + b2 + · · · + bk , our goal is to prove

ze ≥ k/m + (k − 1)/(m − 1) + · · · + 1/(m − k + 1), for 1 ≤ k ≤ m�
(3.7)

Rearranging the elements of z in descending order: z[1] ≥ z[2] ≥
· · · ≥ z[m], where �[1], [2], � � � , [m]� is a permutation of �1, 2, � � � ,m�. Since
z(−T ) = e(1)′ + e(2)′ + · · · + e(k)′, we have, for 1 ≤ j ≤ m,

z(−T )(e([j ]) + e([j + 1]) + · · · + e([m]))
= (e(1)′ + e(2)′ + · · · + e(k)′)(e([j ]) + e([j + 1]) + · · · + e([m]))
≥ max�0, k − j + 1�� (3.8)

By definition, we have −T e ≥ 0 and −Ti ,j ≤ 0, for 1 ≤ i , j ≤ m, i 	= j .
Then, for any �i1, i2, � � � , in� ⊂ �1, 2, � � � ,m� and i0 ∈ �1, 2, � � � ,m�, we have

e(i0)′(−T )(e(i1) + e(i2) + · · · + e(in)) = −
n∑

j=1

T(i0,ij ), (3.9)
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On Some Properties of Bivariate Exponential Distributions 195

which is nonnegative if i0 ∈ �i1, i2, � � � , in� and nonpositive if
i0 � �i1, i2, � � � , in�. Thus, for 1 ≤ i , j ≤ m, we have

(z[i] − z[j ])e([i])′(−T )


 m∑

l=j

e([l ])

 ≤ 0� (3.10)

Eq. (3.10) can be proved by considering two cases: i ≤ j and i > j .
For the first case, we have z[i] − z[j ] ≥ 0 and e([i])′(−T )(e([j ]) + e([j +
1]) + · · · + e([m])) ≤ 0. For the second case, we have z[i] − z[j ] ≤ 0 and
e([i])′(−T )(e([j ]) + e([j + 1]) + · · · + e([m])) ≥ 0.

For 1 ≤ i , j ≤ m, Eq. (3.10) leads to,

z[i]e([i])′(−T )


 m∑

l=j

e([l ])

 ≤ z[j ]e([i])′(−T )


 m∑

l=j

e([l ])

 � (3.11)

Summing up over i = 1, 2, � � � ,m, in Eq. (3.11), yields

z(−T )


 m∑

l=j

e([l ])

 =

m∑
i=1

z[i]e([i])′(−T )


 m∑

l=j

e([l ])



≤
m∑
i=1

z[j ]e([i])′(−T )


 m∑

l=j

e([l ])



= z[j ]e′(−T )


 m∑

l=j

e([l ])



= z[j ]e′


 m∑

l=j

e([l ])

 = z[j ](m − j + 1)� (3.12)

Combining Eqs. (3.8) and (3.12), we have z[j ] ≥ max�0, k − j + 1�/(m − j +
1). Adding over j = 1, 2, � � � ,m, Eq. (3.7) follows. This completes the proof
of Lemma 3.2. �

Remark 3.1. In addition to its applications in this section and in
Section 4, Lemma 3.2 can be applied in the study of phase-type
distributions and M -matrices. For example, consider a PH-generator
T satisfying e′T = −e′. For any probability vector � = (�1, �2, � � � , �m),
define � = (�[1], �[2], � � � , �[m]) the descending rearrangement of �, and �̄ =
(�[m], �[m−1], � � � , �[1]) the ascending rearrangement of �. Since −T −1e is
majorized by b∗ = −T ∗−1e given in Eq. (3.4), it is easy to obtain lower and
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196 He et al.

upper bounds on the expectation of the PH-distribution (�,T ):

1
m

≤ −�T ∗−1e ≤ −�T −1e ≤ −�̄T ∗−1e ≤ 1
m

+ 1
m − 1

+ · · · + 1
2

+ 1� (3.13)

The above results are generalized to all PH-generators and phase-type
distributions in He et al.[12].

With Lemma 3.2, we are able to extend Theorem 3.1 to all (S ,D,T )s
that satisfy Assumption A.

