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a b s t r a c t

We consider an inventory–production system consisting of a warehouse and a production
facility. The warehouse is used to store products to satisfy customer demands, and its
inventory is controlled by an (r,Q ) policy. Products ordered by the warehouse are
processed in the production facility on a one-by-one basis, and finished products are
consolidated into batches to be shipped from the production facility to the warehouse.
Using the matrix-analytic methods, explicit solutions are obtained and computational
methods are developed for analyzing system performance measures.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The inventory–production system considered in this article consists of one warehouse and one production facility.
The warehouse is used to store products to satisfy customer demands that arrive at the warehouse according to a non-
renewal process, and the production facility processes products ordered by the warehouse on a one-by-one basis. Product
processing times are assumed to be random, and are independent and identically distributed. The finished products at the
production facility have to be consolidated into batches to be delivered to the warehouse. If there is no product available
in the warehouse when a customer demand arrives, the customer will wait for one that will later on be delivered from
the workshop. That is, the unsatisfied customer demand will be backlogged. The system cost includes the holding cost,
the penalty cost and the fixed order cost incurred at the warehouse, and the holding cost of the finished products and
the fixed delivery cost incurred at the workshop. Unlike the classical stochastic inventory systems where the inventory
replenishment policy is determined mainly by inventory position/level, the inventory–production system takes into
consideration information on the production facility in its inventorymanagement. Here the production information includes
the production capacity (processing time of each product) and the finished product delivery batch-size. Thus, inventory
management is more sophisticated, if additional information on production is available and utilized. In this paper, based
on a given finished product delivery batch-size and the capacity of the production facility, we derive explicit solutions and
develop computational methods for analyzing system performance measures. We also develop a heuristic algorithm for
finding an optimal inventory control policy at the warehouse so as to minimize the expected long-run average system-wide
cost.

The (r,Q ) policy, like the (s, S) policy for discrete time systems, is a popular type of inventory control policies (see [1–5]).
It has been shown that the optimal policy for many inventory models is of the (r,Q ) or (s, S) type (e.g., [6–13]). Algorithms
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have been developed for computing the optimal (r,Q ) policy for the inventorymodels. Thus, the (r,Q ) policy can be a good
choice for inventory control in inventory–production systems. In this paper, we will restrict ourselves among (r,Q )-type
policies to find an optimal policy for the inventory–production system described above.

Based on the nature of the system, inventory–production systems can be basically categorized into two classes. One
class consists of deterministic inventory–production systems: the product demands at the warehouse are deterministic and
the product processing times at the workshop are also deterministic. The optimal replenishment policy for the warehouse
is explored (e.g., see [14,15]). The other class includes stochastic inventory–production systems. Based on the system’s
operation flow, this class can be further classified into two types. One type is the assemble-to-order production–inventory
system: the product demands to the warehouse are random and demand arrivals are usually formulated as a Poisson
process, and the product processing times at the production facility are random (sometimes, the product may be, in parallel,
processed at multiple production facilities with different processing times). When there is no fixed order/delivery cost
at the warehouse/production facility, performance measures of such systems are analyzed (see [16]). The other type is
the make-to-order production–inventory system. Compared with the assemble-to-order system, the operational flow for
the make-to-order system is just reversed. The customer demands directly go to the production facility, process times
of demands in the production facility are again random, while the warehouse just stores raw materials for production.
Here the production facility makes raw material orders from the warehouse to be used for generating the products. When
there is no fixed order cost for the production facility, He et al. [17–19] investigate the optimal inventory control policy
at the warehouse. For the make-to-order system, furthermore, without considering the cost incurred at the warehouse,
De Vericourt et al. [20], and Ha [21] give the optimal allocation policy when the production facility has several demand
classes.

The inventory–production system considered in this paper is a stochastic assemble-to-order production–inventory
system. Compared with those in the existing literature, our model has several special features. First, the shipment
consolidation of finished products at the production facility is considered. This more general feature makes it possible
to consider costs (e.g., inventory holding cost and transportation cost) associated with finished products. Furthermore,
the shipment-size from the production facility to the warehouse may be different from the order-size determined by the
warehouse. This relaxation on shipment-sizes would capture more about the workshop’s transportation capability and
ordering structure for raw materials to be used to generate products, and at the same time, the warehouse may use a
different batch order size to reduce its orders’ leadtime, or in other words, to improve the utilization of the production
facility. Second, the fixed order cost incurred in the warehouse and fixed delivery cost incurred at the production facility
are included. Thirdly, the demand process is modeled by a Markovian arrival process (MAP), which is a fairly general tool
for modeling stochastic arrival processes (e.g., [22–24]). The MAPs can capture the possible correlation and burstiness in
the demand process. Lastly, the production time is modeled by a phase-type distribution (e.g., [24–26]). As the phase-type
distributions can approximate any probability distribution given by nonnegative random variables, our assumption on the
production time is quite general.

Matrix-analytic methods are efficient methods for analyzing stochastic models (e.g., [25–27]). In the inventory
management area, the matrix-analytic methods have been used successfully in analyzing system performance measures
and determining the optimal inventory policies (e.g., [16–19,28–30]). By taking advantage of such methods, we develop
efficientmethods for computing performancemeasures for the inventory–production system of interest. The optimal (r,Q )
policy of the system is characterized (partially) theoretically and numerically.

The remainder of the paper is organized as follows. In Section 2, the inventory–production system of interest is
introduced. An irreducible M/G/1 type Markov chain is constructed for the system in Section 3. Based on matrix-analytic
methods and Ramaswami’s algorithm, amethod for computing the stationary distribution of theMarkov chain is presented.
In Section 4, we derive analytic expressions for several key performance measures. Section 5 discusses some computational
issues that may lead to improved algorithms for computing performance measures. A heuristic algorithm is proposed for
computing the optimal (r,Q ) policy. In Section 6, numerical examples are given and the sensitivity of system performance
on system parameters is discussed. Section 7 concludes the paper.

2. The inventory–production system

The inventory–production system of interest consists of a warehouse and a production facility. Customer demands
arrive at the warehouse. Demands are either satisfied immediately, if the warehouse has on-hand inventory, or backlogged,
otherwise. Thewarehouse sends replenishment orders to the production facility. The production facility has infinite resource
of rawmaterials for production and produces products ordered by the warehouse on a one-by-one basis. Finished products
are stored in the production facility first. Once the total number of finished products reaches a threshold, all the cumulated
products are consolidated into a batch and sent from the production facility to the warehouse. The transportation time
between the production facility and the warehouse is negligible. The flows of demands, orders, and finished products in the
inventory–production system are shown in Fig. 2.1.

More specifically, the inventory–production system is defined as follows.

1. Customer demands arrive according to aMarkovian arrival process (MAP)with matrix representation (D0,D1), where D0
and D1 are ma × ma matrices with nonnegative elements, except for the diagonal elements of D0, which are negative
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Fig. 2.1. Flows of demands, orders, and finished products.

numbers, and ma is a positive integer. Let D = D0 + D1. Then D is the infinitesimal generator of the continuous time
underlying Markov chain for the demand arrival process. We assume that D is irreducible. Denote by Ia(t) the phase of
the underlying Markov chain at time t . Denote by θa the stationary distribution of D, i.e., θaD = 0, θa ≥ 0, and θae = 1,
where e is a column vector with all elements being one. (Note that, throughout this paper, the size of e depends on the
context; Occasionally, the size of e is specified for clarity (e.g., ema for e of sizema).) The (average) arrival rate of demands
is given by λ = θaD1e. We refer to Lucantoni [23] and Neuts [24] for more aboutMAPs.

2. Inventory in thewarehouse is reviewed continuously. All products that have been ordered but have not yet arrived in the
warehouse are called inventory on order, which are in the production facility, waiting to be produced or shipped. Define
inventory position as the on-hand inventory in the warehouse, plus the inventory on order, and minus the number of
backlogged demands in the warehouse. The warehouse adopts an (r, q1) policy for its inventory management (i.e., the
usual (r,Q ) policy for inventory systems with a continuous review scheme). That is: whenever the inventory position
reaches r , an order of the amount q1 is placed to the production facility. Consequently, the inventory position is brought
up to r + q1. The constant r is called the reorder level and q1 is called the order size. Note that r can be any integer and q1
has to be a positive integer.

