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Abstract In this paper we study queueing systems with customer interjections. Cus-
tomers are distinguished into normal customers and interjecting customers. All cus-
tomers join a single queue waiting for service. A normal customer joins the queue at
the end and an interjecting customer tries to cut in the queue. The waiting times of
normal customers and interjecting customers are studied. Two parameters are intro-
duced to describe the interjection behavior: the percentage of customers interjecting
and the tolerance level of interjection by individual customers. The relationship be-
tween the two parameters and the mean and variance of waiting times is characterized
analytically and numerically.

Keywords Queueing system · Waiting time · Stochastically larger order · Priority
queue · Matrix-analytic methods

Mathematics Subject Classification 60K25 · 60J20

1 Introduction

Wherever queues exist, customer interjections may occur. For instance, the first-
come-first-served (FCFS) service discipline is usually assumed in public places such
as airports, supermarkets, and restaurants. However, customer interjections can still
be seen there. Some customers simply try to cut in queue, while others find excuses
or find friends in the queue to cut in. For traffic at an intersection with several lanes,
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some drivers may use a left (right) turning lane to cut into a straight lane or vice versa.
Such interjections can cause the traffic to slow down in order to avoid possible ac-
cidents. In telecommunications networks, to test the efficiency of data transmission,
artificial packages are inserted into the normal traffic in a random manner. Customer
interjections may save time for some customers, while they may increase the waiting
times of others. In some cases (e.g., traffic at an intersection and data packages in
telecommunication networks), interjections can reduce the efficiency of the system.
Thus, customer interjection is a factor that should not be ignored in the design and
operation control of service, transportation, and telecommunication systems.

Larson [11] discussed social justice and the psychology of queueing. Larson used
“slips” and “skips” to describe customer interjections: “he who experiences a slip
is victimized; he who skips gets a certain sense of satisfaction from his good for-
tune.” A number of examples where slips and skips occur are presented and analyzed
in [11]. For some cases, non-technical but effective solutions are discussed. In [5]
some probability laws for slips and skips in a number of different classical queue-
ing systems were derived. The models considered in [5] are different from the model
studied in this paper. In particular, they considered the situation where first-in cus-
tomers leave the queueing system later than others. The difference between the order
of arrivals and the order of departures is caused mainly by service, not interjection.
In [24] a similar issue was considered for queueing networks, where slips and skips
are called customers overtaken.

The queueing model investigated in this paper is closely related to queueing mod-
els in which queue positions can be purchased (e.g., [1, 7, 9, 13], and references
therein). In such queueing models, the queue positions of customers are determined
by how much they pay to the system. Thus, the relative positions of all customers in
queue are determined by their payments (or bribe). For a number of cases, when a cost
function is introduced, the optimal policy for payment has been obtained. Queueing
models in which customers pay for queue position have found applications in auc-
tion, supply chain management, social systems, and computer systems. In the model
studied in this paper, the queue position of a newly arrived interjecting customer is
determined by the kindness of customers already in queue, not by the payment of the
customer.

The queueing model investigated in this paper is also closely related to queueing
models with customer service priorities ([4, 7, 10, 21, 22], and references therein). In
priority queues, customers with higher priority skip over customers with lower pri-
ority, which leads to the difference between the waiting times of different types of
customers. The queueing process of customers with higher priority is, in general, not
affected by that of lower priority customers. The reason is that the service priorities
are maintained during the waiting and service periods of customers. Furthermore,
customers already in queue have little influence on the positions of new customers.
For a queue with customer interjections, an interjecting customer’s queue position
depends on all customers in queue at the arrival epoch. Consequently, the queueing
processes of all types of customers interact with others. Thus, while customer inter-
jections can be viewed as partial priority, its impact on the queueing processes of
customers of different types of customers in queue is different from that of customer
priority. In Sect. 2.5 a comparison between the waiting times of a queue with cus-
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tomer interjections, a standard FCFS queue, and a priority queue is carried out. The
results indicate that the behaviors of the queues are significantly different.

Queues with customer jockeying (or transferring) ([23, 25], and references therein)
were studied extensively. For such queueing models, customer “slips” and “skips” can
occur since there are multiple queues and jockeying between queues. For some cases,
customers can choose which queue to join in order to minimize their waiting times.
In those systems the decision for jockeying resides within individual customers and
there is no interaction between customers. In our model the customer interjection pro-
cess is between interjecting customers and non-interjecting customers. The behavior
of either type of customers has great impact on the queueing process of the other.

In this paper we study a queueing model for which all customers join a single
queue. Some of the customers will try to cut in the queue expecting to be served
earlier. We call such an action customer interjection and customers with such an
action interjecting customers. Customers with no intention of interjecting are called
normal customers. We investigate the effects of customer interjections on the waiting
times of interjecting, normal, and arbitrary customers. We focus on the relationship
between the waiting times and two system parameters related to societal behavior:
the percentage of interjecting customers and the tolerance level of interjection by
individual customers. Intuitively, it is expected that:

(i) The impact of the societal tolerance level of interjection and the percentage of
interjecting customers on the mean and variance of the waiting time of a nor-
mal customer is negative; i.e., when the two parameters increase, the mean and
variance increase.

(ii) The impact of the societal tolerance level of interjection on the mean of the
waiting time of an interjecting customer is, in general, positive; i.e., the higher
the tolerance level, the smaller the mean waiting time.

(iii) The societal tolerance level of interjection and the percentage of interjecting
customers have no impact on the mean waiting time of an arbitrary customer. On
the other hand, their impact on the variance of the waiting time of an arbitrary
customer is significant.

Using both theoretical and numerical methods, Sect. 2 shows that the above intu-
itive results are indeed true for an M/M/1 queue. In Sect. 3 the results are confirmed
numerically for a more general queueing model. Numerical examples in Sect. 3 also
demonstrate that the mean and variance of the waiting time of a normal/interjecting
customer increase if the arrival processes of normal and interjecting customers are
bursty or if the service time is more variable.

The theory of Markov processes [4, 18, 19] provides us with the basic tool to
study the queueing system of interest. In addition, stochastic comparison [3, 20] and
matrix-analytic methods [16, 17] are utilized in the study as well. Particularly, the
monotonicity of the waiting times in some system parameters is shown by using
stochastic comparison. Algorithms for computing the means and variances of waiting
times are developed based on matrix-analytic methods, which take the advantage of
the tri-diagonal structure in the transition matrix.

The remainder of the paper is organized as follows. In Sect. 2 a basic queueing
model with customer interjections, i.e., an M[2]/M/1 queue with customer interjec-
tions, is introduced and analyzed. Section 2.1 studies the absorption time of a Markov
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process that is used in finding the waiting times of customers. In Sects. 2.2 and 2.3 the
waiting time of a normal customer and the waiting time of an interjecting customer
are investigated, respectively. In Sect. 2.4 the waiting time of an arbitrary customer is
investigated. Section 2.5 compares the M/M/1/FCFS queue, a priority M/M/1 queue,
and the M/M/1 queue with customer interjections. In Sect. 3 the basic queueing model
is extended to an MMAP[2]/PH/1 queue by incorporating correlations in the customer
arrival process and by using more general service time distributions. An algorithm is
developed for computing the means and variances of the waiting times of normal,
interjecting, and arbitrary customers. Section 4 concludes the paper.

2 An M[2]/M/1 queue with customer interjections

We consider a single server queueing system with a single queue and two types of
customers. The two types of customers are called normal customers and interject-
ing customers, respectively. When a normal customer arrives, it joins the queue at
the end. When an interjecting customer arrives, it may join the queue at any queue
position depending on the queue length at the arrival epoch and a given probability
distribution.

