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a b s t r a c t

We study a tandem queueing system with K servers and no waiting space in between. A customer needs
service from one server but can leave the system only if all down-stream servers are unoccupied. Such a
system is often observed in toll collection during rush hours in transportation networks, and we call it a
tollbooth tandem queue. We apply matrix-analytic methods to study this queueing system, and obtain
explicit results for various performance measures. Using these results, we can efficiently compute the
mean and variance of the queue lengths, waiting time, sojourn time, and departure delays. Numerical
examples are presented to gain insights into the performance and design of the tollbooth tandem queue.
In particular, it reveals that the intuitive result of arranging servers in decreasing order of service speed
(i.e., arrange faster servers at downstream stations) is not always optimal for minimizing the mean queue
length or mean waiting time.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Tollbooths are used to collect tolls for road usage on toll roads.
Due to service delays, queues can build up in front of tollbooths. It
is commonly observed in some metropolitan cities, e.g., Seoul and
Beijing, that tandem tollbooths are set up during rush hours to re-
duce delays. In this paper, we present a queueing model to study
the flows of the traffic going through tollbooths, and develop an
algorithmic study for its performance analysis. We note that when
all tollbooths serve traffic in parallel, instead of in series, the toll-
booth system can be modeled as a queueing network with cus-
tomer jockeying and has been analyzed extensively in the
literature (e.g., Disney & Mitchell, 1971; Zhao & Grassmann, 1995).

When tollbooths are in series, each car/truck has to go through
every tollbooth but receive service from one and only one of them.
Such a queueing system has two distinct features: (i) cars/trucks
that completed service at one station may not be able to leave
the system immediately; and (ii) servers may be idle even if there
are waiting customers. When a car/truck is in service in a tollbooth,
it blocks all cars/trucks at the upstream tollbooths. We shall refer
to this type of queueing system as tollbooth tandem queue.

The tollbooth tandem queue is similar to the traditional tandem
queue with no waiting space between servers or with blocking (e.g.,
Melamed, 1986; Manitz, 2008; Papadopoulos & O’Kelly, 1993; Van
Houdt & Alfa, 2005), but different in that each customer receives ser-

vice from one and only one server. Note that when there are always
customers waiting in front of the tollbooth, the service process of the
tollbooth queue is similar to that of a batch service queue (Chaudhry
& Templeton, 1983), with service time of a batch being the
maximum of processing times of the customers in the batch at their
respective tollbooths. To the author’s knowledge, the added features
in the service process distinguish the tollbooth tandem queue from
all the existing models in the queueing literature.

In the transportation research literature there have been only
numerical and simulation studies of tollbooth tandem queues, see
for example, Hall and Daganzo (1983), Rubenstein (1983), Hong,
Kim, Kho, Kim, and Yang (2009), Gu and Li (2011), Gu, Cassidy, and
Li (2012). These studies suggest that tandem tollbooths can improve
queueing performance significantly. However, there has been no
systematic queueing study on the tollbooth tandem queue problem.

In this paper, we apply matrix-analytic methods to investigate
the tollbooth tandem queue. We refer to Neuts (1981) and
Latouche and Ramaswami (1999) for more details on matrix-
analytic methods. Closed form solutions are obtained for a number
of performance measures. For example, PH-representations are
constructed for the waiting time and sojourn time of an arbitrary
customer. We also obtain special performance measures such as
the utilizations of servers, percentages of customers served by
servers, and departure delays.

Using the results derived in this paper, we analyze several exam-
ples to gain insight into the tollbooth tandem queue. It is intuitive
that arranging servers in the descending order of their service speed
(i.e., faster servers are arranged at the most downstream stations)
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should reduce the chance of blocking and customer delays. How-
ever, we found that that is not always true. Many of the performance
measures, including the mean waiting time, mean sojourn time,
mean number of customers waiting, and mean total number of cus-
tomers in system, may not be minimized by this arrangement of
servers (though in many cases it does).

In addition to its potential application in toll road management,
the tollbooth tandem queue may also find applications in modeling
traffic in gas stations (e.g., Brewer & Henwood, 1980; Daskin,
Shladover, & Sobel, 1976; Teimoury, Yazdi, Haddadi, & Fathi,
2011). For such cases, the tollbooth tandem queue can approximate
the real system well if the order of departures of cars/trucks is, more
or less, consistent with the order of arrivals.

The remainder of the paper is organized as follows. In Section 2,
the tollbooth tandem queue of interest is formally defined. A Mar-
kov chain formulation for the queue is presented in Section 3. A
matrix-geometric solution is given in Section 4. A number of
performance measures are obtained in Section 5. Distributions of
the waiting time, sojourn time, and departure delay are obtained
in Section 6. Section 7 collects some special properties including
the phase-type representations of the waiting time and sojourn
time. The special case of identical serial servers is analyzed in
Section 8 and a numerical analysis is presented in Section 9.
Section 10 concludes the paper.

2. Definition of the tollbooth tandem queue

We consider a tollbooth tandem queueing model with K servers
and no waiting space in between (see Fig. 1 for a case with K = 3).
Customers join a single queue in front of server K waiting for ser-
vice by one (and only one) of the K servers. Customers enter service
on a first-come-first-in basis. If server k is available, then a waiting
customer enters server k if all upstream servers {k + 1, . . . , K} are
empty and server k � 1 is occupied. If a customer at server k com-
pletes its service, it can leave the system only if all downstream
servers {1, . . . , k � 1} are empty; otherwise, the customer occupies
server k until all servers {1, . . . , k � 1} become empty. Accordingly,
if a customer occupies server k, in service or waiting to depart, all
customers at servers {k + 1, . . . , K}, if there is any, cannot depart;
thus there may be batch departures from the system.

To define the tollbooth tandem queue, we specify the customer
arrival process and the distributions of the service times for
individual servers.

Markovian arrival process (MAP). Customers arrive according
to Markovian arrival process (D0,D1), where D0 and D1 are square
matrices of order ma, D0 has negative diagonal elements and non-
negative off-diagonal elements, and D1 is a nonnegative matrix. Let
D = D0 + D1, which is an infinitesimal generator. We assume that D
is irreducible. Then D defines an irreducible continuous time Mar-
kov chain (CTMC). Let Ia(t) be the state (phase) of the CTMC asso-
ciated with D, at time t. Then {Ia(t), t P 0} is an irreducible CTMC,
called the underlying Markov chain. Let ha be the stationary distri-
bution of {Ia(t), t P 0}. Then ha is the unique solution to linear sys-
tem haD = 0 and hae = 1, where e is the column vector with all
elements being one. The (average) arrival rate can be obtained as
k = haD1e. For more about MAPs, readers are referred to Neuts
(1979) and Lucantoni (1991).

Phase-type (PH) service times. The service time Vk of server k
has a PH-distribution with PH-representation (ak,Tk) of order mk,
for 1 6 k 6 K. We assume ake = 1, i.e., the service time is positive

with probability one. Let {Is,k(t), t P 0} be the state of the underly-
ing CTMC associated with (ak,Tk). Then {Is,k(t), t P 0} has mk + 1
states {0, 1, 2, . . . , mk} and infinitesimal generator

Q k ¼
0 0
T0

k Tk

� �
: ð1Þ

We call the state 0 the absorption state. Then Vk is the time until
absorption of the underlying Markov chain into state 0, if the dis-
tribution of Is,k(0) is (0,ak). The (average) service rate is given by

lk ¼ 1=E½Vk� ¼ �1= akT�1
k e

� �
. Recall that T0

k ¼ �Tke. Then T þ T0
kak

is an infinitesimal generator. We assume that T þ T0
kak is irreduc-

ible. Then the PH-representation (ak,Tk) is called PH-irreducible.
Denote by f �k ðsÞ the Laplace–Stieltjes transform (LST) of the service

time Vk: f �k ðsÞ ¼ akðsI � TkÞ�1 T0
k , for s P 0, where I is the identity

matrix whose order is determined by the context. For more about
PH-distributions, readers are referred to Neuts (1975, 1981).

We are interested in investigating the following quantities: The
number of waiting customers in system qw, the number of custom-
ers occupying a server qs, the total number of customers in the
system qtot, customer waiting time Wq, customer sojourn time
Ws, and customer departure delay Wd (i.e., the amount of time a
customer spends waiting for departure after finishing service).

3. Maximum of independent random variables

In the tollbooth tandem queue, if K customers enter the K servers
for service simultaneously, then the time for all K customers to leave
the system (i.e., the time for the customer at server K to leave the sys-
tem) is the maximum of all K service times. This fact plays a key role
in the construction of a Markov chain for the tollbooth tandem
queue and in the analysis of performance measures. It is well-known
that the maximum of independent PH-random variables is again a
PH-random variable and its PH-representation can be constructed
(Neuts, 1981). To find the solutions for the tollbooth tandem queue,
we need the exact representation of this random variable. Thus, we
first present two methods for constructing a PH-representation of
the maximum of K independent PH-random variables. Both
representations will be used in our subsequent analysis.