Theorem 3.3. Assume that (Y (m)
1 ,Y (m)

2 ) is a bivariate exponential distribution
with an MPH-representation (S ,D,T ) satisfying Assumption A. Then we have
Corrmin(m,m) ≤ Corr (Y (m)

1 ,Y (m)
2 ) ≤ Corrmax(m,m).

Proof. For any (S ,D,T ) satisfying Assumption A, let a = e′(−S)−1 and
b = (−T )−1e. Since Se + De = 0, D is a doubly stochastic matrix. Similar
to Eq. (3.2), we obtain

Corr (Y (m)
1 ,Y (m)

2 ) = 1
m
aDb − 1

= −1 + 1
m

∑
	∈


c	aP	b




≥ −1 + 1
m

min
	∈


�aP	b�;

≤ −1 + 1
m

max
	∈


�aP	b��

(3.14)

By Lemma 3.2, a = e′(−S)−1 is majorized by a∗ defined in Eq. (3.4)
and b = (−T )−1e is majorized by b∗ defined in Eq. (3.4). By the Hardy–
Littlewood–Polya Theorem,[20] there exists a doubly stochastic matrix Ps

such that a = a∗Ps . Similarly, there exists a doubly stochastic matrix Pt

such that b = Ptb∗. Then we have aP	b = a∗PsP	Ptb∗. Since PsP	Pt is also a
doubly stochastic matrix, we obtain

min
	∈


�a∗P	b∗� ≤ min
	∈


�a∗PsP	Ptb∗� = min
	∈


�aP	b�;

max
	∈


�aP	b� = max
	∈


�a∗PsP	Ptb∗� ≤ max
	∈


�a∗P	b∗�,
(3.15)

which leads to (see Eq. (3.5))

a∗Dminb∗ = min
	∈


�a∗P	b∗� ≤ min
	∈


�aP	b� ≤ max
	∈


�aP	b�

≤ max
	∈


�a∗P	b∗� = a∗Dmaxb∗� (3.16)

Combining Eqs. (3.14) and (3.16), the expected result is obtained. This
completes the proof of Theorem 3.3. �
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On Some Properties of Bivariate Exponential Distributions 197

4. AN EXTENSION

In Sections 2 and 3, the orders of S and T are assumed to be the same.
That condition can be relaxed. In this section, we find the maximum and
minimum of the correlation coefficients for cases where S and T may have
different orders.

Assumption B. Assume that S is a PH-generator of order m1, T is a PH-
generator of order m2, D is an m1 × m2 nonnegative matrix, Se + De = 0,
and the matrices S , D, and T satisfy

(i) Se = −e;
(ii) e′T = −e′;
(iii) −e′ ≥ 0; and
(iv) e′D = m1e′/m2.

It is readily seen that D has unit row sums. Choose � = −e′S/m1.
Similar to the construction given in Section 2, the triplet (S ,D,T ) define a
bivariate exponential distribution (Y (m1)

1 ,Y (m2)
2 ) with correlation coefficient

Corr (Y (m1)
1 ,Y (m2)

2 ) = 1
m1

e′(−S)−1D(−T )−1e − 1� (4.1)

First, we construct two special cases (S ∗,D(m1,m2)
min ,T ∗) and (S ∗,D(m1,m2)

max ,
T ∗), where S ∗ and T ∗ are given in Eq. (2.5) with orders m1 and m2,
respectively, and the matrices D(m1,m2)

min and D(m1,m2)
max are constructed next.

Then we prove that the two bivariate exponential distributions give the
minimum and maximum correlation coefficient.

If m1 ≥ m2, D
(m1,m2)
min and D(m1,m2)

max are defined as follows:

D(m1,m2)
min =




k1



1���
1
r1 1 − r1

k2



1���
1
r2 � � � 1 − rm2−1

km2



1���
1




and
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198 He et al.

D(m1,m2)
max =




k1



1
���

1
1 − r1 r1

k1



1
���

1
r2

���
1 − rm2−1

km2



1
���

1




, (4.2)

where nonnegative integers �kj , 1 ≤ j ≤ m2� and real numbers �rj , 1 ≤ j ≤
m2 − 1� satisfy: 0 ≤ rj < 1, for 1 ≤ j ≤ m2 − 1, and

r1 + k1 = m1

m2
;

1 − rj−1 + kj + rj = m1

m2
, 2 ≤ j ≤ m2 − 1; (4.3)

1 − rm2−1 + km2 = m1

m2
�

It is easy to see that both matrices D(m1,m2)
min and D(m1,m2)

max satisfy (iv) of
Assumption B and have unit row sums. The definitions are consistent with
the definitions of Dmin and Dmax given in Section 2 in the sense that Dmin =
D(m,m)

min and Dmax = D(m,m)
max .

