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Chapter 6 1

Majorization and Extremal PH Distributions 2

Qi-Ming He, Hanqin Zhang, and Juan C. Vera 3

Introduction 4

Let T be an m × m invertible matrix with (1) negative diagonal elements, (2) 5

nonnegative off-diagonal elements, and (3) nonpositive row sums, wh ere m is a 6

positive integer. Such a matrix T is called a PH generator. Let α be a substochasticAQ1 7

vector of order m, i.e., α≥ 0 and αe≤ 1, where e is the column vector of ones. 8

Then (α , T ) is called a PH representation of a phase-type (PH) random variable
AQ2

9

(distribution) X . In this chapter, we find bounds on the moments of X in terms of 10

the elements of α and T and identify Coxian distributions to be the extremal PH 11

distributions in certain subsets of PH distributions. 12

The set of PH distributions was introduced by Neuts [13]. Since the set of PH 13

distributions is dense in the set of probability distributions on the nonnegative half- 14

line and PH representations provide a Markovian structure for stochastic modeling, 15

PH distributions have been used widely in the study of queueing, inventory, 16

risk/insurance, manufacturing, and telecommunications models [9,14]. In almost all 17

applications of PH distributions, PH representations play a key role. Thus, the study 18

of PH representations has attracted great attention from researchers (see [3,4,15,17], 19

and references therein).

AQ3

20

Aldous and Shepp [1] find the minimum coefficient of variation of PH dis- 21

tributions with a PH representation of a fixed order m. They also find that the 22
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minimum is attained at PH representations of Erlang distributions. Their result is 23

useful in determining the order of PH representations needed for fitting probability 24

distributions if their coefficient of variation is known. In [17], a number of open 25

problems related to PH representations are brought up and investigated. The results 26

in [17] and in subsequent papers on the open problems (e.g., [5, 18, 19]) reveal the 27

relationship between PH representations, density functions, and variances of PH 28

distributions. In [17], a lower bound on the density of triangular PH distributions 29

is found. In [5], it is shown that not every PH representation has an equivalent 30

unicyclic PH representation of the same order. In [18], it is shown that, for a PH 31

distribution with a PH representation of order 2, a minimal-norm representation can 32

be found and the norm coincides with the minimal parameter in Maier’s property 33

[10]. While O’Cinneide [17] attempts to show PH distributions with a unicyclic 34

PH representation as extremal PH distributions, this chapter aims to prove that 35

PH distributions with some Coxian representations are extremal with respect to the 36

moments of the distribution. 37

This chapter focuses on the relationship between PH representations and the 38

moments of PH distributions. In the section “Two Majorization Lemmas,” two 39

majorization results are shown for the vector −T−1e. It is worth mentioning that 40

the majorization approach [11] seems quite useful in the study of PH distributions 41

and PH representations [7, 16]. The majorization results are used to obtain bounds 42

on the mean (i.e., first moment) of PH distributions in the section “Bounds on 43

Phase-Type Distributions.” All bounds on the expectation are partially independent 44

of the transition structure of the underlying Markov chain associated with the PH 45

distribution. Results in the section “Bounds on Phase-Type Distributions” indicate 46

that exponential/Coxian distributions are extreme cases, with respect to the mean, 47

if the vector −e′T or the sum −e′T e is fixed, where e′ is the transpose of the 48

vector e. The section “Extremal Phase-Type Distributions” extends the results in 49

the section “Bounds on Phase-Type Distributions” from the first moment to higher 50

moments. A highlight of the results is the lower bounds on the moments of any PH 51

distribution (α , T ), i.e., E[Xk] ≥ k!/(−e′T e)k for all k ≥ 0, that is independent of 52

the order of the PH representation and the transitions within the underlying Markov 53

chain. Results in the section “Extremal Phase-Type Distributions” demonstrate 54

that exponential/Coxian distributions are extremal PH distributions with respect to 55

all the moments and the Laplace–Stieltjes transform. All proofs are given in the 56

section “Proofs.” The section “Conclusion and Discussion” concludes the paper 57

with a discussion of the potential applications of the results obtained in this chapter. 58