We assume that customers arrive at the system according to a Poisson process with
arrival rate λ. The service times of all customers are independent and identically dis-
tributed random variables with an exponential distribution with service rate μ. The
service process and the arrival process are independent. We assume that an arriving
customer is interjecting with probability ηI (0 ≤ ηI ≤ 1) and is normal with prob-
ability 1 − ηI . Note that the subscript “I” is for the word “interjection.” According
to a classical result for Poisson processes [18], such an arrival process can also be
viewed as the superposition of two independent Poisson processes with arrival rates
ηIλ and (1−ηI )λ, respectively. When an interjecting customer arrives, it tries to join
the queue as close to the head of the queue as possible. We assume that the interject-
ing customers do not interrupt the service in progress. Thus, the arriving customer
contacts the first customer waiting in queue for possible interjection. That customer
(regardless of its own type) may let the new customer cut in with probability ηC

(0 ≤ ηC ≤ 1) (i.e., taking the first position in queue). Note that the subscript “C” is
for “cutting in”. If the first customer refuses the interjection request, the new customer
contacts the second customer in queue. The process repeats until either the customer
interjects successfully or it joins the queue at the end if all waiting customers refuse
its interjection request. We assume that the time for finding a position in queue is neg-
ligible for an interjecting customer. Given that there are n customers in queue at the
arrival epoch, there are positions {1,2, . . . , n + 1} available to the arriving interject-
ing customer. Thus, the position taken by the interjecting customer has a truncated
geometric distribution {ηC, (1−ηC)ηC, (1−ηC)2ηC, . . . , (1−ηC)n−1ηC, (1−ηC)n}
on positions {1,2, . . . , n + 1}.

It is easy to see that, if ηI = 0 or ηC = 0, the queueing model is reduced to the
classical M/M/1 queue with a first-come-first-served (FCFS) service discipline. If
ηI = ηC = 1, the queueing model is reduced to the classical M/M/1 queue with a
last-come-first-served (LCFS) service discipline.
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The parameter ηI represents the percentage of customers with interjection inten-
tion, which reflects the societal behavior on interjection. The parameter ηC represents
the level of tolerance of individuals on interjection. We are mainly interested in the
impact of the pair (ηI , ηC) on the waiting times of normal customers and interjecting
customers. From a social justice point of view, it is always expected that the values
of ηI and ηC should be low, i.e., close to zero. Thus, we shall pay special attention to
cases in which ηI or ηC is close to zero.

It is readily seen that the queue length in the system of interest is the same as that
in the classical M/M/1 queue with an FCFS service discipline, but the waiting time
can be different. Define q(t) as the total number of customers in the system at time t ,
which is usually called the queue length at time t . Then the steady state distribution
of q(t) exists if and only if ρ = λ/μ < 1, and is given by [4]:

lim
t→∞P

{
q(t) = n

}= (1 − ρ)ρn, n ≥ 0. (2.1)

In the rest of this section we study the waiting times of normal customers, inter-
jecting customers, and arbitrary customers. To that end, we first analyze the waiting
time of a customer in the nth position in the queue.

2.1 Waiting time of a customer in position n

Let Wn(ηI , ηC) be the waiting time of a customer currently in position n in the queue;
i.e., the length of the time starting from the epoch that a customer is currently in
position n in the queue and ending at the epoch that the customer enters the server,
n ≥ 1. The waiting times of normal customers and interjecting customers can be
expressed in terms of {Wn(ηI , ηC), n ≥ 1} (see Eqs. (2.11) and (2.16)).

To find the distribution of Wn(ηI , ηC), we introduce an absorbing Markov process
to describe the change of position of a customer in the queue. Suppose that a customer
is in position n in the queue. The customer moves to position n − 1 if the current
service completes before the next arrival. If the next arrival occurs first, the customer
remains in position n if the arrival does not interject. If the new customer interjects
into one of the first n positions, the customer in position n moves to position n + 1.
The new customer interjects into one of the first n positions with probability ηI (1 −
(1 − ηC)n). Therefore, the change of the position of a customer in queue can be
described by a Markov process with a state space {0,1,2, . . .}:

Qa =

0
1
2
3
...

⎛

⎜⎜⎜⎜⎜
⎝

0 0
μ Q1,1 Q1,2

Q2,1 Q2,2 Q2,3
Q3,2 Q3,3 Q3,4

. . .
. . .

. . .

⎞

⎟⎟⎟⎟⎟
⎠

≡
(

0 0
b Q

)
, (2.2)

where b is a column vector with all elements being zero except the first one which
is μ, and Q is a tri-diagonal matrix with Qi,i = −μ−ληI (1−(1−ηc)

i), Qi+1,i = μ,
and Qi,i+1 = ληI (1 − (1 − ηc)

i), for i ≥ 1. By definition, Wn(ηI , ηC) is the absorp-
tion time of state zero of the Markov process Qa given that the initial state was
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n,n ≥ 1. Thus, the distribution of Wn(ηI , ηC) has a phase type representation [16]
with an infinite state space and

P
{
Wn(ηI , ηC) < t

}= 1 − αn exp{Qt}e, (2.3)

where αn is a vector with the nth component being one and all others zero, and e is the
column vector with all components being one. By a well-known ergodicity condition
for birth-and-death processes [4, 18], the following lemma gives a necessary and
sufficient condition for the finiteness of the waiting times. In fact, the condition in
Lemma 2.1 ensures that the absorption time of the state zero is finite with probability
one. Details of the proof are omitted.

Lemma 2.1 The waiting times {Wn(ηI , ηC), n ≥ 1} are finite with probability one if
and only if ηIρ < 1. The moments of waiting times {Wn(ηI , ηC), n ≥ 1} are finite if
and only if ηIρ < 1.

Intuitively, ηIρ < 1 implies that the process Qa , on average, always drifts toward
state zero. We shall assume ηIρ < 1 in the rest of this section. In Sects. 2.2 and 2.4
the condition ηIρ < 1 is replaced by a stronger one ρ < 1 to ensure the finiteness of
the waiting times of normal customers and arbitrary customers.

For two random variables X and Y , X is stochastically larger than Y if P {X < t} ≤
P {Y < t} for all t . We refer to [14, 20] for basic properties of the stochastically larger
order. It is intuitive that Wn(ηI , ηC) is increasing in ηI and ηC . Based on Eqs. (2.2)
and (2.3) and Lemma 2.1, the stochastic monotonicity of Wn(ηI , ηC) in ηI and ηC

can be shown.

Lemma 2.2 Assume that ηIρ < 1. If (ηI , ηC) ≤ (η′
I , η

′
C), i.e., ηI ≤ η′

I and ηC ≤ η′
C ,

then the waiting time Wn(η
′
I , η

′
C) is stochastically larger than the waiting time

Wn(ηI , ηC).

Proof By Eq. (2.3), we have

P
{
Wn(ηI , ηC) > t

}= e−(λ+μ)tαn exp

{(
I + Q

λ + μ

)
(λ + μ)t

}
e

= e−(λ+μ)t
∞∑

m=0

((λ + μ)t)m

m! αnP
me, (2.4)

where I is the identity matrix and P = I + Q/(λ + μ) = (pi,j )i,j≥1, which is a
substochastic matrix [19]. To prove the lemma, it is sufficient to show that P me
is non-decreasing in ηI and ηC elementwise for m ≥ 0. It is easy to see that the
matrix P is monotone, i.e., the (k + 1)st row of P dominates the kth row of P

for all k ≥ 0,
∑∞

j=n pk+1,j ≥∑∞
j=n pk,j , for n ≥ 1 [14]. It is also easy to obtain

P e = (λ/(λ+μ),1,1, . . .)T, where “T” is for transpose. Thus, the components of P e
are non-decreasing. Let P me = (dm,1, dm,2, . . .)

