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Cyclic Change of Server’s Performance:
Impacts and Applications

Boray Huang, Jingui Xie, and Qi-Ming He

Abstract—This paper studies a stochastic system where the per-
formance of the server changes stochastically and cyclically. We
first investigate the performance measures of the system, including
the queue length and the overall cost. In particular, we derive an
exact expression for the expected length of the renewal cycle, and
present closedmatrix forms for themean and variance of the queue
length. We then develop an explicit method to tackle a workload
control problem, based on an M/G/1 queue approximation. Nu-
merical examples are presented to illustrate the effectiveness of the
method.

Index Terms—Cyclic change behaviour, M/G/1 queue, optimal
workload control, system performance.
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Arrival rate.

service stages.

Service time at stage .

Distribution function of service time .

Service rate at stage .

Server transition probability from stage to
or from stage to 0.

Service time of the th job.

Service time of an arbitrary job.

Number of jobs in the system at time .

.

Number of jobs in the system immediately after the
th departure.

Number of jobs in the system seen by an arbitrary
arriving job.
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Queue length in the system in steady
state.

Stage of the server immediately after the th
departure.

.

Length of a renewal cycle.

.

average service rate.

.

system traffic intensity.

Transition probability matrix of the embedded
Markov chain at departure epochs.

, an irreducible stochastic matrix.

-matrix of the embedded Markov chain.

invariant vector of , that is,
, .

, .

the invariant probability vector of , i.e., ,
.

boundary steady-state probability of
embedded Markov chain, .

. (Note: ).

I. INTRODUCTION

I Nmanufacturing and service systems, a machine (or server)
often has a cyclic change in its performance. The cyclic

behavior may or may not follow a typical pattern. In some
cases, the change of the server’s performance is monotonic. For
instance, a machine may need a warm-up period after a startup
to achieve its regular throughput rate. A server’s performance
may also decrease over time due to fatigue or wear. These
phenomena are not uncommon in practice. (See [1] and [13]
for examples in data-transmission systems and semiconductor
fabrication processes.) In other cases, the cyclic pattern of the
server’s performance is not strictly monotonic. Reverse bathtub
functions are often used to describe the effective production
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rate over time in reliability literature. A deteriorated system
may also receive imperfect maintenances and partially restore
its capacity. But it would not go back to as-new status until it
is replaced [21]. In each cycle of these systems, there would
be some increase of performance over a generally deteriorating
process. This paper is interested in the server’s cyclic behavior
and its impact on the system’s overall outcomes, as well as the
optimal control of system workload. The performance measures
are derived by matrix-analytic methods (e.g., [17]). Based on
an M/G/1 approximation, we also find an explicit method to
tackle the optimization problem. Finally, both methodologies
are illustrated in the analysis of two typical systems: a learning
system and a deteriorating system.
A variety of changing patterns in the server’s performance

of a queueing system has been studied for a long time. For
example, [33] studies an M/M/1 queue in which there are two
exponentially distributed phases, and the arrival and service
rates depend on the phases. (See [32] for an extension.) In [16],
the model is generalized to an M/G/1 multistate system, which
deviates from [33] by assuming the service time distribution
depends only on the phase at the beginning of each service. In
[9] and [10], a more general model is analyzed: an M/G/1 queue
in a semi-Markovian environment. Reference [18] studies a
queueing model with a server that changes its service rate
according to a finite birth and death process. There are many
other studies considering similar queues (e.g., [3], [6], [8], [11],
[20], [23], [24], [26], [29]). However, very few studies focus on
the cyclic change of the server’s performance, or the optimal
control of the system workload.
The rest of this paper is organized as follows. In Section II, we

construct the queueing model with semi-Markov service times
to describe the server’s cyclic behavior and introduce the op-
timal workload control problem. In Section III, we applymatrix-
analytic methods to analyze the queueing system. In Section IV,
we discuss the optimization problem and provide an approxi-
mation method with explicit formulas. Examples are given in
Section V. Conclusions are made in Section VI.