Two Majorization Lemmas 59

For the vector x = (x1,x2, . . . ,xm), rearrange the elements of x in ascending order 60

and denote the elements by x[1] ≤ x[2] ≤ ·· · ≤ x[m], where ([1], [2], . . ., [m]) is a 61

permutation of (1, 2, . . ., m). A vector x is weakly submajorized by vector y, denoted 62
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by x ≺w y, if x[m] + x[m−1] + · · ·+ x[k] ≤ y[m] + y[m−1] + · · ·+ y[k] for 1 ≤ k ≤ m. 63

A vector x is weakly supermajorized by vector y, denoted by x ≺w y, if x[1] + x[2] + 64

· · ·+x[k] ≥ y[1] +y[2] + · · ·+y[k] for 1 ≤ k ≤ m. A vector x is majorized by y, denoted 65

as x≺ y, if xe= ye and x[1]+x[2]+ · · ·+x[k] ≥ y[1]+y[2]+ · · ·+y[k] for 1≤ k ≤m−1, 66

or, equivalently, xe = ye, and x[m] + x[m−1] + · · ·+ x[k] ≤ y[m] + y[m−1] + · · ·+ y[k] for 67

2 ≤ k ≤ m. It is easy to see that x ≺ y if and only if x ≺w y and x ≺w y. We refer the 68

reader to Marshall and Olkin [11] for more about majorization. 69

Consider a PH generator T of order m. Define r = −e′T = (r1,r2, . . . ,rm). 70

Rearrange the elements of r in ascending order as r[1] ≤ r[2] ≤ ·· · ≤ r[m]. Since 71

T is invertible and T e ≤ 0, we must have −e′T e = re > 0. It is possible that some 72

of {r1,r2, . . . ,rm} are negative, but the summation r[ j] + r[ j+1] + · · ·+ r[m] is positive 73

for 1 ≤ j ≤ m. For fixed r, we shall construct two matrices T ∗
↓ and T ∗

↑ and find 74

majorization relationships between the vectors −T−1e, −(T ∗
↓ )

−1e, and −(T ∗
↑ )

−1e. 75

Define 76

T ∗
↓ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
m

∑
j=1

r[ j]

m

∑
j=2

r[ j] −
m

∑
j=2

r[ j]

. . .
. . .

m

∑
j=m−1

r[ j] −
m

∑
j=m−1

r[ j]

r[m] −r[m]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6.1)

It is easy to see that the matrix T ∗
↓ is a PH generator. In fact, T ∗

↓ is a Coxian generator 77

for Coxian distributions [6]. Define 78

b∗
↓ =−(T ∗

↓ )
−1e

=

⎛
⎝ m

∑
i=m

(
m

∑
j=m−i+1

r[ j]

)−1

, . . . ,
m

∑
i=k

(
m

∑
j=m−i+1

r[ j]

)−1

, . . . ,
m

∑
i=1

(
m

∑
j=m−i+1

r[ j]

)−1
⎞
⎠

′

.

(6.2)

It is readily seen that the elements in b∗
↓ are positive and are in ascending order. 79

Lemma 6.1. Assume that T is a PH generator of order m. Then −T−1e is weakly 80

supermajorized by b∗
↓ defined in (6.2). 81

Next, we define T ∗
↑ such that −T−1e is weakly submajorized by −(T ∗

↑ )
−1e under 82

an additional condition. If r[1] = min{r1,r2, . . . ,rm}> 0, then we define 83
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T ∗
↑ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
m

∑
j=1

r[ j]

m−1

∑
j=1

r[ j] −
m−1

∑
j=1

r[ j]

. . .
. . .

2

∑
j=1

r[ j] −
2

∑
j=1

r[ j]

r[1] −r[1]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6.3)

It is easy to see that the matrix T ∗
↑ is a PH generator. Define 84

b∗
↑ =−(T ∗

↑ )
−1e

=

⎛
⎝ 1

∑
i=1

(
m−i+1

∑
j=1

r[ j]

)−1

, . . . ,
k

∑
i=1

(
m−i+1

∑
j=1

r[ j]

)−1

, . . . ,
m

∑
i=1

(
m−i+1

∑
j=1

r[ j]

)−1
⎞
⎠

′

.

