Metadata of the chapter that will be visualized online

Series Title	Springer Proceedings in Mathematics \& Statistics
Chapter Title	Majorization and Extremal PH Distributions
Chapter SubTitle	
Copyright Year	2013
Copyright Holder	Springer Science + Business Media New York
Corresponding Author	Family Name He
	Particle
	Given Name Qi-Ming
	Suffix
	Division
	Organization University of Waterloo
	Address N2L 3G1, Waterloo, ON, Canada
	Email q7he@uwaterloo.ca
Author	Family Name Zhang
	Particle
	Given Name Hanqin
	Suffix
	Division
	Organization University of Singapore
	Address 119245, Singapore, Singapore
	Email bizzhq@nus.edu.sg
Author	Family Name Vera
	Particle
	Given Name Juan C.
	Suffix
	Division
	Organization Tilburg University
	Address Tilburg, Netherlands
	Email j.c.veralizcano@uvt.nl
Abstract	This paper presents majorization results for PH -generators. Based on the majorization results, bounds on the moments and Laplace-Stieltjes transforms of phase-type distributions are found. Exponential distributions and Coxian distributions are identified to be extremal PH -distributions with respect to all the moments and Laplace-Stieltjes transforms for certain subsets of PH -distributions.

Author's Proof

Chapter 6
 Majorization and Extremal PH Distributions

Qi-Ming He, Hanqin Zhang, and Juan C. Vera
3

Introduction

Let T be an $m \times m$ invertible matrix with (1) negative diagonal el \equiv ts, (2) 5 nonnegative off-diagonal elements, and (3) nonpositive row sums, wh $\overline{\pi \pi} m$ is a 6 positive integer. Such a matrix T is called a $P H$ generator. Let α be a substochastic ${ }_{7}$ vector of order m, i.e., $\alpha \geq 0$ and $\alpha \mathbf{e} \leq 1$, where \mathbf{e} is the column vector of ones. 8 Then (α, T) is called a $P H$ representation of a phase-type $(P H)$ random variable ${ }_{9}$ (distribution) X. In this chapter, we find bounds on the moments of X in terms of 10 the elements of α and T and identify Coxian distributions to be the extremal PH $\quad 11$ distributions in certain subsets of $P H$ distributions. 12

The set of $P H$ distributions was introduced by Neuts [13]. Since the set of $P H{ }_{13}$ distributions is dense in the set of probability distributions on the nonnegative half- 14 line and PH representations provide a Markovian structure for stochastic modeling, 15 PH distributions have been used widely in the study of queueing, inventory, 16 risk/insurance, manufacturing, and telecommunications models [9,14]. In almost all 17 applications of $P H$ distributions, $P H$ representations play a key role. Thus, the study 18 of $P H$ representations has attracted great attention from researchers (see [3,4,15,17], 19 and references therein).

Aldous and Shepp [1] find the minimum coefficient of variation of PH dis- 21 tributions with a $P H$ representation of a fixed order m. They also find that the 22

[^0]
Author's Proof

minimum is attained at $P H$ representations of Erlang distributions. Their result is 23 useful in determining the order of $P H$ representations needed for fitting probability 24 distributions if their coefficient of variation is known. In [17], a number of open 25 problems related to $P H$ representations are brought up and investigated. The results 26 in [17] and in subsequent papers on the open problems (e.g., [5, 18, 19]) reveal the 27 relationship between $P H$ representations, density functions, and variances of $P H \quad 28$ distributions. In [17], a lower bound on the density of triangular $P H$ distributions 29 is found. In [5], it is shown that not every PH representation has an equivalent 30 unicyclic $P H$ representation of the same order. In [18], it is shown that, for a PH 31 distribution with a $P H$ representation of order 2, a minimal-norm representation can 32 be found and the norm coincides with the minimal parameter in Maier's property 33 [10]. While O'Cinneide [17] attempts to show $P H$ distributions with a unicyclic 34 $P H$ representation as extremal $P H$ distributions, this chapter aims to prove that 35 $P H$ distributions with some Coxian representations are extremal with respect to the 36 moments of the distribution.

This chapter focuses on the relationship between PH representations and the 38 moments of PH distributions. In the section "Two Majorization Lemmas," two 39 majorization results are shown for the vector $-T^{-1} \mathbf{e}$. It is worth mentioning that 40 the majorization approach [11] seems quite useful in the study of $P H$ distributions 41 and $P H$ representations [7,16]. The majorization results are used to obtain bounds 42 on the mean (i.e., first moment) of $P H$ distributions in the section "Bounds on 43 Phase-Type Distributions." All bounds on the expectation are partially independent 44 of the transition structure of the underlying Markov chain associated with the $P H \quad 45$ distribution. Results in the section "Bounds on Phase-Type Distributions" indicate ${ }_{46}$ that exponential/Coxian distributions are extreme cases, with respect to the mean, 47 if the vector $-\mathbf{e}^{\prime} T$ or the sum $-\mathbf{e}^{\prime} T \mathbf{e}$ is fixed, where \mathbf{e}^{\prime} is the transpose of the ${ }_{48}$ vector \mathbf{e}. The section "Extremal Phase-Type Distributions" extends the results in 49 the section "Bounds on Phase-Type Distributions" from the first moment to higher 50 moments. A highlight of the results is the lower bounds on the moments of any $P H 51$ distribution (α, T), i.e., $E\left[X_{k}\right] \geq k!/\left(-\mathbf{e}^{\prime} T \mathbf{e}\right)^{k}$ for all $k \geq 0$, that is independent of 52 the order of the $P H$ representation and the transitions within the underlying Markov ${ }_{53}$ chain. Results in the section "Extremal Phase-Type Distributions" demonstrate 54 that exponential/Coxian distributions are extremal PH distributions with respect to 55 all the moments and the Laplace-Stieltjes transform. All proofs are given in the 56 section "Proofs." The section "Conclusion and Discussion" concludes the pa with a discussion of the potential applications of the results obtained in this chapter. 58

Two Majorization Lemmas

For the vector $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{m}\right)$, rearrange the elements of \mathbf{x} in ascending order 60 and denote the elements by $x_{[1]} \leq x_{[2]} \leq \cdots \leq x_{[m]}$, where ([1], [2], $\ldots,[m]$) is a 61 permutation of $(1,2, \ldots, m)$. A vector \mathbf{x} is weakly submajorized by vector \mathbf{y}, denoted 62

Author's Proof

by $\mathbf{x} \prec_{w} \mathbf{y}$, if $x_{[m]}+x_{[m-1]}+\cdots+x_{[k]} \leq y_{[m]}+y_{[m-1]}+\cdots+y_{[k]}$ for $1 \leq k \leq m$. 63 A vector \mathbf{x} is weakly supermajorized by vector \mathbf{y}, denoted by $\mathbf{x} \prec^{w} \mathbf{y}$, if $x_{[1]}+x_{[2]}+64$ $\cdots+x_{[k]} \geq y_{[1]}+y_{[2]}+\cdots+y_{[k]}$ for $1 \leq k \leq m$. A vector \mathbf{x} is majorized by \mathbf{y}, denoted 65 as $\mathbf{x} \prec \mathbf{y}$, if $\mathbf{x e}=\mathbf{y e}$ and $x_{[1]}+x_{[2]}+\cdots+x_{[k]} \geq y_{[1]}+y_{[2]}+\cdots+y_{[k]}$ for $1 \leq k \leq m-1,66$ or, equivalently, $\mathbf{x e}=\mathbf{y e}$, and $x_{[m]}+x_{[m-1]}+\cdots+x_{[k]} \leq y_{[m]}+y_{[m-1]}+\cdots+y_{[k]}$ for 67 $2 \leq k \leq m$. It is easy to see that $\mathbf{x} \prec \mathbf{y}$ if and only if $\mathbf{x} \prec_{w} \mathbf{y}$ and $\mathbf{x} \prec^{w} \mathbf{y}$. We refer the 68 reader to Marshall and Olkin [11] for more about majorization.