T. Suppose that dm,1 ≤ dm,2 ≤ · · ·,
i.e., the elements of P me are in ascending order. For P m+1e, we have, for j ≥ 2,
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dm+1,j = pj,j−1dm,j−1 + pj,j dm,j + pj,j+1dm,j+1

≥ pj,j−1dm,j−2 + pj,j dm,j−1 + pj,j+1dm,j

= pj−1,j−2dm,j−2 + pj−1,j−1dm,j−1 + pj−1,j dm,j

+ (pj,j − pj−1,j−1)dm,j−1 + (pj,j+1 − pj−1,j )dm,j

= dm+1,j−1 + ληI (1 − ηC)j−1ηC

λ + μ
(dm,j − dm,j−1)

≥ dm+1,j−1. (2.5)

By induction, P me is monotone for all m.
Suppose that (ηI , ηC) ≤ (η′

I , η
′
C). Then P is dominated by P ′ (i.e., every row

of P is dominated by the corresponding row of P ′), which can be readily obtained
by comparing the vectors (μ/(λ + μ),1 − μ/(λ + μ) − ληI (1 − (1 − ηC)n)/(λ +
μ),ληI (1 − (1 − ηC)n)/(λ + μ)) and (μ/(λ + μ),1 − μ/(λ + μ) − λη′

I (1 − (1 −
η′

C)n)/(λ + μ),λη′
I (1 − (1 − η′

C)n)/(λ + μ)). Since P e = P ′e, P e is dominated by
P ′e. Suppose that P me is dominated by (P ′)me. Since P is monotone and P me is
dominated by (P ′)me, we have P(P me) ≤ P(P ′)me. Since P is dominated by P ′
and (P ′)me is monotone, we have P(P ′)me ≤ P ′(P ′)me. Then P m+1e = P(P me) ≤
P(P ′)me ≤ P ′(P ′)me = (P ′)m+1e. Therefore, the elements of P me are monotone in
(ηI , ηC) for all m. By Eq. (2.4), the waiting time is monotone in (ηI , ηC) with respect
to the stochastically larger order. This completes the proof of Lemma 2.2. �

Define w∗
n(s) = E[exp{−sWn(ηI , ηC)}], s ≥ 0. For convenience, we define

W0(ηI , ηC) = 0. Then we have w∗
0(s) = 1. Conditioning on the next transition of

the Markov process Qa , it is easy to obtain: for n ≥ 1,

w∗
n(s) = μ + ληI (1 − (1 − ηC)n)

s + μ + ληI (1 − (1 − ηC)n)

[
μw∗

n−1(s)

μ + ληI (1 − (1 − ηC)n)

+ ληI (1 − (1 − ηC)n)w∗
n+1(s)

μ + ληI (1 − (1 − ηC)n)

]
. (2.6)

By Eq. (2.6), the following expression for w∗
n(s) can be obtained, which is more

convenient for analyzing the mean and variance of waiting times.

Lemma 2.3 Assume that ηIρ < 1. The functions {w∗
n(s), n ≥ 1} satisfy the following

equation:

w∗
n(s) = 1 − s

μ

[ n∑

m=1

∞∑

k=m

[
(ρηI )

k−m
k−m−1∏

j=0

(
1 − (1 − ηC)m+j

)]
w∗

k (s)

]
. (2.7)

Note that
∏−1

j=0(. . .) = 1 and w∗
0(s) = 1 by convention.

With the expression in Eq. (2.7), we are able to derive formulas for the mean and
variance of the waiting time Wn(ηI , ηC). The results are summarized in the following
lemma.
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Lemma 2.4 Assume that ηIρ < 1. The first two moments of Wn(ηI , ηC) are non-
decreasing in ηI and ηC for n ≥ 1. Furthermore, the first two moments of Wn(ηI , ηC)

are given explicitly as follows: E[W0(ηI , ηC)] = E[(W0(ηI , ηC))2] = 0, and for
n ≥ 1,

E
[
Wn(ηI , ηC)

]= 1

μ

n∑

m=1

∞∑

k=m

(ρηI )
k−m

k−m−1∏

j=0

(
1 − (1 − ηC)m+j

);

E
[
W 2

n (ηI , ηC)
]

= 2

μ

n∑

m=1

∞∑

k=m

(ρηI )
k−m

(
k−m−1∏

j=0

(
1 − (1 − ηC)m+j

)
)

E
[
Wk(ηI , ηC)

]
.

(2.8)

In addition, the variance of Wn(ηI , ηC), denoted by Var[Wn(ηI , ηC)], is increasing
in ηI and ηC . For fixed ηC , the functions E[Wn(ηI , ηC)], E[(Wn(ηI , ηC))2], and
Var[Wn(ηI , ηC)] are convex in ηI .

Proof By Lemma 2.2, Wn(ηI , ηC) becomes stochastically larger if ηI and ηC are
increasing. Consequently, the first two moments of Wn(ηI , ηC) are non-decreasing
in ηI and ηC . Expressions in Eq. (2.8) are obtained from Eq. (2.7) by routine cal-
culations. The last part of the lemma is obtained from Lemmas A.1 and A.2 in the
Appendix. This completes the proof of Lemma 2.4. �

Using expressions in Eq. (2.8), the mean and variance of Wn(ηI , ηC) can be cal-
culated. However, a computational method based on Eq. (2.8) can be numerically
instable and time consuming. Existing approximation methods can be used to com-
pute the mean and variance more efficiently (e.g., [6, 15]). Based on matrix-analytic
methods, an efficient algorithm for computing the first two moments of Wn(ηI , ηC)

is developed in the Appendix.

2.2 Waiting time of a normal customer

We now consider the waiting time W[N](ηI , ηC) of a (arbitrary) normal customer.
Recall that a normal customer always joins the queue at the end. Assuming ρ < 1
and conditioning on the number of customers in the system at the arrival epoch, by
Eq. (2.1), we obtain

P
{
W[N](ηI , ηC) < t

}= 1 − ρ +
∞∑

n=1

(1 − ρ)ρnP
{
Wn(ηI , ηC) < t

}
, t > 0.

(2.9)

By Eq. (2.9), we obtain

E
[
W[N](ηI , ηC)

]=
∞∑

n=1

(1 − ρ)ρnE
[
Wn(ηI , ηC)

]

= 1

μ

∞∑

k=0

(ρηI )
k

[ ∞∑

m=1

ρm

k−1∏

j=0

(
1 − (1 − ηC)m+j

)
]

; (2.10)
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Fig. 2.1 The mean and variance of W[N](ηI , ηC) for 0 ≤ ηI , ηC ≤ 1

Var
[
W[N](ηI , ηC)

]=
∞∑

n=1

(1 − ρ)ρnE
[(

Wn(ηI , ηC)
)2]− (E[W[N ](ηI , ηC)

])2
.

By Lemmas 2.2 and 2.4, and Eqs. (2.9) and (2.10), W[N](ηI , ηC), E[W[N](ηI , ηC)],
and Var[W[N](ηI , ηC)] are characterized as follows.

Proposition 2.1 If ρ < 1, the random variable W[N](ηI , ηC) is non-decreasing in ηI

and ηC with respect to the stochastically larger order. In addition, we have

(i) The function E[W[N](ηI , ηC)] is non-decreasing in ηI and ηC . For fixed ηC , the
function E[W[N](ηI , ηC)] is convex in ηI .

(ii) The function Var[W[N](ηI , ηC)] is non-decreasing in ηI and ηC . For fixed ηC ,
the function Var[W[N](ηI , ηC)] is convex in ηI .

We remark that (i) E[W[N ](ηI , ηC)]μ gives the mean number of customers served
during the waiting period of a normal customer (this applies to other types of cus-
tomers as well) and (ii) numerical results indicate that E[W[N](ηI , ηC)] is neither a
convex nor a concave function in ηC .

In the rest of this section we analyze the mean and variance of W[N](ηI , ηC)

numerically. The following example demonstrates the structure of both functions
E[W[N](ηI , ηC)] and Var[W[N](ηI , ηC)].

Example 2.1 We consider a queueing model with λ = 8 and μ = 10. Then ρ =
0.8 < 1. The mean and variance of W[N](ηI , ηC) are plotted in Fig. 2.1 for 0 ≤ ηI ,
ηC ≤ 1.

Figure 2.1 shows that the mean and variance of the waiting time of a normal cus-
tomer are non-decreasing in both ηI and ηC , which is consistent with Proposition 2.1.
Intuitively, for fixed ηC , if ηI increases, more customers will interject. Consequently,
the waiting time of a normal customer will increase. For fixed ηI , if ηC increases,
the chance for more customers cutting in before a given customer is greater. Conse-
quently, the waiting time of a normal customer will increase. Figure 2.1 also shows
that the variance of the waiting time is non-decreasing in both ηI and ηC . It is
well known that the variance of the waiting time is minimized if customers are all
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served on the FCFS basis. If ηI or ηC increases, the service order is drifting away
from FCFS. Consequently, the variance of the waiting time of a normal customer in-
creases. The variance is maximized at ηI = ηC = 1, which corresponds to the M/M/1
queue with an LCFS service discipline. Numerical experiments are conducted for
examples with different arrival rate λ and service rate μ. For all examples tested,
E[W[N](ηI , ηC)] and Var[W[N](ηI , ηC)] are similar to those plotted in Fig. 2.1.