(6.4)

It is readily seen that the elements in b∗
↑ are nonnegative and are in ascending 85

order. 86

Lemma 6.2. Assume that T is a PH generator of order m, and r[1] > 0. Then 87

−T−1e is weakly supermajorized by b∗
↑ defined in (6.4). 88

Bounds on Phase-Type Distributions 89

Now we focus on a random variable X with a PH distribution with PH repre- 90

sentation (α,T ). It is well known that the expectation of PH distribution X is 91

given by E[X ] = −αT−1e. Since −αT−1e = −(αe)(α/(αe))T−1e, without loss 92

of generality, we shall assume α normalized such that αe = 1 in the rest of the 93

paper. 94

For vector x let x↑ = (x[1],x[2], . . . ,x[m]) denote the ascending rearrangement of 95

x, and let x↓ = (x[m],x[m−1], . . . ,x[1]) denote the descending rearrangement of x. For 96

stochastic vector α , the vectors α↑ and α↓ are defined accordingly. For any vector x 97

it is easy to verify α↓x↑ ≤ αx ≤ α↑x↑ [12]. For vectors x and y, (1) if x ≺w y, then 98

we have α↑x↑ ≤ α↑y↑; (2) if x ≺w y, then we have α↓x↑ ≥ α↓y↑; and (3) i) if x ≺ y,AQ4 99

then we have α↓x↑ ≥ α↓y↑, and α↑x↑ ≤ α↑y↑ [11]. 100

Now we are ready to state the main results.AQ5 101

Theorem 6.1. Consider a PH generator T of order m. For any random variable X 102

with a PH distribution with PH representation (α,T ) we have 103
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E[X ]≥−α↓(T ∗
↓ )

−1e ≥− 1
e′Te

, (6.5)

where T ∗
↓ is defined in (6.1). That is: the mean of the PH distribution (α,T ) is 104

greater than or equal to that of the PH distribution (α↓,T ∗
↓ ). 105

Moreover, if all elements of r = e′(−T ) are positive, then we have 106

E[X ]≤−α↑(T ∗
↑ )

−1e ≤
m

∑
i=1

(
m−i+1

∑
j=1

r[ j]

)−1

, (6.6)

where T ∗
↑ is defined in (6.3). That is, the mean of the PH distribution (α,T ) is less 107

than or equal to that of the PH distribution (α↑,T ∗
↑ ). 108

Note that the lower bound −1/(e′Te) in (6.5) is totally independent of the transition 109

structure of the underlying Markov chain (i.e., the transition within T ). The upper 110

bound in (6.6) is only partially independent of the transition structure of the 111

underlying Markov chain. 112

Example 6.1. Consider a PH generator 113

T =

(−10 8
2 −2

)
. (6.7)

It is easy to find e′(−T ) = (8,−6), −T−1e = (2.5,3)′, 114

T ∗
↓ =

(−2 0
8 −8

)
, (6.8)

and −(T ∗
↓ )

−1e = (0.5,0.625)′. For any PH distribution (α,T ) with αe = 1, by 115

Theorem 6.1, we have 0.5 ≤ 0.5α[2] + 0.625α[1] ≤ E[X ]. 116

For this case, the lower bounds is not sharp since 2.5≤E[X ]≤ 3 for all feasible αAQ6 117

with αe = 1. Following He and Zhang [6], the PH generator T can be Coxianized, 118

i.e., there is a Coxian generator 119

S =

(−6−√
32 0

−6−√
32 −6+

√
32

)
(6.9)

such that any PH representation (α,T ) has an equivalent Coxian representation 120

(β ,S), where β is a stochastic vector. The difference between T ∗
↓ and S explains 121

why the lower bounds are too small for this case. This example warrants further 122

investigation on the relationship between the matrices T ∗
↓ and T ∗

↑ and the Coxianiza- 123

tion of T . On the other hand, finding bounds on the mean of a PH distribution is not 124

the objective of this research. The results on bounds are used for characterizing PH 125

distributions and for finding extremal PH distributions (see the section “Extremal 126

Phase-Type Distributions”). 127
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Example 6.2. Consider a PH generator 128

T =

(−2 1
x −x

)
, (6.10)

where x > 0. It is easy to verify −T−1e = (1 + 1/x,1+ 2/x)′. The expectation 129

of (α,T ) with αe = 1 goes to positive infinity if x goes to zero. Note that 130

−e′T e = 1 holds for any positive x. Thus, while there is a lower bound that is totally 131

independent of the transition structure, there may not be such an upper bound. 132