The case with m1 < m2 is not considered explicitly, since the correlation
of coefficient function defined in Eq. (4.1) is symmetric in m1 and m2.

Example 4.1. For m1 = 5 and m2 = 3, we have k1 = 1, r1 = 2/3, k2 = 1,
r2 = 1/3, k3 = 1,

D(m1,m2)
min =




1 0 0
2/3 1/3 0
0 1 0
0 1/3 2/3
0 0 1


 and D(m1,m2)

max =




0 0 1
0 1/3 2/3
0 1 0
2/3 1/3 0
1 0 0


 �

(4.4)
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On Some Properties of Bivariate Exponential Distributions 199

For the above construction, we have, for 1 ≤ i ≤ m1 and 1 ≤ j ≤ m2,

(e(1) + · · · + e(i))′D(m1,m2)
min (e(1) + · · · + e(j)) = min

{
i , j

m1

m2

}
;

(e(1) + · · · + e(i))′D(m1,m2)
max (e(j) + · · · + e(m2)) (4.5)

= min
{
i , (m2 − j + 1)

m1

m2

}
�

These observations and the following lemma are used in the proofs of
the main results.

Lemma 4.1. Assume that D is a nonnegative matrix with unit row sums and
satisfies (iv) of Assumption B. For nonnegative row vector a whose elements are in
descending order and nonnegative column vector b whose elements are in ascending
order, we have aD(m1,m2)

min b ≤ aDb ≤ aD(m1,m2)
max b.

Proof. For the matrix D, we have, for 1 ≤ i ≤ m1 and 1 ≤ j ≤ m2,

(e(1) + · · · + e(i))′D(e(1) + · · · + e(j)) ≤ (e(1) + · · · + e(i))′De = i ;

(e(1) + · · · + e(i))′D(e(j) + · · · + e(m2)) ≤ e′D(e(1) + · · · + e(j)) = j
m1

m2
�

(4.6)

Combining Eqs. (4.5) and (4.6), we obtain, for 1 ≤ i ≤ m1 and 1 ≤ j ≤ m2,

(e(1) + · · · + e(i))′D(m1,m2)
min (e(1) + · · · + e(j))

≥ (e(1) + · · · + e(i))′D(e(1) + · · · + e(j)), (4.7)

which leads to

(e(1) + · · · + e(i))′D(m1,m2)
min (e(j) + · · · + e(m2))

= (e(1) + · · · + e(i))′D(m1,m2)
min [e − (e(1) + · · · + e(j − 1))]

≤ (e(1) + · · · + e(i))′D[e − (e(1) + · · · + e(j − 1))]
= (e(1) + · · · + e(i))′D(e(j) + · · · + e(m2))� (4.8)

Since elements in a are in descending order, the vector a can be written
as a = ∑m1

i=1 �i(e(1) + · · · + e(i))′, where ��i ,1 ≤ i ≤ m1� are nonnegative.
Similarly, the vector b can be written as b = ∑m2

j=1 �j(e(j) + · · · + e(m2)),
where ��i ,1 ≤ i ≤ m1� are nonnegative. Then we have

aD(m1,m2)
min b =

m1∑
i=1

m2∑
j=1

�i�j(e(1) + · · · + e(i))′D(m1,m2)
min (e(j) + · · · + e(m2))
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200 He et al.