The plots in Fig. 2.1 show that the mean and variance of the waiting time of a
normal customer can increase drastically due to interjection. They also show that the
increase is most significant at boundary points. Next, we conduct a sensitivity analysis
on the mean waiting time E[W[N](ηI , ηC)]. By routine calculations, Eq. (2.10) leads
to the following results.

Proposition 2.2 Assume that ρ < 1. For the boundary points (ηI ,0), (ηI ,1), (0, ηC),
and (1, ηC), we have

∂E[W[N](ηI , ηC)]
∂ηI

∣∣∣∣
ηI =0

= ρ2ηc

μ(1 − ρ)(1 − ρ(1 − ηC))
;

∂E[W [N ](ηI , ηC)]
∂ηI

∣∣
∣∣
ηI =1

= (1 − ρ)

μ

∞∑

n=1

∞∑

k=1

ρn+kk

n∑

m=1

k−1∏

j=0

(
1 − (1 − ηC)m+j

)
,

(2.11)

and

∂E[W[N](ηI , ηC)]
∂ηC

∣∣∣∣
ηC=0

= ρ2ηI

μ(1 − ρ)2
;

∂E[W[N](ηI , ηC)]
∂ηC

∣∣∣∣
ηC=1

= ρ2ηI

μ(1 − ρηI )
.

(2.12)

By Eqs. (2.11) and (2.12), we observe that the derivative of E[W[N](ηI , ηC)] is
larger, sometime significantly, at ηC = 0 than that at ηC = 1. The implication is that a
small increase in the tolerance level may lead to a significant increase in the waiting
time of a normal customer. Thus, it is important to make sure that no one tolerates
interjection, i.e., to keep ηC = 0.

In summary, both the mean and variance of W[N](ηI , ηC) are increasing in ηI

and ηC . Therefore, reducing the chance for customer interjections is always beneficial
to normal customers.

2.3 Waiting time of an interjecting customer

Denote by W[I ](ηI , ηC) the waiting time of an (arbitrary) interjecting customer. If an
interjecting customer finds n customers waiting in queue upon arrival, the customer
takes position j with probability (1 − ηC)j−1ηC , 1 ≤ j ≤ n, and position n + 1 with
probability (1−ηC)n. Assuming ρ < 1 and conditioning on the number of customers
in the system at the arrival epoch, we obtain
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E
[
exp
{−sW[I ](ηI , ηC)

}]

= 1 − ρ +
∞∑

n=1

(1 − ρ)ρn

[
n−1∑

j=1

(1 − ηC)j−1ηCw∗
j (s) + (1 − ηC)n−1w∗

n(s)

]

= 1 − ρ + (1 − ρ(1 − ηC)
) ∞∑

n=1

ρn(1 − ηC)n−1w∗
n(s). (2.13)

If ρ ≥ 1, the (total) queue length is infinite, an interjecting customer takes position
j in the queue with probability (1 − ηC)j−1ηC , 1 ≤ j < ∞. Assuming ηIρ < 1,
ηc < 1, and ρ ≥ 1, we have

E
[
exp
{−sW[I ](ηI , ηC)

}]=
∞∑

n=1

(1 − ηC)n−1ηCw∗
n(s). (2.14)

By Lemma 2.4 and Eqs. (2.13) and (2.14), the first two moments of W(I)(ηI , ηC)

can be obtained as follows, if ηIρ < 1:

E
[
W[I ](ηI , ηC)

]

=
{

(1 − ρ(1 − ηC))
∑∞

n=1 ρn(1 − ηC)n−1E[Wn(ηI , ηC)], ρ < 1;
∑∞

n=1 ηC(1 − ηC)n−1E[Wn(ηI , ηC)], ηC > 0 and ρ ≥ 1.

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
μ(1−ηC)

∑∞
k=0(ρηI )

k[∑∞
m=1(ρ(1 − ηC))m

∏k−1
j=0(1 − (1 − ηC)m+j )],

ρ < 1;
1

ηCμ
+ ηC

μ

∑∞
n=1
∑∞

k=1(ρηI )
k(1 − ηC)n−1[∑n

m=1
∏k−1

j=0(1 − (1 − ηC)m+j )],
ηC > 0 and ρ ≥ 1.

(2.15)

Var
[
W[I ](ηI , ηC)

]

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1 − ρ(1 − ηC))
∑∞

n=1 ρn(1 − ηC)n−1E[(Wn(ηI , ηC))2]
− (E[W[I ](ηI , ηC)])2, ρ < 1;

∑∞
n=1 ηC(1 − ηC)n−1E[(Wn(ηI , ηC))2] − (E[W[I ](ηI , ηC)])2,

ηC > 0 and ρ ≥ 1.

The random variable W[I ](ηI , ηC) and the functions E[W[I ](ηi, ηc)] and
Var[W[I ](ηi, ηc)] are characterized as follows.

Proposition 2.3 If ρηI < 1, the random variable W[I ](ηI , ηC) is non-decreasing in
ηI with respect to the stochastically larger order. In addition, we have:

(i) The function E[W[I ](ηI , ηC)] is non-decreasing in ηI and non-increasing in ηC .
For fixed ηC , the function E[W[I ](ηI , ηC)] is convex in ηI .

(ii) The function Var[W[I ](ηI , ηC)] is non-decreasing in ηI . For fixed ηC , the func-
tion Var[W[I ](ηI , ηC)] is convex in ηI .
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Fig. 2.2 The mean and variance of W[I ](ηI , ηC) for 0 ≤ ηI , ηC ≤ 1

Proof By the explicit expressions of E[W[I ](ηI , ηC)] in Eq. (2.15), it is easy to see
that E[W[I ](ηI , ηC)] is non-decreasing and convex in ηI . By Eq. (2.17) and Propo-
sitions 2.1 and 2.4, E[W[I ](ηI , ηC)] has to be non-increasing in ηC . (Note: Propo-
sition 2.4 in Sect. 2.4 is used in this proof.) Part (ii) is obtained by Lemma 2.4 and
Eqs. (2.13) and (2.14). This completes the proof of Proposition 2.3. �

Example 2.2 (Example 2.1 continued) We consider the queueing model with λ = 8
and μ = 10. The mean and variance of W[I ](ηI , ηC) can be computed and are de-
picted in Fig. 2.2.

Figure 2.2 shows that increasing ηI will increase the mean and variance of the
waiting time of an interjecting customer. Intuitively, for fixed ηC , if ηI increases,
more customers interject. Then the waiting time of any customer in queue increases.
On the other hand, for fixed ηI , increasing ηC will put an interjecting customer in
a position closer to the head of the queue. Thus, the waiting time of an interjecting
customer decreases. This is different from the waiting time of a normal customer who
joins the queue at the end.

Figure 2.2 also shows that the relationship between Var[W[I )(ηI , ηC)] and ηC is
more complicated. If ηI is close to zero, the variance is decreasing in ηC . If ηI is close
to one, the variance is increasing in ηC . For a moderate ηI , Var[W[I ](ηI , ηC)], as a
function of ηC , may not be monotone. The relationship between E[W[I ](ηI , ηC)],
Var[W[I ](ηI , ηC)], and ηC indicates that a higher tolerance level of interjection is not
always beneficial to interjecting customers, particularly if the percentage of interject-
ing customers is high.

Similar to that of E[W[N](ηI , ηC)] and Var[W[N](ηI , ηC)], explicit results can be
obtained for E[W[I ](ηI , ηC)] and Var[W[I ](ηI , ηC)] at the boundary points by rou-
tine calculations. Details are omitted.

In contrast to W[N](ηI , ηC),W[I ](ηI , ηC) can be finite when the queueing sys-
tem is unstable (i.e., ρ ≥ 1). The next example illustrates the mean and variance of
W[I ](ηI , ηC) if ρ ≥ 1.
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Fig. 2.3 The mean and variance of W[I ](ηI , ηC) if ρ = 1.2 for 0 ≤ ηI , ηC ≤ 1

Example 2.3 We consider a queueing model with λ = 12 and μ = 10. Although
ρ = 1.2 > 1, if ηIρ < 1, the waiting time of an interjecting customer is still finite
(Lemma 2.1).

Figure 2.3 demonstrates that E[W[I ](ηI , ηC)] depends on ηI and ηC in a way
similar to the case with ρ < 1. However, Var[W[I ](ηI , ηC)] behaves differently. For
this case, the variance is always decreasing in ηC .