3. The production facility always has enough resource for production. The production facility produces one product at a
time. The production time of a product has a phase-type distribution with PH-representation (α, T ) of size ms (a positive
integer), whereα is a nonnegative row vector of sizems and satisfiesαe = 1, T is anms ×ms PH-generator with negative
diagonal elements and nonnegative off-diagonal elements. Denote by Is(t) the phase of the underlying Markov chain
associated with (α, T ) at time t , if the production is on at time t; otherwise, set Is(t) = 0. Then the state space of Is(t) is
{0, 1, . . . ,ms}. The mean production time is given by µ−1

= −αT−1e, where µ is called the production rate. We assume
that the PH-representation (α, T ) is irreducible, i.e., the infinitesimal generator T + (−Te)α is irreducible. Let θs be a
row vector satisfying θs(T + T0α) = 0, θs ≥ 0, and θse = 1. It is easy to verify that µ = θsT0. We refer to Neuts [25] for
more about PH-distributions.

4. Finished products are stored in the production facility first. A special shipment consolidation policy, called the quantity
policy, is applied for the shipment of finished products. Namely, as soon as the number of finished products reaches q2,
where q2 is a positive integer, all the cumulated finished products are shipped together to the warehouse.

5. The system costs include: the holding cost per product in thewarehouse per unit time is hw; the penalty cost per demand
per unit time waiting in the warehouse is pw; the ordering cost per order in the warehouse is Kw; the holding cost per
finished product in the production facility per unit time is hs; and the fixed delivery cost in the production facility is Ks.

To analyze the inventory–production system, we introduce the following variables to represent the system status.

(i) IP(t): the inventory position at time t minus the reorder level r . Then IP(t) takes integer values between 1 and q1, and
r + IP(t) is the inventory position.

(ii) q(t): the number of products being produced or waiting to be produced at time t , which form a queue in the production
facility.

(iii) w(t): the number of finished products in the production facility waiting to be shipped to the warehouse at time t .

With the above system variables, the inventory level, on-hand inventory and backlogs in the warehouse can be defined.
Let x+

= max{0, x}.

(iv) IP(t) + r − q(t) − w(t): the inventory level in the warehouse at time t .
(v) (IP(t) + r − q(t) − w(t))+: the on-hand inventory in the warehouse at time t .
(vi) (q(t) + w(t) − IP(t) − r)+: the number of backlogs (waiting demands) in the warehouse at time t .

All the above definitions are summarized in Fig. 2.2 for a complete view on the inventory–production system of interest.
For convenience, we also use the notation {IP(t), q(t), w(t)} to denote the corresponding variables in steady state.

Assume that the system can reach steady state. Then the expected total cost per unit time of the inventory–production
system can be obtained as

C(r, q1) =
λKw

q1
+ hwE[(r + IP(t) − q(t) − w(t))+] + pwE[(q(t) + w(t) − r − IP(t))+] +

λKs

q2
+ hsE[w(t)]. (2.1)

The objective of this paper is to developmethods for computing performancemeasures, such as E[IP(t)], E[q(t)], E[w(t)],
and C(r, q1), and for finding the optimal (r, q1) policy that minimizes the function C(r, q1).
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Fig. 2.2. Details of the inventory–production system.

3. Matrix-analytic solutions

In this section, we use matrix-analytic methods to study the continuous time Markov chain (CTMC) {(q(t), IP(t), Ia(t),
Is(t), w(t)), t ≥ 0} and find its stationary distribution. Our analysis consists of four parts. First, we begin with
the simple CTMC {(IP(t), Ia(t)), t ≥ 0}. The infinitesimal generator of the simple CTMC is constructed and an
explicit solution is found for its stationary distribution. Second, we construct the infinitesimal generator for the CTMC
{(q(t), IP(t), Ia(t), Is(t)), t ≥ 0}. Third, we construct an irreducible version {(q(t), IP(t), Ia(t), Is(t), w̃(t)), t ≥ 0} of
the CTMC {(q(t), IP(t), Ia(t), Is(t), w(t)), t ≥ 0} and its corresponding infinitesimal generator. Fourth, we re-block the
infinitesimal generator of {(q(t), IP(t), Ia(t), Is(t), w̃(t)), t ≥ 0} to reveal its M/G/1 structure and to find its stationary
distribution.

First, for a given (r, q1) policy, the inventory position r + IP(t) depends only on the Markovian arrival process (D0,D1)
and q1. Thus, {(IP(t), Ia(t)), t ≥ 0} is a CTMCwith a state space {(i, j), i = 1, 2, . . . , q1, j = 1, 2, . . . ,ma}. The infinitesimal
generator of the process is

QIP =


D0 D1
D1 D0

D1
. . .

. . . D0
D1 D0


(q1ma)×(q1ma)

. (3.1)

It is straightforward to obtain the following result.

Proposition 3.1. The stationary distribution of {(IP(t), Ia(t)), t ≥ 0} is given by (θa, θa, . . . , θa)/q1. Consequently, in steady
state, the distribution of the process {IP(t), t ≥ 0} is the discrete uniform distribution on {1, 2, . . . , q1}.

Remark 3.1. Proposition 3.1 for {(IP(t), Ia(t)), t ≥ 0} can be useful in checking the computation accuracy for the matrix-
analytic solutions for {(q(t), IP(t), Ia(t), Is(t), w(t)), t ≥ 0}.

Second, we have a look at the process {(q(t), IP(t), Ia(t), Is(t)), t ≥ 0}. By the irreducibility of D (the underlying process
of the demand process) and (α, T ) (the production time), the process {(q(t), IP(t), Ia(t), Is(t)), t ≥ 0} is an irreducible
CTMC. The state space of the Markov chain is {(0, i, ia), i = 1, 2, . . . , q1, ia = 1, 2, . . . ,ma} ∪ {(q, i, ia, is), q = 1, 2, . . . ,
i = 1, 2, . . . , q1, ia = 1, 2, . . . ,ma, is = 1, 2, . . . ,ms}. When the variable q(t) changes its value, it either increases by q1
or decreases by one. We call q(t) the level variable and (IP(t), Ia(t), Is(t)) the (vector) phase variable. Within each level, the
states are ordered lexicographically. If q(t) = 0, i.e., the boundary level, there is no production. If an order is placed when
q(t) = 0, q(t) increases by q1 and the production in the facility is initialized with distribution α. If an order is placed when
q(t) > 0, q(t) increases by q1 and the phase of the production process remains the same. The infinitesimal generator Qq of
the Markov chain is given by

Qq =


QIP,0 0 · · · 0 QIP,1 ⊗ α

I ⊗ T0 QIP,0 ⊕ T 0 · · · 0 QIP,1 ⊗ I
I ⊗ (T0α) QIP,0 ⊕ T 0 · · · 0 QIP,1 ⊗ I

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

 , (3.2)

where I is the identity matrix (Note that, throughout this paper, the size of I depends on the context; Occasionally, the size
of I is specified for clarity.), T0

= −Te, ‘‘⊗’’ is for the Kronecker product of matrices (i.e., for matrices A = (ai,j) and B, their
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Table 3.1
Relationship between w(t), w̃(t), and q(t), if q(0) = w(0) = 0.

w̃(t) 1 2 3 . . . q̃2
w(t) (if q(t) = 0) 0 gcd 2gcd . . . (q̃2 − 1)gcd
w(t) (if q(t) = ngcd + k) gcd −k 2gcd−k 3gcd−k . . . q̃2gcd − k

Kronecker product is defined as A ⊗ B = (ai,jB)), and

QIP,0 = J(q1) ⊗ D1 + Iq1×q1 ⊗ D0;

QIP,1 = L(q1) ⊗ D1;

QIP,0 ⊕ T ≡ QIP,0 ⊗ Ims×ms + I(q1ma)×(q1ma) ⊗ T ;

J(q1) =


0
1 0

. . .
. . .

1 0


q1×q1

, L(q1) =


0 1

. . .

. . .

0


q1×q1

= e(1)v(q1),

(3.3)

e(1) is a column vector with the first element being one and all others zero, and v(q1) is a row vector with the last
element (i.e., the q1-th element) being one and all others zero. Note that QIP,0 + QIP,1 = QIP , where QIP is defined in
Eq. (3.1). By regrouping the states, the Markov chain can be transformed into a quasi-birth-and-death process. Matrix
geometric solutions can be found for its stationary distribution. Since the Markov chain is not used in the analysis of the
inventory–production system, we shall not study it further.

