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A TREE-STRUCTURED MARKOVIAN MODEL OF THE SHIPMENT

CONSOLIDATION PROCESS

Qishu Cai, Qi-Ming He, and James H. Bookbinder

Department of Management Sciences, University of Waterloo, Waterloo, Ontario, Canada

� This article studies the dispatch of consolidated shipments. Orders, following a batch Marko-
vian arrival process, are received in discrete quantities by a depot at discrete time epochs. Instead
of immediate dispatch, all outstanding orders are consolidated and shipped together at a later time.
The decision of when to send out the consolidated shipment is made based on a “dispatch policy,”
which is a function of the system state and/or the costs associated with that state. First, a tree struc-
tured Markov chain is constructed to record specific information about the consolidation process;
the effectiveness of any dispatch policy can then be assessed by a set of long-run performance mea-
sures. Next, the effect on shipment consolidation of varying the order-arrival process is demonstrated
through numerical examples and proved mathematically under some conditions. Finally, a heuristic
algorithm is developed to determine a favorable parameter of a special set of dispatch policies, and
the algorithm is proved to yield the overall optimal policy under certain conditions.

Keywords Dispatch; Freight consolidation; Markov chain; Matrix-analytic methods;
Optimal policy.

Mathematics Subject Classification Primary 90B06; Secondary 60J10.

1. INTRODUCTION

Shipment consolidation is a logistics strategy whereby many small ship-
ments are combined into a few larger loads. The economies of scale thus
achieved help improve the utilization of logistics resources and reduce trans-
portation costs. Although the main purpose of shipment consolidation is to
minimize overall costs, that should not be at the expense of unsatisfactory
customer service. By associating appropriate monetary values to the delays
of orders, achieving an optimal balance between cost reduction and main-
taining good service becomes the ultimate goal of that strategy.
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522 Cai et al.

In this article, we analyze shipment consolidation for two cases of
transportation, by private carriage and by common carriage. These refer to
the dispatch of a consolidated load in one’s own truck or in the vehicle of
an outside for-hire trucking company, respectively. It has long been known
that consolidation strategies, when properly administered, can yield am-
ple benefits to the shippers. The following are success stories of shipment
consolidation. Colgate-Palmolive Company has reported savings of more
than $250,000 in the initial period of actively consolidating their shipments;
the firm believes that more consolidation opportunities remain to be cap-
tured[16]. Nabisco Inc., the producer of cookies and snacks, has reduced
their U.S. transportation costs by 50%, diminished the levels of inventory,
and enhanced on-time delivery through shipment consolidation[11].

Recent trends in the transportation and logistics industry have elevated
the importance and necessity of shipment consolidation. For example, im-
plementation of Just-in-Time inventory systems in large retail chains such
as Walmart, Home Depot, and Target has forced the upstream suppliers to
make smaller and more frequent deliveries[18]. Constrained by resources and
costs, it becomes necessary for these suppliers to consolidate shipments des-
tined to several locations nearby. Other forces encouraging shipment con-
solidation include rising oil prices, traffic congestion, “green transportation”
initiatives, and the desire for increased utilization of logistics resources[14,18].

How can a company operationalize a consolidation program to obtain
the preceding benefits? The shipment consolidation process is governed by a
set of decision rules known as the “dispatch policies.” These rules determine
the appropriate size of the accumulated load and/or the best time to release
that load. Upon reaching the desired size or release time, those orders
waiting are then sent, and the next cycle of the consolidation process begins
anew. Three classes of dispatch policies have been reported in the logistics
literature. These are the quantity, time, and hybrid policies. When a quantity
policy is implemented, dispatch of a consolidated load is delayed until the
total weight of those orders is at least Q ; a time policy leads to a dispatch
every T periods. A hybrid, or time-and-quantity-based, policy combines the
effect of the previous two classes: there is still a desired shipment quantity Q ,
but if that weight is not attained by time T , those orders on hand are then
dispatched. It is important to note that, in practice, there exist many other
policies, e.g., those whose thresholds for dispatch may depend on order
delays.