In summary, the mean of W[I ](ηI , ηC) is non-decreasing in ηI and non-increasing
in ηC . The variance of W[I ](ηI , ηC) is non-decreasing in ηI . The variance of
W[I ](ηI , ηC) is non-increasing in ηC if ηI is close to zero, and non-decreasing in
ηC if ηI is close to one. For a unstable queue, the variance of W[I ](ηI , ηC) is always
non-increasing in ηC .

2.4 Waiting time of an arbitrary customer

Let W[A](ηI , ηC) be the waiting time of an arbitrary customer. According to the def-
inition, an arbitrary arrival is a normal customer with probability 1 − ηI and an in-
terjecting customer with probability ηI . If ρ < 1, by conditioning on the type of the
arbitrary arrival, we have

P
{
W[A](ηI , ηC) < t

}= (1 − ηI )P
{
W[N](ηI , ηC) < t

}

+ ηIP
{
W[I ](ηI , ηC) < t

}
. (2.16)

In terms of E[W[N](ηI , ηC)], Var[W[N](ηI , ηC)], E[W[I ](ηI , ηC)], and
Var[W[I ](ηI , ηC)], we have

E
[
W[A](ηI , ηC)

]= (1 − ηI )E
[
W[N](ηI , ηC)

]+ ηIE
[
W[I ](ηI , ηC)

];
Var
[
W[A](ηI , ηC)

]= (1 − ηI )V ar
[
W[N](ηI , ηC)

]+ ηI Var
[
W[I ](ηI , ηC)

]
(2.17)

+ ηI (1 − ηI )
(
E
[
W[N](ηI , ηC)

]− E
[
W[I ](ηI , ηC)

])2
.

Since the mean number of customers in queue is independent of (ηI , ηC), by Lit-
tle’s law, the mean waiting time is independent of (ηI , ηC). Therefore, we have

Proposition 2.4 If ρ < 1, we have E[W[A](ηI , ηC)] = E[W[A](0,0)] = ρ/(μ − λ).
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Proof The result can also be proved directly as follows. By Eqs. (2.10) and (2.15),
we obtain

E
[
W[A](ηI , ηC)

]

= 1

μ

∞∑

k=0

(ρηI )
k

[ ∞∑

m=1

ρm
(
1 − ηI + ηI (1 − ηC)m−1)

k−1∏

j=0

(
1 − (1 − ηC)m+j

)
]

= ρ

μ − λ
+ 1

μ

∞∑

k=0

ηk+1
I

[ ∞∑

m=1

ρm+k
(
(1 − ηC)m−1 − 1

+ ρ
(
1 − (1 − ηC)m+k

)) k−1∏

j=0

(
1 − (1 − ηC)m+j

)
]

. (2.18)

The coefficient of the term ηk+1
I , for k ≥ 0, can be evaluated as follows:

∞∑

m=1

ρm+k

(
(
(1 − ηC)m−1 − 1

) k−1∏

j=0

(
1 − (1 − ηC)m+j

)+ ρ

k∏

j=0

(
1 − (1 − ηC)m+j

)
)

=
∞∑

m=1

ρm+k+1
k∏

j=0

(
1 − (1 − ηC)m+j

)−
∞∑

m=1

ρm+k

k−1∏

j=−1

(
1 − (1 − ηC)m+j

)

=
∞∑

m=1

ρm+k+1
k∏

j=0

(
1 − (1 − ηC)m+j

)−
∞∑

m=2

ρm+k
k−1∏

j=−1

(
1 − (1 − ηC)m+j

)

=
∞∑

m=1

ρm+k+1
k∏

j=0

(
1 − (1 − ηC)m+j

)−
∞∑

m=1

ρm+1+k
k−1∏

j=−1

(
1 − (1 − ηC)m+1+j

)

=
∞∑

m=1

ρm+k+1
k∏

j=0

(
1 − (1 − ηC)m+j

)−
∞∑

m=1

ρm+k+1
k∏

j=0

(
1 − (1 − ηC)m+j

)

= 0. (2.19)

In Eq. (2.19), the second equality is obtained by using (1 − ηC)0 = 1. Therefore,
E[W[A](ηI , ηC)] = ρ/(μ − λ). This completes the proof of Proposition 2.4. �

The variance of W[A](ηI , ηC) is exemplified by the following example.

Example 2.4 (Examples 2.1 and 2.2 continued) We consider the queueing model with
λ = 8 and μ = 10. The Var[W[A](ηI , ηC)] can be computed and is plotted in Fig. 2.4.

Figure 2.4 shows that the variance of W[A](ηI , ηC) is increasing in both ηI and ηC .
Intuitively, increasing ηI or ηC leads to higher variability in the position of a customer
(regardless of its type) in the queue. Thus, the variance of its waiting time increases.

In summary, while the mean waiting time of an arbitrary customer is not affected
by customer interjection, the variability of its waiting time is increasing if there are
more customers interjecting or if customers in queue are more tolerable to interjec-
tion.
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Fig. 2.4 The variance of
W[A](ηI , ηC) for 0 ≤ ηI ,
ηC ≤ 1

2.5 Comparison of queueing models

In this subsection we compare the waiting times for following three queues.

(i) The classical M/M/1/FCFS queue. Let W[C] be the waiting time of an arbitrary
customer.

(ii) The priority M/M/1 queue with two types of customers and a non-preemption
service discipline. Let W[H] be the waiting time of a high priority customer, W[L]
the waiting time of a low priority customer, and W[HLA] the waiting time of an
arbitrary customer. The percentage of high priority customers is ηI .

(iii) The M[2]/M/1 queue with customer interjections defined in Sect. 2.1

We focus on the means and variances of the waiting times. For the first two queue-
ing models, explicit formulas for the means and variances of the waiting times can be
found in the literature. We refer to [4] for details.

Example 2.5 (Example 2.1 continued) We assume that all three queues have the same
(total) arrival rate λ = 8 and service rate μ = 10. For the priority queue, we assume
that the percentage of high priority customer is ηI = 0.3. For the queue with inter-
jections, we assume that ηI = 0.3, and ηC = 0.1,0.2, . . . ,0.9,1.0. The means and
variances of waiting times are given in the following two tables.

While the mean waiting time of an arbitrary customer is the same for all three
queues, the corresponding variances are different, except for the case with ηC = 0.
The low priority customers and the normal customers have different means and vari-
ances of waiting times, except for ηC = 1. For the low priority customers, their queue
positions may spread out over the entire queue. Thus, the variance of the low pri-
ority class is greater than that of the normal class. The high priority customers and
the interjecting customers have different means waiting time except for ηC = 1, and
different variances for all ηC . For the high priority class, since the service discipline
within the class is FCFS, the variance of its waiting time can be significantly smaller
that of the interjecting class.
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Table 2.1 Means and variances of waiting times for ηI = 0.3: I

E[W[C]] Var[W[C]] E[W[L]] Var[W[L]] E[W[H]] Var[W[H]] E[W[HLA]] Var[W[HLA]]

0.4 0.24 0.5263 0.4593 0.1053 0.0166 0.4 0.3637

Table 2.2 Means and variances of waiting times for ηI = 0.3: II

ηC 0 0.2 0.4 0.6 0.8 1.0

E[W[N]] 0.4 0.4652 0.4945 0.5104 0.5201 0.5263

Var[W[N]] 0.24 0.3661 0.4228 0.4430 0.4534 0.4593

E[W[I ]] 0.4 0.2480 0.1795 0.1424 0.1199 0.1053

Var[W[I ]] 0.24 0.1066 0.0591 0.0396 0.0302 0.0254

E[W[A]] 0.4 0.4 0.4 0.4 0.4 0.4

Var[W[A]] 0.24 0.3052 0.3345 0.3504 0.3601 0.3663

In summary, Tables 2.1 and 2.2 demonstrate that the priority queues are funda-
mentally different from the interjecting queues. The difference is highlighted by the
variance, but it is rooted in the difference between the service disciplines.

3 An MMAP[2]/PH/1 queue with customer interjections

In this section we consider an MMAP[2]/PH/1 queueing model in which customers
arrive according to a marked Markovian arrival process [2, 8] and the service times
have a PH-distribution [16]. The structure of the MMAP[2]/PH/1 queue with cus-
tomer interjections is the same as the one defined in Sect. 2. Recall that ηC is the
probability that a customer in queue allows the interjection of a new arrival.