Third, the process {(q(t), IP(t), Ia(t), Is(t), w(t)), t ≥ 0} is a CTMC. Since variable w(t) goes from 0 to q2 − 1 in a cyclic
manner (i.e., 0 to 1, 1 to 2, . . . , q2−2 to q2−1, and q2−1 to 0), the infinitesimal generator of {(q(t), IP(t), Ia(t), Is(t), w(t)),
t ≥ 0} can be constructed fromQq in a straightforwardmanner. Unfortunately, because of a close relationship betweenw(t)
and q(t), the CTMC {(q(t), IP(t), Ia(t), Is(t), w(t)), t ≥ 0} can be reducible. To study the steady-state behavior of the system,
we need to explore the relationship between w(t) and q(t) and construct an irreducible Markov chain.

Suppose that q1 and q2 are co-prime integers, i.e., their greatest common divisor is one. For any integer k in {0, 1, . . . ,
q2 − 1}, there exist n andm such that nq1 − mq2 = k. Then w(t) takes integer values in {0, 1, . . . , q2 − 1} if q(t) = 0. Since
w(t) changes its values from 0 to q2 − 1 cyclically, it is readily seen that w(t) can take any values in {0, 1, . . . , q2 − 1} for
any q(t). The Markov chain {(q(t), IP(t), Ia(t), Is(t), w(t)), t ≥ 0} is irreducible.

For the general case, denote by gcd the greatest common divisor of q1 and q2. A moment of refection leads to the fact that
q(t) + w(t) − w(0) must be a multiple of gcd and can be any nonnegative multiple of gcd. Thus, for any q(t), w(t) can take
exactly q2/gcd values. Define

q̃1 =
q1
gcd

and q̃2 =
q2
gcd

. (3.4)

The two integers q̃1 and q̃2 are co-prime.

Proposition 3.2. Assume that q(0) = w(0) = 0. If q(t) = 0, then w(t) can and can only take any number in {jgcd, j =

1, 2, . . . , q̃2 − 1}. If q(t) = ngcd + k, for n ≥ 0 and k = 1, 2, . . . , gcd, then w(t) can and can only take any number in
{jgcd − k, j = 1, 2, . . . , q̃2}.

Proof. Under condition q(0) = w(0) = 0, q(t) + w(t) is a multiple of gcd. Since gcd is a common divisor of q(0), w(0), q1,
and q2, then w(t) can be, and only be, one of {0, gcd, 2gcd, . . . , (q̃2 − 1)gcd}, if q(t) is a multiple number of gcd. That proves
the first part of the lemma. The second result follows from the fact that w(t) changes its value cyclically. This completes the
proof of Proposition 3.2. �

For convenience, we shall use {1, 2, . . . , q̃2} to represent the q̃2 states of w(t) for each state of (q(t), IP(t), Ia(t), Is(t))
as shown in Table 3.1. We use w̃(t) to denote this new variable, which is defined as w̃(t) = 1 + w(t)/gcd, if q(t) = 0;
and w̃(t) = (w(t) + k)/gcd, if q(t) > 0, where k = q(t) modulo gcd (i.e., k is the remainder of the division of q(t) by gcd).
While w(t) is the actual number of finished products in the production facility, which takes values from 0 to q2 − 1, w̃(t)
is an artificial variable with q̃2 states. The variable w(t) is determined by w̃(t) and q(t) in a way specified in Table 3.1, if
q(0) = w(0) = 0. For instance, if q(t) = 0 and w̃(t) = 3, then w(t) = 2gcd. Note that if q1 and q2 are co-prime, i.e., gcd = 1,
thenw(t) = w̃(t)−1. Table 3.1 shall be used repeatedly throughout this paper for the relationship betweenw(t), q(t), and
w̃(t).

Remark 3.2. Without loss of generality, we can assume that q(0) = 0 and w(0) = w0. Then w(t) can be one of the integers
in {(jgcd + w0 − k) modulo q2, j = 1, 2, . . . , q̃2}, if q(t) = ngcd + k, for n = 0, 1, 2, . . . , and k = 1, 2, . . . , gcd. Thus,
the stationary distribution of the Markov chain can be found and the analysis can be carried out in a similar way. Yet the
interpretation of the states of w̃(t) may be slightly different from that of Table 3.1. For that reason, and since it reasonable
to assume an empty system at t = 0, we assume that q(0) = w(0) = 0 throughout this paper.
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According to Table 3.1 and Remark 3.2, there are exactly q̃2 states of w̃(t) associated with each state of
(q(t), IP(t), Ia(t), Is(t)), but the physical interpretations of the states can be different for different q(t). Based on the physical
interpretation of the states of w̃(t) in Table 3.1, the transition of the state of w̃(t) is given as follows.

(1) If q(t) goes from ngcd + 1 to ngcd, w̃(t) (or corresponding w(t)) goes from j (or jgcd − 1) to j + 1 (or jgcd), if j < q̃2; from
q̃2 to 1, if j = q̃2. By Table 3.1, the corresponding transition of w̃(t) is governed by the following transition probability
matrix

U =


0 1

0
. . .

. . . 1
1 0


q̃2×q̃2

, (3.5)

which is a double stochastic matrix.
(2) For all the other cases, the transition of w̃(t) is governed by the identity matrix I .

We call q(t) the level variable and (IP(t), Ia(t), Is(t), w̃(t)) the (vector) phase variable. The state space of the CTMC
{(q(t), IP(t), Ia(t), Is(t), w̃(t)), t ≥ 0} is given as follows. If q(t) = 0, then Is(t) = 0, since there is no production. We
have IP(t) = 1, 2, . . . , q1, Ia(t) = 1, 2, . . . ,ma, and w̃(t) = 1, 2, . . . , q̃2. Then level zero has q1maq̃2 states. If q(t) ≥ 1, we
have IP(t) = 1, 2, . . . , q1, Ia(t) = 1, 2, . . . ,ma, Is(t) = 1, 2, . . . ,ms, and w̃(t) = 1, 2, . . . , q̃2. Such a level has q1mamsq̃2
states.

Utilizing matrices J(q1) and L(q1) defined in Eq. (3.3), the infinitesimal generator Qw of {(q(t), IP(t), Ia(t), Is(t), w̃(t)),
t ≥ 0} can be written as

Qw =


QIP,0 ⊗ I 0 · · · 0 QIP,1 ⊗ α⊗ I

I ⊗ T0
⊗ U (QIP,0 ⊕ T ) ⊗ I 0 · · · 0 QIP,1 ⊗ I ⊗ I

I ⊗ (T0α) ⊗ I (QIP,0 ⊕ T ) ⊗ I 0 · · · 0 QIP,1 ⊗ I ⊗ I
. . .

. . .
. . . · · ·

. . .
. . .

. . .
. . .

. . .
. . .

. . .

 . (3.6)

In Qw , for n = 0, 1, 2, . . . , and k = 1, 2, . . . , gcd, the transition block from the level q(t) = ngcd + k to the level
q(t) = ngcd + k − 1 is I ⊗ (T0α) ⊗ U , if k = 1; I ⊗ (T0α) ⊗ I , otherwise. Note that the transition block from level 1
to level 0 is I ⊗ T0

⊗ U .
Eq. (3.6) indicates that Qw is a level dependent M/G/1 type Markov chain, if q(t) is considered as the level variable.

To analyze {(q(t), IP(t), Ia(t), Is(t), w̃(t)), t ≥ 0} effectively, we need the level independent property. Fortunately, the
level independent property can be obtained by re-blocking Qw . We define a super level n as the set of all the states with
q(t) = (n − 1)gcd + 1, (n − 1)gcd + 2, . . . , nqcd, for n = 1, 2, . . . . That is: we re-block the matrix Qw given in Eq. (3.6)
such that each new block contains consecutive gcd old blocks (except level zero) to obtain a level independent M/G/1 type
Markov chain.

Qw =



A0,0 0 · · · 0 A0,q̃1
A1,0 A1 0 · · · 0 Aq̃1+1

A0 A1 0 · · · 0 Aq̃1+1
A0 A1 0 · · · 0 Aq̃1+1

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .


(3.7)

with

A0,0 = QIP,0 ⊗ Iq̃2×q̃2 ,

A0,q̃1 =

0 · · · 0 QIP,1 ⊗ α⊗ I


(q1ma q̃2)×(gcdq1mams q̃2)

= v(gcd) ⊗ QIP,1 ⊗ α⊗ Iq̃2×q̃2 , (3.8)

A1,0 =


I ⊗ T0

⊗ U
0
...
0


(gcdq1mams q̃2)×(q1ma q̃2)

= e(1) ⊗ I(q1ma)×(q1ma) ⊗ T0
⊗ U,
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Aq̃1+1 =


QIP,1 ⊗ Ims×ms ⊗ Iq̃2×q̃2

. . .