II. QUEUEING MODEL

Assume that jobs arrive according to a Poisson process with
arrival rate . Then, the interarrival times are independent and
exponentially distributed with a parameter . There is only one
server in the system, and the service discipline is first come first
served (FCFS). The service time depends on server status which
changes according to a finite cyclic Markov chain.
The server status has, in total, stages . The

server only changes its status right after the completion of a ser-
vice. If the server is at stage at the end of a service,
its state changes to with probability , or
remains with probability . If the server’s current stage is
, the next stage is either with probability , or 0 with prob-
ability . We call the transition of the server status from to 0
a server renewal, which corresponds to a server replacement or
repair in practice. The duration between two consecutive server
renewals, that is, the period from stages 0 to 1, 1 to 2, , and
to 0, is called a renewal cycle, which is illustrated in Fig. 1. It is
easy to see that transitions of the server status can be described

Fig. 1. Renewal cycle with multiple service stages.

by a Markov chain with states and transition probability
matrix

. . .
. . .

(1)

If the server is at stage , the service time is gener-
ally distributed with a distribution function whose
Laplace–Stieltjes transform (LST) is , for .
Let be the mean of . Then, is called the service rate.
Note that the server status remains the same during a service, so
the distribution function does not change during the service. We
assume that all service times are independent random variables.
The service times are also independent of the Poisson arrival
process.
Let be the number of jobs in the system at time

. Assume that a fixed cost is incurred when the
server is renewed/replaced, a holding cost is charged per
job in the system per-unit time, and a reward is earned after
each successful service completion. Denote and as
the number of service completions and the number of server
renewals in , respectively. Given the system workload ,
the system long-run average profit can be written as

(2)
One goal of this paper is to find the optimal workload such
that the long-run average profit is maximized.

III. PROPERTIES OF THE QUEUEING MODEL

To analyze the performance of the system, we consider an
embedded Markov chain associated with the queue length ob-
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served by departing jobs. Denote and as the number of
jobs in the system (i.e., the queue length) and the server stage
immediately after the departure of the th job, respectively. De-
note as the number of new arrivals during the service of the
th job. Then, we have

if ,
if

(3)

It is easy to see that is a Markov chain with a
transition probability matrix defined in (1).
It can be verified that the embedded Markov chain

is irreducible. Denote its transition
probability matrix and stationary distribution vector by and

, respectively, where ,
for . If the Markov chain is irreducible and positive recur-
rent, we must have and , where is the column
vector with all elements equal to one (the column vector is so
defined throughout the paper with an appropriate dimension).
Without loss of generality, the states
are ordered lexicographically, where a level consists of state

. The embedded Markov chain is then an
M/G/1-type Markov chain with transition probability matrix

. . .
. . .

(4)

where

. . .
. . . (5)

and

(6)

It is easy to verify that . It can be shown that
is the invariant probability vector

of , that is, and , where .
Define and , . We can
show that , where the superscript “ ” means
a transpose of matrices or vectors. By [17, Theor. 3.2.1], the
Markov chain is positive recurrent if and only if

(7)

A. Renewal Cycle

We first analyze the renewal cycles during the busy periods of
the queueing system. Suppose there are plenty of jobs waiting
for services all the time. The server is therefore always busy.
Denote as the service time of the th job, and as the
server renewal stage at the beginning of the service of the th
job, respectively, where . We have . If ,
the distribution function of the service time is , that is,

, . The random variables

are conditionally independent given the values
, for all . It is easy to see that ,

similar to , is a Markov chain with a transition prob-
ability matrix given in (1).
When the server is at stage , the number of ser-

vices that are completed before the server changes its status is
geometrically distributed with a parameter . Therefore, once
the server enters stage , the average number of services com-
pleted at stage is , and the average time spent at stage is

. Denote and as the total length
and the number of services completed in a renewal cycle, re-
spectively, since the server is always busy. We obtain the av-
erage length of renewal cycle and
the average number of services completed in a renewal cycle

. Let , so
.

Let be the service time of an arbitrary job. Then, with
the renewal theory, the average service time per job is

. Denote as the average service rate.
Then, we have . With the definition of in (7), we
have , which can be interpreted as the system traffic
intensity. We assume that throughout this paper to ensure
that the queueing system is stable.
Now we consider the unconditional renewal cycles. Denote

by the length of an arbitrary renewal cycle. A simple rela-
tionship between the averages of and is established in
the following theorem.
Theorem III.1: The average length of a (arbitrary) renewal

cycle is given by

(8)

Proof: Define , which
exists under . It is easy to see that the distribution of

is and the distribution of is . Denote by
the length of the interval between two consecutive departures,
given that the server stage is right after the first departure.
Then,

, where has an exponential distribution
with the parameter , and is the indicator function, and

Therefore, the average length of a renewal cycle is given by

Theorem III.1 shows that , where is the
traffic intensity of the queueing system. It indicates that: When
the traffic intensity is low (high), on average, the renewal cycle
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is longer (shorter). The reason is that when the traffic intensity is
low, the probability that the server becomes idle is large. Since
the server does not change its stage while idling, the more time
it spends on the idle period, the longer the renewal cycle is.