69
Consider a $P H$ generator T of order m. Define $\mathbf{r}=-\mathbf{e}^{\prime} T=\left(r_{1}, r_{2}, \ldots, r_{m}\right) .70$ Rearrange the elements of \mathbf{r} in ascending order as $r_{[1]} \leq r_{[2]} \leq \cdots \leq r_{[m]}$. Since 71 T is invertible and $T \mathbf{e} \leq 0$, we must have $-\mathbf{e}^{\prime} T \mathbf{e}=\mathbf{r e}>0$. It is possible that some 72 of $\left\{r_{1}, r_{2}, \ldots, r_{m}\right\}$ are negative, but the summation $r_{[j]}+r_{[j+1]}+\cdots+r_{[m]}$ is positive ${ }^{73}$ for $1 \leq j \leq m$. For fixed \mathbf{r}, we shall construct two matrices T_{\downarrow}^{*} and T_{\uparrow}^{*} and find ${ }_{74}$ majorization relationships between the vectors $-T^{-1} \mathbf{e},-\left(T_{\downarrow}^{*}\right)^{-1} \mathbf{e}$, and $-\left(T_{\uparrow}^{*}\right)^{-1} \mathbf{e}$. ${ }^{75}$ Define

$$
T_{\downarrow}^{*}=\left(\begin{array}{ccccc}
-\sum_{j=1}^{m} r_{[j]} & & & & \tag{6.1}\\
\sum_{j=2}^{m} r_{[j]} & -\sum_{j=2}^{m} r_{[j]} & & & \\
& \ddots & \ddots & & \\
& & \sum_{j=m-1}^{m} r_{[j]} & -\sum_{j=m-1}^{m} r_{[j]} & \\
& & & r_{[m]} & -r_{[m]}
\end{array}\right) .
$$

It is easy to see that the matrix T_{\downarrow}^{*} is a $P H$ generator. In fact, T_{\downarrow}^{*} is a Coxian generator 77 for Coxian distributions [6]. Define

$$
\begin{align*}
\mathbf{b}_{\downarrow}^{*} & =-\left(T_{\downarrow}^{*}\right)^{-1} \mathbf{e} \\
& =\left(\sum_{i=m}^{m}\left(\sum_{j=m-i+1}^{m} r_{[j]}\right)^{-1}, \ldots, \sum_{i=k}^{m}\left(\sum_{j=m-i+1}^{m} r_{[j]}\right)^{-1}, \ldots, \sum_{i=1}^{m}\left(\sum_{j=m-i+1}^{m} r_{[j]}\right)^{-1}\right)^{\prime} . \tag{6.2}
\end{align*}
$$

It is readily seen that the elements in $\mathbf{b}_{\downarrow}^{*}$ are positive and are in ascending order. 79
Lemma 6.1. Assume that T is a PH generator of order m. Then $-T^{-1} \mathbf{e}$ is weakly 80 supermajorized by $\mathbf{b}_{\downarrow}^{*}$ defined in (6.2).

Next, we define T_{\uparrow}^{*} such that $-T^{-1} \mathbf{e}$ is weakly submajorized by $-\left(T_{\uparrow}^{*}\right)^{-1} \mathbf{e}$ under 82 an additional condition. If $r_{[1]}=\min \left\{r_{1}, r_{2}, \ldots, r_{m}\right\}>0$, then we define

Author's Proof

$$
T_{\uparrow}^{*}=\left(\begin{array}{ccccc}
-\sum_{j=1}^{m} r_{[j]} & & & \tag{6.3}\\
\sum_{j=1}^{m-1} r_{[j]}-\sum_{j=1}^{m-1} r_{[j]} & & & \\
& \ddots & \ddots & & \\
& & \sum_{j=1}^{2} r_{[j]} & -\sum_{j=1}^{2} r_{[j]} & \\
& & & r_{[l]} & -r_{[l]}
\end{array}\right) .
$$

It is easy to see that the matrix T_{\uparrow}^{*} is a $P H$ generator. Define

$$
\begin{align*}
\mathbf{b}_{\uparrow}^{*} & =-\left(T_{\uparrow}^{*}\right)^{-1} \mathbf{e} \\
& =\left(\sum_{i=1}^{1}\left(\sum_{j=1}^{m-i+1} r_{[j]}\right)^{-1}, \ldots, \sum_{i=1}^{k}\left(\sum_{j=1}^{m-i+1} r_{[j]}\right)^{-1}, \ldots, \sum_{i=1}^{m}\left(\sum_{j=1}^{m-i+1} r_{[j]}\right)^{-1}\right)^{\prime} . \tag{6.4}
\end{align*}
$$

It is readily seen that the elements in \mathbf{b}^{*} are nonnegative and are in ascending 85 order.

Lemma 6.2. Assume that T is a $P H$ generator of order m, and $r_{[1]}>0$. Then 87 $-T^{-1} \mathbf{e}$ is weakly supermajd $\xlongequal{=}$ by $\mathbf{b}_{\uparrow}^{*}$ defined in (6.4).

Bounds on Phase-Type Distributions

Now we focus on a random variable X with a $P H$ distribution with $P H$ repre- 90 sentation (α, T). It is well known that the expectation of $P H$ distribution X is 91 given by $E[X]=-\alpha T^{-1} \mathbf{e}$. Since $-\alpha T^{-1} \mathbf{e}=-(\alpha \mathbf{e})(\alpha /(\alpha \mathbf{e})) T^{-1} \mathbf{e}$, without loss 92 of generality, we shall assume α normalized such that $\alpha \mathbf{e}=1$ in the rest of the ${ }^{93}$ paper.

For vector \mathbf{x} let $\mathbf{x}_{\uparrow}=\left(x_{[1]}, x_{[2]}, \ldots, x_{[m]}\right)$ denote the ascending rearrangement of 95 \mathbf{x}, and let $\mathbf{x}_{\downarrow}=\left(x_{[m]}, x_{[m-1]}, \ldots, x_{[1]}\right)$ denote the descending rearrangement of \mathbf{x}. For 96 stochastic vector α, the vectors α_{\uparrow} and α_{\downarrow} are defined accordingly. For any vector $\mathbf{x}{ }_{97}$ it is easy to verify $\alpha_{\downarrow} \mathbf{x}_{\uparrow} \leq \alpha \mathbf{x} \leq \alpha_{\uparrow} \mathbf{x}_{\uparrow}$ [12]. For vectors \mathbf{x} and \mathbf{y}, (1) if \mathbf{x} then 98 we have $\alpha_{\uparrow} \mathbf{x}_{\uparrow} \leq \alpha_{\uparrow} \mathbf{y}_{\uparrow}$; (2) if $\mathbf{x} \prec^{w} \mathbf{y}$, then we have $\alpha_{\downarrow} \mathbf{x}_{\uparrow} \geq \alpha_{\downarrow} \mathbf{y}_{\uparrow}$; and (3) i ${ }_{\sim}$, then we have $\alpha_{\downarrow} \mathbf{x}_{\uparrow} \geq \alpha_{\downarrow} \mathbf{y}_{\uparrow}$, and $\alpha_{\uparrow} \mathbf{x}_{\uparrow} \leq \alpha_{\uparrow} \mathbf{y}_{\uparrow}$ [11].