. . .

QIP,1 ⊗ Ims×ms ⊗ Iq̃2×q̃2


(gcdq1mams q̃2)×(gcdq1mams q̃2)

= Igcd×gcd ⊗ QIP,1 ⊗ Ims×ms ⊗ Iq̃2×q̃2 ,

A1 = Igcd×gcd ⊗

QIP,0 ⊕ T


⊗ Iq̃2×q̃2 + J(gcd) ⊗ I(q1ma)×(q1ma) ⊗ (T0α) ⊗ Iq̃2×q̃2 ,

A0 =


0 I ⊗ (T0α) ⊗ U

. . .

. . .

0


(gcdq1mams q̃2)×(gcdq1mams q̃2)

= (e(1)v(gcd)) ⊗ I(q1ma)×(q1ma) ⊗ (T0α) ⊗ U,

where v(gcd) and e(1) are defined after Eq. (3.3), but the size of the vectors is gcd.
It is clear that, after re-blocking, Qw is now associated with anM/G/1 type Markov chain {(X(t), IS(t), IP(t), Ia(t), Is(t),

w̃(t)), t ≥ 0} with a level independent transition structure. The relationship between q(t), X(t), and IS(t) is given as

X(t) = ⌊(q(t) − 1)/gcd⌋ + 1;
IS(t) = q(t) − gcd max{0, X(t) − 1},

(3.9)

where ⌊x⌋ is the greatest integer less than or equal to x.
We call X(t) the new level variable and (IS(t), IP(t), Ia(t), Is(t), w̃(t)) the new (vector) phase variable. If X(t) = 0, IS(t)

and Is(t) are irrelevant, and we have IP(t) = 1, 2, . . . , q1, Ia(t) = 1, 2, . . . ,ma, and w̃(t) = 1, 2, . . . , q̃2. The level
zero has q1maq̃2 states. If X(t) ≥ 1, we have IS(t) = 1, 2, . . . , gcd, IP(t) = 1, 2, . . . , q1, Ia(t) = 1, 2, . . . ,ma, and
Is(t) = 1, 2, . . . ,ms, and w̃(t) = 1, 2, . . . , q̃2 values. Such a level has gcdq1mamsq̃2 = q1mamsq2 states.

Taking advantage of theM/G/1 structure in the infinitesimal generatorQw , amatrix-analytic solution can be obtained for
the stationary distribution of {(X(t), (IS(t), IP(t), Ia(t), Is(t), w̃(t))), t ≥ 0} by using Ramaswami’s algorithm [31]. Denote
by π = (π0,π1,π2, . . .), where π0 = (π0,1,1,1, . . . , π0,q1,ma,q̃2) and πq = (πq,1,1,1,1, . . . , πq,q1,ma,ms,q̃2), q = 1, 2, . . . , the
stationary distribution of the CTMC {(q(t), IP(t), Ia(t), Is(t), w̃(t)), t ≥ 0}. The elements inπq are ordered lexicographically.
It is well-known that π satisfies πQw = 0 and πe = 1. To find the stationary distribution π, we need to utilize the
level independent structure given in Eq. (3.7). Similar to the re-blocking of Qw , we re-block the vector π as follows:
π = (π0,πMG1,1,πMG1,2, . . .), where πMG1,n = (π(n−1)gcd+1,π(n−1)gcd+2, . . . ,πngcd), for n = 1, 2, . . . . The stationary
distributionπ is partitioned into (π0,π1,π2, . . .) for analysis and proofs and into (π0,πMG1,1,πMG1,2, . . .) for computation.

The stationary distribution π can be computed by Ramaswami’s algorithm [31] as follows. Let matrix G be the minimal
nonnegative solution to matrix equation

0 = A0 + A1G + Aq̃1+1Gq̃1+1. (3.10)

Then we have, if π exists,

πMG1,n =


π0B̂n +

min{n,q̃1+1}
k=2

πMG1,n−k+1Bk


(−B1)

−1, n = 1, 2, . . . ;

π0(A0,0 + B̂1(−B1)
−1A1,0) = 0,

π0e = 1 − λ/µ,

(3.11)

where B̂n = A0,q̃1G
q̃1−n, for n = 1, 2, . . . , q̃1; B̂n = 0, for n > q̃1; and B1 = A1 + Aq̃1+1Gq̃1 , Bn = Aq̃1+1Gq̃1+1−n, for

n = 2, 3, . . . , q̃1 + 1; Bn = 0, for n > q̃1 + 1. The existence of the stationary distribution and the normalization factor
π0e = 1 − λ/µ are shown in the following proposition.

Proposition 3.3. The continuous time Markov chain {(q(t), IP(t), Ia(t), Is(t), w̃(t)), t ≥ 0} (or {(X(t), IS(t), IP(t), Ia(t),
Is(t), w̃(t)), t ≥ 0}) defined by Qw in Eq. (3.6) is irreducible. If λ/µ < 1, the Markov chain is positive recurrent and its stationary
distribution π is given in Eq. (3.11).

Proof. First, the Markov chain {(q(t), IP(t), Ia(t), Is(t)), t ≥ 0} is irreducible since the representations of demand arrival
process and the PH-distribution are irreducible. The irreducibility of {(q(t), IP(t), Ia(t), Is(t), w̃(t)), t ≥ 0} is due to the
chosen representation w̃(t) for the states of w(t) (see Proposition 3.2).
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The ergodicity condition is obtained by using Neuts condition for M/G/1 type Markov chains in a straightforward
manner [25,27]. First, we have

A0 + A1 + Aq̃1+1 =


(QIP ⊕ T ) ⊗ I I ⊗ (T0α) ⊗ U

I ⊗ (T0α) ⊗ I
. . .

. . .
. . .

I ⊗ (T0α) ⊗ I (QIP ⊕ T ) ⊗ I

 . (3.12)

It is easy to verify that θA = (egcd)
′
⊗ (eq1)

′
⊗ θa ⊗ θs ⊗ (eq̃2)

′/(q1q2) is an invariant vector of A0 + A1 + Aq̃1+1, where e′

is the transpose of the column vector e. By routine calculations, we obtain θA(A1 + (q̃1 + 1)Aq̃1+1)e = (λ − µ)/gcd < 0. By
Neuts [27], the CTMC is ergodic and its stationary distribution π exists. By Ramaswami’s algorithm, Eq. (3.11) is obtained,
except for the explicit expression for π0e.

To find π0e, we defineϖ∗

1(z) =


∞

q=1 πq(I(q1mams)×(q1mams) ⊗ eq̃2)z
q, for 0 ≤ z ≤ 1. By Eq. (3.6), the equation πQw = 0

can be re-written as follows:

π0(QIP,0 ⊗ I) + π1(I(q1ma)×(q1ma) ⊗ T0
⊗ U) = 0;

1 ≤ ngcd ≤ q1 − 1 : πngcd((QIP,0 ⊕ T ) ⊗ I) + πngcd+1(I(q1ma)×(q1ma) ⊗ (T0α) ⊗ U) = 0;

1 ≤ ngcd + k ≤ q1 − 1,
1 ≤ k ≤ gcd − 1 :

πngcd+k((QIP,0 ⊕ T ) ⊗ I) + πngcd+k+1(I(q1ma)×(q1ma) ⊗ (T0α) ⊗ I) = 0;

π0(QIP,1 ⊗ α⊗ I) + πq1((QIP,0 ⊕ T ) ⊗ I) + πq1+1(I(q1ma)×(q1ma) ⊗ (T0α) ⊗ U) = 0;

q1 + 1 ≤ ngcd : πngcd−q1(QIP,1 ⊗ I ⊗ I) + πngcd((QIP,0 ⊕ T ) ⊗ I) + πngcd+1(I(q1ma)×(q1ma) ⊗ (T0α) ⊗ U) = 0;

q1 + 1 ≤ ngcd + k,
1 ≤ k ≤ gcd − 1 :

πngcd+k−q1(QIP,1 ⊗ I ⊗ I)

+πngcd+k((QIP,0 ⊕ T ) ⊗ I) + πngcd+k+1(I(q1ma)×(q1ma) ⊗ (T0α) ⊗ I) = 0.