Over the years, the methods of operations research employed to study
shipment consolidation problems include computer simulation[6], Marko-
vian decision processes[7], stochastic clearing systems[2], renewal theory[4,8],
and matrix-analytic methods[1]. Çetinkaya[3] has given a more thorough lit-
erature survey than is possible here.
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Tree-Structured Markovian Model 523

The preceding models rely on varying assumptions about the order-
arrival process and the distribution of order weights. For example, refer-
ences[4,17] assume Poisson arrivals and orders of unit weight; publication[6]

studies a system with a Poisson arrival process and empirically supported
gamma distribution of order weights; and citation[1] utilizes the more gen-
eral approach of a batch Markovian arrival process (BMAP), in which the
weight of each arriving order is possibly correlated with its arrival time. Re-
sults from the preceding research depends on their particular assumptions.
Except for Ref.[1], the previous modeling assumptions are more restrictive
than what we provide here. In this article, the order-arrival process is again
modeled as a BMAP (see Section 2). Since “any stochastic counting process
can be approximated arbitrarily closely by a sequence of Markovian arrival
processes”[5], the model in the present article is more robust and adaptive
to real-world situations.

In general, the existing works on shipment consolidation all model the
periodic delay penalty cost as a function of the accumulated weight. How-
ever, we argue that such a penalty may depend on the delay of each order
as well. For instance, the penalty rate for high-priority products/customers
may increase as the waiting time increases (i.e., customers get “impatient”).
Therefore, in different periods of the consolidation process, individual out-
standing orders may incur different delay penalties.

The main objective of this article is thus to construct a model that is
capable of recording the information of all orders being consolidated, such
as their weights, delays, and sequence of arrivals. This set of extra information
will allow us to use a more sophisticated cost function to model the customer
disutility of waiting, which then leads to a more accurate evaluation of the
consolidation strategy.

The main contributions of our article can be summarized as follows.
First, we improve on the existing stochastic models of shipment consoli-
dation by utilizing a more general order-arrival process, incorporating the
delay penalty of individual orders into the cost structure, and introducing a
variety of dispatch policies not studied previously. For the sake of capturing
the desired information of the consolidation process, we model the sys-
tem as a GI /M/1 Markov chain with a tree structure and use matrix-analytic
methods, more specifically, the “rate matrix” R , to compute its stationary dis-
tribution[5,19]. We then apply renewal theory[4,12] to evaluate a given dispatch
policy in the long run. Second, we analyze the sensitivity of the consolida-
tion process to the input process. The concept of stochastic comparison[13]

helps us investigate the effect of varying order-arrival processes. Finally, we
introduce a class of dispatch policies that depends on the delay penalty and
prove that the overall optimal policy is of this type under certain conditions.

BMAP and Matrix-analytic methods are first used in Ref.[1] to model and
solve shipment consolidation problems. In the model in Ref.[1], the system
states are represented by the accumulated weight and the elapsed time since
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524 Cai et al.

the last dispatch, and the delay penalty rate is assumed to be constant over
time. The current article introduces an advanced model featuring more
complicated system states and a non-decreasing delay penalty rate. The new
model extends that in Ref.[1] by relaxing some modelling constraints, hence
becomes more reflective of the shipment consolidation process in practice.
The main result obtained in Ref.[1] is a set of long-run performance mea-
sures. In this paper, we have obtained additional results on the performance
measures based on the new model (Section 3.ii) and performed stochastic
comparison and sensitivity analysis (Theorem 4.1). The definition of a new
class of dispatch policies, the optimization heuristic, and proof of the op-
timality of this new kind of policy in a special case (Theorem 5.1) provide
valuable insights to the problem.

The remainder of this article is organized as follows. A stochastic model
for analyzing the shipment consolidation process is introduced in Section
2. Subsequently, in Section 3, a discrete time Markov chain for the system
state, i.e., orders waiting to be shipped, is constructed, and an efficient
algorithm is developed to compute its stationary distribution. Performance
measures are analyzed. In Section 4, some stochastic comparison results,
which are useful for sensitivity analysis, are collected. In Section 5, a heuristic
algorithm is developed to find a good dispatch policy, which turns out to be
the overall optimal policy for a special case. Section 6 offers our conclusions
and suggestions for further research.

2. THE MODEL OF INTEREST

The model investigated in this article deals with the following shipment
consolidation situation. Orders of discrete random quantities arrive from
outside the system at discrete time periods. At the end of each period, the
system state, i.e., orders waiting to be shipped, is assessed and a decision is
made on whether or not to dispatch a load. If the decision is to dispatch,
then all outstanding orders are dispatched as a single aggregated quantity.
The dispatch decision is made based on a dispatch policy, which is a function
of the system state and/or the costs associated with that system state. After
each dispatch, the next consolidation cycle begins in the following period with
no order in the system. To introduce the model of interest explicitly, we
need to define (i) the order-arrival process, (ii) the system state variable,
(iii) the dispatch policy, and (iv) performance measures and costs.