Now we are ready to state the main results.
Theorem 6.1. Consider a PH generator T of order m. For any random variable X 102 with a PH distribution with PH representation (α, T) we have

Author's Proof

6 Majorization and Extremal PH Distributions

$$
\begin{equation*}
E[X] \geq-\alpha_{\downarrow}\left(T_{\downarrow}^{*}\right)^{-1} \mathbf{e} \geq-\frac{1}{\mathbf{e}^{\prime} T \mathbf{e}} \tag{6.5}
\end{equation*}
$$

where T_{\downarrow}^{*} is defined in (6.1). That is: the mean of the PH distribution (α, T) is 104 greater than or equal to that of the PH distribution $\left(\alpha_{\downarrow}, T_{\downarrow}^{*}\right)$. 105

Moreover, if all elements of $\mathbf{r}=\mathbf{e}^{\prime}(-T)$ are positive, then we have 106

$$
\begin{equation*}
E[X] \leq-\alpha_{\uparrow}\left(T_{\uparrow}^{*}\right)^{-1} \mathbf{e} \leq \sum_{i=1}^{m}\left(\sum_{j=1}^{m-i+1} r_{[j]}\right)^{-1} \tag{6.6}
\end{equation*}
$$

where T_{\uparrow}^{*} is defined in (6.3). That is, the mean of the PH distribution (α, T) is less 107 than or equal to that of the PH distribution $\left(\alpha_{\uparrow}, T_{\uparrow}^{*}\right)$.

Note that the lower bound $-1 /\left(\mathbf{e}^{\prime} T \mathbf{e}\right)$ in (6.5) is totally independent of the transition
 structure of the underlying Markov chain (i.e., the transition within T). The upper
 bound in (6.6) is only partially independent of the transition structure of the 111 underlying Markov chain.

Example 6.1. Consider a PH generator

$$
T=\left(\begin{array}{cc}
-10 & 8 \tag{6.7}\\
2 & -2
\end{array}\right)
$$

It is easy to find $\mathbf{e}^{\prime}(-T)=(8,-6),-T^{-1} \mathbf{e}=(2.5,3)^{\prime}$,

$$
\boldsymbol{T}_{\downarrow}^{*}=\left(\begin{array}{cc}
-2 & 0 \tag{6.8}\\
8 & -8
\end{array}\right)
$$

and $-\left(T_{\downarrow}^{*}\right)^{-1} \mathbf{e}=(0.5,0.625)^{\prime}$. For any $P H$ distribution (α, T) with $\alpha \mathbf{e}=1$, by 115 Theorem 6.1, we have $0.5 \leq 0.5 \alpha_{[2]}+0.625 \alpha_{[1]} \leq E[X]$.

For this case, the lower boun $\overline{\overline{ }}$ not sharp since $2.5 \leq E[X] \leq 3$ for all feasible α with $\alpha \mathbf{e}=1$. Following He and Zhang [6], the $P H$ generator T can be Coxianized, 118 i.e., there is a Coxian generator

$$
S=\left(\begin{array}{cc}
-6-\sqrt{32} & 0 \tag{6.9}\\
-6-\sqrt{32} & -6+\sqrt{32}
\end{array}\right)
$$

such that any $P H$ representation (α, T) has an equivalent Coxian representation 120 (β, S), where β is a stochastic vector. The difference between T_{\downarrow}^{*} and S explains ${ }_{121}$ why the lower bounds are too small for this case. This example warrants further 122 investigation on the relationship between the matrices T_{\downarrow}^{*} and T_{\uparrow}^{*} and the Coxianiza- ${ }_{123}$ tion of T. On the other hand, finding bounds on the mean of a $P H$ distribution is not ${ }_{124}$ the objective of this research. The results on bounds are used for characterizing $P H \quad 125$ distributions and for finding extremal $P H$ distributions (see the section "Extremal 126 Phase-Type Distributions").

Author's Proof

Example 6.2. Consider a PH generator

$$
T=\left(\begin{array}{cc}
-2 & 1 \tag{6.10}\\
x & -x
\end{array}\right)
$$

where $x>0$. It is easy to verify $-T^{-1} \mathbf{e}=(1+1 / x, 1+2 / x)^{\prime}$. The expectation ${ }_{12}$ of (α, T) with $\alpha \mathbf{e}=1$ goes to positive infinity if x goes to zero. Note that ${ }_{130}$ $-\mathbf{e}^{\prime} T \mathbf{e}=1$ holds for any positive x. Thus, while there is a lower bound that is totally 131 independent of the transition structure, there may not be such an upper bound. 132

For some special $P H$ generators, lower and upper bounds can be obtained simulta- ${ }_{133}$ neously.
Theorem 6.2. Consider a PH generator T of order m and satisfying $-\mathbf{e}^{\prime} T^{-1} \mathbf{e}=$ $-\mathbf{e}^{\prime}\left(T_{\downarrow}^{*}\right)^{-1} \mathbf{e}$. For any PH distributed random variable X with PH representation ${ }_{136}$ (α, T) we have

$$
\begin{equation*}
-\frac{1}{\mathbf{e}^{\prime} T \mathbf{e}} \leq-\alpha_{\downarrow}\left(T_{\downarrow}^{*}\right)^{-1} \mathbf{e} \leq E[X] \leq-\alpha_{\uparrow}\left(T_{\downarrow}^{*}\right)^{-1} \mathbf{e} \leq \sum_{i=1}^{m}\left(\sum_{j=m-i+1}^{m} r_{[j]}\right)^{-1} \tag{6.11}
\end{equation*}
$$

Consider a PH generator T such that (i) $-\mathbf{e}^{\prime} T^{-1} \mathbf{e}=-\mathbf{e}\left(T_{\uparrow}^{*}\right)^{-1} \mathbf{e}$ and (ii) all ${ }_{138}$ elements of $\mathbf{r}=\mathbf{e}^{\prime}(-T)$ are positive. For any $P H$ distributed random variable $X 139$ with $P H$ representation (α, T) we have

$$
\begin{equation*}
-\frac{1}{\mathbf{e}^{\prime} T \mathbf{e}} \leq-\alpha_{\downarrow}\left(T_{\uparrow}^{*}\right)^{-1} \mathbf{e} \leq E[X] \leq-\alpha_{\uparrow}\left(T_{\uparrow}^{*}\right)^{-1} \mathbf{e} \leq \sum_{i=1}^{m}\left(\sum_{j=1}^{m-i+1} r_{[j]}\right)^{-1} \tag{6.12}
\end{equation*}
$$

What follows is a special case of Theorem 6.2 that was proved in [7].
Corollary 6.1. For any $P H$ distribution (α, T) for which T satisfies $\mathbf{e}^{\prime} T=-\mu \mathbf{e}^{\prime} \quad 142$ we have

$$
\begin{equation*}
-\frac{1}{\mu m} \leq-\alpha_{\downarrow}\left(T_{\downarrow}^{*}\right)^{-1} \mathbf{e} \leq E[X] \leq-\alpha_{\uparrow}\left(T_{\downarrow}^{*}\right)^{-1} \mathbf{e} \leq \frac{1}{\mu} \sum_{i=1}^{m} \frac{1}{i} \tag{6.13}
\end{equation*}
$$