Define Vmax,k = max{V1, . . . , Vk}, for 1 6 k 6 K. Next, we construct
a PH-representation for Vmax,k. Assume that the (independent)
underlying Markov chains {Is,k(t), t P 0}, for 1 6 k 6 K, are all initial-
ized at time zero. Then Vmax,k can be interpreted as the first time that
all underlying Markov chains {Is,j(t), t P 0}, for 1 6 j 6 k, are ab-
sorbed. Thus, we consider CTMC {(Is,1(t), Is,2(t), . . . , Is,k(t)), t P 0}.
The number of states, the initial probability distribution, and the
infinitesimal generator of the CTMC {(Is,1(t), Is,2(t), . . . , Is,k(t)), t P 0}
are given by, for 1 6 k 6 K,

mmax;hki ¼
Yk

j¼1

ðmj þ 1Þ � 1;

ð0;amax;hkiÞ � ð0;a1Þ � ð0;a2Þ � � � � � ð0;akÞ;

Q hki ¼
0 0

T0
max;hki Tmax;hki

 !
� Q1 � Q2 � � � � � Qk;

ð2Þ

where ‘‘�’’ is for Kronecker product and ‘‘�’’ is for Kronecker sum, i.e.,
Q1 � Q2 = Q1 � I + I � Q2. Denote by Wmax,hki the set of states obtained
by removing state (0, . . . , 0) from the state space {(i1, i2, . . . , ik):
0 6 ij 6mj, 1 6 j 6 k} of {(Is,1(t), Is,2(t), . . . , Is,k(t)), t P 0}. ThenWmax,hki

Fig. 1. A tollbooth tandem queue with K = 3.
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has mmax,hki states. For any state in Wmax,hki, at least one of the under-
lying Markov chains {Is,j(t), t P 0}, j = 1, 2, . . . , k, is not in its absorp-
tion state. Thus Vmax,k is the absorption time into the state
(0, . . . , 0) of the CTMC {(Is,1(t), Is,2(t), . . . , Is,k(t)), t P 0}. By Eq. (2), it
is readily seen that (amax,hki,Tmax,hki) of order mmax,hki is a PH-repre-
sentation for Vmax,k. Denote by f �max;kðsÞ the LST of Vmax,k, for 1 6 k 6 K.

Let {kk,i, 1 6 i 6mk} be the eigenvalues of Tk, counting multiplic-
ities, for 1 6 k 6 K. We assume that kk,1 is the eigenvalue of Tk with
the largest real part, which is in fact real.

Proposition 3.1. The eigenvalues of Tmax,hKi are given by, counting
multiplicities,

fkk1 ;i1 þ�� �þkkj ;ij ;16 k1 < � � �< kj6K;16 i16mk1 ; . . . ;16 ij6mkj
;16 j6Kg:

ð3Þ
In particular, the eigenvalue of Tmax,hKi with the largest real part

is max{kk,1, k = 1, 2, . . . , K}.

Proof. It is clear that the eigenvalues of Qk are {0} [
{kk,i, i = 1, 2, . . . , mk}. Similarly, all eigenvalues of QhKi are the
eigenvalues of Tmax,hKi, except for eigenvalue zero. By Horn and
Johnson (1991) (Problem 19 on Page 251), Eq. (3) gives all the
eigenvalues of QhKi, except for eigenvalue zero. Consequently, Eq.
(3) gives all the eigenvalues of Tmax,hKi. This completes the proof of
Proposition 3.1. h

The order mmax,hKi increases rapidly in K. For special cases, an
equivalent PH-representation with fewer states can be obtained
for Vmax,K. Considering the (independent) underlying Markov
chains {{Is,k(t), t P 0}, k = 1, 2, . . . , K}, Vmax,K can be interpreted as
(i) the time until one of the K underlying Markov chains is
absorbed, (ii) plus the time until one of the K � 1 remaining under-
lying Markov chains is absorbed, . . ., and (iii) plus the time until the
last remaining underlying Markov chain is absorbed. Based on this
interpretation, an alternative PH-representation can be obtained
for Vmax,K. However, the alternative PH-representation has the
same order as that of (amax,hKi,Tmax,hKi). On the other hand, if all
random variables {V1, . . . , VK} are also identically distributed with
the same PH-representation (a,T) of order m, many states of the
underlying Markov chain QhKi are redundant. Thus, by combining
the redundant states, a smaller PH-representation can be obtained
for Vmax,K. Define, T[1] = T, and, for 2 6 k 6 K,

T ½k� ¼ T ½k�1� � Im þ Imk�1 � T;

T0
½k� ¼

Xk

j¼1

Imj�1 � T0 � Imk�j ;
ð4Þ

where In is the identity matrix of order n and T0 = �Te. Note that T[k]

can be interpreted as the subgenerator for {(Is,1(t), Is,2(t), . . . , Is,k(t)),
t P 0} such that none of the subprocesses is absorbed; and T0

½k� is
for the absorption of one of the subprocesses. We define
X[k] = {(i1,i2, . . . , ik): 1 6 ij 6m, 1 6 j 6 k}, a[1] = a, a[k] = a[k�1] � a,

amax;½K� ¼ ð0; . . . ;0;a½K�Þ;

Tmax;½K� ¼

X½1�
X½2�

..

.

X½K�1�

X½K�

T ½1�

T0
½2� T ½2�

. .
. . .

.

T0
½K�1� T ½K�1�

T0
½K� T ½K�

0
BBBBBBBB@

1
CCCCCCCCA

and

T0
max;½K� ¼ �Tmax;½K�e ¼

X½1�
X½2�

..

.

X½K�

T0

0
..
.

0

0
BBBB@

1
CCCCA:

ð5Þ

The maximum random variable Vmax,K has a PH-distribution
with PH-representation (amax,[K], Tmax,[K]) given in Eq. (5) of order
mmax,[K] = m + m2 + � � � + mK, which can be significantly smaller than
mmax,hKi = (m + 1)K � 1.

4. Matrix-geometric solutions for the tollbooth tandem queue

In this section, we show that the tollbooth tandem queue can be
formulated and analyzed using a GI/M/1 type Markov chain (e.g.,
Latouche & Ramaswami, 1999; Neuts, 1981). To construct the GI/
M/1 type Markov chain, we first observe that, at any time in the
tollbooth tandem queue, all occupied servers (either a customer
in service or waiting to depart) are next to each other. Thus, we dis-
tinguish the case with a waiting queue and the case with no wait-
ing queue. If there is a waiting queue, then the Kth server must be
occupied. If there is no waiting queue, the K servers can be divided
into three groups {1, 2, . . . , k1}, {k1 + 1, . . . , k2}, and {k2 + 1, . . . , K}.
Servers {1, 2, . . . , k1} are empty; servers {k1 + 1, . . . , k2} are all
occupied and server k1 + 1 is still in service; and servers
{k2 + 1, . . . , K} are empty and there is no waiting customer in the
system if this set of servers is not empty. To present the Markov
chain formulation explicitly, we define system variables:

	 qw(t): The number of waiting customers in the system at time t;
	 Ia(t): The state of the Markovian arrival process at time t;
	 Ik(t): The state of the underlying CTMC of the service at server k,

which is Is,k(t), if server k is working; Otherwise, Ik(t) = 0, at time
t; for 1 6 k 6 K.
	 I(t): The maximum index of the occupied servers at time t (i.e.,

the index of the first occupied server seen by an arrival). If
qw(t) = 0, I(t) takes values {0,1, . . . , K}, where 0 means that the
system is empty. If qw(t) > 0, we must have I(t) = K.

Then it is easy to see that {(qw(t), I(t), I1(t), . . . , IK(t), Ia(t)), t P 0}
is a CTMC. We first analyze this CTMC and then find system perfor-
mance measures. Our analysis consists of three steps: (i) Construct
the infinitesimal generator of the CTMC and find its matrix-
geometric solution; (ii) Based on the matrix-geometric solution,
find the distributions of queue lengths at an arbitrary time, arrival
epochs, and service completion epochs (Section 5); and (iii) Find
the distributions of waiting time, sojourn time, and departure de-
lays (Section 6).

If qw(t) > 0, server K must be occupied, i.e., the server is either in
service or with a finished customer whose departure is delayed be-
cause a downstream service has not been completed. When
qw(t) = 0, server K can be either idle or occupied. For convenience,
we distinguish the two cases for qw(t) = 0 by introducing a new
state �1 for qw(t). If server K is unoccupied, then we set qw(t) = �1.
We shall continue to call qw(t) the waiting queue length with the
understanding that, if qw(t) = �1, then the waiting queue length
is zero.

We shall call qw(t) the level variable and (I(t), I1(t), . . . , IK(t), Ia

(t)) the phase variable. The variable qw(t) can increase by at most
one if a customer arrives, and can decrease by at most K if one ser-
vice is completed and all servers becomes available to waiting cus-
tomers. It is then readily seen that {(qw(t), I(t), I1(t), . . . , IK(t), Ia(t)),
t P 0} is a GI/M/1 type Markov chain.