B. Stationary Distribution

In the theory of Markov chains of M/G/1 type [17], the solu-
tion of the invariant probability vector relies on a matrix ,
which is the minimal non-negative solution to the matrix equa-
tion

(9)

For a regular M/G/1-type Markov chain, [22] has proposed a
stable recursive algorithm for the calculation of the vector .
By applying the algorithm to our model, we have

(10)

where is the identity matrix, and

(11)

It is well known that is the invariant vector of for an
M/G/1-type Markov chain where the first two rows in are
identical. With this and standard arguments for M/G/l-type
Markov chains, the mean recurrent time to the boundary
level (the level 0) is obtained by . We then have

, where denotes the invariant probability vector
of , that is, and (see [28]).
Re-partitioning the state space by the server’s stages, we have

, where , for
. The corresponding transition probability matrix can be written
as

. . .
. . .

(12)
where, for

. . .
. . .

(13)

Lemma III.1: For , we have , where

.
Proof:

. This completes the proof.
Define and as the queue length (i.e., the number of jobs

in the system) and the server renewal stage seen by an arbitrary
arriving job, respectively. Denote by the queue length at an
arbitrary time, that is, , and as the server

renewal stage at an arbitrary time. Let be the
joint stationary distribution vector of the queue length and the
server renewal stage, where
, and . We have
the following lemma showing that the queue length seen by ar-
rivals, departures, or at arbitrary time, has the same distribution.
Lemma III.2: , for . Especially, we have

, for .
Proof: With the Poisson arrivals see time averages

(PASTA) property of Poisson arrivals [31], and have
the same probability distribution, that is, . Since
the events and occur pairwisely, we
have . Hence, and
have the same distribution, that is, , which is
known as the level crossing property in queues [7]. As a result,

. Similarly, the
events seen by a departing job will be soon
observed by a new arriving job since both
events occur pairwisely. With the PASTA property, we have

, for
.

C. Mean and Variance of Queue Length

Define matrix . We
have . Define generating functions

and . First, we have
, where

is a diagonal matrix.
To further study the queue length at an arbitrary time,

we again use the embedded Markov chain at departures (i.e.,
), whose steady-state equations are

(14)

Equation (14) leads to the standard equation for the generating
functions (see [17]), for

(15)

which can be simplified to

Differentiating both sides of (15) times with respect to
and setting , we obtain

(16)

Adding to both sides leads to

(17)
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where and . The invert-
ibility of can be shown routinely. Postmultiplying
both sides of (17) by , we have

(18)

where

To determine , we write (16) for and postmultiply
both sides by . This yields

(19)
where (note that ). Together
with (18) and (19), finally, we obtain for

(20)
Define as the generating func-

tion of the queue length at an arbitrary time. By Lemma III.2,
we know that the stationary queue length seen at departures and
the one at an arbitrary time have the same distribution. Hence,
we have . The expectation and variance
of the stationary queue length are then found in the following
theorem.
Theorem III.2: The expectation and variance of the stationary

queue length are given by

(21)

(22)

where , and , and ,
are given by (24)–(26) in the following proof.

Proof: From (20), we obtain

(23)

Since , we have ,
. Since and , we have

(24)

Therefore, we have

From (17), we have

(25)

and hence

(26)

From (20), then we have

As a result, the variance of queue length is given by

The proof is completed.
In Theorem III.2, all variables are explicit, except the vector
. To find , thematrix must be numerically obtained (recall

that , where , ). In general, (9) can
be used to generate a sequence of matrices that converge to ,
see [14] for an efficient algorithm. also can be computedmore
quickly using more advanced algorithms (see, for example, the
SMC Solver tool of [2]). In fact, in this particular case, it may
be possible to exploit the structure of matrices to
develop more efficient computing algorithms for , which is
beyond the focus of this paper.

D. Bounds on the Mean Queue Length

To study the bounds on the mean queue length, the definition
and properties of stochastic orders are introduced first.
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Definition III.1: Real random variable is stochastically
less than or equal to random variable , denoted as ,
if .
The following properties hold when one random variable is

stochastically less than or equal to the other [25].
1) if and only if for all nondecreasing functions ,

.
2) If is an increasing function (componentwise)
and and are independent
sets of random variables with for each

, then .
Lemma III.3: For any fixed , let

and, for , let

(27)

The function , defined recursively above, is increasing in
, for .