For some special PH generators, lower and upper bounds can be obtained simulta- 133

neously. 134

Theorem 6.2. Consider a PH generator T of order m and satisfying −e′T−1e = 135

−e′(T ∗
↓ )

−1e. For any PH distributed random variable X with PH representation 136

(α,T ) we have 137

− 1
e′Te

≤−α↓(T ∗
↓ )

−1e ≤ E[X ]≤−α↑(T ∗
↓ )

−1e ≤
m

∑
i=1

(
m

∑
j=m−i+1

r[ j]

)−1

. (6.11)

Consider a PH generator T such that (i) −e′T−1e = −e(T ∗
↑ )

−1e and (ii) all 138

elements of r = e′(−T ) are positive. For any PH distributed random variable X 139

with PH representation (α,T ) we have 140

− 1
e′T e

≤−α↓(T ∗
↑ )

−1e ≤ E[X ]≤−α↑(T ∗
↑ )

−1e ≤
m

∑
i=1

(
m−i+1

∑
j=1

r[ j]

)−1

. (6.12)

What follows is a special case of Theorem 6.2 that was proved in [7]. 141

Corollary 6.1. For any PH distribution (α,T ) for which T satisfies e′T = −μe′ 142

we have 143

− 1
μm

≤−α↓(T ∗
↓ )

−1e ≤ E[X ]≤−α↑(T ∗
↓ )

−1e ≤ 1
μ

m

∑
i=1

1
i
. (6.13)

Example 6.3. Consider a PH generator 144

T =

(−3 1
2 −2

)
. (6.14)

It is easy to find e′(−T ) = (1,1), −T−1e = (3/4,5/4)′, 145

T ∗
↓ =

(−2 0
1 −1

)
, (6.15)
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and −(T ∗
↓ )

−1e = (0.5,1.5)′. For any PH distribution (α ,T ) with αe = 1, by 146

Corollary 6.1, we have 0.5 ≤ 0.5α[2] + 1.5α[1] ≤ E[X ]≤ 0.5α[1] + 1.5α[2] ≤ 1.5. 147

Extremal Phase-Type Distributions 148

Let Xmin be the exponential random variable with parameter λ . Denote by Ωλ the 149

set of all PH distributions with a PH representation (α,T ) satisfying αe = 1 and 150

λ =−e′T e. 151

By Theorem 6.1, E[Xmin] = min{E[X ] : X ∈ Ωλ}, which implies that Xmin is an 152

extremal random variable, with respect to the first moment, in Ωλ . Note that the 153

result in Theorem 6.1 is independent of the order of the PH representation. The 154

result can be generalized to all moments and Laplace-Stieltjes transforms (LSTs) of 155

PH distributions. 156

Corollary 6.1. For λ > 0 and X ∈ Ωλ we have 157

1. E[Xk]≥ E[Xk
min] =

k!
(−e′T e)k , k ≥ 1; 158

159

2. E[e−sXmin ] ≤ E[e−sX ], slower < s ≤ 0, for some negative number slower; and 160

E[e−sXmin ]≥ E[e−sX ], 0 ≤ s < supper, for some positive number supper. 161

Corollary 6.1 indicates that Xmin is an extremal distribution in Ωλ with respect to 162

the moments and the LST. Define nonnegative random variable Ymin by 163

P{Ymin ≤ t}= m− 1
m

+
1
m
(1− exp{−θ t}), for t ≥ 0, (6.16)

where θ is positive. Then Ymin equals zero, w.p. (m− 1)/m, and an exponential 164

random variable with parameter θ , w.p. 1/m. Define 165

Ψm,θ =

{
X : X ∼ (α,T ) of order m,αe = 1, θ =−e′Te

m

}
, (6.17)

where “∼" means equivalency in probability distribution. 166

Corollary 6.2. For θ > 0 and X ∼ (α,T ) ∈Ψm,θ we have, for s ≥ 0, 167

E[e−sX ]≤ E[e−sYmin ] =
m− 1

m
+

θ
m(s+θ )

. (6.18)

We remark that, while the extremal random variable Xmin is in Ωλ , Ymin is not in 168

Ψm,θ . Yet the LST of Ymin provides a bound on the LSTs of all PH distributions 169

in Ψm,θ . 170
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Next, let Xmax be the exponential random variable with parameter μ . Denote 171

by Φμ the set of all PH distributions with a PH representation (α ,T ) satisfying 172