For level �1 of the GI/M/1 type Markov chain, I(t) takes values
{0, 1, . . . , K � 1}. If I(t) = 0, there is no customer in the system and
we must have (I1(t), . . . , IK(t)) = (0, . . . , 0). If I(t) = k P 1, then
(I1(t), . . . , Ik(t)) takes values in the set Wmax,hki, and (Ik+1(t), . . . ,
IK(t)) = (0, . . . , 0). A state in level �1 with I(t) = k indicates that
at least one of the servers {1, 2, . . . , k} is working, the kth
server is occupied, and servers {k + 1, . . . , K} are available to
customers. The number of states of (I1(t), . . . , IK(t)) in level �1 is
m�1,hK�1i = 1 + mmax,h1i + � � � + mmax,hK�1i.

Q.-M. He, X. Chao / European Journal of Operational Research 236 (2014) 177–189 179
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For level qw(t) P 0, we must have I(t) = K, and (I1(t), . . . , IK(t))
takes values in the set Wmax,hKi, which has mmax,hKi states. The struc-
ture of level qw(t) P 0 is simpler than that of level � 1, since the
Kth server must be occupied for such levels.

The infinitesimal generator of {(qw(t), I(t), I1(t), . . . , IK(t), Ia(t)),
t P 0} is given by

Q ¼

�1
0
1
..
.

K � 1
K

K þ 1

..

.

A�1;�1 A�1;0

A0;�1 A1 A0

A1;�1 0 A1 A0

..

. ..
. . .

. . .
. . .

.

AK�1;�1 0 � � � 0 A1 A0

0 AKþ1 0 � � � 0 A1 A0

..

.
AKþ1 0 � � � 0 A1 A0

..

. . .
. . .

. . .
. . .

. . .
. . .

.

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

;

ð6Þ

where

þIm�1;hKi �D0þ

0
T0

max;h1i Tmax;h1i

..

. . .
.

T0
max;hK�2i Tmax;hK�2i

T0
max;hK�1i Tmax;hK�1i

0
BBBBBBBB@

1
CCCCCCCCA
� Ima ;

A�1;0 ¼
0m�1;hK�2i
mK 0m�1;hK�2i
ðmmax;hKi�mK Þ

0mmax;hK�1i
mK Immax;hK�1i � ð0;aKÞ

 !
� D1;

A0;�1 ¼ T0
max;hKi 0mmax;hKi
ðm�1;hKi�1Þ

� �
� Ima ;

Aj;�1 ¼ 0mmax;hKi
m�1;hj�1i T0
max;hKiamax;hji 0mmax;hKi
ðm�1;hKi�m�1;hjiÞ

� �
� Ima ;

16 j6 K �1;

A0 ¼ Immax;hKi � D1;

A1 ¼ Immax;hKi � D0 þ Tmax;hKi � Ima ;

AKþ1 ¼ T0
max;hKiamax;hKi

� �
� Ima :

Note that (i) m�1,h0i = 1; and (ii) in the above matrices, ‘‘0’’ also
represents a block of zeros, whose order is determined by the con-
text. The order of ‘‘0’’ is provided whenever it is necessary. First, we
find a condition for the ergodicity of the CTMC.

Theorem 4.1. The CTMC {(qw(t), I(t), I1(t), . . . , IK(t), Ia(t)), t P 0}
is irreducible. The CTMC is positive recurrent if and only if
kE[Vmax,K] = �kamax,hKi (Tmax,hKi)

�1e < K.

Proof. A proof can be given by applying Neuts condition to the
ergodicity of GI/M/1 type Markov chains (Neuts, 1981). Details
are omitted. h

Next, we present the matrix-geometric solution for the station-
ary distribution p of the CTMC, which is divided into p = (p�1, p0,
p1, . . .) according to the level variable qw(t). It is well-known that,
if the CTMC is irreducible and positive recurrent, then p is the un-
ique solution to linear system pQ = 0 and pe = 1. Assume
that � kamax,hKi(Tmax,hKi)�1e < K. By Neuts (1981), the stationary dis-
tribution p is given by {p�1, p0Rn, n = 0, 1, 2, . . .}, where {p�1,p0} is
the unique solution to

p�1A�1;�1 þ p0

XK�1

k¼0

RkAk;�1 ¼ 0;

p�1A�1;0 þ p0A1 þ p0RK AKþ1 ¼ 0;

p�1eþ p0ðI � RÞ�1e ¼ 1;

ð8Þ

and the matrix R is the minimal nonnegative solution to

A0 þ RA1 þ RKþ1AKþ1 ¼ 0: ð9Þ

The computation of R can be done by using existing algorithms
such as the monotonic iterative algorithm (Neuts, 1981) and more
efficient algorithms (Bini, Meini, Steffe, & Van Houdt, 2006). To
check the accuracy of computation, the following property can be
used:

ha ¼ p�1ðe� Ima Þ þ p0ðI � RÞ�1ðe� Ima Þ: ð10Þ

In the next two sections, we use the stationary distribution
{p�1, p0Rn, n = 0, 1, 2, . . .} to find the distributions of queue lengths,
waiting time, sojourn time, and departure delays.

5. Queue length analysis of the tollbooth tandem queue

We consider two types of queue lengths in this section: (i) the
number of customers waiting in queue and (ii) the number of cus-
tomers at servers (in service or waiting to depart). We consider the
queue lengths (i) at an arbitrary time, (ii) seen by an arbitrary ar-
rival, and (iii) right after a service completion. We also consider
the number of waiting batches seen by an arbitrary arrival.

Proposition 5.1 (Waiting queue length at an arbitrary time). In
steady-state, let qw be the number of customers waiting in queue.

(i) The distribution of qw is P{qw = 0} = p�1e + p0e, P{qw = n} =
p0Rne, n P 1.

(ii) The probability generating function of qw is
E½zqw � ¼ p�1eþ p0ðI � zRÞ�1e, for 0 6 z 6 1.

(iii) The mean and variance of qw are

E½qw� ¼ p0RðI � RÞ�2e;

Var½qw� ¼ 2p0R2ðI � RÞ�3e� ðp0RðI � RÞ�2eÞ
2
:

ð11Þ

A�1;�1 ¼

0 a1

0 0mmax;h1i
m2 Immax;h1i � ð0;a2Þ
� �

. .
. . .

.

0 0mmax;hK�2i
mK�1 Immax;hK�2i � ð0;aK�1Þ
� �

0mmax;hK�1i
mmax;hK�1i

0
BBBBBBB@

1
CCCCCCCA
� D1 ð7Þ
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To find the number of customers in service or waiting to depart,
we need to decompose the vector p�1 according to the variable I(t):
p�1 = (p�1,h0i, p�1,h1i, . . . , p�1,hK�1i). We also need to find the num-
ber of customers in service or waiting to depart for states in
Wmax,hki, for 1 6 k 6 K. Define vectors {umax,hk,ji, j = 0,1, . . . , k} as
follows: umax,hk, 0i = 0 (a column vector with all elements being
zero), and, for 1 6 j 6 k 6 K,

0
umax;hk;ji

� �
�

1
0m1
m1

� �
� � � � �

1
0mk�j
mk�j

 !
�

 

0
Imk�jþ1

 !
� Imk�jþ2þ1 � � � � � Imkþ1

!
e: ð12Þ

Elements in the vector umax,hk,ji is either zero or one. That an ele-
ment in umax,hk,ji is one indicates that the corresponding state in
Wmax,hki has j customers either in service or waiting to depart. By
the interpretation, we must have umax,hk,0i + umax,hk,1i + � � � +
umax,hk,ki = e.

For convenience we introduce notation pP0 = p0 + p1 + p2 + � � � =
p0(I � R)�1. Also define p�1,hk,ji = p�1,hki(umax,hk,ji � e), for
1 6 j 6 k 6 K, where the order of e is ma that represents the
number of states of the Markovian arrival process.

Proposition 5.2 (Server queue length at an arbitrary time). In
steady-state, let qs be the number of customers occupying a server.

(i) The distribution of qs is given by

Pfqs¼ kg¼
XK�1

j¼k

p�1;hj;ki þp0ðI�RÞ�1ðumax;hK;ki �eÞ; k¼ 0;1;2; . . . ;K:

ð13Þ

(ii) The probability generating function of qs is

E½zqs � ¼
XK�1

j¼1

Xj

k¼1

zkp�1;hj;ki þ p0ðI � RÞ�1
XK

k¼1

zkumax;hK;ki

 !
� e:

ð14Þ

We can similarly obtain the mean and variance of qs. Details are
omitted.

Customers in the queueing system are either waiting in the
queue or occupying a server (in service or waiting to depart). Thus,
we can use Propositions 5.1 and 5.2 to find the total number of cus-
tomers in the system.

Proposition 5.3 (Total queue length at an arbitrary time). In steady-
state, let qtot = qw + qs be the total number of customers in the
queueing system.