Note that if and are the sequences
of service times and interarrival times of a queue, respectively,
the waiting time (i.e., the sojourn time, including the waiting
time in queue and the service time) of the th job is equal to

, given that the system is empty at
the beginning. The lemma thus states that: When the interarrival
times are fixed, the waiting time of the th job is an increasing
function of the service times.
Let us go back to our single-server renewal queue. Denote by

the interarrival times. Let be the waiting time
of the th job and assume the system is empty at the beginning.
We have , where is the
service times of the th job. Define as the
limiting (stationary) waiting time for the server renewal queue.
We can find bounds of the expected queue length if there
is a stochastic order in the service times:
Lemma III.4: In a stable server renewal system, that is, ,

if there exists such that , then we
have . If there exists
such that and , then we have

.
Proof: Recall that are the service times

for the stages of the server. For the first part of the
lemma, we can introduce an M/G/1 queue where the jobs’
interarrival times are and the service times are

, which are i.i.d. random variables having the
same distribution as . Let be the waiting time of the
th job in this queue, and let , if the limit
exists. Note that and

. By the assumption
on , we have . By
Lemma III.3 and the properties on the stochastic order, we
have for each . Since , the original queue
is stable. Because , the M/G/1 queue with service
times is stable too. Therefore, by letting
to infinity, we obtain . Since the expectations
and are both finite, then we have

. By Little’s law, we have
.

The other part of the lemma can be proved similarly.

Lemma III.4 provides easy-to-compute bounds on the av-
erage queue length. However, it requires the existence of a sto-
chastic order in the service times of different stages. In the fol-
lowing section, another set of bounds is provided, based on an
M/G/1 approximation.

IV. OPTIMAL CONTROL OF WORKLOAD

In this section, we study the optimal workload control
problem defined in Section II. Given the number of stages and
their corresponding service times, the long-run average profit
defined in (2) can be rewritten as

(28)

Denote by , the maximum of the long-run average profit,
which is given by . Our objective is to find
such that . Since and increase when
increases, it is easy to see that is concave. Hence, the

optimal solution is unique. For a given , all terms in (28)
are explicit except the average queue length , which can
be calculated numerically by Theorem III.2. Therefore, we can
find and obtain the optimal arrival rate and the maximal
profit numerically.
Besides the matrix analytic method, this paper also investi-

gates an approximation on the optimal workload by introducing
an queue. The new queue has the same
Poisson arrival process as the server renewal queue and i.i.d.
service times with distribution function

, where . Let
be the generic random variable of the service time. The LST of
is , where .

The first and second moments of are
and . Let

be the queue length, in steady state, of the queue.
We have the following theorem to show the approximation error
on average queue length.
Theorem IV.1: The /1 approximation on average

queue length has the absolute error given by

(29)

Proof:

The proof is completed.
By Theorem IV.1, several results on the difference between
and can be obtained.

1) If all of the service rates are equal, then . Since
, , , , and ,

Theorem 4.1 leads to . This result is inter-
esting since the variances of the service times at different
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stages can still be different even if all of the service rates
are the same.

2) Let be the smallest element in vector and
be the biggest element in vector . Since is
non-negative, Theorem IV.1 leads to

(30)

It is clear that, if elements in vector are close to each
other and is not close to one, the approximation
works well (see the Appendix for explicit expressions of
, and ).

From Theorem IV.1, the absolute error may significantly in-
crease as the expected queue length goes to infinity (i.e., ).
We then define the relative error of the approximation as

(31)

It is easy to see that is bounded by

To identify situations where the approximation may work well,
we undertake numerous examples for which the parameters
are selected in certain ranges: All of the service rates are
randomly chosen within each of the five different segments:
(0,10),(1,11),(2,12),(5,15), and (10,20). The lengths of these
five segment are all 10, but the possible maximal and minimal
service rates vary. We also consider different traffic intensities,
for example, 0.85, 0.90, 0.95, and 0.99, as well as different
numbers of service stages (from 2 to 20). The transition proba-
bilities ’s are selected from (0,1]. Given the traffic intensity
, the number of service stages , the service stage transition
probabilities ’s, and the range of the service rates, we repeat
100 times for each case. For the purpose of illustration, we plot
two cases in Figs. 2 and 3 with 0.85 and 0.99 respectively,
all ’s equal to 1, the service rates are randomly selected from
(5,15), and the service times are exponentially distributed. In
each figure, there are 1000 numerical examples. These exam-
ples are grouped by the number of the service stages. In each
group, the largest 5% relative errors are plotted in different
symbols. The rest are plotted under a line. In Fig. 2, where
0.85, 95% of the examples have relative errors of less than
5.08%, and 90% of the examples have relative errors less than
4.61%. In Fig. 3, where 0.99, 95% of the examples have
relative errors less than 6.88%, and 90% of the examples have
relative errors less than 6.06%.
Similar experiments for other , ’s ranges and ’s have

been done without giving details. From the numerical experi-
ments and Theorem IV.1, we have the following observations:
1) The relative approximation error slowly increases when
traffic intensity increases.