≤
m1∑
i=1

m2∑
j=1

�i�j(e(1) + · · · + e(i))′D(e(j) + · · · + e(m2))

= aDb, (4.9)

which proves the first part of the lemma.
To prove aDb ≤ aD(m1,m2)

max b, we note that, for 1 ≤ i ≤ m1 and 1 ≤ j ≤ m2,

(e(1) + · · · + e(i))′D(m1,m2)
max (e(j) + · · · + e(m2))

= min�i , (m2 − j + 1)m1/m2�

≥ (e(1) + · · · + e(i))′D(e(j) + · · · + e(m2))� (4.10)

The rest of the proof is similar. This completes the proof of Lemma 4.1. �

Lemma 4.1 generalizes results in Eq. (3.5).
For S ∗ of order m1 and T ∗ of order m2 (see Eq. (2.5) for definition),

the correlation coefficients of MPH-representations (S ∗,D(m1,m2)
min ,T ∗) and

(S ∗,D(m1,m2)
max ,T ∗) are given, respectively, as follows:

Corrmin(m1,m2) = 1
m1

e′(−S ∗)−1D(m1,m2)
min (−T ∗)−1e − 1

= 1
m1

a∗D(m1,m2)
min b∗ − 1;

Corrmax(m1,m2) = 1
m1

e′(−S ∗)−1D(m1,m2)
max (−T ∗)−1e − 1

= 1
m1

a∗D(m1,m2)
max b∗ − 1� (4.11)

Similar to Section 3, we first limit our attention to bivariate exponential
distributions with an MPH-representation (S ∗,D,T ∗).

Theorem 4.2. For S ∗ of order m1 and T ∗ of order m2 defined in Eq. (2.5), and
any D satisfying Assumption B, we have Corrmin(m1,m2) ≤ Corr (Y (m1)

1 ,Y (m2)
2 ) ≤

Corrmax(m1,m2), for (Y
(m1)
1 ,Y (m2)

2 ) with MPH-representation (S ∗, D, T ∗).

Proof. By Eq. (4.1), it is easy to obtain Corr (Y (m1)
1 ,Y (m2)

2 ) = m−1
1 a∗Db∗ − 1.

Since the elements in a∗ are in descending order and elements in b∗ are
in ascending order, the theorem is proved by applying Lemma 4.1. �

For the general case, similar to Theorem 3.3, we have the following
result.
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On Some Properties of Bivariate Exponential Distributions 201

Theorem 4.3. Assume that (Y (m1)
1 ,Y (m2)

2 ) is a bivariate exponential
distribution with MPH-representation (S ,D,T ) satisfying Assumption B. Then
Corrmin(m1,m2) ≤ Corr (Y (m1)

1 ,Y (m2)
2 ) ≤ Corrmax(m1,m2), where Corrmin(m1, m2)

and Corrmax(m1, m2) are given in Eq. (4.11).

Proof. By Lemma 3.2, a = e′(−S)−1 is majorized by a∗ and b = (−T )−1e
is majorized by b∗. Similar to the proof of Theorem 3.3, there exist a
doubly stochastic matrix Ps such that a = a∗Ps , and a doubly stochastic
matrix Pt such that b = Ptb∗. Then we have aDb = a∗PsDPtb∗. Let D̂ =
PsDPt . It is easy to verify that D̂e = e and e′D̂ = m1e′/m2. The results are
obtained by applying Theorem 4.2 to (S ∗, D̂,T ∗). This completes the proof
Theorem 4.3. �

The following result show that the maximum and minimum of
correlation coefficients Corrmin(m1,m2) and Corrmax(m1,m2) are increasing
and decreasing in m1 and m2, respectively, which generalizes the
expressions in Eq. (2.6).

Theorem 4.4. For positive integers m1 and m2, we have

Corrmin(m1,m2) =
m1∑
i=1

m2∑
j=1

max
{
0,

1
jm1

+ 1
im2

− 1
ij

}
− 1;

Corrmax(m1,m2) =
m1∑
i=1

m2∑
j=1

min
{

1
jm1

,
1
im2

}
− 1�

(4.12)

Both functions Corrmin(m1,m2) and Corrmax(m1,m2) are symmetric. The function
Corrmin(m1,m2) is non-increasing in m1 and m2, and the function Corrmax(m1,m2)

is non-decreasing in m1 and m2. In addition, we have Corrmin(m, km) =
Corrmin(m, km + 1) and Corrmax(m, km) = Corrmax(m, km + 1) for all positive
m and k.

Proof. We prove the result for Corrmin(m1,m2), as the proof for
Corrmax(m1,m2) follows in a similar way. First note that

b∗ =
m2∑
j=1

1
j
(e(m2 − j + 1) + · · · + e(m2))

=
m2∑
j=1

1
j
[e − (e(1) + · · · + e(m2 − j))]� (4.13)
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202 He et al.