Example 6.3. Consider a PH generator

$$
T=\left(\begin{array}{cc}
-3 & 1 \tag{6.14}\\
2 & -2
\end{array}\right)
$$

It is easy to find $\mathbf{e}^{\prime}(-T)=(1,1),-T^{-1} \mathbf{e}=(3 / 4,5 / 4)^{\prime}$,

$$
T_{\downarrow}^{*}=\left(\begin{array}{cc}
-2 & 0 \tag{6.15}\\
1 & -1
\end{array}\right)
$$

Author's Proof

6 Majorization and Extremal PH Distributions
and $-\left(T_{\downarrow}^{*}\right)^{-1} \mathbf{e}=(0.5,1.5)^{\prime}$. For any $P H$ distribution (α, T) with $\alpha \mathbf{e}=1$, by 146 Corollary 6.1, we have $0.5 \leq 0.5 \alpha_{[2]}+1.5 \alpha_{[1]} \leq E[X] \leq 0.5 \alpha_{[1]}+1.5 \alpha_{[2]} \leq 1.5$.

Extremal Phase-Type Distributions

Let $X_{\min }$ be the exponential random variable with parameter λ. Denote by Ω_{λ} the ${ }_{149}$ set of all $P H$ distributions with a $P H$ representation (α, T) satisfying $\alpha \mathbf{e}=1$ and 150 $\lambda=-\mathbf{e}^{\prime} T \mathbf{e}$.

By Theorem 6.1, $E\left[X_{\min }\right]=\min \left\{E[X]: X \in \Omega_{\lambda}\right\}$, which implies that $X_{\text {min }}$ is an 152 extremal random variable, with respect to the first moment, in Ω_{λ}. Note that the ${ }_{153}$ result in Theorem 6.1 is independent of the order of the PH representation. The 154 result can be generalized to all moments and Laplace-Stieltjes transforms (LSTs) of 155 PH distributions.

$$
\begin{equation*}
P\left\{Y_{\min } \leq t\right\}=\frac{m-1}{m}+\frac{1}{m}(1-\exp \{-\theta t\}), \text { for } t \geq 0 \tag{6.16}
\end{equation*}
$$

where θ is positive. Then $Y_{\min }$ equals zero, w.p. $(m-1) / m$, and an exponential 164 random variable with parameter θ, w.p. $1 / \mathrm{m}$. Define

$$
\begin{equation*}
\Psi_{m, \theta}=\left\{X: X \sim(\alpha, T) \text { of order } m, \alpha \mathbf{e}=1, \theta=-\frac{\mathbf{e}^{\prime} T \mathbf{e}}{m}\right\} \tag{6.17}
\end{equation*}
$$

where " \sim " means equivalency in probability distribution.
Corollary 6. For $\theta>0$ and $X \sim(\alpha, T) \in \Psi_{m, \theta}$ we have, for $s \geq 0$,

$$
\begin{equation*}
E\left[\mathrm{e}^{-s X}\right] \leq E\left[\mathrm{e}^{-s Y_{\min }}\right]=\frac{m-1}{m}+\frac{\theta}{m(s+\theta)} \tag{6.18}
\end{equation*}
$$

We remark that, while the extremal random variable $X_{\min }$ is in $\Omega_{\lambda}, Y_{\min }$ is not in 168 $\Psi_{m, \theta}$. Yet the LST of $Y_{\min }$ provides a bound on the LSTs of all PH distributions 169 in $\Psi_{m, \theta}$.

Author's Proof

Next, let $X_{\max }$ be the exponential random variable with parameter μ. Denote 171 by Φ_{μ} the set of all $P H$ distributions with a $P H$ representation (α, T) satisfying 172 $\alpha \mathbf{e}=1$ and

$$
\begin{equation*}
\sum_{i=1}^{m}\left(\sum_{j=1}^{m-i+1} r_{[j]}\right)^{-1}=\frac{1}{\mu} \tag{6.19}
\end{equation*}
$$

where $\mathbf{r}=-\mathbf{e}^{\prime} T>0$ and $m=1,2, \ldots$ By Theorem 6.1, $E\left[X_{\max }\right]=1 / \mu=174$ $\max \left\{E[X]: X \in \Phi_{\mu}\right\}$, which implies that $X_{\max }$ is an extremal random variable, with 175 respect to the first moment, in Φ_{μ}. The result can be generalized to all moments and 176 LSTs of $P H$ distributions.
Corollary 6.\%. For $\mu>0$ and Φ_{μ} we have
$\left.\stackrel{\overline{\overline{=}}}{ } X_{\text {max }}^{k}\right] \geq E\left[X^{k}\right], \quad k \geq 1$;
$\left.2 . \overline{\overline{\overline{V L}}} \mathrm{e}^{-s X_{\max }}\right] \geq E\left[\mathrm{e}^{-s X}\right], s_{\text {lower }}<s \leq 0$, for some negative number $s_{\text {lower }}$; and ${ }_{181}^{180}$
$E\left[\mathrm{e}^{-s X_{\max }}\right] \leq E\left[\mathrm{e}^{-s X}\right], 0 \leq s<s_{\text {upper }}$, for some positive number $s_{\text {upper }}$. 182
Define

$$
\begin{equation*}
\Theta_{m}=\left\{X: X \sim(\alpha, T) \text { of order } m, \alpha \mathbf{e}=1,-\mathbf{e}^{\prime} T>0\right\} \tag{6.20}
\end{equation*}
$$

Corollary $6 . \%$ For $X \sim(\alpha, T) \in \Theta_{m}$ we have, for $s \geq 0$,

$$
184
$$

$$
\begin{equation*}
E\left[\mathrm{e}^{-s X}\right] \geq 1-\sum_{i=1}^{m} \frac{s}{i\left(s+\delta_{i}\right)}, \tag{6.21}
\end{equation*}
$$

where $\delta_{i}=r_{[1]}+\cdots+r_{[i]}, i=1,2, \ldots, m$, and $\mathbf{r}=-\mathbf{e}^{\prime} T$.
Note that $\mathbf{e}^{\prime}(s I-T)>0$ for sufficiently large s. For any $P H$ distribution, (6.21) 186 holds if s is sufficiently large. 187
Example 0% Consider $P H$ generator T defined as 188

$$
T=\left(\begin{array}{ccccc}
-5 & 1 & 1 & 0 & 1 \tag{6.22}\\
2 & -15 & 0 & 1 & 5 \\
0 & 1 & -3 & 1 & 0 \\
1 & 0 & 0 & -5 & 1 \\
1 & 1 & 1 & 0 & -8
\end{array}\right)
$$

Note that $-\mathbf{e}^{\prime} T=(1,12,1,3,1)$ is positive.
For $X \sim(\alpha, T)$ with $\alpha=(0.2,0.5,0.1,0.1,0.1)$ we have $E\left[X_{\text {min }}^{k}\right] \leq E\left[X^{k}\right]=190$ $k!\alpha\left(-T^{-1}\right)^{k} \mathbf{e} \leq E\left[X_{\max }^{k}\right]$ for $k \geq 1$. As shown in Fig. 6.1, the two logarithmic ratios 191 are less than zero for all k, which confirms the inequalities numerically. We further 192 obtain $E\left[\mathrm{e}^{-s X_{\min }}\right] \leq E\left[\mathrm{e}^{-s X}\right] \leq E\left[\mathrm{e}^{-s X_{\max }}\right]$ for $s \leq 0$, for which the expectations exist. 193