αe = 1 and 173

m

∑
i=1

(
m−i+1

∑
j=1

r[ j]

)−1

=
1
μ
, (6.19)

where r = −e′T > 0 and m = 1,2, . . . . By Theorem 6.1, E[Xmax] = 1/μ = 174

max{E[X ] : X ∈ Φμ}, which implies that Xmax is an extremal random variable, with 175

respect to the first moment, in Φμ . The result can be generalized to all moments and 176

LSTs of PH distributions. 177

Corollary 6.3. For μ > 0 and Φμ we have 178

1. E[Xk
max]≥ E[Xk], k ≥ 1; 179

180

2. E[e−sXmax ] ≥ E[e−sX ], slower < s ≤ 0, for some negative number slower; and 181

E[e−sXmax ]≤ E[e−sX ], 0 ≤ s < supper, for some positive number supper. 182

Define 183

Θm = {X : X ∼ (α,T ) of order m, αe = 1, −e′T > 0}. (6.20)

Corollary 6.4. For X ∼ (α,T ) ∈Θm we have, for s ≥ 0, 184

E[e−sX ]≥ 1−
m

∑
i=1

s
i(s+ δi)

, (6.21)

where δi = r[1] + · · ·+ r[i], i = 1,2, . . . ,m, and r =−e′T . 185

Note that e′(sI −T ) > 0 for sufficiently large s. For any PH distribution, (6.21) 186

holds if s is sufficiently large. 187

Example 6.1. Consider PH generator T defined as 188

T =

⎛
⎜⎜⎜⎜⎜⎝

−5 1 1 0 1
2 −15 0 1 5
0 1 −3 1 0
1 0 0 −5 1
1 1 1 0 −8

⎞
⎟⎟⎟⎟⎟⎠
. (6.22)

Note that −e′T = (1,12,1,3,1) is positive. 189

For X ∼ (α ,T ) with α = (0.2,0.5,0.1,0.1,0.1) we have E[Xk
min] ≤ E[Xk] = 190

k!α(−T−1)ke ≤ E[Xk
max] for k ≥ 1. As shown in Fig. 6.1, the two logarithmic ratios 191

are less than zero for all k, which confirms the inequalities numerically. We further 192

obtain E[e−sXmin ]≤ E[e−sX ]≤ E[e−sXmax ] for s ≤ 0, for which the expectations exist. 193
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For Example 6.1, further numerical results indicate that (−T−1)ke ≺w
194

(−(T ∗
↓ )

−1)ke and (−T−1)ke ≺w (−(T ∗
↑ )

−1)ke for k ≥ 1. Such results are stronger 195

than those in Corollaries 6.1 and 6.3. If the results are true, then the moments ofAQ7 196

(α,T ) are upper bounded by that of the Coxian distribution ((0, . . . ,0,1),T ∗
↑ ), which 197

is different from the distribution function of Xmax (which is actually an exponential 198

random variable). Denote by Fmin(t), F(t), and Fmax(t) the probability distribution 199

functions of the PH distributions ((1,0, . . . ,0),T ∗
↓ ), (α ,T ), and ((0, . . . ,0,1),T ∗

↑ ), 200

respectively. Numerical results also indicate that Fmax(t)≤ F(t)≤ Fmin(t) for t ≥ 0 201

(Fig. 6.2), which implies that the three probability distributions are stochastically 202

ordered. The result is interesting since Fmax(t) is a Coxian (not an exponential) 203

distribution in general. Extensive numerical tests demonstrate that those results may 204

hold for all PH distributions with PH generators satisfying −e′T > 0. 205
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Proofs 206

Proof of Lemma 6.1. Denote by e(i) the column vector with zero everywhere but 207

one in the ith place. Since the matrix −T is an M-matrix, −T−1 is nonnegative 208

(Theorem 4.5 [12]). Let b = −T−1e. Without loss of generality, we assume that 209

elements of b are in ascending order, i.e., b1 ≤ b2 ≤ ·· · ≤ bm, which can be done 210

by permuting the rows and columns of matrix T . To prove that −T−1e is weakly 211

supermajorized by b∗
↓, by definition, it is sufficient to show that b1 +b2 + · · ·+bk ≥ 212