(3.13)

Using Eq. (3.13), by routine calculations, we obtain

ϖ∗

1(z)


(QIP,0 + zq1QIP,1) ⊕


T +

1
z
T0α


= −π0(I ⊗ eq̃2)((QIP,0 + zq1QIP,1) ⊗ α). (3.14)

To obtain Eq. (3.14), we multiply by I(q1ma)×(q1ma) ⊗ α⊗ Iq̃2×q̃2 on both sides of the first equation in Eq. (3.13) to ensure
that all the vectors are of the same size in all equations in Eq. (3.13). Letting z = 1 in Eq. (3.14), we obtain

π0(I ⊗ eq̃2)(QIP ⊗ α) +ϖ∗

1(1)(QIP ⊕ (T + T0α)) = 0. (3.15)

Post-multiplying by I(q1ma)×(q1ma) ⊗ ems on both sides of Eq. (3.15) yields

π0(I ⊗ eq̃2) +ϖ∗

1(1)(I ⊗ ems)

QIP = 0, which

implies that

π0(I ⊗ e) +ϖ∗

1(1)(I ⊗ e)


= (θa, . . . , θa)/q1. Note that π0(I ⊗ e)e +ϖ∗

1(1)(I ⊗ e)e = 1.
Post-multiplying by eq1ma ⊗ Ims×ms on both sides of Eq. (3.15) yieldsϖ∗

1(1)(e ⊗ I)

T + T0α


= 0, which implies that

ϖ∗

1(1)(e ⊗ I) = cθs, where c = ϖ∗

1(1)e. It is clear that c = 1 − π0e or π0e = 1 − c. To find c , we take derivatives on both
sides of Eq. (3.14), let z = 1, and multiply on both sides by eq1mams , to obtain

0 = ϖ∗

1(1)(q1(e(1) ⊗ (D1e) ⊗ e) − e ⊗ e ⊗ T0) + q1π0(e(1) ⊗ (D1e) ⊗ e)
= q1ϖ∗

1(1)(e(1) ⊗ (D1e) ⊗ e) −ϖ∗

1(1)(e ⊗ e ⊗ T0) + q1π0(e(1) ⊗ (D1e) ⊗ e)
= q1(π0(I ⊗ e) +ϖ∗

1(1)(I ⊗ e))(e(1) ⊗ (D1e)) −ϖ∗

1(1)(e ⊗ e ⊗ I)T0

= (θa, . . . , θa)(e(1) ⊗ (D1e)) − cθsT0

= λ − cµ, (3.16)

which leads to the expected result. This completes the proof of Proposition 3.3. �

Remark 3.3. The re-blocking technique can be applied to Qw given in Eq. (3.7) to generate a QBD structure. However, the
space complexity of the QBD approach is significantly higher than that of theM/G/1 approach. Thus, we do not explore the
QBD approach in this paper.

Remark 3.4. Since the underlying Markov chain of the demand arrival process is not affected by inventory management,
we must haveπ0(eq1 ⊗ Ima×ma ⊗ eq̃2) +


∞

q=1 πq(eq1 ⊗ Ima×ma ⊗ ems ⊗ eq̃2) = θa, which can be used to check computation
accuracy.



Author's personal copy

Q.-M. He, H. Zhang / Performance Evaluation 70 (2013) 623–638 631

4. Performance measures

In this section, performance measures
{E[IP(t)], E[w(t)], E[q(t)], E[(r + IP(t) − q(t) − w(t))+], E[(q(t) + w(t) − r − IP(t))+]}

are obtained either explicitly or in terms of the stationary distribution π = (π0,π1,π2, . . .). We begin with IP(t) whose
distribution can be found explicitly.

Proposition 4.1. The inventory position IP(t) has a uniform distribution on {1, 2, . . . , q1}. Consequently, we have E[IP(t)] =

(q1 + 1)/2.

Proof. The result is obtained by Proposition 3.1. This completes the proof of Proposition 4.1. �

Remark 4.1. By definition, E[IP(t)] can be expressed in terms of π as follows:

E[IP(t)] =

q1
j=1

j


π0(e(j) ⊗ ema q̃2) +

∞
n=1

πMG1,n(egcd ⊗ e(j) ⊗ emams q̃2)


, (4.1)

where e(j) is a column vector of size q1 with the j-th element being one and all others zero. The above two expressions of
E[IP(t)] can be used for checking the computation accuracy of π.

Let ρ = min{1, λ/µ}.

Proposition 4.2. The distribution of w(t) is given as, for j = 0, 1, . . . , q̃2 − 1,

P{w(t) = jgcd + k} =


1 − ρ

q̃2
+

ρ

q2
, if k = 0;

ρ

q2
, if k = 1, 2, . . . , gcd − 1.

(4.2)

Consequently, we have E[w(t)] = (q2−ρ−gcd(1−ρ))/2. In particular, if gcd = 1, thenw(t) has a discrete uniform distribution
on {0, 1, . . . , q2 − 1} and E[w(t)] = (q2 − 1)/2; if gcd = q2, then E[w(t)] = ρ(q2 − 1)/2.

Proof. Using Eq. (3.13), we first show that all elements of the vector πq(e ⊗ Iq̃2×q̃2) are the same for q = 0, 1, 2, . . . , i.e.,
πq(e⊗ Iq̃2×q̃2) = (πqe)e′/q̃2. Note that elements in the vectorπq(e⊗ I) is the joint probability of the queue length q(t) and
w̃(t), for q = 0, 1, 2, . . . . Defineψ0 = π0(I ⊗U), andψq = πq(I ⊗U), for q = 1, 2, . . . . Letψ = (ψ0,ψ1, . . .). It is easy to
verify that ψe = πe = 1, and ψQw = πQw(I ⊗ U). Since πQw = 0, we obtain ψQw = 0. Since the stationary distribution
of the CTMC Qw is unique, we must have ψ = π, i.e., ψq = πq = πq(I ⊗ U) for q = 0, 1, 2, . . . . Consequently, we must
have πq(e ⊗ I) = πq(e ⊗ U) for q = 0, 1, 2, . . . , which implies that the q̃2 elements in the vector πq(e ⊗ I) are identical,
i.e., πq(e ⊗ I) = (πqe, . . . ,πqe)/q̃2, for q = 0, 1, 2, . . . .

Second, we show the vectors φk =


∞

n=0 πngcd+k(e ⊗ I(ms q̃2)×(ms q̃2)) are identical vectors for k = 1, 2, . . . , gcd. Post-
multiplying by e⊗α⊗ Iq̃2×q̃2 on both sides of the first equation in Eq. (3.13), post-multiplying by e⊗ Ims×ms ⊗ Iq̃2×q̃2 on both
sides of all the equations corresponding to q(t) = ngcd, for n = 1, 2, . . . , and adding up the resulting equations, we obtain

0 = π0(QIPe ⊗ α⊗ I) +

∞
n=0

(πngcd+gcd(QIPe ⊗ I ⊗ I + e ⊗ T ⊗ I))

+

∞
n=0

(πngcd+1(QIPe ⊗ I ⊗ I + e ⊗ (T0α) ⊗ U))

=


∞
n=0

πngcd+gcd(e ⊗ I ⊗ I)


(T ⊗ I) +


∞
n=0

πngcd+1(e ⊗ I ⊗ I)


((T0α) ⊗ U). (4.3)

Note that QIPe = 0. Then Eq. (4.3) can be rewritten as

0 = φgcd(T ⊗ Iq̃2×q̃2) + φ1((T
0α) ⊗ U). (4.4)

In a similar way, it can be shown that 0 = φk(T ⊗ Iq̃2×q̃2) +φk+1((T0α) ⊗ Iq̃2×q̃2), for k = 1, 2, . . . , gcd − 1. Together, we
have shown

0 = (φ1, φ1, . . . ,φgcd)



T ⊗ I (T0α) ⊗ U
(T0α) ⊗ I T ⊗ I

. . .
. . .

. . .
. . .