(i) The distribution of qtot is given by

Pfqtot ¼ng¼
PK�1

j¼n p�1;hj;ni þ
Pn

j¼1p0Rj�1ðumax;hK;n�jþ1i �eÞ; for 06n6K�1;

p0Rn�KPK
j¼1RK�jðumax;hK;ji �eÞ; for n P K:

(

ð15Þ

(ii) The probability generating function of qtot is

E½zqtot � ¼
XK�1

j¼0

Xj

k¼1

zkp�1;hj;ki þ p0

XK�1

j¼1

Rj�1
XK�1

n¼j

znumax;hK;ni

 !
� e

þ p0zKðI � zRÞ�1
XK

j¼1

RK�jumax;hK;ji � e

 !
ð16Þ

We can similarly obtain the mean and variance of qtot. Details
are omitted.

Next, we find the queue length seen by an arbitrary arrival.

Proposition 5.4 (The queue length seen by an arbitrary arrival). In
steady state, the distribution of {(qw(t), I(t), I1(t), . . . ,IK(t)), t P 0} seen
by an arbitrary arrival is given by {pa,n, n = �1, 0, 1, 2, . . .}, where
pa,n = pn(I � (D1e))/k, for n = �1, 0, 1, 2, . . ..

Proof. By their definition, pn(I � (D1e)) includes all the arrival rates
when the waiting queue length is n, at an arbitrary arrival. Thus, we
must have k = p�1(I � D1)e + p0(I � D1)e + p1(I � D1)e + � � � =
p�1(I � D1)e + p0(I � R)�1(I � D1)e, i.e., the total arrival rate. By
Markov renewal theory (e.g., Grassmann & Tavakoli, 2007), the con-
clusion follows. This completes the proof of Proposition 5.4. h

Similar to Propositions 5.1, 5.2, and 5.3, based on Proposition
5.4, the distributions, means, and variances of the waiting queue
length, server queue length, and total queue length seen by an
arbitrary arrival can be obtained. Details are omitted.

Proposition 5.5. In steady state, let Na,w be the number of batches of
size K to be served just before the arrival of a customer, excluding the
batch that is currently in service and the batch of the arriving
customer. The distribution of Na,w is given by

PfNa;w ¼ ng ¼
PK�1

j¼�1pa;je; for n ¼ 0;

k�1p0RnKðI � RÞ�1ðI � RKÞðI � D1Þe; for n P 1:

8<
:

ð17Þ
The probability generating function and mean of Na,w are given

by, for 0 6 z 6 1,

E½zNa;w � ¼
XK�1

j¼�1

pa;jeþ zk�1p0RKðI � zRKÞ�1ðI � RÞ�1ðI � RKÞðI � D1Þe;

E½Na;w� ¼ k�1p0RKðI � RKÞ�1ðI � RÞ�1ðI � D1Þe:
ð18Þ

Proof. Using the distribution of Na,w, we obtain

E½zNa;w � ¼
XK�1

j¼�1

pa;jeþ
X1
n¼1

zn
XK�1

j¼0

pa;nKþje

 !

¼
XK�1

j¼�1

pa;jeþ
zp0RK

k

X1
n¼1

zn�1RKðn�1Þ
XK�1

j¼0

Rje

 !
ðI � D1Þe; ð19Þ

which leads to Eq. (18). This completes the proof of Proposition
5.5. h

The variance of Na,w can be found. Details are omitted.

6. Waiting time, sojourn time, and departure delays

To find the distributions of waiting time and sojourn time, the
key is to find the phases of the underlying Markov chains of the
service times, right after an arbitrary arrival. First, we find the dis-
tribution of the waiting time of an arbitrary arrival.

Let qw(t�) be the queue length just before time t. If a customer ar-
rives at time t, (I(t), I1(t), . . . , IK(t)) may change only if qw(t�) = �1.
We consider the process {(qw(t�), I(t), I1(t), . . . , IK(t)), t P 0}. By
Markov renewal theory, the distribution of {(qw(t�), I(t),
I1(t), . . . , IK(t)), t P 0} right after an arbitrary arrival is given by
{pa,n, n = �1, 0, 1, . . .}, where
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pa;�1 ¼
1
k
p�1

a1

ð0; Immax;h1i � ð0;a2ÞÞ

. .
.

ð0; Immax;hK�1i � ð0;aKÞÞ

0
BBBBBBBB@

1
CCCCCCCCA
�ðD1eÞ;

pa;n ¼ k�1pnðI�ðD1eÞÞ; n P 0:

ð20Þ

Note that the definitions of {pa,n, n = �1, 0, 1, . . .} and
{pa,n, n = �1, 0, 1, . . .} are different. On the other hand, since the
service process does not change when a customer arrives, except for
qw(t) = �1, we actually have pa,n = pa,n, for n P 0.

If an arriving customer sees n = jK, jK + 1, . . ., or jK + K � 1
customers waiting, the waiting time of the customer is
Vr,n + Vmax,K,1 + � � � + Vmax,K,j, where all the random variables are
independent, {Vmax,K,1, . . . , Vmax,K,j} are i.i.d.r.v.s with the same
distribution as Vmax,K, for j P 0, and the random variable Vr,n has
a PH-distribution with PH-representation (pa,n/pa,ne, Tmax,hki), for
n P 0. Note that j = Na,w for this case. Using the distribution of
Vr,n, we find the distribution of the remaining completion time of
all customers in service at an arbitrary arrival instant.

Proposition 6.1. In steady state, let Vr be the remaining completion
time of the current service(s) in all servers at an arbitrary arrival
instant, i.e., the time until server K becomes available. Then Vr is PH-
distributed with PH-representation (pa,P0, Tmax,hki), where pa,P0 =
k�1p0 (I � R)�1(I � (D1e)). Note that P{Vr = 0} = pa,�1e = 1 � pa,P0e.

Using the distribution of Vr,n,we also find the distribution
of the waiting time. Next proposition shows that the waiting
time has a matrix-exponential distribution (e.g., Asmussen &
Bladt, 1996).

Proposition 6.2. In steady state, let Wq be the waiting time of an
arbitrary customer. Then Wq ¼ Vr þ Vmax;K;1 þ � � � þ Vmax;K;Na;w and
Wq has a matrix-exponential distribution with matrix-exponential
(ME) representation

aw ¼ / Immax;hKi � ðD1eÞ
� �� �

;

Tw ¼ I � Tmax;hKi þ ðRKÞ0 � T0
max;hKiamax;hKi

� �
;

T0
w ¼ k�1 p0

XK�1

k¼0

Rk

 ! !0
� T0

max;hKi;

ð21Þ

where /(X) denote the direct-sum of matrix X (i.e., /(X) is obtained by
stringing out the elements of all the row vectors in X into a single row
vector, starting from row 1), and X0 is the transpose of X. The cumula-
tive distribution function and the mean of Wq can be obtained as

PfX 6 tg ¼ 1� aw expfTwtg �T�1
w T0

w

� �
;

E½Wq� ¼ �pa;P0T�1
max;hKieþ E½Na;w�E½Vmax;K � ¼ awT�2

w T0
w:

ð22Þ

In addition, we must have pa;�1eþ awð�TwÞ�1T0
w ¼ 1.

Proof. First note that, if qw(t) = �1, then Wq = 0. By the definition
of Wq, conditioning on the number of customers waiting in queue
and the phases of services at the arrival epoch, we obtain, for
s P 0,

E½e�sWq � ¼pa;�1eþ
X1
n¼0

XK�1

k¼0

pa;nKþk

 !
ðsI�Tmax;hKiÞ�1T0

max;hKi f �max;KðsÞ
� �n

¼pa;�1eþ
p0

PK�1
k¼0 Rk

� �
k

X1
n¼0

RnK ðI�ðD1eÞÞðsI�Tmax;hKiÞ�1T0
max;hKi


 f �max;K ðsÞ
� �n

¼pa;�1eþ
p0

PK�1
k¼0 Rk

� �
k

X1
n¼0

RKnðI�ðD1eÞÞ


ððsI�Tmax;hKiÞ�1T0
max;hKiamax;hKiÞ

n
ðsI�Tmax;hKiÞ�1T0

max;hKi

¼pa;�1eþ/
X1
n¼0

RKnðI�ðD1eÞÞ ðsI�Tmax;hKiÞ�1T0
max;hKiamax;hKi

� �n
 !



p0

PK�1
k¼0 Rk

� �
k

0
@

1
A
0

� ððsI�Tmax;hKiÞ�1T0
max;hKiÞ ð23Þ

¼pa;�1eþ/ ðI�ðD1eÞÞð Þ
X1
n¼0

RK 0 � ðsI�Tmax;hKiÞ�1T0
max;hKiamax;hKi

� �� �n
 !



p0

PK�1
k¼0 Rk

� �
k

0
@

1
A
0

� ðsI�Tmax;hKiÞ�1T0
max;hKi

� �

¼pa;�1eþ/ ðI�ðD1eÞÞð Þ I�RK 0 � ðsI�Tmax;hKiÞ�1T0
max;hKiamax;hKi

� �� ��1



p0

PK�1
k¼0 Rk

� �
k

0
@

1
A
0

� ððsI�Tmax;hKiÞ�1T0
max;hKiÞ

¼pa;�1eþ/ððI�ðD1eÞÞÞ sI� I�Tmax;hKi �RK 0 � T0
max;hKiamax;hKi

� �� ��1



p0

PK�1
k¼0 Rk

� �
k

0
@

1
A
0

�T0
max;hKi ¼pa;�1eþawðsI�TwÞ�1T0

w:

This completes the proof of Proposition 6.2. h

Higher moments and variance of Wq can be found easily. Details
are omitted.