(b∗
↓)1 +(b∗

↓)2 + · · ·+(b∗
↓)k, for 1 ≤ k ≤ m. 213

For fixed k ≤ m let z = (e(1)′+e(2)′+ · · ·+e(k)′)(−T−1). Let zn1 ≥ zn2 ≥ ·· · ≥ 214

znm be the elements of z in descending order. Since ze = b1 +b2 + · · ·+bk, our goal 215

is to prove, for 1 ≤ k ≤ m, 216

ze ≥ k

(
m

∑
j=1

r[ j]

)−1

+(k− 1)

(
m

∑
j=2

r[ j]

)−1

+ · · ·+
(

m

∑
j=k

r[ j]

)−1

. (6.23)

Since z(−T ) = e(1)′+ e(2)′+ · · ·+ e(k)′, we have, for 1 ≤ j ≤ m, 217

z(−T )(e(n j)+ e(n j+1)+ · · ·+ e(nm))

= (e(1)′+ e(2)′+ · · ·+ e(k)′)(e(n j)+ e(n j+1)+ · · ·+ e(nm))

≥ max{0, k− j+ 1}. (6.24)

By definition, we have T e ≤ 0 and Ti, j ≥ 0 for 1 ≤ i ≤ j ≤ m. Then, for any 218

{i1, i2, . . . , in} ⊂ {1,2, . . . ,m} and i0 ∈ {1,2, . . . ,m}, note that 219

e(i0)′(−T )(e(i1)+ e(i2)+ · · ·+ e(in)) =−
n

∑
j=1

T(i0,i j), (6.25)

which is nonnegative if i0 ∈ {i1, i2, . . . , in} and nonpositive if i0 /∈ {i1, i2, . . . , in}. 220

For i < j we have zni − zn j ≥ 0 and e(ni)
′(−T )(e(n j)+ e(n j+1)+ · · ·+ e(nm)) ≤ 0. 221

For i ≥ j, we have zni − zn j ≤ 0 and e(ni)
′(−T )(e(n j)+ e(n j+1)+ · · ·+ e(nm))≥ 0. 222

Combining the two cases, for 1 ≤ i, j ≤ m we obtain 223

(zni − zn j)e(ni)
′(−T )(e(n j)+ e(n j+1)+ · · ·+ e(nm))≤ 0. (6.26)

Equation (6.26) leads to 224

znie(ni)
′(−T )

(
m

∑
h= j

e(nh)

)
≤ zn j e(ni)

′(−T )

(
m

∑
h= j

e(nh)

)
. (6.27)
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Summing up over i = 1,2, . . . ,m, in (6.27), yieldsAQ8 225

z(−T )

(
m

∑
h= j

e(nh)

)
=

m

∑
i=1

znie(ni)
′(−T )

(
m

∑
h= j

e(nh)

)

≤
m

∑
i=1

zn j e(ni)
′(−T )

(
m

∑
h= j

e(nh)

)

= zn j e
′(−T )

(
m

∑
h= j

e(nh)

)

= zn j r

(
m

∑
h= j

e(nh)

)
. (6.28)

We also have 226

r

(
m

∑
h= j

e(nh)

)
=

m

∑
h= j

rnh ≤
m

∑
h= j

r[h]. (6.29)

Combining (6.24), (6.28), and (6.29) we obtain 227

zn j ≥ max{0,k− j+ 1}
(

m

∑
h= j

r[h]

)−1

. (6.30)

Adding over j = 1,2, . . . ,m, (6.23) follows. This completes the proof of Lemma 6.1. 228

Proof of Lemma 6.2. This proof is similar to that of Lemma 6.1, but some details 229

are different. Let b = −T−1e. Without loss of generality, we assume that elements 230

of b are in descending order, i.e., b1 ≥ b2 ≥ ·· · ≥ bm. To prove that −T−1e 231

is weakly submajorized by b∗
↑, it is sufficient to show that b1 + b2 + · · ·+ bk ≤ 232

(b∗
↑)m +(b∗

↑)(m−1) + · · ·+(b∗
↑)(m−k+1), for 1 ≤ k ≤ m. 233

For fixed k ≤ m let z = (e(1)′+e(2)′+ · · ·+e(k)′)(−T−1). Let zn1 ≤ zn2 ≤ ·· · ≤ 234

znm be the elements of z in ascending order, where (n1,n2, . . . ,nm) is a permutation 235

of (1,2, . . . ,m). Since ze = b1 + b2 + · · ·+ bk, our goal is to prove 236

ze ≤
m

∑
i=1

min{k,m− i+ 1}
(

m−i+1

∑
j=1

r[ j]