We assume that the marked Markovian arrival process MMAP[2] has a matrix
representation {D0,D1,D2}, where D0,D1, and D2 are ma ×ma matrices, D1 is for
the arrival rates of normal customers, and D2 is for the arrival rates of interjecting
customers. Let D = D0 + D1 + D2. Then D is the infinitesimal generator of the
underlying (continuous time) Markov chain of the arrival process. Let θ be the vector
satisfying θD = 0 and θe = 1. We assume that D is irreducible. Then θ is unique and
is a stochastic vector. Let λ1 = θD1e and λ2 = θD2e. Then λ1 and λ2 are the arrival
rates of normal customers and interjecting customers, respectively. If D1 = (1−ηI )λ

and D2 = ηIλ, the arrival process is the same as the one used in Sect. 2.
The service times of all customers are i.i.d.r.v.s with a phase type distribution

(β, S), where β is a stochastic vector of size ms and S is a PH-generator of size ms .
Let μ = −(βS−1e)−1, which is the service rate. The service times are independent
of the customer arrival process. If β = 1 and S = −μ, the service time has an expo-
nential distribution with parameter μ.

Define ρ = (λ1 +λ2)/μ as the traffic intensity of the queueing system. We assume
ρ < 1 to ensure system stability.
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3.1 Stationary distributions of queue lengths

Let Ia(t) be the phase of the underlying Markov process of the MMAP[2] at time t

and Is(t) be the phase of the service at time t (if any), and zero, otherwise. Recall
that q(t) is the queue length at time t (including any customer in service). Again, the
queue length is not affected by interjections (i.e., not affected by ηc and (D1,D2) as
long as D1 +D2 is fixed). Then {(q(t), Ia(t), Is(t)), t ≥ 0} represents the system state
at time t and is a quasi-birth-and-death process, which is the same as the classical
MAP/PH/1 queue with an arrival process (D0,D1 + D2) [12]:

Qq =

⎛

⎜⎜⎜⎜⎜
⎝

D0 (D1 + D2) ⊗ β

I ⊗ S0 D0 ⊗ I + I ⊗ S (D1 + D2) ⊗ I

I ⊗ S0β D0 ⊗ I + I ⊗ S (D1 + D2) ⊗ I

I ⊗ S0β D0 ⊗ I + I ⊗ S (D1 + D2) ⊗ I

. . .
. . .

. . .

⎞

⎟⎟⎟⎟⎟
⎠

,

(3.1)

where S0 = −Se and “⊗” denotes the Kronecker product of two matrices. According
to [16], under the condition ρ < 1, the steady state distribution π = (π0,π1,π2, . . .)

of {(q(t), Ia(t), Is(t)), t ≥ 0} exists and is given by

πn = π1R
n−1, n ≥ 1, (3.2)

where (π0,π1) can be obtained by solving linear system:

(π0,π1)

(
D0 (D1 + D2) ⊗ β

I ⊗ S0 D0 ⊗ I + I ⊗ S + R(I ⊗ S0β)

)
= 0;

π0 + π1(I − R)−1e = 1,

(3.3)

and R is a matrix which is the minimal nonnegative solution to

(D1 + D2) ⊗ I + R(D0 ⊗ I + I ⊗ S) + R2(I ⊗ S0β
)= 0. (3.4)

Denote by (πa,0,πa,1,πa,2, . . .) the joint distribution of the number of customers
in the system just prior to the arrival of an arbitrary customer and the phases of
the arrival and service right after the arrival of the customer. Similarly, we define
(θ1,0, θ1,1, θ1,2, . . .) and (θ2,0, θ2,1, θ2,2, . . .) the queue length distribution seen by
an arbitrary normal customer and an arbitrary interjecting customer, respectively. By
a standard probabilistic argument, we obtain

πa,n =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

π0(D1 + D2)(π0(D1 + D2)e + π1(I − R)−1((D1 + D2) ⊗ I )e)−1,

n = 0

πn((D1 + D2) ⊗ I )(π0(D1 + D2)e

+ π1(I − R)−1((D1 + D2) ⊗ I )e)−1, n ≥ 1;
θ1,n =

{
π0D1(π0D1e + π1(I − R)−1(D1 ⊗ I )e)−1, n = 0;
πn(D1 ⊗ I )(π0D1e + π1(I − R)−1(D1 ⊗ I )e)−1, n ≥ 1;

θ2,n =
{

π0D2(π0D2e + π1(I − R)−1(D2 ⊗ I )e)−1, n = 0;
πn(D2 ⊗ I )(π0D2e + π1(I − R)−1(D2 ⊗ I )e)−1, n ≥ 1.

(3.5)
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3.2 Mean and variance of waiting times

To analyze the waiting time of a normal or an interjecting customer, similar to Sect. 2,
we first study the waiting time Wn of the n-th customer in queue initially. For that
purpose, we consider the absorption time of the following Markov chain:

Qa =

0
1
2
3
...

⎛

⎜⎜⎜⎜⎜
⎝

0 0
e ⊗ S0 Q1,1 Q1,2

Q2,1 Q2,2 Q2,3
Q3,2 Q3,3 Q3,4

. . .
. . .

. . .

⎞

⎟⎟⎟⎟⎟
⎠

(3.6)

where S0 = −Se, “⊗” denotes the Kronecker product of two matrices, and the matrix
transition blocks are given by Qi,i−1 = I ⊗ (S0β), for i = 2,3, . . . , and Qi,i = (D −
(1 − (1 − ηC)i)D2) ⊕ S, Qi,i+1 = (1 − (1 − ηC)i)D2 ⊗ I , for i = 1,2, . . . . Recall
that ηc is the probability that a customer in queue allows the interjection of a new
arrival. Note that the state zero of Qa is an absorption state. The waiting time of the
nth customer in queue is the absorption time of state zero of Markov chain Qa , given
that Qa is initially in level n.

To find the absorption time of the above Markov process, we first consider the
fundamental period (i.e., the first passage time from level n + 1 to level n). Denote
by g∗

n,i,j (s) the L.S. transform of the first passage time of Qa from the level n to the
level n − 1 by entering into state (n − 1, j), given that the state was (n, i) initially.
Let G∗

n(s) = (g∗
n,i,j (s)), an (mams) × 1 matrix for n = 1 and an (mams) × (mams)

matrix for n ≥ 2. Routinely, we have the following equations:

G∗
1(s) = (sI − (D − ηCD2) ⊕ S

)−1(e ⊗ S0 + (ηCD2 ⊗ I )G∗
2(s)G

∗
1(s)

);
G∗

n(s) = (sI − (D − (1 − (1 − ηC)n
)
D2
)⊕ S

)−1

· (I ⊗ S0β + (1 − (1 − ηC)n
)
(D2 ⊗ I )G∗

n+1(s)G
∗
n(s)

)
, n ≥ 2.

(3.7)

Let Gn = lims→0+ G∗
n(s), n ≥ 1, u(1)

1 = − lims→0+ dG∗
1(s)/ds, and u(1)

n =
− lims→0+ dG∗

n(s)e/ds, n ≥ 2. By (3.7), it is easy to obtain:

Gn =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−((D − (1 − (1 − ηC)n)D2) ⊕ S

+ (1 − (1 − ηC)n)(D2 ⊗ I )Gn+1)
−1(e ⊗ S0), n = 1;

−((D − (1 − (1 − ηC)n)D2) ⊕ S

+ (1 − (1 − ηC)n)(D2 ⊗ I )Gn+1)
−1(I ⊗ S0β); n ≥ 2;

u(1)
n = −((D − (1 − (1 − ηC)n

)
D2
)⊕ S + (1 − (1 − ηC)n

)
(D2 ⊗ I )Gn+1

)−1

· (e + (1 − (1 − ηC)n
)
(D2 ⊗ I )u(1)

n+1

)
, n ≥ 1.