2.1. The Order-Arrival Process

Orders of different weights arrive according to a discrete time batch
Markovian arrival process (BMAP) with matrix representation (D0, D1, . . . ,
DK ), where D0, D1, . . . , and DK are ma × ma nonnegative matrices, and ma and
K are finite positive integers representing the number of underlying phases
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Tree-Structured Markovian Model 525

and the maximum order weight, respectively. Note that we can aggregate all
arrivals within the same period as a single order since we are considering
only one type of orders.

For the given BMAP, define D as the sum of matrices D0, D1, . . . , and
DK . Then D is a stochastic matrix. The discrete time Markov chain associated
with D is the underlying Markov chain of the order arrival process. Denote
by Ia(t) the state of the underlying Markov chain at the beginning of period
t. We assume that {Ia(t), t = 0, 1, 2, . . .} is irreducible. Then the matrix D is
irreducible.

Entry (i, j) in matrix D0, denoted by [D0]i, j , can be interpreted as the
probability that there is no order arriving in a period, and the underlying
process goes from state i at the beginning of the period to state j by the end of
the period. Meanwhile, [Dk]i, j , for k = 1, 2, . . . , K , can be interpreted as the
probability that k units have been ordered in a period, and the underlying
process goes from state i to state j.

Let θa be the stationary distribution of the underlying Markov chain.
Then θa is the unique solution to the linear system θaD = θa and θae =
1. Define λw,a = θa(

∑K
k=0 kDk)e, which is the weight-arrival rate, and λo,a =

θa(
∑K

k=1 Dk)e, the order-arrival rate. See Refs.[5,9] for more about BMAPs.
Some typical order-arrival processes are presented as follows.

Example 2.1.1. Example 2.1.1.1 is a compound renewal arrival process for
which the positive order weights for individual periods are independent
random variables and have a common distribution with K = 3. Such an
order-arrival process is a special BMAP, and it is the discrete analogue of the
compound Poisson process. Example 2.1.1.2 is an order-arrival process with
independent order weights with K = 3 and Markov modulated order-arrival
probabilities. Example 2.1.1.3 is a typical BMAP with correlated arrivals with
K = 2.

2.1.1.1. D0 = 0.25, D1 = 0.25, D2 = 0.25, D3 = 0.25.

2.1.1.2. D0 =
(

0.3 0.4
0.2 0.3

)
, Dk = p k

(
0.15 0.15
0.25 0.25

)
,

k = 1, 2, 3, where (p 1, p 2, p 3) = (0.3, 0.3, 0.4).

2.1.1.3. D0 =
(

0.3 0.4
0.2 0.3

)
, D1 =

(
0.1 0.1
0.2 0.2

)
, D2 =

(
0.05 0.05
0.05 0.05

)
.

Theoretically, the maximum batch size of a BMAP can be infinite. How-
ever, in pratice, the maximum order weight is always finite. Thus, K is as-
sumed to be finite throughout this article.
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526 Cai et al.

2.2. System Variables and State Space

The key feature of this article is the use of weights and delays of in-
dividual outstanding orders in its analysis. To achieve that, we first define
X (t) as the weights of orders that arrived since the last dispatch before pe-
riod t and arranged in their sequence of arrival. Then X (t) = x0x1 . . . xn,
where x0 = 0 and {x1, . . . , xn} are the weights of those orders arriving
in periods t − n, t − n + 1, . . . , and t − 1, respectively, for t = 0, 1, 2, 3, ....
We use x = x0x1 . . . xn to represent a string of nonnegative integers be-
tween 0 and K , which is a sequence of the weights of those orders be-
ing held before dispatch. In other words, X (t) = x records the sample
path of the order-arrival process since the previous dispatch. In the string
form, the state space of X (t) has a (K + 1)-ary tree structure and is
defined as

� = {x = x0x1 . . . xn : x0 = 0 ≤ xi ≤ K, i = 1, 2, . . . , n, n = 0, 1, 2, . . . } (1)

An element in � is called a node. Figure 1 illustrates a (K + 1)-ary tree
with K = 2. Each downward path on the tree represents a sample path of
the consolidation process. Any segment of a sample path corresponds to a
sequence of order arrivals without dispatch. For a particular node x on the
tree, all of its successors can be reached through a sequence of order arrivals
if there is no dispatch.