Author's Proof

6 Majorization and Extremal PH Distributions

Fig. 6.1 Logarithmic ratios $\log \left(E\left[X_{\min }^{k}\right] / E\left[X^{k}\right]\right)$ and $\log \left(E\left[X^{k}\right] / E\left[X_{\text {max }}^{k}\right]\right)$

Fig. 6.2 Distribution functions $F_{\text {max }}(t), F(t)$, and $F_{\min }(t)$

For Example $0 \overline{\bar{n}}$ further numerical results indicate that $\left(-T^{-1}\right)^{k} \mathbf{e} \prec^{w} 194$ $\left(-\left(T_{\downarrow}^{*}\right)^{-1}\right)^{k} \mathbf{e}$ and $\left(-T^{-1}\right)^{k} \equiv v\left(-\left(T_{\uparrow}^{*}\right)^{-1}\right)^{k} \mathbf{e}$ for $k \geq 1$. Such results are stronger 195 than those in Corollaries $6 . \overline{\text { and }}$ 6.3. If the results are true, then the moments of 196 (α, T) are upper bounded by that of the Coxian distribution $\left((0, \ldots, 0,1), T_{\uparrow}^{*}\right)$, which 197 is different from the distribution function of $X_{\max }$ (which is actually an exponential 198 random variable). Denote by $F_{\min }(t), F(t)$, and $F_{\max }(t)$ the probability distribution 199 functions of the $P H$ distributions $\left((1,0, \ldots, 0), T_{\downarrow}^{*}\right),(\alpha, T)$, and $\left((0, \ldots, 0,1), T_{\uparrow}^{*}\right), 200$ respectively. Numerical results also indicate that $F_{\max }(t) \leq F(t) \leq F_{\min }(t)$ for $t \geq 0201$ (Fig. 6.2), which implies that the three probability distributions are stochastically 202 ordered. The result is interesting since $F_{\max }(t)$ is a Coxian (not an exponential) 203 distribution in general. Extensive numerical tests demonstrate that those results may 204 hold for all $P H$ distributions with $P H$ generators satisfying $-\mathbf{e}^{\prime} T>0$.

Author's Proof

Proofs

Proof of Lemma 6.1. Denote by $\mathbf{e}(i)$ the column vector with zero everywhere but 207 one in the i th place. Since the matrix $-T$ is an M-matrix, $-T^{-1}$ is nonnegative 208 (Theorem 4.5 [12]). Let $\mathbf{b}=-T^{-1} \mathbf{e}$. Without loss of generality, we assume that 209 elements of \mathbf{b} are in ascending order, i.e., $b_{1} \leq b_{2} \leq \cdots \leq b_{m}$, which can be done 210 by permuting the rows and columns of matrix T. To prove that $-T^{-1} \mathbf{e}$ is weakly 211 supermajorized by $\mathbf{b}_{\downarrow}^{*}$, by definition, it is sufficient to show that $b_{1}+b_{2}+\cdots+b_{k} \geq 212$ $\left(\mathbf{b}_{\downarrow}^{*}\right)_{1}+\left(\mathbf{b}_{\downarrow}^{*}\right)_{2}+\cdots+\left(\mathbf{b}_{\downarrow}^{*}\right)_{k}$, for $1 \leq k \leq m$.

For fixed $k \leq m$ let $\mathbf{z}=\left(\mathbf{e}(1)^{\prime}+\mathbf{e}(2)^{\prime}+\cdots+\mathbf{e}(k)^{\prime}\right)\left(-T^{-1}\right)$. Let $z_{n_{1}} \geq z_{n_{2}} \geq \cdots \geq 214$ $z_{n_{m}}$ be the elements of \mathbf{z} in descending order. Since $\mathbf{z e}=b_{1}+b_{2}+\cdots+b_{k}$, our goal 215 is to prove, for $1 \leq k \leq m$,

$$
\begin{equation*}
\mathbf{z e} \geq k\left(\sum_{j=1}^{m} r_{[j]}\right)^{-1}+(k-1)\left(\sum_{j=2}^{m} r_{[j]}\right)^{-1}+\cdots+\left(\sum_{j=k}^{m} r_{[j]}\right)^{-1} \tag{6.23}
\end{equation*}
$$

Since $\mathbf{z}(-T)=\mathbf{e}(1)^{\prime}+\mathbf{e}(2)^{\prime}+\cdots+\mathbf{e}(k)^{\prime}$, we have, for $1 \leq j \leq m$,

$$
\begin{align*}
& \mathbf{z}(-T)\left(\mathbf{e}\left(n_{j}\right)+\mathbf{e}\left(n_{j+1}\right)+\cdots+\mathbf{e}\left(n_{m}\right)\right) \\
& \quad=\left(\mathbf{e}(1)^{\prime}+\mathbf{e}(2)^{\prime}+\cdots+\mathbf{e}(k)^{\prime}\right)\left(\mathbf{e}\left(n_{j}\right)+\mathbf{e}\left(n_{j+1}\right)+\cdots+\mathbf{e}\left(n_{m}\right)\right) \\
& \quad \geq \max \{0, k-j+1\} . \tag{6.24}
\end{align*}
$$

By definition, we have $T \mathbf{e} \leq 0$ and $T_{i, j} \geq 0$ for $1 \leq i \leq j \leq m$. Then, for any 218 $\left\{i_{1}, i_{2}, \ldots, i_{n}\right\} \subset\{1,2, \ldots, m\}$ and $i_{0} \in\{1,2, \ldots, m\}$, note that

$$
\begin{equation*}
\left.\mathbf{e}\left(i_{0}\right)^{\prime}-T\right)\left(\mathbf{e}\left(i_{1}\right)+\mathbf{e}\left(i_{2}\right)+\cdots+\mathbf{e}\left(i_{n}\right)\right)=-\sum_{j=1}^{n} T_{\left(i_{0}, i_{j}\right)} \tag{6.25}
\end{equation*}
$$

which is nonnegative if $i_{0} \in\left\{i_{1}, i_{2}, \ldots, i_{n}\right\}$ and nonpositive if $i_{0} \notin\left\{i_{1}, i_{2}, \ldots, i_{n}\right\} .220$ For $i<j$ we have $z_{n_{i}}-z_{n_{j}} \geq 0$ and $\mathbf{e}\left(n_{i}\right)^{\prime}(-T)\left(\mathbf{e}\left(n_{j}\right)+\mathbf{e}\left(n_{j+1}\right)+\cdots+\mathbf{e}\left(n_{m}\right)\right) \leq 0.221$ For $i \geq j$, we have $z_{n_{i}}-z_{n_{j}} \leq 0$ and $\mathbf{e}\left(n_{i}\right)^{\prime}(-T)\left(\mathbf{e}\left(n_{j}\right)+\mathbf{e}\left(n_{j+1}\right)+\cdots+\mathbf{e}\left(n_{m}\right)\right) \geq 0.222$ Combining the two cases, for $1 \leq i, j \leq m$ we obtain

$$
\begin{equation*}
\left(z_{n_{i}}-z_{n_{j}}\right) \mathbf{e}\left(n_{i}\right)^{\prime}(-T)\left(\mathbf{e}\left(n_{j}\right)+\mathbf{e}\left(n_{j+1}\right)+\cdots+\mathbf{e}\left(n_{m}\right)\right) \leq 0 \tag{6.26}
\end{equation*}
$$