Using the first equation in (4.5), we have, for 1 ≤ i ≤ m1,

F (m1,m2)
i ≡ (e(1) + · · · + e(i))′D(m1,m2)

min b∗

=
m2∑
j=1

1
j
(e(1) + · · · + e(i))′D(m1,m2)

min [e − (e(1) + · · · + e(m2 − j))]

=
m2∑
j=1

1
j
(e(1) + · · · + e(i))′

[
e − D(m1,m2)

min (e(1) + · · · + e(m2 − j))
]

=
m2∑
j=1

1
j

(
i − min

{
i , (m2 − j)

m1

m2

})

=
m2∑
j=1

max
{
0,

m1

m2
+ i

j
− m1

j

}
� (4.14)

Using a∗ = ∑m1
i=1

1
i (e(1) + · · · + e(i))′, we obtain

Corrmin(m1,m2) = 1
m1

a∗D(m1,m2)
min b∗ − 1 = 1

m1

m1∑
i=1

1
i
F (m1,m2)
i − 1

=
m1∑
i=1

m2∑
j=1

max
{
0,

1
jm1

+ 1
im2

− 1
ij

}
− 1� (4.15)

To show the second part, we focus on the monotonicity of the
function Corrmin(m1,m2). Since the function Corrmin(m1,m2) is symmetric, it
is sufficient to show Corrmin(m1,m2 + 1) ≤ Corrmin(m1,m2). To that end, by
Eq. (4.15), it is sufficient to show F (m1,m2+1)

i ≤ F (m1,m2)
i for 1 ≤ i ≤ m1. For

j ≥ 1, fixing i , we have

max
{
0,

m1

m2
− m1 − i

j

}
=



0, if j ≤ (1 − i/m1)m2;

m1

m2
− m1 − i

j
, if j ≥ (1 − i/m1)m2�

(4.16)

If there exists an integer j ∗ such that (1 − i/m1)m2 ≤ j ∗ < (1 −
i/m1)(m2 + 1), we have

max
{
0,

m1

m2
− m1 − i

j

}
− max

{
0,

m1

m2 + 1
− m1 − i

j

}
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On Some Properties of Bivariate Exponential Distributions 203

=




0, if 1 ≤ j < (1 − i/m1)m2;

m1

m2
− m1 − i

j ∗
, if j = j ∗;

m1

m2(m2 + 1)
, if (1 − i/m1)(m2 + 1) ≤ j ≤ m2 + 1�

(4.17)

Then we obtain, for 1 ≤ i ≤ m1,

F (m1,m2)
i − F (m1,m2+1)

i

=
m2∑
j=1

(
max

{
0,

m1

m2
− m1 − i

j

}
− max

{
0,

m1

m2 + 1
− m1 − i

j

})
− i

m2 + 1

= m1

m2
− m1 − i

j ∗
+ (m2 − j ∗)

m1

m2(m2 + 1)
− i

m2 + 1

=
(
j ∗ − m2

(
1 − i

m1

))
m1

m2

(
1
j ∗

− 1
m2 + 1

)
≥ 0� (4.18)

If there is no integer in the interval [(1 − i/m1)m2, (1 − i/m1)(m2 +
1)), we choose j ∗ to be the smallest integer that is greater than or equal
to (1 − i/m1)(m2 + 1). That implies (1 − i/m1)m2 < j ∗ < 1 + (1 − i/m1)m2.
Then the calculations in Eq. (4.17) become, for 1 ≤ i ≤ m1,

max
{
0,

m1

m2
− m1 − i

j

}
− max

{
0,

m1

m2 + 1
− m1 − i

j

}

=



0, if 1 ≤ j < (1 − i/m1)m2;

m1

m2(m2 + 1)
, if (1 − i/m1)(m2 + 1) ≤ j ≤ m2 + 1�

(4.19)

The calculations in Eq. (4.18) become

F (m1,m2)
i − F (m1,m2+1)

i = (m2 − j ∗ + 1)
m1

m2(m2 + 1)
− i

m2 + 1

=
(
m2

(
1 − i

m1

)
+ 1 − j ∗

)
m1

m2(m2 + 1)
≥ 0� (4.20)

Thus, the function Corrmin(m1, m2) is non-increasing in m1 and m2.
To prove the last part of the theorem, note that if m2 = km1, then j ∗ =

k(m1 − i), which leads to F (m1,m2)
i − F (m1,m2+1)

i = 0 in Eq. (4.18), for 1 ≤ i ≤
m1. Consequently, Corrmin(m, km) = Corrmin(m, km + 1) holds for all positive
m and k. This completes the proof of Theorem 4.4. �

Example 4.2. Some values of Corrmin(m1,m2) are given in Table 1.
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204 He et al.