(T0α) ⊗ I T ⊗ I

 . (4.5)
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Eq. (4.5) indicates that (φ1,φ2, . . . ,φgcd) is the steady-state aggregation of the embedded process related to A =

A0 + A1 + Aq̃1 given in Eq. (3.12).
Recall that θs is a row vector satisfying θs(T + T0α) = 0, θs ≥ 0, and θse = 1. Since e′U = e′,φk = cθs ⊗ e′,

for k = 1, 2, . . . , gcd, is a solution to Eq. (4.5), which is unique up to a positive constant. Consequently, we have
φk(ems ⊗ Iq̃2×q̃2) = c(eq̃2)

′, for k = 1, 2, . . . , gcd. Since (φ1 + φ2 + · · · + φgcd)e = 1 − π0e and q2 = gcdq̃2, we obtain
c = (1 − π0e)/q2. Hence, we have shown that

∞
n=0

πngcd+k(e ⊗ Iq̃2×q̃2) =
(1 − π0e)

q2
e′, for k = 1, 2, . . . , gcd. (4.6)

Eq. (4.6) indicates that, if q(t) = kmodulo gcd, then w̃(t) is uniformly distributed on {1, 2, . . . , q̃2}. By the interpretation
given in Table 3.1, w(t) = jgcd + gcd − k implies that q(t) = k modulo gcd, and w̃(t) = j + 1, for j = 0, 1, . . . , q̃2 − 1. Then
we obtain, for j = 0, 1, 2, . . . , q̃2 − 1,

P{w(t) = jgcd} = (π0(e ⊗ Iq̃2×q̃2))j +

∞
n=1

(πngcd(e ⊗ Iq̃2×q̃2))j

= π0e/q̃2 + (1 − π0e)/q2, (4.7)

and, for k = 1, 2, . . . , gcd − 1,

P{w(t) = jgcd + k} =

∞
n=0

(πngcd+k(e ⊗ Iq̃2×q̃2))j = (1 − π0e)/q2. (4.8)

The results are obtained sinceπ0e = 1−λ/µ. The expectation ofw(t) is obtained by routine calculations. This completes
the proof of Proposition 4.2. �

This proposition can be interpreted intuitively as follows. If gcd = 1, i.e., q1 and q2 are co-prime, w(t) has the same
probability of being any number between 0 and q2 for any queue length. Therefore, w(t) must have a discrete uniform
distribution on {0, 1, 2, . . . , q2 −1}. If gcd > 1, (i) if the server is idle,w(t) has the same probability of being 0, gcd, 2gcd, . . . ,
and (q̃2 − 1)gcd; (ii) if the server is busy, w(t) has the same (conditional) probability of being any number between 0 and
q2 − 1. Then the distribution of w(t) is obtained by adding up the probabilities for individual values of q(t).

It is interesting to see that themarginal distribution ofw(t) does not depend on the stationary distributionπ, but only on
original systemparameters. On the other hand, numerical results indicate that the conditional distributions ofw(t) and w̃(t)
are not independent of q(t). Therefore, to find the expected total cost C(r, q1, q2) (see Eq. (2.1)), we still need to consider
the CTMC {(q(t), IP(t), Ia(t), Is(t), w̃(t)), t ≥ 0}, in steady of {(q(t), IP(t), Ia(t), Is(t)), t ≥ 0}.

Remark 4.2. By definition, E[w(t)] can also be expressed in terms of π as follows:

E[w(t)] = π0

e ⊗


0
gcd
...

(q̃2 − 1)gcd


+

∞
n=1

q̃1−1
j=0

gcd
k=1

πn,jgcd+k

e ⊗


gcd − k
2gcd − k

...
q̃2gcd − k


 . (4.9)

In Eq. (4.9), πn is partitioned according to the variable IP(t) as πn = (πn,1,πn,2, . . . ,πn,q1).

Proposition 4.3. Assume that ρ < 1. For q(t), we have the following results.

(i) E[q(t)] ≥ ρ(q1 + 1)/2.
(ii)

E[q(t)] =

∞
n=1

nπne =
u1(q1QIP,1 ⊗ I − I ⊗ T0α)e − δ1

µ − λ
, (4.10)

where u1 and δ1 are given in Eq. (4.13).

Proof. To prove part (i), we apply a sample pathmethod.We first note that the queue length q(t) increases in batches of size
q1. During a busy period, the server serves a number of batches of size q1. The service of the batches cannot be overlapping,
but one batch can be waiting while the server is serving (remaining) customers in another batch. Since service times are
independent and identically distributed random variables, the mean queue length during the service of each batch has to
be greater than or equal to (q1 + 1)/2. Consequently, the mean queue length during a busy period is greater than or equal
to (q1 + 1)/2. By Proposition 3.3, the probability that the production facility is busy is ρ. Thus, by conditioning on the status
of the production facility at (arbitrary) time t , we obtain part (i).
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Part (ii) can be obtained by routine calculations for the first moment of the stationary distribution ofM/G/1 typeMarkov
chains (see Chapter 3 in [27]). Specifically, we take the first two derivatives of both sides in Eq. (3.14) to obtain

ϖ
∗(1)
1 (z)


(QIP,0 + zq1QIP,1) ⊕


T +

1
z
T0α


+ϖ∗

1(z)


(q1zq1−1QIP,1) ⊕


−

1
z2

T0α


= −π0(I ⊗ e)((q1zq1−1QIP,1) ⊗ α);

ϖ
∗(2)
1 (z)


(QIP,0 + zq1QIP,1) ⊕


T +

1
z
T0α


+ 2ϖ∗(1)

1 (z)


(q1zq1−1QIP,1) ⊕


−

1
z2

T0α


+ϖ∗

1(z)


(q1(q1 − 1)zq1−2QIP,1) ⊕


2
z3

T0α


= −π0(I ⊗ e)((q1(q1 − 1)zq1−2QIP,1) ⊗ α).

(4.11)

Let Qas = QIP ⊕ (T + T0α) = QIP ⊗ I + I ⊗ (T + T0α) and θas = e′
⊗ θa ⊗ θs/q1. Then Qas is an irreducible infinitesimal

generator, θasQas = 0 and θase = 1. Then it can be shown that Qas + eθas is invertible. By routine calculations, Eq. (4.11)
leads to

ϖ
∗(1)
1 (1) = (ϖ

∗(1)
1 (1)e)θas + u1;

ϖ
∗(1)
1 (1)(q1QIP,1 ⊗ I − I ⊗ T0α)e = δ1,

(4.12)

where

u1 = −(ϖ∗

1(1)(q1QIP,1 ⊗ I − I ⊗ (T0α)) + π0(I ⊗ e)(q1QIP,1 ⊗ α))(Qas + eθas)−1
;

δ1 = −
1
2
(ϖ∗

1(1)(q1(q1 − 1)QIP,1 ⊗ I + 2I ⊗ (T0α)) + π0(I ⊗ e)((q1(q1 − 1)QIP,1) ⊗ α))e.
(4.13)

Note that θas(q1QIP,1 ⊗ I − I ⊗ T0α)e = λ − µ. Post-multiplying by (q1QIP,1 ⊗ I − I ⊗ T0α)e on both sides of the first
equation in Eq. (4.11), we obtain Eq. (4.10).

In Eq. (4.13), π0 can be obtained by solving Eq. (3.11). For ϖ∗

1(1), we use Eq. (3.14) in a similar way and the fact
ϖ∗

1(1)e = ρ to obtain

ϖ∗

1(1) = ρθas − π0(I ⊗ e)(QIP ⊗ α)(Qas + eθas)−1. (4.14)

This completes the proof of Proposition 4.3. �

Remark 4.3. The two expressions in Eq. (4.10) for E[q(t)] can be used for checking the computation accuracy of π.

Proposition 4.4. Assume that ρ < 1. Then we have

E[(r + IP(t) − q(t) − w(t))+] =

q1
i=1

ma
ia=1

q̃2
j=1

π0,i,ia,w(r + i − (j − 1)gcd)+

+

Nmax
n=1

q1
i=1

q̃2
j=1


gcd
k=1

ma
ia=1

ms
is=1

π(n−1)gcd+k,i,ia,is,j


(r + i − (n − 1 + j)gcd)+, (4.15)

where Nmax = 1+⌈(r+q1)/gcd⌉, where ⌈x⌉ is the smallest integer greater than or equal to x. Then E[(q(t)+w(t)− r− IP(t))+]

can be obtained similarly or from E[(r + IP(t) − q(t) − w(t))+], E[IP(t)], E[q(t)], and E[w(t)].