Next, we study the sojourn time of an arbitrary arrival.
We decompose pa,�1 according to the variable I(t): pa,�1 =
(pa,�1,h1i, pa,�1,h2i, . . . , pa,�1,hKi), where pa,�1,hji is for the case where
the (j � 1)st server is not available, and the jth server is available
and is initialized for service of the new arrival. If an arrival sees
an empty system, its waiting time is zero and its sojourn time is
v1. If an arrival sees server k (6K) available and server k � 1 is
not available, its waiting time is zero and its sojourn time has a
PH-distribution with PH-representation (pa,�1,hki, Tmax,hki). If an arri-
val sees n = jK + k � 1 customers waiting, then its sojourn time is
Vr,n + Vmax,K,1 + � � � + Vmax,K,j + Vmax,k.

Proposition 6.3. In steady state, let Ws be the sojourn time of an
arbitrary arrival. Then Ws has a matrix-exponential distribution with
ME-representation aS; TS;T

0
S

� �
given as

aS ¼ pa;�1;h1i; � � � ; pa;�1;hKi; aw
� �

;

TS ¼

Tmax;h1i

. .
.

Tmax;hKi

k�1ðp0Þ0 �T0
max;hKiamax;h1i � � � k�1 p0RK�1

� �0
�T0

max;hKiamax;hKi Tw

0
BBBBBB@

1
CCCCCCA

;

T0
S ¼

T0
max;h1i

..

.

T0
max;hKi

0

0
BBBBB@

1
CCCCCA:

ð24Þ

The mean sojourn time can be calculated as E½WS� ¼ aST�2
S T0

S . In addi-
tion, we must have aSð�TSÞ�1T0

S ¼ 1.

182 Q.-M. He, X. Chao / European Journal of Operational Research 236 (2014) 177–189



Author's personal copy

Proof. By definition, we have, for s P 0,

E½e�sWS � ¼
XK

k¼1

pa;�1;hkiðsI�Tmax;hkiÞ�1T0
max;hki

þ
X1
n¼0

XK

k¼1

pa;nKþk�1ðsI�Tmax;hKiÞ�1T0
max;hKi f �max;KðsÞ

� �n
f �max;kðsÞ:

ð25Þ

The rest of the proof is similar to that of Proposition 6.2. Details
are omitted. This completes the proof of Proposition 6.3. h

Applying Little’s law, we obtain the following relationships:
E[qw] = kE[Wq] and E[qtot] = k E[WS], which are useful for checking
the accuracy of computation.

In the tollbooth tandem queue, a customer may have to stay in
the server after its service completion, until all down-stream ser-
vices are completed. We call this period of time the departure delay.
To find the distribution of departure delay, we need to find the
phases of the underlying Markov chains of the services at servers,
right after an arbitrary service completion. Define, T0

max;hk;0i ¼ 0
(zero matrix), and, for 1 6 j 6 k 6 K,

01
ðmmax;hj�1iþ1Þ

T0
max;hk;ji

0
@

1
A� Im1þ1����� Imj�1þ1�

0

T0
j

0
@

1
A�emjþ1

�����emk
;

01
ðmmax;hj�1iþ1Þ

Umax;hk;ji

 !
�

1 0

0 0ðm1þ1Þ
ðm1þ1Þ

 !
�����

1 0

0 0ðmj�1þ1Þ
ðmj�1þ1Þ

0
@

1
A� 0

T0
j

0
@

1
A�emjþ1

�����emk
:

ð26Þ

Elements in the matrix T0
max;hk;ji are the service completion rates at

server j, for states in Wmax,hki. Define

dd;�1;hki;j � p�1;kðT0
max;hk;ji � eÞ; for 1 6 j 6 k 6 K � 1;

vd;�1;hki;j � p�1;k Umax;hk;ji � e
� �

; for 1 6 j 6 k 6 K � 1;

dd;n;j ¼ pn T0
max;hK;ji � e

� �
; for 1 6 j 6 K;n P 0;

vd;n;j ¼ pnðUmax;hK;ji � eÞ; for 1 6 j 6 K;n P 0:

ð27Þ

Then dd,�1,hki,j contains the service completion rates at server j,
where the server k is occupied and servers {k + 1, . . . , K} are avail-
able (and no waiting customers). Also, dd,n,j contain the service
completion rates at server j, where there are n customers waiting.
Define

cj;0; cj

� �
¼
XK�1

k¼j

dd;�1;hki;j þ
X1
n¼0

dd;n;j ¼
XK�1

k¼j

dd;�1;hki;j

þ p0ðI � RÞ�1 
 T0
max;hK;ji � e

� �
; 1 6 j 6 K;

ðgj;0;gjÞ ¼
XK�1

k¼j

vd;�1;hki;j þ
X1
n¼0

vd;n;j ¼
XK�1

k¼j

vd;�1;hki;j

þ p0ðI � RÞ�1 
 Umax;hK;ji � e
� �

; 1 6 j 6 K;

fj ¼ ðcj;0; cjÞe; 1 6 j 6 K;

nj ¼ ðgj;0;gjÞe; 1 6 j 6 K:

ð28Þ

Proposition 6.4. In steady state, let Wd,k be departure delay of an
arbitrary customer completed its service at server k, and let Wd be
departure delay of an arbitrary customer.

(i) Then fk is the actual average service completion rate of server k,
for 1 6 k 6 K. We must have k = f1 + � � � + fK, which is useful for
checking the accuracy of computation.

(ii) The percentage of customers served by server k is fk/k, for
1 6 k 6 K.

(iii) The probability that a customer has a zero departure delay is
(n1+� � �+nK)/k.

(iv) Given that a customer completes its service at server k, its
departure delay Wd,k is zero, for k = 1 (i.e., Wd,1 = 0), and has
a PH-distribution with PH-representation (ck/(cke), Tmax,hk�1i),
for 2 6 k 6 K.

(v) The departure delay Wd of an arbitrary customer has a PH-dis-
tribution with PH-representation

aDd
¼ 1

k
ðc2; c3; . . . ; cKÞ; TDd

¼

Tmax;h1i

. .
.

Tmax;hK�1i

0
BBBB@

1
CCCCA:

ð29Þ

(vi) We have E[Ws] = E[Wq] + E[V1]f1/k + E[V2]f2/k + � � � + E[VK]fK/
k + E[Wd]. (This relationship is useful for checking the accuracy
of computation.)

7. Further properties of the tollbooth tandem queue

In this section, we present some advanced properties associated
with the distributions of waiting time and sojourn time obtained in
Section 6. We show that the waiting time and sojourn time are
actually PH-distributed.

Proposition 7.1. The ME-representation aw; Tw;T0
w

� �
of the waiting

time Wq has an equivalent PH-representation aw;PH; Tw;PH;T
0
w;PH

� �
,

given by aw;PH ¼ awKw; Tw;PH ¼ ðKwÞ�1TwKw; T0
w;PH ¼ ðKwÞ�1T0

w,
where Kw = diag((p0(I � R)�1)0 � e)/k. (Note: diag ((p0(I � R)�1)0 � e)
is a diagonal matrix with the vector (p0(I � R)�1)0 � e on the
diagonal.)

Proof. It is easy to see, for s P 0,

pa;�1eþ awðsI � TwÞ�1T0
w ¼ pa;�1eþ awKw sI �K�1

w TwKw

� ��1
K�1

w T0
w:

ð30Þ

Note that aw and T0
w are nonnegative, the diagonal elements of Tw

are negative and the off-diagonal elements of Tw are nonnegative.

Then aw;PH; Tw;PH;T
0
w;PH

� �
have the same property. To prove the

proposition, it is sufficient to show that aw,PH is a substochastic
vector and Tw;PHeþ T0

w;PH ¼ 0. First, by Eq. (10), we have

aw;PHe ¼ awKwe ¼
/ðImmax;hKi � ðD1eÞÞ ðp0ðI � RÞ�1Þ

0
� e

� �
k

¼ p0ðI � RÞ�1ðe� ImaÞD1e
k

< 1: ð31Þ
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Second, we have

Tw;PHeþT0
w;PH ¼K�1

w Twk�1ðp0ðI�RÞ�1Þ
0
�eþT0

w

� �
¼K�1

w k�1ð�IþðRKÞ0Þðp0ðI�RÞ�1Þ
0�

þk�1ðp0ðI�RÞ�1ðI�RKÞÞ
0�
�T0

max;hKi

¼K�1
w ð0Þ�T0

max;hKi ¼0: ð32Þ
This completes the proof of Proposition 7.1. h

While the ME-representation and the PH-representation for
waiting time Wq are both useful in computing the distribution
function and moments of Wq, the PH-representation is of particular
interest if Wq is used in further modeling of the system, due to its
probabilistic interpretation.