(3.8)

Note that, since the absorption probability to level zero is one, we must have
G1 = e and Gne = e, for n ≥ 2, which is useful for checking computational accu-
racy.
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Let G
(1)
n = − lims→0+ dG∗

n(s)/ds, n ≥ 1, u(2)
1 = lims→0+ d2G∗

1(s)/ds2, and

u(2)
n = lims→0+ d2G∗

n(s)e/ds2, n ≥ 2. By Eq. (3.7), it is easy to obtain, for n ≥ 1,

G
(1)
n = −((D − (1 − (1 − ηC)n

)
D2
)⊕ S + (1 − (1 − ηC)n

)
(D2 ⊗ I )Gn+1

)−1

· ((1 − (1 − ηC)n
)
(D2 ⊗ I )G

(1)
n+1 + I

)
Gn;

u(2)
n = −((D − (1 − (1 − ηC)n

)
D2 ⊕ S

+ ((1 − (1 − ηC)n
)
D2 ⊗ I

)
Gn+1

)−1

· (((1 − (1 − ηC)n
)
D2 ⊗ I

)
u(2)

n+1

+ 2
(
I + (1 − (1 − ηC)n

)
(D2 ⊗ I )G

(1)
n+1

)
u(1)

n

)
.

(3.9)

Let G∞ = limn→∞ Gn, G
(1)∞ = limn→∞ G

(1)
n , u(1)∞ = limn→∞ u(1)

n , and u(2)∞ =
limn→∞ u(2)

n . These matrices and vectors can be found by using the following equa-
tions:

I ⊗ (S0β
)+ ((D − D2) ⊕ S

)
G∞ + (D2 ⊗ I )G2∞ = 0;

(
(D − D2) ⊕ S + (D2 ⊗ I )G∞

)
G

(1)∞ + (D2 ⊗ I )G
(1)∞ G∞ = G∞;

u(1)∞ = −((D − D2) ⊕ S + (D2 ⊗ I )(G∞ + I )
)−1e;

u(2)∞ = −2
(
(D − D2) ⊕ S + (D2 ⊗ I )(G∞ + I )

)−1(
I + (D2 ⊗ I )G

(1)∞
)
u(1)∞ .

(3.10)

Denote by w∗
n,j (s) the L.S. transform of the absorption time of the level zero from

the state (n, j). Let w∗
n(s) = (w∗

n,j (s)), an (mams) × 1 matrix for n ≥ 1. It is easy to
see that

w∗
n(s) = G∗

n(s)G
∗
n−1(s) · · ·G∗

1(s) = G∗
n(s)w

∗
n−1(s). (3.11)

Denote by w
(1)
n,j and w

(2)
n,j the first and second moments of the absorption time of the

level zero from the state (n, j). Let w(1)
n = (w

(1)
n,j ) and w(2)

n = (w
(2)
n,j ), an (mams) × 1

matrix for n ≥ 1. By Eq. (3.11), we obtain

w(1)
1 = u(1)

1 ; w(1)
n = u(1)

n + Gnw(1)
n−1, n ≥ 2;

w(2)
1 = u(2)

1 ; w(2)
n = u(2)

n + 2G
(1)
n w(1)

n−1 + Gnw(2)
n−1, n ≥ 2.

(3.12)

By conditioning on the system state at the arrival epoch and using Eq. (3.4), the
mean and variance of the waiting time W[N] of an arbitrary normal customer can be
obtained as

E[W[N]] = 1

π0D1e + π1(I − R)−1(D1 ⊗ I )e

∞∑

n=1

π1R
n−1(D1 ⊗ I )w(1)

n ;

Var[W[N]] = 1

π0D1e + π1(I − R)−1(D1 ⊗ I )e

∞∑

n=1

π1R
n−1(D1 ⊗ I )w(2)

n

− (E[W[N ]]
)2

.

(3.13)
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Similarly, the mean and variance of the waiting time W[I] of an arbitrary interject-
ing customer can be obtained as

E[W[I]] = π1(I + ηcR(I − R)−1)

π0D2e + π1(I − R)−1(D2 ⊗ I )e

∞∑

n=1

(1 − ηc)
n−1Rn−1(D2 ⊗ I )w(1)

n ;

Var[W[I]] = π1(I + ηcR(I − R)−1)

π0D2e + π1(I − R)−1(D2 ⊗ I )e

×
∞∑

n=1

(1 − ηc)
n−1Rn−1(D2 ⊗ I )w(2)

n − (E[W[I ]]
)2

.

(3.14)

The mean and variance of the waiting time W[A] of an arbitrary customer can be
obtained as follows:

E[W[A]]
= (π1(I − R)−1(D1 ⊗ I )e)E[W[N]] + (π1(I − R)−1(D2 ⊗ I )e)E[V[I]]

π0(D1 + D2)e + π1(I − R)−1((D1 + D2) ⊗ I )e
;

Var[W[A]]
= (π1(I − R)−1(D1 ⊗ I )e)Var[W[N]] + (π1(I − R)−1(D2 ⊗ I )e)V ar[W[I]]

π0(D1 + D2)e + π1(I − R)−1((D1 + D2) ⊗ I )e
;

+ (π1(I − R)−1(D1 ⊗ I )e)(π1(I − R)−1(D2 ⊗ I )e)
(π0(D1 + D2)e + π1(I − R)−1((D1 + D2) ⊗ I )e)2

× (E[W[N]] − E[W[I]]
)2

. (3.15)

By Little’s law, the mean of W[A] is constant for ηC , D1, and D2 with a fixed
D1 + D2.

Proposition 3.1 Assume ρ < 1. Then we have
∞∑

n=1

(n − 1)πa,ne = π1R(I − R)−2e = (λ1 + λ2)E[W[A]]. (3.16)

Equivalently, we have
∑∞

n=1 nπa,ne = π1(I − R)−2e = (λ1 + λ2)(E[W[A]] + 1/μ).

The relationship in Proposition 3.1 is useful for checking computational accuracy.

3.3 Numerical examples

Computation of the means and variances of waiting times can be done as follows:

Step 1: Compute λ1, λ2, μ, and ρ. If ρ < 1, go to Step 2. Otherwise, stop;
Step 2: Compute π0, π1, and R by using Eqs. (3.3) and (3.4);
Step 3: Compute G∞, G

(1)∞ , u(1)∞ , and u(2)∞ using Eq. (3.10);
Step 4: Choose N sufficiently large and set GN = G∞, G

(1)
N = G

(1)∞ , u(1)
N = u(1)∞ ,

and u(2)
N = u(2)∞ ;

Step 5: Compute Gn, G
(1)
n , u(1)

n , and u(2)
n for n = N − 1,N − 2, . . . ,2, and 1, using

Eqs. (3.8) and (3.9);
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Fig. 3.1 The means and standard deviations of W[N] and W[I]

Step 6: Compute w(1)
n and w(2)

n for n = 1,2, . . . ,N − 1, and N , using Eq. (3.12);
Step 7: Compute the mean and variance of waiting times using Eqs. (3.13), (3.14),

and (3.15). Use Eq. (3.16) to check the accuracy of results.

We would like to remark that, since the queue length distribution decays geometri-
cally, the convergence of the above computational method is guaranteed. In addition,
Proposition 3.1 can be used for choosing a proper N .

Extensive numerical experiments have been carried out. Numerical results indicate
that all the theoretical and numerical results obtained in Sect. 2 hold for more general
cases. We do not repeat the numerical analysis conducted in Sect. 2. Instead, we use
examples to explore the relationship between the waiting times, the burstiness of the
customer arrival process, and the variation of the service times.

Example 3.1 We consider two queueing systems with customer interjections. The
first queueing system, to be called MMAP[2]/M/1, has the following parameters:

D0 =
(−0.8 0.8

0 −5

)
, D1 =

(
0 0

0.5 0.4

)
, D2 =

(
0 0

0.1 4

)
,

(3.17)

and β = 1 and S = −3.2. For this queueing system, λ1 = 0.5143, λ2 = 2.3429, μ =
3.2, and ρ = 0.8929. It is easy to see that the arrivals of interjecting customers are
clustered (in phase two).

The second queueing system, to be called M[2]/M/1, has parameters: D1 =
0.5143, D2 = 2.3429, β = 1, and S = −3.2.

It is clear that the two queueing systems have the same (average) arrival rate and
service rate. In Fig. 3.1, the means and standard deviations (STD) of waiting times
are plotted for an arbitrary normal customer.

Figure 3.1 shows that both the means and variances of the waiting times of a nor-
mal customer and an interjecting customer in the MMAP[2]/M/1 queue can be sig-
nificantly greater than that in the M[2]/M/1 queue. Intuitively, in the MMAP[2]/M/1
queue, the arrivals of interjecting customers are clustered, which causes the increase
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Fig. 3.2 The means and standard deviations of W[N] and W[I]

in the means and variances of the waiting times of an arbitrary normal customer and
an arbitrary interjecting customer.