Proof. Eq. (4.15) can be obtained by using Table 3.1. If q(t) = (n − 1)gcd + k > 0 and w̃(t) = j, we have w(t) = jgcd − k
and q(t) + w(t) = (n − 1 + j)gcd. Note that 0 ≤ IP(t) ≤ q1. If r + q1 ≤ q(t), we have r + IP(t) − (q(t) + w(t)) ≤ 0. In Eq.
(4.15), q(t) = (n − 1)gcd + k. Then we have r + IP(t) − (q(t) + w(t)) ≤ 0, if n > Nmax. The second result is obtained by
applying x+

= x + (−x)+ for any real number x. This completes the proof of Proposition 4.4. �

Propositions 4.1–4.4 indicate that the computation of the performancemeasures, including C(r, q1), can be done in finite
steps and explicitly, except for the computation of matrix G. Efficient algorithms have been developed for computing G in
the literature (see [26]). We would like to remark that the computation of the stationary distribution π involves large size
matrices. The explicit results obtained in this section are useful not only for computing performance measures, but also
useful for checking computation accuracy of π, as indicated by Remarks 4.1–4.3.

5. Computational issue and heuristic algorithm

In this section, we refine the method for computing the stationary distributionπ and introduce a heuristic algorithm for
computing the optimal (r, q1) policy.
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In Ramaswami’s algorithm for computingπ, the matrix G plays a key role. The computation of the matrix G can be made
more efficient. Note that the matrix A0 given in Eq. (3.8) has a special structure. Based on the special structure of A0, it is
easy to show that G has the following structure:

G =


0 · · · 0 G1
0 · · · 0 G2
...

...
...

...
0 · · · 0 Ggcd

 , (5.1)

where {Gj, j = 1, 2, . . . , gcd} are matrices of size q1mamsq̃2. By Eq. (3.10) and routine calculations, we obtain, for j =

1, 2, . . . , gcd,

0 = δ(j=1)I ⊗ (T0α) ⊗ U + δ(j≥2)(I ⊗ (T0α) ⊗ I)Gj−1 + ((QIP,0 ⊕ T ) ⊗ I)Gj +

QIP,1 ⊗ I ⊗ I


GjGq̃1

gcd , (5.2)
where δ(·) is the indicator function. Eq. (5.2) can be used for computing {Gj, j = 1, 2, . . . , gcd} iteratively. Eqs. (5.1) and (5.2)
indicate that, if gcd > 1, the computation of G can be more efficient. The special structure of G also leads to a more efficient
way to compute π in Eq. (3.11):

Gn
=


0 · · · 0 G1Gn−1

gcd
0 · · · 0 G2Gn−1

gcd
...

...
...

...

0 · · · 0 GgcdG
n−1
gcd

 , for n = 2, 3, . . . ;

Bn = δ(n=1)A1 +


0 · · · 0 (QIP,1 ⊗ I)G1Gq̃1−n

gcd
0 · · · 0 (QIP,1 ⊗ I)G2Gq̃1−n

gcd
...

...
...

...

0 · · · 0 (QIP,1 ⊗ I)GgcdG
q̃1−n
gcd

 , for n = 1, 2, . . . , q̃1 + 1;

B̂n =


0 · · · 0 (QIP,1 ⊗ I)Gq̃1−n

gcd


, for n = 1, 2, . . . , q̃1.

(5.3)

Consequently, Eq. (3.11) becomes, for n ≥ 1,

π0B̂n +

n−1
k=1

πMG1,kBn−k+1 = v(gcd) ⊗ ηn + δ(n≥q̃1+1)πMG1,n−q̃1Bq̃1+1,

ηn = δ(n≤q̃1)π0(QIP,1 ⊗ α⊗ I)Gq̃1−n
gcd +

min{n,q̃1}
k=2

gcd
j=1

π(n−k)gcd+j(QIP,1 ⊗ I)GjGq̃1−k
gcd ;

πMG1,n = −ηn((B
−1
1 )gcd,1, (B

−1
1 )gcd,2, . . . , (B

−1
1 )gcd,gcd) − δ(n≥q̃1+1)πMG1,n−q̃1Bq̃1+1B−1

1 ;

π0(A0,0 − (QIP,1 ⊗ α⊗ I)Gq̃1−1
gcd (B−1

1 )gcd,1(I ⊗ T0
⊗ U)) = 0,

(5.4)

where ((B−1
1 )gcd,1, (B−1

1 )gcd,2, . . . , (B
−1
1 )gcd,gcd) is the last (block) row of B−1

1 , which can be obtained from B−1
1 B1 = I as

follows:

(B−1
1 )gcd,j((QIP,0 ⊕ T ) ⊗ I) + (B−1

1 )gcd,j+1(I ⊗ (T0α) ⊗ I) = 0, for j = 1, . . . , gcd − 1;

(B−1
1 )gcd,gcd((QIP,0 ⊕ T ) ⊗ I) +


gcd
j=1

(B−1
1 )gcd,j(QIP,1 ⊗ I)Gj


Gq̃1−1
gcd = I.

(5.5)

Other blocks of B−1
1 can be found in a similar way. Details are omitted.

Eqs. (5.1)–(5.5) indicate that a large part of the computation of π can be done with matrix blocks of size q1mamsq2/gcd
or smaller. If gcd > 1, Eqs. (5.1)–(5.5) lead to a reduction not only in the computation time of Ramaswami’s algorithm, but
also in the memory space necessary for the implementation of the algorithm.

Next, we develop a heuristic algorithm for computing (r, q1) that minimizes the expected total cost defined in Eq. (2.1).
We would like to point out again that we assume that q(0) = w(0) = 0 so that q(t) andw(t) satisfy the relationship shown
in Table 3.1. If q(0) = w(0) = 0 does not hold, the analysis can carry through and the only difference is the interpretation
of the states of w̃(t).

First, Eq. (2.1) can be rewritten in the following form:

C(r, q1) =
λKw

q1
+ pw(E[q(t)] − E[IP(t)] − r) + (pw + hs)E[w(t)]

+
λKs

q2
+ (hw + pw)E[(r + IP(t) − q(t) − w(t))+]. (5.6)
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For any given policy (r, q1), formulas given in Section 4 can be used for computing C(r, q1). To find the optimal
policy, we first derive some properties associated with the optimal policy. By now, it is evident that the CTMC
{(q(t), IP(t), Ia(t), Is(t), w(t)), t ≥ 0} is independent of the reorder point r . Therefore, some useful properties can be
obtained.

For fixed q1, define r∗(q1) and r∗(q1) as

r∗(q1) = arg min
−∞<r<∞

{C(r, q1)};

r∗(q1) = arg min
−∞<r<∞


P{r + IP(t) ≥ q(t) + w(t)} ≤

pw

pw + hw


,

(5.7)

where

P{r + IP(t) ≥ q(t) + w(t)} =

q1
i=1

ma
ia=1

q̃2
j=1

π0,i,ia,jδ(r+i≥(j−1)gcd)

+

∞
n=1

gcd
k=1

q1
i=1

ma
ia=1

ms
is=1

q̃2
j=1

π(n−1)gcd+k,i,ia,is,jδ(r+i≥(n−1+j)gcd). (5.8)

Proposition 5.1. Assume that ρ < 1. Then we have

(1) r∗(q1) + q1 ≥ 0;
(2) For fixed q1, C(r, q1) is convex (discrete form) in r; and
(3) r∗(q1) = r∗(q1) or r∗(q1) + 1.

Proof. If r + q1 < 0, we must have r + IP(t) < 0. Then Eq. (5.6) becomes

C(r, q1) =
λKw

q1
+

λKs

q2
+ pw(E[q(t)] − E[IP(t)]) + (pw + hs)E[w(t)] − pwr, (5.9)

which is decreasing in r . Therefore, the cost function is minimized at r such that r + q1 ≥ 0. This proves part (1).
To prove parts (2) and (3), we define ∆(r) = C(r + 1, q1) − C(r, q1). By Eq. (4.15), we obtain

∆(r, q1) = (hw + pw)

q1
i=1

ma
ia=1

q̃2
j=1

π0,i,ia,jδ(r+i≥(j−1)gcd)

+ (hw + pw)

∞
n=1

gcd
k=1

q1
i=1

ma
ia=1

ms
is=1

q̃2
j=1

π(n−1)gcd+k,i,ia,is,jδ(r+i≥(n−1+j)gcd) − pw

= (hw + pw)P{q(t) = 0, r + IP(t) ≥ q(t) + w(t)} + (hw + pw)

×

∞
n=1

gcd
k=1

P{q(t) = (n − 1)gcd + k, r + IP(t) ≥ q(t) + w(t)} − pw

= (hw + pw)P{r + IP(t) ≥ q(t) + w(t)} − pw. (5.10)

The function ∆(r, q1) is clearly a nondecreasing function in r , which implies that C(r, q1) is convex (discrete form) in r .
Further, we have ∆(r, q1) ≤ 0 if r ≤ r∗(q1) and ∆(r, q1) ≥ 0 if r ≥ r∗(q1) + 1. Therefore, C(r, q1) is minimized at either
r∗(q1) or r∗(q1) + 1. This completes the proof of Proposition 5.1. �

Proposition 5.1 simplifies the search for the best reorder point r , for given order size q1, significantly. Based on
Proposition 5.1 and some observations on the optimal policies from a number of numerical examples, we propose the
following heuristic algorithm for finding the optimal (r, q1) policy for fixed q2.
An heuristic algorithm for computing the optimal (r, q1). Set q1 = q∗

1 = 1 and Cmin = ∞. Choose qU as a big positive integer.
Let C∗(q1) = C(r∗(q1), q1).