Proposition 7.2. The ME-representation aS; TS;T
0
S

� �
of the sojourn

time Ws has an equivalent PH-representation aS;PH; TS;PH; T
0
S;PH

� �
,

given by aS;PH ¼ aSKS; TS;PH ¼ ðKSÞ�1TSKS; T0
S;PH ¼ ðKSÞ�1T0

S , where

KS ¼
Im�1;hKi�1 0

0 Kw

� �
: ð33Þ

In addition, we must have aS,PHe = 1.

Proof. The proposition can be proved in a way similar to that of
Proposition 7.1. The proposition can also be proved by using the

probabilistic interpretation of aw;PH; Tw;PH;T
0
w;PH

� �
. When the

underlying Markov chain associated with aw;PH; Tw;PH;T
0
w;PH

� �
is

absorbed, the customer of interest enters a server. The customer

enters server k with rate(s) K�1
w k�1ðp0Rk�1Þ

0
� T0

max;hKi and the
service of the (first) k servers is initialized with amax,hki, for

1 6 k 6 K. Then aS;PH; TS;PH;T
0
S;PH

� �
is a PH-representation for Ws.

Finally, we have

aS;PHe ¼ pa;�1eþ aw;PHe ¼ pa;�1eþ pP0e ¼ 1: ð34Þ

This completes the proof of Proposition 7.2. h

We note that the PH-representation of the sojourn time Ws can
also be found by using results in Ozawa (2006). Matrix-exponential
representations of the waiting time and sojourn time for the GI/PH/
1 queue can be found in Sengupta (1989).

The geometric solution {p�1, p0Rn, n = 0, 1, 2, . . .} given in
Section 4 has a geometric tail, which further implies that the queue
length distributions given in Section 5 have a geometric decay as
well. Let qR be the Perron–Frobenius eigenvalue of R (i.e., the
eigenvalue with largest modulus). Then qR is the decay rate of
the queue length distributions. Next, we find the decay rates for
the waiting time and sojourn time distributions. Define

Tw;R ¼ Tmax;hKi þ qK
R T0

max;hKiamax;hKi: ð35Þ

Denote by kw,R the eigenvalue of Tw,R with the largest real part. Since
qR is nonnegative and less than one, kw,R is negative. Since the Per-
ron–Frobenius eigenvalue is nondecreasing in the elements of the
matrix, we must have max{kk,1,k = 1, 2, . . . , K} < kw,R < 0.

Proposition 7.3. That kw,R is the eigenvalue of Tw with the largest real
part. The waiting time distribution has decay rate –kw,R, i.e., P{Wq >
t} = cwtk exp (kw,R t) + o(tk exp (kw,Rt)), for some constants cw and k.

Proof. It can be shown that Tw is irreducible. Then kw,R is the only
eigenvalue with the largest real part. Consequently, the waiting
time distribution has a decay rate –kw,R. This completes the proof
of Proposition 7.3. h

Proposition 7.4. That kw,R is the eigenvalue of TS with the largest real
part. The sojourn time distribution has decay rate �kw,R.

Proof. By Proposition 7.3 and Eq. (24), the eigenvalue of TS with the
largest real part is kw,R. Consequently, the waiting time distribution
has a decay rate –kw,R. This completes the proof of Proposition 7.4.
h

Lastly, we present a limiting result.

Proposition 7.5. Assume that all the service times have the same
probability distribution. Let qK = �kamax,hki(Tmax,hki)

�1e/K. Then we
have qK ? 0 as K ?1.

Proof. It is sufficient to show E[max{X1, . . . , XK}]/K ? 0 as K ?1.
Denote by Fs(t) the distribution function of the service times. Then
we have

lim
K!1

E½maxfX1; � � � ;XKg�
K

¼ lim
K!1

Z 1

0
xðFsðxÞÞK�1dFsðxÞ

¼
Z 1

0
x lim

K!1
ðFsðxÞÞK�1dFsðxÞ ¼ 0: ð36Þ

This completes the proof of Proposition 7.5. h

8. A special case

In this section, we consider the special case where the service
times at the different servers are independent and identically
distributed.

We first consider the simplest case of a tollbooth tandem queue
where customers arrive according to a Poisson process and there
are two identical servers of exponential service times. Indeed,
one would hope to obtain a closed form solution for this extreme
case. However, the following analysis shows that, even though
the results for this very special case are simpler, a closed form solu-
tion is still not possible.

Suppose that the arrival rate is k and the service rate is l for
both servers. Since the service rates of the two servers are the
same, the transition blocks in the infinitesimal generator Q in Eq.
(6) can be simplified to

A�1;�1 ¼
�k k

l �k� l

� �
; A�1;0 ¼

0 0
0 k

� �
;

A0;�1 ¼
l 0
0 0

� �
; A1;�1 ¼

0 l
0 0

� �
;

A0 ¼ kI; A1 ¼ �kI þ
�l 0
2l �2l

� �
; A3 ¼

0 l
0 0

� �
:

ð37Þ

For the new Markov chain associated qw(t), its state space is
reduced but information on which server is in service is partially
lost. For this case, the elements of R = (ri,j) can be obtained by
solving nonlinear equations:

r1;2 ¼
ðkþ lÞ

2l
r1;1 �

k
2l

; r2;1 ¼
2l

kþ l
r2;2;

r2
1;1 þ r1;1r2;2 þ r1;1 �

k
kþ l

r2;2 �
k
l
¼ 0;

r2
2;2 þ r1;1r2;2 þ r2;2 �

kðkþ lÞ
2l2 ¼ 0:

ð38Þ

It is seen from these equations that there is no closed form solution
for R = (ri,j), and neither is there a closed form solution for {p�1,p0},
though they can be computed numerically rather easily.
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We next consider the general tollbooth tandem queue but with
identical servers. The orders of the transition blocks and matrix
representations can be reduced significantly for this case (see
Eq. (5)). Define N(t) as the number of servers busy at time t. We
consider the CTMC {(qw(t), I(t), N(t), I1(t), . . . , IN(t)(t), Ia(t)), t P 0}.
In the construction of the infinitesimal generator (6) for the CTMC,

we use amax;½k�; Tmax;½k�;T
0
max;½k�

n o
given in Eqs. (4) and (5), instead of

amax;hki; Tmax;hki;T
0
max;hki

n o
given in Eq. (2). We also use ak to replace

(0,ak) in Eq. (7). The distributions of the following random vari-
ables can be found similar to the heterogeneous case in Sections
4–6: (i) The queue length (i.e., the number of customers waiting
in queue) at an arbitrary time, arrival, and service completion;
(ii) The queue length in service at an arbitrary time, arrival, and
service completion; (iii) The waiting time; (iv) The sojourn time;
and (v) The departure delay. On the other hand, distributions of
the total number of customers in the system cannot be found by
using the simplified CTMC, since the total number of customers
in the servers depends on which server(s) has completed its
service. Information on which server(s) has completed service is
partially lost for the simplified CTMC.

Specifically, the infinitesimal generator of {(qw(t), I(t), N(t),
I1(t), . . . , IN(t)(t), Ia(t)), t P 0} is given by

A�1;�1 ¼

0 a

0 0mmax;½1�
m; Immax;½1� �a
� �

. .
. . .

.

0 0mmax;½k�2�
m; Immax;½K�2� �a
� �

0mmax;½K�1�
mmax;½K�1�

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
�D1

þ Im�1;½K� �D0þ

0

T0
max;½1� Tmax;½1�

..

. . .
.

T0
max;½K�2� Tmax;½K�2�

T0
max;½K�1� Tmax;½K�1�

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
� Ima ; ð39Þ

A�1;0 ¼
0m�1;½K�2�
m 0m�1;½K�2�
ðmmax;½K��mÞ

0mmax;½K�1�
m Immax;½K�1� �a

 !
�D1;

A0;�1 ¼ T0
max;½K� 0mmax;½K�
ðm�1;½K��1Þ

� �
� Ima ;

Aj;�1¼ 0mmax;½K�
m�1;½j�1� T0
max;½K�amax;½j� 0mmax;½K�
ðm�1;½K��m�1;½j� Þ

� �
� Ima ;

16 j6K�1;

A0 ¼ Immax;½K� � D1;

A1 ¼ Immax;½K� � D0 þ Tmax;½K� � Ima ;

AKþ1 ¼ T0
max;½K�amax;½K�

� �
� Ima ;

where m�1,[0] = 1, and m�1,[j] = 1 + mmax,[1] + � � � + mmax,[j], for
j = 1, 2, . . . , K � 1.

The distributions of waiting queue length, waiting time, and so-
journ time can be obtained similar to the heterogeneous case. For
the departure delay, we define

T0
max;½k;j� ¼

0mmax;½j�1�
mmax;½j�1�

0mj�1
mmax;½j�2�
; Imj�1
mj�1

� �
�T0

..