Example 3.2 We consider two queueing systems with customer interjections. The
first queueing system, to be called M[2]/PH/1, has the following parameters: D0 =
−2, D1 = 1.5, D2 = 0.5,

β = (0.9,0.1), S =
(−10 1

0 −0.6

)
. (3.18)

For this queueing system, λ1 = 1.5, λ2 = 0.5, μ = 2.459, and ρ = 0.8133. The ser-
vice time has the DFR (decreasing failure rate) property and the coefficient of varia-
tion of the service time is cv = 2.3818.

The second queueing system, to be called M[2]/M/1, has parameters: D0 = −2,
D1 = 1.5, D2 = 0.5, β = 1, and S = −2.459. It is well known that the coefficient of
variation of an exponential distribution is cv = 1.

Similar to Fig. 3.1, Fig. 3.2 demonstrates that means and standard variations of the
waiting times are significantly different for the two queueing systems. The differences
are caused by the variations in the service times.

In summary, numerical examples in this section indicate that the relationship be-
tween the mean and variance of waiting times and system parameters obtained in
Sect. 2 still hold for more complicated queueing systems. Numerical results also
demonstrate that the mean and variance of waiting times will increase if the customer
arrival process is bursty or if the service time is more variable.

4 Conclusions and discussion

This paper analyzed the M/M/1 queue with customer interjections. The means and
variances of the waiting times of a normal customer, an interjecting customer, and an
arbitrary customer are found through the LST (L.S. transform) method and matrix-
analytic methods. It is shown that the intuitive relationship between the means and
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variances of waiting times and the two system parameters ηI and ηC , stated in Sect. 1,
are indeed true. The results and observations imply that reducing the society tolerance
level of interjection and the percentage of interjecting customers is always beneficial
to the whole society (arbitrary customers), especially to customers playing by the rule
(normal customers). By using a more general model MMAP[2]/PH/1, it is shown that
the results still hold. Numerical results demonstrate that the means and variances of
waiting times increase if the arrival process is bursty or if the service time is more
variable.

The queueing model of interest can be extended in several directions.

(1) The level of tolerance on interjection can be significantly different between nor-
mal customers and interjecting customers: ηC,N for normal customers and ηC,I

for interjecting customers. The analysis of such a queueing model is quite chal-
lenging since information on the types of all customers in the queue must be kept
and updated.

(2) The level of tolerance on interjection can be different for customers in different
positions in the queue. Assume that ηC,j is the tolerance level of the customer
(regardless of its type) in position j in the queue, for j ≥ 1. On the one hand,
explicit formulas for performance measures become more complex. On the other
hand, the computation method developed in the Appendix can be extended for
this case. Thus, the model can be analyzed numerically.

Acknowledgements The authors would like to thank two anonymous reviewers for their insightful com-
ments and suggestions.

Appendix: An efficient algorithm for the M/M/1 case

The computation approach taken here is similar to the one used in Sect. 3. Since
this is a special case, some limits are obtained explicitly and the approximations to
moments of waiting times are significantly simpler. Based on the first passage time
analysis [16], we develop a stable algorithm for computing the mean and variance of
Wn(ηI , ηC). Denote by Tn the first passage time for a customer in position n to move
to position n − 1 in queue, which is the first passage time from level n to n − 1 for
the Markov chain Qa defined in Eq. (2.2).

Similar to the proof of Lemma 2.2, it can be shown that Tn is stochastically larger
in n (also see [3]). Thus, E[Tn] and E[T 2

n ] are increasing in n. Let T∞ = limn→∞ Tn.
The variable T∞ can be considered as the length of the busy period of an M/M/1
queue with arrival rate ληI and service rate μ. It is readily seen that

E
[
e−sTn

] = μ + ληI (1 − (1 − ηC)n)E[e−sTn+1]E[e−sTn]
s + μ + ληI (1 − (1 − ηC)n)

, n ≥ 1;

E
[
e−sT∞] = μ + ληI (E[e−sT∞])2

s + μ + ληI

.

(A.1)
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E[T∞] and E[T 2∞] are finite and are given by:

E[T∞] = 1

μ − ληI

,

E
[
T 2∞
] = 2E[T∞](1 + ληIE[T∞])

μ − ληI

= 2μ

(μ − ληI )3
.

(A.2)

The following relationships of {Tn,n ≥ 1} can be shown routinely:

E[Tn] = 1

μ
+ ληI (1 − (1 − ηC)n)

μ
E[Tn+1]

= 1

μ
lim

K→∞

(
K−1∑

k=0

(ρηI )
k

(
k−1∏

j=0

(
1 − (1 − ηC)n+j

)
)

+ (ρηI )
K

(
K−1∏

j=0

(
1 − (1 − ηC)n+j

)
)

E[Tn+K ]
)

= 1

μ
lim

K→∞

K−1∑

k=0

(ρηI )
k

(
k−1∏

j=0

(
1 − (1 − ηC)n+j

)
)

+ 1

μ
lim

K→∞(ρηI )
K

(
K−1∏

j=0

(
1 − (1 − ηC)n+j

)
)

E[Tn+K ]

= 1

μ

∞∑

k=0

(ρηI )
k

(
k−1∏

j=0

(
1 − (1 − ηC)n+j

)
)

. (A.3)

The second term on the third line of Eq. (A.3) is zero since ρηI < 1 and E[T∞] is
finite. Similarly, we can obtain

E
[
T 2

n

] = 2E[Tn] + ληI (1 − (1 − ηC)n)(E[T 2
n+1] + 2E[Tn]E[Tn+1])

μ

= 2

μ

∞∑

k=0

(ρηI )
kE[Tn+k]

(
1 + ληI

(
1 − (1 − ηC)n+k

)

× E[Tn+k+1]
)
(

k−1∏

j=0

(
1 − (1 − ηC)n+j

)
)

;

Var[Tn] =
(

1

μ
+ ληI (1 − (1 − ηC)n)E[Tn+1]

μ

)2

+ ληI (1 − (1 − ηC)n)

μ
E
[
T 2

n+1

]
.

(A.4)

By Eqs. (A.3) and (A.4), it is easy to obtain the following result.

Lemma A.1 The functions E[Tn], E[T 2
n ], and Var[Tn] are non-decreasing functions

of ηI and ηC . In addition, the three functions are convex in ηI .
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Since Wn(ηI , ηC) = T1 + T2 + · · · + Tn, we have

E
[
Wn(ηI , ηC)

] = E[T1] + E[T2] + · · · + E[Tn] = E
[
Wn−1(ηI , ηC)

]+ E[Tn];

E
[
W 2

n (ηI , ηC)
] =

n∑

j=1

E
[
T 2

j

]+ 2
∑

1≤i<j≤n

E[Ti]E[Tj ]

= E
[
W 2

n−1(ηI , ηC)
]+ E

[
T 2

n

]+ 2E
[
Wn−1(ηI , ηC)

]
E[Tn].

(A.5)

Since the variance of Wn(ηI , ηC) is given by Var[Wn(ηI , ηC)] =∑n
i=1 Var[Tn], we

obtain the following lemma.

Lemma A.2 The functions E[Wn(ηI , ηC)] and Var[Wn(ηI , ηC)] are non-decreasing
in both ηI and ηC . In addition, the two functions are convex in ηI .

To approximate the mean and variance of Wn, choose sufficiently large N and set
E[TN ] = E[T∞] and E[T 2

N ] = E[T 2∞]. Then E[Tn] and E[T 2
n ] can be computed by

using the formulas in Eqs. (A.3) and (A.4) for n ≤ N . Using the formulas in Eq. (A.5),
E[Wn] and E[W 2

n ] can be computed for n ≥ 1.
Note that, by the monotonicity property of {Tn,n ≥ 0}, we have E[Wn] ≤ nE[T∞]

and E[W 2
n ] ≤ nE[T 2∞] + n(n − 1)(E[T∞])2. Thus, we can choose large enough

N so that the error in computing the first two moments of waiting times, such as
E[W[N](ηI , ηC)] and E[(W[N](ηI , ηC))2], can be smaller than any given positive
number.
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