)−1

. (6.31)

Since z(−T ) = e(1)′+ e(2)′+ · · ·+ e(k)′, we have, for 1 ≤ j ≤ m, 237

z(−T )(e(n j)+ e(n j+1)+ · · ·+ e(nm))≤ min{k,m− j+ 1}. (6.32)
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Similar to (6.26), we can show, for 1 ≤ i, j ≤ m, 238

(zni − zn j)e(ni)
′(−T )(e(n j)+ e(n j+1)+ · · ·+ e(nm))≥ 0, (6.33)

which leads to 239

z(−T )

(
m

∑
h= j

e(nh)

)
≥ zn j r

(
m

∑
h= j

e(nh)

)

= zn j

(
m

∑
h= j

rnh

)

≥ zn j

(
m− j+1

∑
h=1

r[h]

)
. (6.34)

Combining (6.32) and (6.34), since ∑m− j+1
h=1 r[h] > 0, we obtain 240

zn j ≤ min{k,m− j+ 1}
(

m− j+1

∑
h=1

r[h]

)−1

. (6.35)

Adding over j = 1,2, . . . ,m, (6.31) follows. This completes the proof of Lemma 6.2. 241

Proof of Theorem 6.1. By Lemma 6.1, we have −T−1e ≺w −(T ∗
↓ )

−1e, or, 242

equivalently, (−T−1e)↑ ≺w −(T ∗
↓ )

−1e. Since the elements in α↓ are in descending 243

order, we obtain α↓(−T−1e)↑ ≥ −α↓(T ∗
↓ )

−1e, which leads to 244

E[X ] =−αT−1e ≥ α↓(−T−1e)↑ ≥ −α↓(T ∗
↓ )

−1e. (6.36)

Since the vector −(T ∗
↓ )

−1e are in ascending order, −α↓(T ∗
↓ )

−1e ≥ (−(T ∗
↓ )

−1e)1 =AQ9 245

(r1 + r2 + · · ·+ rm)
−1 =−1/(e′T e). This proves the first part of the theorem. 246

By Lemma 6.2, we have −T−1e ≺w −(T ∗
↑ )

−1e, or, equivalently, (−T−1e)↑ ≺w 247

−(T ∗
↑ )

−1e. Since the elements of α↑ are in ascending order, we obtain α↑(−T−1e)↑ 248

≤−α↑(T ∗
↑ )

−1e, which leads to 249

E[X ] =−αT−1e ≤ α↑(−T−1e)↑ ≤ −α↑(T ∗
↑ )

−1e. (6.37)

Since the elements of the vector −(T ∗
↑ )

−1e are in ascending order, −α↑(T ∗
↑ )

−1e ≤ 250

(−(T ∗
↑ )

−1e)m = ∑m
i=1(∑

m−i+1
j=1 r[ j])

−1. This proves the second part and concludes the 251

proof of Theorem 6.1. 252

Proof of Theorem 6.2. Under the conditions, we have −T−1e ≺ −(T ∗
↓ )

−1e andAQ10 253

−T−1e ≺ −(T ∗
↑ )

−1e, respectively. The rest of the proof is similar to that of

AQ11
254

Theorem 6.1. This completes the proof of Theorem 6.2. xxxxx 255
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Proof of Corollary 6.1. By Theorem 6.1, part 1 holds for k = 1, i.e., E[X ]≥ 1/λ .AQ12 256

We prove the result for k > 1 by induction. Consider the stochastic vector γ = 257

α(−T−1)k/(α(−T−1)ke). Note that E[Xk] = k!α(−T−1)ke and E[Xk
min] = k!/λ k

258

for k ≥ 1. Applying Theorem 6.1 to (γ,T ) ∈ Ωλ we obtain 259

α(−T−1)k+1e
α(−T−1)ke

= γ(−T−1)e ≥ 1
(−e′T e)