.

0mj�1
mmax;½j�2�
; Imj�1
mj�1

� �
�T0�emk�j
1

0
BBBBBB@

1
CCCCCCA
; for 26 j6 k;

c½j� ¼
XK�1

k¼j

p�1;½k� T0
max;½k;j� �ema
1

� �
þp0ðI�RÞ�1 T0

max;½K;j� �ema
1

� �
;

for 26 j6K:

ð40Þ

Note that p�1 = (p�1,[0], p�1,[1], . . . , p�1,[K�1]). Then the depar-
ture delay Wd of an arbitrary customer has a PH-distribution with
PH-representation

aWd
¼ 1

k

XK

j¼2

ðc½j�;0mmax;½K�1��mmax;½j� Þ; TWd
¼ Tmax;½K�1�: ð41Þ

For this case, we must have E[Ws] = E[Wq] + E[V1] + E[Wd], which
is useful for checking computation accuracy.

As seen the analysis above, the main advantage of using the
simplified CTMC is the reduction in the orders of transition blocks
in Q and the matrices {R,Tw,TS}. Table 1 below summarizes the or-
ders of the matrices for the two CTMCs {(qw(t), I(t), I1(t), . . . , IK

(t), Ia(t)), t P 0} and {(qw(t), I(t), N(t), I1(t), . . . , IN(t)(t), Ia(t)), t P 0}
for the case with identical servers. Clearly, orders for the formula-
tion of identical servers are significantly smaller than that for the
formulation in Section 4. The forth column in Table 1 gives the or-
ders of matrices for the tollbooth tandem queue with identical
servers, Poisson arrival process, and exponential service times,
which gives an even simpler computational algorithm.

9. Numerical analysis

The method developed in this paper can be used not only to
analyze various system performance measures of the tollbooth
tandem system, but also to address interesting system design is-
sues. For example, in the tollbooth application, an important ques-
tion is, when the number of tollbooths increases, how effectively
does it improve the customer delays?

Example 9.1. We consider a tollbooth tandem queue with Poisson
arrival process and K identical and exponential servers. The arrival
rate is k = 2 and service rate is l = 1. In Table 2, we report the
numerical results for mean number of waiting customers, mean
number of customers in system, mean waiting time, mean sojourn
time, mean number of batches of size K observed by an arrival, and
mean departure delay, as a function of the K.

Table 1
Orders of transition blocks and matrices {R,Tw,TS}.

Matrix Section 4 formulation Section 8 formulation Poisson & Exponential

A�1,�1 (2 + K + ((m + 1)K � 1)/m)ma (1 + (K � 1)m + � � � + 2mK�2 + mK�1)ma 1 + (K � 1)K/2
A0, A1, AK+1, R ((m + 1)K � 1)ma (m + � � � + mK�2 + mK)ma K
Tw ((m + 1)K � 1)2ma (m + � � � + mK�2 + mK)2ma K2

TS (1 + K + ((m + 1)K � 1)/m)ma + ((m + 1)K � 1)2ma (1 + (K � 1)m + � � � + 2mK�2 + mK�1) ma + (m + � � � + mK�2 + mK)2ma 1 + (K � 1)K/2 + K2
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Table 2 shows that, as K increases, the waiting queue length,
customer waiting time, and sojourn time all decrease, as expected.
In addition, the reduction in these performance measures is more
significant when K is small. Thus, adding new tollbooths has a
decreasing marginal effect. For example, the mean waiting time
drops from 5.5 to 2.0 when the number of servers goes from 5 to
6, and then drops from 2.0 to 0.4 as four more servers are added.
These numerical results show that for practical purposes, adding
a small number of tandem booths would capture the most of the
benefits. The mean queue length and mean sojourn time converge
to their limits, and these limits correspond to the numbers for toll-
booth tandem queue with infinite number of servers.

The impact of adding more tandem servers on departure delay
does not have a clear pattern. For instance, it is seen from the
numerical examples above that the departure delay first increases
and then decreases. The mean departure delay also converges to a
limit, which is the mean departure delay for the infinite-server
system.

The second question we want to address in this section is, how
does the order of servers in the tollbooth tandem system affect the
system performance? That is, given a fixed number of servers with
known service time distributions, what can be said about the
arrangement of these servers that optimizes certain system perfor-
mance measure? Next, we use four numerical examples to exam-
ine (i) the effect of mean service times and variances of service
times on performance measures; and (ii) the arrangements of serv-
ers at which performance measures are optimized.

For the computation of general tollbooth tandem with non-
Poisson arrivals and non-exponential processing times, we employ
the following computational procedure:

1. Input system parameters: (ma,D0,D1), K, and {(mk,ak,Tk),
1 6 k 6 K}. Compute arrival rate k and service rates
{lk,1 6 k 6 K}.

2. Use Eq. (2) to construct PH-representation (mmax,hki,amax,hki,
Tmax,hki) of Vmax,k = max{V1, . . . , Vk}, for 1 6 k 6 K. Check system
stability by Theorem 4.1.

3. Use Eq. (7) to construct transition blocks {Aj,�1,� 1 6 j 6
K � 1,A�1,0,A0,A1,AK+1} of the Markov chain Q.

4. Find {p�1,p0,R} for the matrix-geometric solution using Eqs. (8)
and (9).

5. Use Eqs. (11)–(19) to compute performance measures related to
queue lengths, including the mean queue lengths {E[qw],
E[qs],E[qtot]}.

6. Construct the ME-representations of the waiting time and
sojourn time using Eqs. (21) and (24). Use the ME-representa-
tions to compute the mean waiting time E[Wq] and mean
sojourn time E[Ws].

7. Using Eqs. (26)–(28) to compute performance measures for
individual servers including the percentages of customers
served by servers {f1/k, . . . , fK/k}.

8. Using Eq. (29) to construct a PH-representation of the departure
delay. Use the PH-representation to compute the mean depar-
ture delay E[Wd].

The base model for our comparison is presented in the follow-
ing example.

Example 9.2. We consider a tollbooth tandem queue with three
servers. The arrival process and service times are defined as
follows:

ma ¼ 2; D0 ¼
�5 1
0 �1

� �
; D1 ¼

4 0
0:1 0:9

� �
;

m1 ¼ 1; a1 ¼ 1; T1 ¼ �3; T0
1 ¼ 3;

m2 ¼ 2; a2 ¼ ð0:5;0:5Þ; T2 ¼
�2 1
1 �4

� �
; T0

2 ¼
1
3

� �
;

m3 ¼ 2; a3 ¼ ð0:8;0:2Þ; T3 ¼
�3 1
1 �1

� �
; T0

3 ¼
2
0

� �
:

ð42Þ
By routine calculations, we obtain k = 1.2727, l1 = 3, l2 = 1.75,

l3 = 0.83333, and q = kE[max{V1,V2,V3}]/3 = 0.6304, for the queue.
The mean queue lengths, mean waiting time, mean sojourn time,
and mean departure delay are given in Table 3. Note that, in Tables
3–6, we use li to represent the ith PH-distribution given in Eq. (42).

As shown in Table 3, the mean departure delay is small. This is
due to the fact that server 1 is the faster server with mean service
time 1/3, while servers 2 and 3 are slower; and server 2 is faster
than server 3.

Table 2
Performance measures for the Poisson arrival and exponential service case.

K q E[qw] E[Na,w] E[Wq] E[Ws] E[Wd]

5 0.9133 10.987 1.8860 5.4937 7.1803 0.6866
6 0.8167 4.0308 0.4424 2.0154 3.7368 0.7214
10 0.5858 0.8669 0.0146 0.4335 2.1919 0.7585
15 0.4424 0.3516 0.0006 0.1758 1.9341 0.7583
20 0.3598 0.1843 0 0.0922 1.8478 0.7556
25 0.3053 0.1054 0 0.0527 1.8067 0.7539
30 0.2663 0.0627 0 0.0313 1.7843 0.7530
40 0.2139 0.0234 0 0.0117 1.7638 0.7521
50 0.18 0.0090 0 0.0045 1.7563 0.7518
1 0 0 0 0 1.7516 0.7516

Table 3
Performance measures for Example 9.2.

Server E[qw] E[qs] E[qtot] E[Wq] E[Ws] E[Wd] f1/k f2/k f3/k

1 2 3

l1 l2 l3 2.1675 0.8310 2.9985 1.7031 2.356 0.0866 0.5413 0.2617 0.1969

Table 4
Performance measures for Example 9.3.