Fig. 2. Relative approximation errors when the service rates are selected within
the range (5,15) and 0.85.

Fig. 3. Relative approximation errors when the service rates are selected within
the range (5,15) and 0.99.

2) As the number of service stages increases, the range of the
relative errors stabilizes.

3) The relative error increases significantly when most proba-
bilities ’s are small. On the other hand, if one stage dom-
inates the others (e.g., ) as in most
manufacturing processes [12], the impact of small transi-
tion probabilities diminishes.

4) The approximation works well if the difference of maximal
and minimal service rates is small.

In general, both of the parameters and have less of an
impact on approximation error than the parameters ’s and
’s. Therefore, using to approximate may work

well for situations where most ’s are not very small and ’s
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are not significantly different (e.g., . ,
). More numerical results are shown in Section V.

By substituting for the queue into (28), we
obtain an approximating profit function

(32)

The first derivative of is given by

(33)

To maximize the long-run average profit, by setting
and assuming , we obtain the approximating
optimal arrival rate and traffic intensity as follows:

(34)

(35)

The term can be interpreted as the profit if the ma-
chine is running all of the time. Thus, the optimization problem
makes sense only if . If is very small com-
pared to , then , and . Denote the relative
error of approximation on the optimal profit as , and

(36)

The performance of the approximate solution is examined in
Section V, which is measured by the relative error .

V. EXAMPLES

In this section, we apply our methodologies to two typical
systems and examine their effectiveness.

A. Learning System

Learning is acquiring new skills, knowledge, or values, which
is a significant ability possessed by human beings. If learning
is strictly defined as an increase in performance over a speci-
fied time interval, then even simple nonfeedback machines can
exhibit learning behaviors. Learning techniques are of interest
to control engineers on the design of artificial learning systems
[27]. It is well known that the learning process over time tends
to follow a learning curve, a graphical representation of the
changing rates of learning for a given activity. As individuals
get more experienced at a task, they usually become more ef-
ficient at it, following a progression of learning first getting
faster and then slower. Typically, the increase in learning speed
is the sharpest at the initial phase, and then gradually flattens
out, meaning that less and less is learned after each repetition.
Generally, a learning curve has an “S” shape which may have a
different appearance.

The learning curve theory states that as the production quan-
tity doubles, the required direct labour hours decrease at a pre-
dictable rate. This predictable rate can be described by the fol-
lowing equation which is the basis for the so-called unit curve
[5]:

(37)

where is the number of direct labor hours to produce the th
unit, is the number of direct labor hours to produce the first
unit, is the unit number, and is the learning percentage.
Equation (37) is known as the Henderson’s Law in the context

of learning theory, from which we develop the learning process
in a stochastic environment. In (37), the time spent in each
product is constant. Wemake the time for each task random, and
the mean service time is a nonincreasing function of the number
of jobs. The stochastic learning process discussed in this section
is a special case of the server renewal process, where the service
rate at a higher stage is larger, that is, .
Our cyclic server renewal model proposed in Section II can

generalize the deterministic learning process to a stochastic one
accordingly. When 1 and the is a one-step func-
tion for all , our stochastic learning process becomes determin-
istic. Especially when , the deterministic
learning process is exactly the one described in (37).
In the following text, we conduct a numerical study to

show the effectiveness of the approximate solution provided
in Section IV. We calculate the optimal traffic intensity nu-
merically according to the matrix analytic method introduced
in Section III, and the approximate traffic intensity by using
(34). We also calculate and compare the maximal profit and the
profit associated with the approximate traffic intensity .
We design various numerical examples in order to illustrate