=
1
λ
, (6.38)

which leads to E[Xk+1] ≥ (k + 1)E[Xk]/λ . By induction, we obtain E[Xk+1] ≥ 260

(k+ 1)!/λ k+1 = E[Xk+1
min ]. This proves part 1 of Corollary 6.1. To prove part 2, weAQ13 261

first note that, by definition, 262

E[e−sX ] =
∞

∑
n=0

(−s)nE[Xn]

n!
(6.39)

if the summation exists. Then E[e−sXmin ] ≤ E[e−sX ] for slower < s ≤ 0, is obtained 263

from part 1), for some negative number slower. Since both functions E[e−sXmin ] and 264

E[esX ] equal one at s = 0, by continuous extension at s = 0, we obtain E[e−sXmin ]≥ 265

E[e−sX ], for 0≤ s≤ supper and some positive number supper. This completes the proof 266

of Corollary 6.1. 267

Proof of Corollary 6.2. We consider the PH generator −sI + T for s ≥ 0. 268

Lemma 6.1 indicates that (sI − T )−1e is weakly supermajorized by (sJ − T ∗
↓ )

−1e, 269

where 270

J =

⎛
⎜⎜⎜⎜⎜⎝

m
−(m− 1) m− 1

. . .
. . .

−2 2
−1 1

⎞
⎟⎟⎟⎟⎟⎠
, (6.40)

and T ∗
↓ was defined in (6.1). Applying Theorem 6.1 to (α,−sI +T ) we obtain that 271

α(sI−T )−1e is greater than or equal to the first element in the column vector (sJ− 272

T ∗
↓ )

−1e. Since s ≥ 0, sα(sI −T )−1e is greater than or equal to the first element in 273

the column vector s(sJ −T ∗
↓ )

−1e, which is given by 274

1
m
− θ

m(s+θ )
. (6.41)

Note that 1 − sα(sI − T )−1e = α(sI − T )−1(−T )e = E[e−sX ]. Then (6.18) is 275

obtained from (6.41). This completes the proof of Corollary 6.2. 276

Proof of Corollary 6.3. The proof is similar to that of Corollary 6.1. Details are 277

omitted. 278

Proof of Corollary 6.4. The proof is similar to that of Corollary 6.2. Details are 279

omitted. 280
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Conclusion and Discussion 281

For some subsets of PH distributions, in this chapter, it is found that the exponential 282

distributions and Coxian distributions are extremal distributions with respect to 283

all the moments and the LSTs of PH distributions. The results have potential 284

applications in several areas. 285

• The results can be useful in parameter estimation of PH distributions. For 286

instance, the relationship E[Xk]≥ k!/(−e′T e)k, for k ≥ 1, provides constraints on 287

the parameters in T if the sample moments of the PH distribution X can be found 288

(through other methods). The constraints can be used in nonlinear programs (e.g., 289

EM algorithm) for parameter estimation of PH distributions [2, 8]. The potential 290

of the results in this area is yet to be explored. 291

• The results can be used in optimization. Consider the case e′T = −μe, where 292

μ > 0. Without loss of generality, we assume μ = 1. Then we obtain e′(−T )−1=e′. 293

Denote by a1,a2, . . . , and am the column vectors of −T−1, which is nonneg- 294

ative. Then the vector e′/m is in the polytope generated by {a1,a2, . . . ,am}. 295

Then Corollary 6.1 gives the optimal solution(s) to the following optimization 296

problem: 297

max/ min
{αi,ai, 1≤i≤m}

(
m

∑
i=1

αiai

)
e

s.t. αi ≥ 0,
m

∑
i=1

αi = 1;

(a1, a2, . . . ,am)T = I;

e′T =−e′;

T is a PH generator. (6.42)

Geometrically, optimization problem (6.42) is to find a point in the polytopeAQ14 298

generated by extreme points {a1,a2, . . . ,am} such that the objective function is 299

either minimized or maximized. 300

• Because the bounds obtained in the sections “Bounds on Phase-Type Distribu- 301

tions” and “Extremal Phase-Type Distributions” are either partially or completely 302

independent of the transition structure within T , they have the potential to be 303

used in resource allocation if the transitions are affected by resources allocated 304

to different phases. 305

Naturally, the preceding applications are interesting topics for future research. 306

In addition, the issues on the distribution functions of PH distributions and 307

extremal PH distributions raised at the end of the section “Extremal Phase-Type 308

Distributions” are of theoretical interest for further investigation. 309
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