Equation (6.26) leads to

$$
\begin{equation*}
z_{n_{i}} \mathbf{e}\left(n_{i}\right)^{\prime}(-T)\left(\sum_{h=j}^{m} \mathbf{e}\left(n_{h}\right)\right) \leq z_{n_{j}} \mathbf{e}\left(n_{i}\right)^{\prime}(-T)\left(\sum_{h=j}^{m} \mathbf{e}\left(n_{h}\right)\right) \tag{6.27}
\end{equation*}
$$

Author's Proof

6 Majorization and Extremal PH Distributions
Summing up over $i=1,2, \ldots, m$, in (6.27), yields

$$
\begin{align*}
\mathbf{z}(-T)\left(\sum_{h=j}^{m} \mathbf{e}\left(n_{h}\right)\right) & =\sum_{i=1}^{m} z_{n_{\mathbf{i}}} \mathbf{e}\left(n_{i}\right)^{\prime}(-T)\left(\sum_{h=j}^{m} \mathbf{e}\left(n_{h}\right)\right) \\
& \leq \sum_{i=1}^{m} z_{n_{j}} \mathbf{e}\left(n_{i}\right)^{\prime}(-T)\left(\sum_{h=j}^{m} \mathbf{e}\left(n_{h}\right)\right) \\
& =z_{n_{j}} \mathbf{e}^{\prime}(-T)\left(\sum_{h=j}^{m} \mathbf{e}\left(n_{h}\right)\right) \\
& =z_{n_{j}} \mathbf{r}\left(\sum_{h=j}^{m} \mathbf{e}\left(n_{h}\right)\right) . \tag{6.28}
\end{align*}
$$

We also have

$$
\begin{equation*}
\mathbf{r}\left(\sum_{h=j}^{m} \mathbf{e}\left(n_{h}\right)\right)=\sum_{h=j}^{m} r_{n_{h}} \leq \sum_{h=j}^{m} r_{[h]} . \tag{6.29}
\end{equation*}
$$

Combining (6.24), (6.28), and (6.29) we obtain

$$
\begin{equation*}
z_{n_{j}} \geq \max \{0, k-j+1\}\left(\sum_{h=j}^{m} r_{[h]}\right)^{-1} \tag{6.30}
\end{equation*}
$$

Adding over $j=1,2, \ldots, m,(6.23)$ follows. This completes the proof of Lemma 6.1.
Proof of Lemma 6.2. This proof is similar to that of Lemma 6.1, but some details are different. Let $\mathbf{b}=-T^{-1} \mathbf{e}$. Without loss of generality, we assume that elements of \mathbf{b} are in descending order, i.e., $b_{1} \geq b_{2} \geq \cdots \geq b_{m}$. To prove that $-T^{-1} \mathbf{e}{ }^{231}$ is weakly submajorized by \mathbf{b}_{1}^{*}, it is sufficient to show that $b_{1}+b_{2}+\cdots+b_{k} \leq{ }_{232}$ $\left(\mathbf{b}_{\uparrow}^{*}\right)_{m}+\left(\mathbf{b}_{\uparrow}^{*}\right)_{(m-1}+\cdots+\left(\mathbf{b}_{\uparrow}^{*}\right)_{(m-k+1)}$, for $1 \leq k \leq m$.

For fixed $k \leq m$ let $\mathbf{z}=\left(\mathbf{e}(1)^{\prime}+\mathbf{e}(2)^{\prime}+\cdots+\mathbf{e}(k)^{\prime}\right)\left(-T^{-1}\right)$. Let $z_{n_{1}} \leq z_{n_{2}} \leq \cdots \leq$ of $(1,2, \ldots, m)$. Since $\mathbf{z e}=b_{1}+b_{2}+\cdots+b_{k}$, our goal is to prove

$$
\begin{equation*}
\mathbf{z e} \leq \sum_{i=1}^{m} \min \{k, m-i+1\}\left(\sum_{j=1}^{m-i+1} r_{[j]}\right)^{-1} \tag{6.31}
\end{equation*}
$$

Since $\mathbf{z}(-T)=\mathbf{e}(1)^{\prime}+\mathbf{e}(2)^{\prime}+\cdots+\mathbf{e}(k)^{\prime}$, we have, for $1 \leq j \leq m$,

$$
\begin{equation*}
\mathbf{z}(-T)\left(\mathbf{e}\left(n_{j}\right)+\mathbf{e}\left(n_{j+1}\right)+\cdots+\mathbf{e}\left(n_{m}\right)\right) \leq \min \{k, m-j+1\} . \tag{6.32}
\end{equation*}
$$

Author's Proof

Similar to (6.26), we can show, for $1 \leq i, j \leq m$,

$$
\begin{equation*}
\left(z_{n_{i}}-z_{n_{j}}\right) \mathbf{e}\left(n_{i}\right)^{\prime}(-T)\left(\mathbf{e}\left(n_{j}\right)+\mathbf{e}\left(n_{j+1}\right)+\cdots+\mathbf{e}\left(n_{m}\right)\right) \geq 0, \tag{6.33}
\end{equation*}
$$

which leads to

$$
\begin{align*}
\mathbf{z}(-T)\left(\sum_{h=j}^{m} \mathbf{e}\left(n_{h}\right)\right) & \geq z_{n_{j}} \mathbf{r}\left(\sum_{h=j}^{m} \mathbf{e}\left(n_{h}\right)\right) \\
& =z_{n_{j}}\left(\sum_{h=j}^{m} r_{n_{h}}\right) \\
& \geq z_{n_{j}}\left(\sum_{h=1}^{m-j+1} r_{[h]}\right) . \tag{6.34}
\end{align*}
$$

Combining (6.32) and (6.34), since $\sum_{h=1}^{m-j+1} r_{[h]}>0$, we obtain

$$
\begin{equation*}
z_{n_{j}} \leq \min \{k, m-j+1\}\left(\sum_{h=1}^{m-j+1} r_{[h]}\right)^{-1} . \tag{6.35}
\end{equation*}
$$

Adding over $j=1,2, \ldots, m,(6.31)$ follows. This completes the proof of Lemma 6.2. 241
Proof of Theorem 6.1. By Lemma 6.1, we have $-T^{-1} \mathbf{e} \prec^{w}-\left(T_{\downarrow}^{*}\right)^{-1} \mathbf{e}$, or, 242 equivalently, $\left(-T^{-1} \mathbf{e}\right)_{\uparrow} \prec^{w}-\left(T_{\downarrow}^{*}\right)^{-1} \mathbf{e}$. Since the elements in α_{\downarrow} are in descending ${ }^{243}$ order, we obtain $\alpha_{\downarrow}\left(-T^{-1} \mathbf{e}\right)_{\uparrow} \geq-\alpha_{\downarrow}\left(T_{\downarrow}^{*}\right)^{-1} \mathbf{e}$, which leads to

$$
\begin{equation*}
E[X]=-\alpha T^{-1} \mathbf{e} \geq \alpha_{\downarrow}\left(-T^{-1} \mathbf{e}\right)_{\uparrow} \geq-\alpha_{\downarrow}\left(T_{\downarrow}^{*}\right)^{-1} \mathbf{e} . \tag{6.36}
\end{equation*}
$$

 $\left(r_{1}+r_{2}+\cdots+r_{m}\right)^{-1}=-1 /\left(\mathbf{e}^{\prime} T \mathbf{e}\right)$. This proves the first part of the theorem.