Server E[qw] E[qs] E[qtot] E[Wq] E[Ws] E[Wd] f1/k f2/k f3/k

1 2 3

l1 l2 l3 2.1675 0.8310 2.9985 1.7031 2.356 0.0866 0.5413 0.2617 0.1969
l1 l3 l2 2.3869 1.0711 3.4580 1.8755 2.717 0.2275 0.5197 0.2647 0.2156
l2 l3 l1 2.5494 1.3232 3.872 2.003 3.043 0.3435 0.4699 0.2895 0.2406
l2 l1 l3 2.3434 1.0259 3.3693 1.8412 2.647 0.1679 0.4931 0.2907 0.2162
l3 l1 l2 2.8902 1.7177 4.6079 2.2708 3.620 0.5837 0.4280 0.3129 0.2591
l3 l2 l1 2.8673 1.7591 4.6263 2.2528 3.635 0.6061 0.4253 0.3111 0.2636
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The log-scaled density functions of the service times (i.e., log
(f(t)), where f(t) is a density function) are plotted in Fig. 2(a), and
the log-scaled density functions of the waiting time and sojourn
time in Fig. 2(b). Fig. 2 demonstrates that the waiting time and
sojourn time not only are significantly longer than the service
times, but also have a much heavier tail. Thus, the waiting time
and sojourn time are much more variable than service times.

To see the effect of the service speed (i.e., service rate) on
performance measures, we switch the service times of servers.

Example 9.3 (Example 9.2 continued). By switching the three
service times defined in Eq. (42) between the three servers, we
generate six tollbooth tandem queues given below. Each of the six
queues corresponds to an arrangement of the service times.
Performance measures of the six tollbooth tandem queues are
presented in Table 4.

Table 4 shows clearly that, if faster servers are used as the
downstream servers (i.e., servers with a smaller index), the queue
length, waiting time, and departure delay are all shorter. On the

other hand, the actual workloads of the three servers are less
balanced. The difference in the mean departure delay between
the worst scenario and the best scenario is so significant that the
configuration with the faster servers used in downstream should
be considered in the design of such traffic systems.

For Examples 9.2 and 9.3, the standard deviations of the three
service times are r1 = 0.3333, r2 = 0.6061, and r3 = 1.5362, respec-
tively. It is readily seen that the standard deviations are ordered
the same as the mean service times in Examples 9.2 and 9.3. Next,
we change the standard deviation of service time 1 from
r1 = 0.3333 to r1 = 3.3334, while the mean service time remains
at 1/l1 = 0.33333. For this case, service time 1 has the smallest
mean but the largest standard deviation. Under this condition,
we examine the impact of the arrangement of the service times
on performance measures.

Example 9.4 (Example 9.3 continued). In Examples 9.1 and 9.2, we
change (a1, T1) to

Table 5
Performance measures for Example 9.4.

Server E[qw] E[qs] E[qtot] E[Wq] E[Ws] E[Wd] f1/k f2/k f3/k

1 2 3

l1 l2 l3 17.333 1.0238 18.357 13.619 14.423 0.2322 0.5445 0.2480 0.2075
l1 l3 l2 16.081 1.2416 18.322 13.420 14.396 0.3714 0.5273 0.2519 0.2207
l2 l1 l3 11.015 1.1171 12.133 8.6553 9.5331 0.2358 0.4783 0.2970 0.2246
l2 l3 l1 10.039 1.3765 11.416 7.8884 8.9699 0.3850 0.4559 0.2938 0.2503
l3 l1 l2 12.178 1.8093 13.987 9.5689 10.990 0.6636 0.4168 0.3167 0.2665
l3 l2 l1 10.966 1.7986 12.764 8.6162 10.029 0.6457 0.4149 0.3135 0.2717

Table 6
Performance measures for Example 9.5.

Server E[qw] E[qs] E[qtot] E[Wq] E[Ws] E[Wd]

1 2 3 4 5

Min l1 l2 l3 l4 l5 11.873 3.2779 15.151 11.873 15.151 1.2772
l1 l2 l4 l5 l3 11.832 3.3056 15.138 11.832 15.138 1.3037
l3 l5 l4 l2 l1 11.761 3.4572 15.218 11.761 15.218 1.4482

Max l5 l4 l3 l2 l1 11.769 3.5083 15.278 11.769 15.278 1.4966
l5 l3 l2 l1 l4 11.838 3.4570 15.295 11.838 15.295 1.4476
l3 l1 l2 l4 l5 11.885 3.3234 15.208 11.885 15.208 1.3200

0 5 10 15 20
-60

-50

-40

-30

-20

-10

0

10

t

L
og

-s
ca

le
d 

de
ns

ity
 f

un
ct

io
n

Server 1
Server 2
Server 3

0 5 10 15 20
-60

-50

-40

-30

-20

-10

0

10

t

L
og

-s
ca

le
d 

de
ns

ity
 f

un
ct

io
n

Waiting time
Sojourn time

(a)                           (b) 

Fig. 2. Service times, waiting time, and sojourn time distributions for Example 9.2.
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m1 ¼ 2; a1 ¼ ð0:005;0:995Þ; T1 ¼
�0:0299 0

0 �5:985

� �
;

T0
1 ¼

0:0299
5:985

� �
: ð43Þ

The service rates and standard deviations of the three servers
are given by l1 = 3, l2 = 1.75, l3 = 0.83333, and r1 = 3.3334,
r2 = 0.6061, and r3 = 1.5362, respectively. Performance measures
of the tollbooth tandem queues are given in Table 5.

Table 5 indicates that, if the service time of server 1 has a small
mean but it is too variable, the mean queue length can be signifi-
cantly larger than that of the other cases. Thus, similar to the ser-
vice rates, the variances of service times also have significant
impact on performance measures. Based on numerical experi-
ments and intuition, we have the following observations on the or-
der of servers.

(i) To achieve a smaller waiting (sojourn) time, servers with a
smaller mean service time (i.e., a greater service rate) should
be used as downstream servers.

(ii) To achieve a smaller waiting (sojourn) time, servers with a
smaller standard deviation of the service time should be
used as downstream servers.

Example 9.4 indicates that the order of servers to achieve a
smaller waiting (sojourn) time depends on both the mean service
times and the standard deviations of service time. The next exam-
ple demonstrates that the minimums and maximums of perfor-
mance measures can be achieved at different arrangements of
service times.

Example 9.5 (The tollbooth tandem queue with K heterogeneous
exponential server). Consider a tollbooth tandem queue with a
Poisson arrival process and K heterogeneous exponential servers.
Assume that k = 1, K = 5, l1 = 0.54, l2 = 0.52, l3 = 0.50, l4 = 0.48,
and l5 = 0.46. For this example, q = 0.918 and there are 120
permutations to assign the five service times to servers, which
correspond to 120 tollbooth tandem queues. Performance
measures for the best and worst cases are presented in Table 6.

Numerical results demonstrate that, if faster servers are used as
downstream servers, i.e., (l1,l2,l3,l4,l5), E[qs] and E[Wd] are min-
imized; performance measures E[qtot] and E[Ws] are minimized at
(l1,l2,l4,l5,l3); and performance measures E[qw] and E[Wq] are
minimized at (l3,l5,l4,l2,l1). On the other hand, E[qw] and
E[Wq] are maximized at (l3,l1,l2,l4,l5); E[qtot] and E[Ws] are
minimized at (l5,l3,l2,l1,l4); and E[qs] and E[Wd] are maximized
at (l5,l4,l3,l2,l1). Note that E[qw] and E[Wq] (and E[qtot] and
E[Ws]) are minimized or maximized at the same arrangement is
due to the well-known Little’s law.

This numerical example shows that the intuitive result of
scheduling the faster servers at the most downstream stations does
not necessary minimize the total time a customer spends in system
nor the total number of customers in system. Based on all tested
examples with K = 2, 3, 4, and 5, we have the following observa-
tions on the optimal arrangements of the servers.

Observation 9.1. Assume that l1 P l2 P � � �P lK�1 P lK. Then

(i) E[qs] and E[Wd] are minimized at (l1, l2, . . . , lK�1, lK).
(ii) E[qs] and E[Wd] are maximized at (lK, lK�1, . . . , l3, l2, l1).

(iii) For the case with K = 2, all performance measures are mini-
mized at (l1,l2), and maximized at (l2,l1).

We conjecture that some of these observations may be true in
general, e.g., (iii) with two exponential servers, though we are un-
able to prove it theoretically. Numerical examples indicates that

E[qw], E[Wq], E[qtot], and E[Ws] can be minimized or maximized at
various arrangements of service times. Numerical examples also
indicate that where a performance measure is minimized or maxi-
mized has much to do with the traffic intensity, i.e., q. For instance,
if q is small, then all performance measures in Table 6 are minimized
at (l1, l2, l3, . . . , lK�1, lK); and if q is close to one, the performance
measures in Table 6 can be minimized or maximized at very differ-
ent arrangements of {l1, l2, l3, . . . , lK�1, lK}.

10. Conclusion

In this paper, computational methods are developed for com-
puting the distributions of queue lengths, waiting time, sojourn
time, and departure delay in a tollbooth tandem queue with any
number of heterogeneous servers. The paper provides an algorith-
mic approach to the design and performance analysis of real toll-
booth tandem systems and gas stations. In the design of
tollbooth tandem queues, the order of servers is an important issue
and the conjectures and observations obtained in Examples 9.2,
9.3, 9.4, 9.5 can be used to address the issue. Further studies are
challenging and interesting.
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