TABLE 1 The minimum correlation coefficient Corrmin(m1,m2)

m1\m2 1 2 3 4 5 6 7 8

1 0 0 0 0 0 0 0 0
2 0 −0.2500 −0.2500 −0.2917 −0.2917 −0.3083 −0.3083 −0.3173
3 0 −0.2500 −0.3611 −0.3611 −0.3806 −0.4028 −0.4028 −0.4093
4 0 −0.2917 −0.3611 −0.4236 −0.4236 −0.4389 −0.4476 −0.4610
5 0 −0.2917 −0.3806 −0.4236 −0.4636 −0.4636 −0.4735 −0.4814
6 0 −0.3083 −0.4028 −0.4389 −0.4636 −0.4914 −0.4914 −0.4992
7 0 −0.3083 −0.4028 −0.4476 −0.4735 −0.4914 −0.5118 −0.5118
8 0 −0.3173 −0.4093 −0.4610 −0.4814 −0.4992 −0.5118 −0.5274

Some values of Corrmax(m1,m2) are given in Table 2.

Tables 1 and 2 indicate that, for fixed m, the function
Corrmin(k,m − k) is minimized at k = �m/2 (i.e., the greatest integer
that is less than or equal to m/2) or k = �m/2� (i.e., the smallest
integer that is greater than or equal to m/2), and the function
Corrmax(k,m − k) is maximized at k = �m/2 or k = �m/2�. Alternatively,
Tables 1 and 2 suggests [Corrmin(k,m − k), Corrmax(k,m − k)] ⊂
[Corrmin(�m/2, �m/2), Corrmax(�m/2, �m/2)] for 1 ≤ k ≤ �m/2. In
general, if m1 + m2 = 2m, then [Corrmin(m1,m2),Corrmax(m1,m2)] ⊂
[Corrmin(m,m),Corrmax(m,m)] may hold. If m1 + m2 = 2m + 1, by
Theorem 4.4, then [Corrmin(m1,m2),Corrmax(m1,m2)] ⊂ [Corrmin(m +
1,m),Corrmax(m + 1,m)] = [Corrmin(m,m),Corrmax(m,m)] may hold.
Consequently, Tables 1 and 2, together with Theorem 4.4, suggest that
the smallest orders, for which a bivariate exponential distribution has
correlation coefficient � ∈ (1 − �2/6, 1), can be achieved at the smallest m
such that � ∈ [Corrmin(m,m),Corrmax(m,m)].

TABLE 2 The maximum correlation coefficient Corrmax(m1, m2)

m1\m2 1 2 3 4 5 6 7 8

1 0 0 0 0 0 0 0 0
2 0 0.2500 0.2500 0.2917 0.2917 0.3083 0.3083 0.3173
3 0 0.2500 0.3889 0.3889 0.4111 0.4389 0.4389 0.4466
4 0 0.2917 0.3889 0.4792 0.4792 0.4972 0.5107 0.5301
5 0 0.2917 0.4111 0.4792 0.5433 0.5433 0.5557 0.5676
6 0 0.3083 0.4389 0.4972 0.5433 0.5917 0.5917 0.6017
7 0 0.3083 0.4389 0.5107 0.5557 0.5917 0.6296 0.6296
8 0 0.3173 0.4466 0.5301 0.5676 0.6017 0.6296 0.6603
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On Some Properties of Bivariate Exponential Distributions 205

5. DISCUSSION

An interesting issue for further research is to find the maximum and
minimum correlation coefficient(s) for multivariate PH-distribution with
a given order of matrix representation. Based on Aldous and Shepp[1]

and O’Cinneide[24] for univariate PH-distributions, the maximum and
minimum of the correlation coefficients of bivariate PH-distributions with
any given order of representation cannot reach 1 or −1. Thus, finding
the maximum and minimum can be useful for approximating bivariate
distributions with bivariate exponential distributions.
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