By Lemma 6.2, we have $-T^{-1} \mathbf{e} \prec_{w}-\left(T_{\uparrow}^{*}\right)^{-1} \mathbf{e}$, or, equivalently, $\left(-T^{-1} \mathbf{e}\right)_{\uparrow} \prec_{w} 247$ $-\left(T_{\uparrow}^{*}\right)^{-1} \mathbf{e}$. Since the elements of α_{\uparrow} are in ascending order, we obtain $\alpha_{\uparrow}\left(-T^{-1} \mathbf{e}\right)_{\uparrow}{ }^{248}$ $\leq-\alpha_{\uparrow}\left(T_{\uparrow}^{*}\right)^{-1} \mathbf{e}$, which leads to

$$
\begin{equation*}
E[X]=-\alpha T^{-1} \mathbf{e} \leq \alpha_{\uparrow}\left(-T^{-1} \mathbf{e}\right)_{\uparrow} \leq-\alpha_{\uparrow}\left(T_{\uparrow}^{*}\right)^{-1} \mathbf{e} . \tag{6.37}
\end{equation*}
$$

Since the elements of the vector $-\left(T_{\uparrow}^{*}\right)^{-1} \mathbf{e}$ are in ascending order, $-\alpha_{\uparrow}\left(T_{\uparrow}^{*}\right)^{-1} \mathbf{e} \leq 250$ $\left(-\left(T_{\uparrow}^{*}\right)^{-1} \mathbf{e}\right)_{m}=\sum_{i=1}^{m}\left(\sum_{j=1}^{m-i+1} r_{[j]}\right)^{-1}$. This proves the second part and concludes the ${ }^{251}$ proof of Theorem 6.1.
Proof of Theorem 6.2. Under the conditions, $\xlongequal{=}$ have $-T^{-1} \mathbf{e} \prec-\left(T_{\downarrow}^{*}\right)^{-1} \mathbf{e}$ and $-T^{-1} \mathbf{e} \prec-\left(T_{\uparrow}^{*}\right)^{-1} \mathbf{e}$, respect $\overline{\overline{\text { ®Tr }}}$. The rest of the proc similar to that of $^{\overline{=}}$ Theorem 6.1. This completes the proof of Theorem 6.2. xx $\stackrel{=}{2 \pi}$

Author's Proof

6 Majorization and Extremal PH Distributions
AQ12 Proof of Corollary $6 . \overline{\bar{幺}}$ By Theorem 6.1, part $\overline{\text { иnouds }}$ for $k=1$, i.e., $E[X] \geq 1 / \lambda$. ${ }_{25}$ We prove the result for $k>1$ by induction. Consider the stochastic vector $\gamma=257$ $\alpha\left(-T^{-1}\right)^{k} /\left(\alpha\left(-T^{-1}\right)^{k} \mathbf{e}\right)$. Note that $E\left[X^{k}\right]=k!\alpha\left(-T^{-1}\right)^{k} \mathbf{e}$ and $E\left[X_{\min }^{k}\right]=k!/ \lambda^{k} \quad 258$ for $k \geq 1$. Applying Theorem 6.1 to $(\gamma, T) \in \Omega_{\lambda}$ we obtain

$$
\begin{equation*}
\frac{\alpha\left(-T^{-1}\right)^{k+1} \mathbf{e}}{\alpha\left(-T^{-1}\right)^{k} \mathbf{e}}=\gamma\left(-T^{-1}\right) \mathbf{e} \geq \frac{1}{\left(-\mathbf{e}^{\prime} T \mathbf{e}\right)}=\frac{1}{\lambda} \tag{6.38}
\end{equation*}
$$

which leads to $E\left[X^{k+1}\right] \geq(k+1) E\left[X^{k}\right] / \lambda \Longrightarrow$ induction, we obtain $E\left[X^{k+}{ }^{260}\right.$ first note that, by definition,

$$
\begin{equation*}
E\left[\mathrm{e}^{-s X}\right]=\sum_{n=0}^{\infty} \frac{(-s)^{n} E\left[X^{n}\right]}{n!} \tag{6.39}
\end{equation*}
$$

if the summation exists. Then $E\left[\mathrm{e}^{-s X_{\min }}\right] \leq E\left[\mathrm{e}^{-s X}\right]$ for $s_{\text {lower }}<s \leq 0$, is obtained 263 from part 1), for some negative number $s_{\text {lower }}$. Since both functions $E\left[\mathrm{e}^{-s X_{\text {min }}}\right]$ and 264 $E\left[\mathrm{e}^{s X}\right]$ equal one at $s=0$, by continuous extension at $s=0$, we obtain $E\left[\mathrm{e}^{-s X_{\min }}\right] \geq 265$ $E\left[\mathrm{e}^{-s X}\right]$, for 0 supper and some positive number $s_{\text {upper }}$. This completes the proof ${ }_{266}$ of Corollary 6.1 \bar{V}
Proof of Corollary 6.2. We consider the $P H$ generator $-s I+T$ for $s \geq 0.268$ Lemma 6.1 indicates that $(s I-T)^{-1} \mathbf{e}$ is weakly supermajorized by $\left(s J-T_{\downarrow}^{*}\right)^{-1} \mathbf{e}, 269$ where

$$
J=\left(\begin{array}{ccccc}
m & & & & \tag{6.40}\\
-(m-1) & m-1 & & & \\
& \ddots & \ddots & \\
& & -2 & 2 & \\
& & & -1 & 1
\end{array}\right)
$$

and T_{\downarrow}^{*} was defined in (6.1). Applying Theorem 6.1 to $(\alpha,-s I+T)$ we obtain that $\alpha(s I-T)^{-1} \mathbf{e}$ is greater than or equal to the first element in the column vector $(s J \underset{212}{ }$ $\left.T_{\downarrow}^{*}\right)^{-1} \mathbf{e}$. Since $s \geq 0, s \alpha(s I-T)^{-1} \mathbf{e}$ is greater than or equal to the first element in 273 the column vector $s\left(s J-T_{\downarrow}^{*}\right)^{-1} \mathbf{e}$, which is given by

$$
\begin{equation*}
\frac{1}{m}-\frac{\theta}{m(s+\theta)} \tag{6.41}
\end{equation*}
$$

Note that $1-s \alpha(s I-T)^{-1} \mathbf{e}=\alpha(s I-T)^{-1}(-T) \mathbf{e}=E[\mathrm{e}$ Then (6.18) is 275 obtained from (6.41). This completes the proof of Corollary 6.2. 276
Proof of Corollary $0 . \overline{\bar{\sigma}}$ The proof is similar to that of Corollary $6 . \overline{\bar{\varkappa}}$ Details are 277 omitted.
Proof of Corollary $6 . \overline{\bar{\omega} .}$ The proof is similar to that of Corollary σ ㅎ.. Details are 279 omitted.

Author's Proof

Q.-M. He et al.

Conclusion and Discussion

For some subsets of $P H$ distributions, in this chapter, it is found that the exponential 282 distributions and Coxian distributions are extremal distributions with respect to 283 all the moments and the LSTs of $P H$ distributions. The results have potential 284 applications in several areas.