the effectiveness of the approximation solution: Some exam-
ples have service times with small variance, while others have
large variances, or mixed. It is well known that an exponential
random variable has a coefficient of variation 1, which is con-
sidered a medium variation. Distributions with (such as
an Erlang distribution) are considered to have a low variation,
while those with (such as a hyper-exponential distribu-
tion) are considered to have a high variation. In our study, we
consider three types of service time distributions: exponential,
hyper-exponential, and Erlang-2, as shown in Table I.
The only approximation in the profit function is the average

queue length . We first set 100, 10, 100. The
numerical results, in fact, are similar for other , , and . In
Table II, the server has two learning stages: 0 and 1. The service
rate at stage 0 is 3, and 6 at stage 1. The stage transition prob-
ability is selected from the set {0.1, 0.5, 0.9}. The results show
that the approximate solutions are very close to the optimal so-
lutions in most scenarios. Although in a few cases, the gap be-
tween and can reach 3%, the difference of corresponding
average profit is only about 1% (see examples 9, 18, and 27 in
Table II). In these examples, the maximal service rate is twice
the minimal service rate. The minimal transition probability is
0.1. According to our results in Section IV, the approximation
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TABLE I
CONSTRUCTION OF DIFFERENT DISTRIBUTIONS WITH THE SAME MEAN VALUE

Note: In our numerical examples, we set , , , for the hyper-exponential distribution, hence .

TABLE II
TWO-STAGE LEARNING SYSTEM WITH DIFFERENT SERVICE TIME DISTRIBUTIONS ( 100, 10, 100)

would generally work well. The worst case is when both tran-
sition probabilities reach the smallest value 0.1. The results are
consistent with our previous findings. Besides these, we can see
that a higher variance in service times produces a lower profit.
All of the examples in Table II with hyper-exponential service
times generate lower average profits than those with exponential
service times. The examples with Erlang-2 service times (with
the lowest variances) produce the highest profits.
Other examples also show similar results. For instance, we

study 1000 examples with selected from [5], [15] and
. In this case, we have found that 95% of the examples

have relative errors on the optimal profit of less than 2.28%.

B. Deteriorating System

Deteriorating servers are well observed in manufacturing sys-
tems. Machines deteriorate over time, and need to be replaced
when their performance fails to meet the requirement. There are
tremendous works dealing with the related problems (see [4],
[15], [19], and [30], and the references therein). In this section,
we discuss the application of our methodologies to a simple
deteriorating system. It is assumed that the status of a server

may deteriorate after each service completion. This server de-
teriorating process is another special case of a server renewal
process, where the service rate at a higher stage is smaller, that
is, . Most of the results we obtain from
the learning system hold for the deteriorating system. For the
optimal workload control problem of the server deteriorating
system, the approximate solution works well, which is illus-
trated in Table III and verified by various numerical examples.
In Table III, the service rates are (6, 5, 4, 3), while the transition
probabilities are randomly generated.We consider three types of
service time distributions: exponential, hyper-exponential, and
Erlang distribution. In addition, we have studied 1000 examples
with selected from [5] and [15] and . In sum-
mary, we have found that 95% of the examples have relative
approximation errors on the optimal profit of less than 1.75%.
It is worth noticing that a deteriorating system is not a simple

reverse of the learning system. For example, let 0.9,
(60,5,4,3), and (0.03,0.04,0.05,0.06). The average queue
length is 53.22, while it is 56.69 for its reverse learning system.
One possible reason may be the difference in service processes.
For instance, the service times sequence of a learning system
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TABLE III
SEVERE DETERIORATING SYSTEMS WITH FOUR SERVICE STAGES ( 100, 10, 100)

is , while for the de-
teriorating system, it is ,
where are i.i.d. r.v.s for 0, 1, 2. Re-
gardless of the starting point, these two sequences are different.

VI. CONCLUSION

In this paper, we develop two methods to study systems
where the server’s performance changes cyclically. We apply
matrix-analytic methods and obtain analytical results for system
performance measures. To solve the optimal workload control
problem, we use an M/G/1 queue approximation to help design
an explicit solution. The developed methodology is illustrated
by numerical examples. In future research, a more efficient
computing algorithm for the matrix analytic solution can be
explored for particular cyclic change patterns, which can be
used when the M/G/1 approximation yields an unsatisfactory
error. It might also be interesting to see whether any bounds
can be provided for the variance of the queue length using an
M/G/1 approximation.

APPENDIX
EXPRESSION OF

We show that has the following explicit expression:

(38)

where

;

.
(39)

It can be verified with routine algebra that

(40)

and

Thus, the matrix defined in (38) is indeed the inverse of
. The expressions for and are given as

follows.

(41)

(42)
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