1. For q1, find π by using Eq. (3.11).
2. Use Eqs. (5.7) and (5.8) to find r∗(q1). Then calculate C∗(q1).
3. If C∗(q1) < Cmin, set q∗

1 = q1 and Cmin = C∗(q1). Set q1 =: q1 + 1 and go to step 1.
4. If C∗(q1) ≤ 2Cmin or q1 ≤ qU , Set q1 =: q1 + 1 and go to step 1.
5. If C∗(q1) > 2Cmin and q1 > qU , stop.

The solution (r∗(q∗

1), q
∗

1) is likely to be the optimal solution. The selection of qU is a key issue for the algorithm to find
the optimal (r, q1) policy successfully, which can be an interesting future research topic. It is clear that the optimal policy
can be found if the upper-bound qU is sufficiently large.
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Fig. 6.1. Cost functions for Example 6.1.

6. Numerical examples and extensions

In this section, we use four cases to discuss issues related to the optimal (r,Q ) policy (Examples 6.1 and 6.2), and model
extension (Examples 6.3 and 6.4).

Example 6.1. Consider an inventory–production system with the following parameters:

MAP : ma = 2, D0 =


−0.7 0.2
0 −2


, D1 =


0.5 0
0.3 1.7


;

PH-distribution : ms = 2, α = (0.9, 0.1), T =


−8 1
0.4 −0.4


;

Costs : hw = 1, pw = 1.2, hs = 1.5, Kw = 5, and q2 = 4.

The demand arrival rate is λ = 1.1 and the service rate is µ = 1.33333. The coefficient of variation of the production
time is 2.3938, which indicates that the production time is quite variable. Since the cost Ks does not affect the selection of
(r, q1), we set Ks = 0.

The cost functions C(r, q1) and C∗(q1) are plotted in Fig. 6.1(a) and (b), respectively. The optimal (r,Q ) policy for the
warehouse is (r∗, q∗

1) = (9, 16)with an expected total cost per unit time C∗
= 18.4013 per unit time. As shown in Fig. 6.1(a),

the cost function C(r, q1) is not convex in (r, q1). The function C∗(q1) is not convex in q1. This makes it more challenging to
develop an algorithm for finding the optimal (r,Q ) policy. In addition, we find

(i) r∗(q1) = 13, 12, 12, 11, 11, 11, 11, 10, 10, 10, 10, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, for q1 = 1, 2, . . . , 31.
(ii) r∗(q1) + q1 = 14, 14, 15, 15, 16, 17, 18, 18, 19, 20, 21, 21, 22, 23, 24, 25, 25, 26, 27, 28, 29, 29, 30, 31, 32, 33, 34, 35, 35,

36, 37, for q1 = 1, 2, . . . , 31.

The above results indicate that the reorder point r∗(q1) seems nonincreasing in q1, and the order-up-to level r∗(q1) + q1
seems nondecreasing in q1, which are consistent with intuition.

Example 6.2. Consider a model with Poisson demands with λ = 1.1 and exponential production times with µ = 1.33333.
All other parameters are the same as that of Example 6.1. Note that the demand arrival rate and the production rate are the
same as that of Example 6.1 as well. Thus, the main difference between the models considered in Examples 6.1 and 6.2 are
(i) the demand process in Example 6.1 is more bursty, and (ii) the production time in Example 6.1 is more variable (note
that the coefficient of variation of an exponential random variable is 1).

For Example 6.2, the optimal (r,Q ) policy is (r∗, q∗

1) = (2, 12), which is quite different from (7, 16) for Example 6.1. The
minimum expected total cost per unit time is 7.2237 for Example 6.2, which is also drastically different from 17.0835 for
Example 6.1. The two models in Examples 6.1 and 6.2 have the same demand rates and the same production rates, but the
performances of the two systems are significantly different.

Examples 6.1 and 6.2 show that the burstiness of the demand process and the variability of the production times have
significant impact on the optimal inventory control in the warehouse. Thus, they should be considered in the design of
such inventory–production systems. Examples 6.1 and 6.2 also indicate that the minimum expected total cost per unit
time depends on not only the (average) demand rate and mean production time, but also the types of demand processes
and production times. Thus, the utilization of MAPs for the demand process and PH-distributions for the production time
becomes necessary for more accurate estimates of performance measures, in addition to inventory control.
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Fig. 6.2. Costs functions for Example 6.3.

Example 6.3. In this example, we consider the system with q2 = q1. In practice, the assumption implies that the
finished products in an order must be transported together from the production facility to the warehouse. The immediate
consequences of q2 = q1 are: (i) gcd = q1; and (ii) q(t) + w(t) = q̃(t)q1, where q̃(t) is the queue length of
the MAP(q1)/PH(q1)/1 queue. The queue MAP(q1)/PH(q1)/1 can be defined from the MAP/PH/1 queue by grouping
consecutive q1 customers to form a super customer, where q̃(t) counts the number of super customers in the queueing
system. Then Eq. (2.1) becomes

C(r, q1, q1) =
λ(Kw + Ks)

q1
+ hsρ

q1 − 1
2

+ hwE[(r + IP(t) − q1q̃(t))+] + pwE[(q1q̃(t) − r − IP(t))+]. (6.1)

The Markov chain to be analyzed is {(q̃(t), IP(t), Ia(t), Is(t)), t ≥ 0}. Although q2 increases with q1 in this case, the
matrices involved in Ramaswami’s algorithm (see Eq. (3.11)) are of size q1mams. Thus, numerical analysis of this model can
be done efficiently.

Use all the parameters given in Example 6.1, except that of q2. We obtain cost functions C(r, q1) and C∗(q1), which are
plotted in Fig. 6.2(a) and (b), respectively. The optimal (r,Q ) policy is (r∗, q∗

1) = (11, 3) with C∗
= 18.8711 per unit time.

Note that the optimal solution (11, 3) is quite different from the optimal solution (9, 16) where q2 is fixed at 4. On the other
hand, the corresponding minimum costs are similar: 18.8711 and 18.4013.

An interesting observation is that the cost functions C∗(r, q1) and C∗(q1) seem to be convex, if q1 = q2. If it is true, the
search for the optimal policy becomes feasible and can be efficient.

Example 6.4. In practice, demands may arrive in batches. In this example, we construct MAPs that can approximate batch
arrival processes. The idea is to construct MAPs such that the arrival of one demand can be followed by several demands
in a very short period of time. In general, a batch arrival process can be modeled by using BMAP [23], which has a matrix
representation (C0, C1, . . . , CK ), where Ck is for the (matrix) arrival rate of batches of size k. We define

D0 =


C0

−ξ I
. . .

−ξ I

 , D1 =


C1 C2 · · · CK
ξ I 0

. . .
. . .

ξ I 0

 . (6.2)

If ξ is sufficiently large, then (D0,D1) is anMAP that approximates (C0, C1, . . . , CK ).

Remark 6.1. Wedo not consider BMAP directly in this paper due to the difficulty to construct an irreducible versionMarkov
chain for {(q(t), IP(t), Ia(t), Is(t), w(t)), t ≥ 0}, if a BMAP is utilized.

7. Conclusions and discussion

This paper develops an efficient algorithm for the performance analysis of the inventory–production system of interest.
Numerical results demonstrate the usefulness of MAPs and PH-distributions in getting accurate estimates of performance
measures and in improving inventorymanagement. Some issues, such as algorithms for computing the optimal (r,Q ) policy
and the analysis of an inventory–production system with a positive transportation time from the production facility to the
warehouse, are worth further investigation.
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