- The results can be useful in parameter estimation of $P H$ distributions. For 286 instance, the relationship $E\left[X^{k}\right] \geq k!/\left(-\mathbf{e}^{\prime} T \mathbf{e}\right)^{k}$, for $k \geq 1$, provides constraints on 287 the parameters in T if the sample moments of the $P H$ distribution X can be found 288 (through other methods). The constraints can be used in nonlinear programs (e.g., 289 EM algorithm) for parameter estimation of $P H$ distributions [2, 8]. The potential 290 of the results in this area is yet to be explored. 291
- The results can be used in optimization. Consider the case $\mathbf{e}^{\prime} T=-\mu \mathbf{e}$, where 292 $\mu>0$. Without loss of generality, we assume $\mu=1$. Then we obtain $\mathbf{e}^{\prime}(-T)^{-1}=\mathbf{e}^{\prime} .293$ Denote by $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots$, and \mathbf{a}_{m} the column vectors of $-T^{-1}$, which is nonneg- 294 ative. Then the vector \mathbf{e}^{\prime} / m is in the polytope generated by $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{m}\right\} .295$ Then Corollary 6.1 gives the optimal solution(s) to the following optimization 296 problem:

AQ14 Geometrically $\sqrt{\bar{\nabla}}$ imization problem (6.42) is to find a point in the polytope generated by extreme points $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{m}\right\}$ such that the objective function is either minimized or maximized.

- Because the bounds obtained in the sections "Bounds on Phase-Type Distribu- 301 tions" and "Extremal Phase-Type Distributions" are either partially or completely 302 independent of the transition structure within T, they have the potential to be 303 used in resource allocation if the transitions are affected by resources allocated 304 to different phases.

Naturally, the preceding applications are interesting topics for future research. 306 In addition, the issues on the distribution functions of $P H$ distributions and 307 extremal $P H$ distributions raised at the end of the section "Extremal Phase-Type 308 Distributions" are of theoretical interest for further investigation.

Author's Proof

6 Majorization and Extremal PH Distributions

Acknowledgements The authors would like to thank reviewers for their valuable comments and $\quad 310$
suggestions. The authors would also like to thank Mr. Zurun Xu for proofreading the paper.
311

1. Aldous, D., Shepp, L.: The least variable phase type distribution is Erlang. Stoch. Models 3, 313

 467-473 (1987) 3142. Asmussen, S., Nerman, O., Olsson, M.: Fitting phase-type distributions via the EM algorithm. 315
Coand. J. Stat. 23, 419-441 (1996) 316
$3 \bar{\mp}$ og, L., Heindl, A., Horvath, A., Horvath, G., Telek, M.: Current results and open questions 317
on PH and MAP characterization. In: Dagstuhl Seminar Proceedings 07461. Numerical 318 Methods for Structured Markov Chains, http://drops.dagstuhl.de/opus/volltexte/2008/1401. 319 (2008)
3. Commault, C., Mocanu, S.: Phase-type distributions and representations: some results and open 321 problems for system theory. Int. J. Control 76, 566-580 (2003) 322
4. He, Q.M., Zhang, H.Q.: A note on unicyclic representations of phase type distributions. Stoch. 323 Models 21, 465-483 (2005) 324
5. He, Q.M., Zhang, H.Q.: Spectral polynomial algorithms for computing bi-diagonal represen- 325 tations for phase type distributions and matrix exponential distributions. Stoch. Models 22, 326
-317 (2006) 327
Q.M., Zhang, H.Q., Vera, J.C.: On some properties of bivariate exponential distributions. 328 Stoch. Models 28, 187-206 (2012) 329
6. Horvath, A., Telek, M.: PhFit: A general purpose phase type fitting tool. In: Tools 2002, 330 pp. 82-91. LNCS, vol. 2324. Springer, London (2002) 331
7. Latouche, G., Ramaswami, V.: Introduction to Matrix Analytic Methods in Stochastic Model- 332 ing. SIAM, Philadelphia (1999) 333
8. Maier, R.S.: The algebraic construction of phase-type distributions. Stoch. Models 7, 573-602 334 (1991) 335
9. Marshall, A.W., Olkin, I.: Inequalities: Theory of Majorization and Its Applications. Academic, 336 New York (1979) 337
10. Minc, H.: Non-Negative Matrices. Wiley, New York (1988) 338
11. Neuts, M.F.: Probability distrubutions of phase type. In: Liber Amicorum Professor Emeritus 339 H. Florin, pp. 173-206. Department of Mathematics, University of Louvain, Belgium (1975) 340
12. Neuts, M.F.: Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach. 341 Johns Hopkins University Press, Baltimore (1981) 342
13. O'Cinneide, C.A.: Characterization of phase-type distributions. Stoch. M 6, 1-57 (1990) 343
14. O'Cinneide, C.A.: Phase-type distributions and majorization. Ann. Appl. (1991) 345
15. O'Cinneide, C.A.: Phase-type distributions: open problems and a few properties. Stoch. 346 Models 15, 731-757 (1999) 347
16. Sangüesa, C.: On the minimal value in Maier's property concerning phase-type distributions. 348 Stoch. Models 26, 124-140 (2010) 349
17. Yao, R.H.: A proof of the steepest increase conjecture of a phase-type density. Stoch. Models 350 18, 1-6 (2002) 351

Author＇s Proof

AUTHOR QUERIES

 italicized．Please consider removing italics after the first occurrence．
A $\overline{\overline{\text { V }}}$ To be consistent with the other contributions in this book，the hyphen has \equiv peen removed from＂PH＂．
AQ irst author has been considered as the corresponding author．Please check．
$\mathrm{AQ} \equiv$ lease verify＂i）＂here after＂（3）．＂Can it be deleted？
$\mathrm{AQ} \bar{亏}_{\mathrm{i})}$＂given in sentence＂For any vector \mathbf{x} ，it is easy to verify．．．＂has been eleted．Please check if this is appropriate．
AQ o you mean＂bound is＂or＂bounds are＂？Please revise．
AQ，＂hanged＂that＂to＂those＂here．Please confirm．
$\mathrm{AQ} \equiv$ ease make sure final period is placed correctly at the end of the following qquation．
AQS $\overline{2}$ his sentence needs revising．It says＂Since the vector＂（where＂vector＂is singular）＂are in ascending order，＂where the verb is plural．Do you mean ＂since the elements of the vector $-\left(T_{\downarrow}^{*}\right)^{-1} \mathbf{e}$ are．．．＂？
AQ1d \equiv nder what conditions？Please specify．
AQ11 三hy＂respectively＂？Please verify and revise if necessary．
$\mathrm{AQ1}$ 三art 1 of what？It is not clear．
AQ1．\equiv dded＂of Corollary 6．1＂here，Please confirm．
AQ1 $\bar{च}_{\text {preat }}$ his could be revised to read better．Perhaps＂The objective of optimization problem（6．42）is to find．．．＂or＂optimization problem（6．42）can be used to ind．．．＂．Please consider revising．
AQ1＝lease provide complete details for reference［3］．
$\mathrm{AQ} 1 \xlongequal[\sim]{=}$ lease update reference［7］．

[^0]: Qi-M. He (\boxtimes)
 University of Waterloo, Waterloo, ON, Canada N2L 3G1
 e-mail: q7he@uwaterloo.ca
 H. Zhang

 University of Singapore, Singapore 119245, Singapore
 e-mail: bizzhq@nus.edu.sg
 J.C. Vera

 Tilburg University, Tilburg, the Netherlands
 e-mail: j.c.veralizcano@uvt.nl