A dispatch cycle may begin with a few periods of zero order weight,
which indicate that the system may be empty for some periods after the last
dispatch. We refer to these periods as “inactive periods.” Once the first non-
zero order has arrived after the last dispatch, the system goes into an “active
accumulation cycle.” Ordinarily, during the inactive periods, dispatch is not
required and no cost is incurred. Thus, in our analysis we shall combine
those zero states into a “super” zero state and thus reduce the size of �.

FIGURE 1 A (K + 1)-ary tree.
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Tree-Structured Markovian Model 527

Define, for period t = 0, 1, 2, . . . ,

Y (t) =
{

0, if X (t) = 0 . . . 0;

x j x j+1 . . . xn, if X (t) = 0 . . . 0x j x j+1 . . . xn, x j > 0.
(2)

By the definition, Y (t) records all orders in the current active accumu-
lation cycle, if at least one non-zero order has arrived; otherwise, Y (t) = 0.
We note that Y (t) may include some orders of zero weight if they arrive after
the first non-zero order in an active accumulation cycle. The state space of
Y (t) is given by

� = {0} ∪ {y = y1 . . . yn : y1 > 0, 0 + y ∈ �, for n = 1, 2, . . .} . (3)

For state y = y1 . . . yn ∈ �, define the following quantities and operations
on y:

(4.a) |y | = n;
(4.b) S(y) = y1 + . . . + yn;

(4.c) N (y) =
|y |∑

i=1

δ(yi >0);

(4.d) D(y) =
|y |∑

i=1

(|y | − i)δ(yi >0);

(4.e) y + k = y1 . . . ynk, if y �= 0; and y + k = k, if y = 0, for k = 0, . . . , K,

(4)
where δ(·) is the indicator function. For Y (t) = y , equation (4.a) gives the
effective elapsed time since the last dispatch before period t; (4.b) tells us the
total accumulated weight of all outstanding orders; (4.c) is the number of
non-zero outstanding orders in the system; (4.d) is the total delay of these
non-zero orders in period t; and, finally, (4.e) defines the “concatenation” of
strings with “+” being the operator. The concatenation operation shows how
the system state is updated if the consolidation process continues for one
more period without dispatch. Note that we make an exception for y = 0
because if k = 0, the process will remain in state “0” (i.e., 0 + 0 = 0 in �),
and if 1 ≤ k ≤ K , we set y1 = k to mark the start of the active accumulation
cycle.

In the rest of this article, we use Y (t) to represent the system status
at the beginning of period t. Based on Y (t), we can calculate costs and make
the dispatch decision. However, if there is a need to analyze the impact of
the inactive periods, one can modify the results obtained in this article by
using X (t) to represent the system. Details are omitted.
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528 Cai et al.

2.3. Dispatch Decision and Dispatch Policy

A dispatch decision is made at the end of each period according to the
system state and a dispatch policy. The shipment consolidation process is
governed by a set of decision rules generally known as the dispatch policy,
which can be represented by a binary function f . Each policy corresponds
to a set of dispatch criteria. If the system state y at the end of a period satisfies
the criteria, a dispatch is triggered, and a value of “1” will be assigned to
the function f for that state; otherwise, if those criteria are not met, set
f (y) = 0. Therefore, based on the dispatch criteria, the binary function f
on the system state space � can be expressed as follows, for y ∈ �:

f (y) =
{

1, if y satisfies the dispatch criteria;
0, otherwise. (5)

Typical dispatch criteria include (i) the accumulated weight reaches a
certain level; (ii) the delay of any outstanding order exceeds a particular
limit; (iii) an undesirable sequence of order-arrivals has occurred; and (iv)
a combination of the preceding. The criterion of delay penalty policy will be
specified in Section 5. The next example presents two dispatch policies.

Example 2.3.1. For Policy f1, a shipment is dispatched ifS(y) > 3 or |y | > 3.
For Policy f2, a shipment is dispatched if 1 ≤ |y | ≤ 3 and S(y) ≥ 4; 4 ≤ |y | ≤
5 and S(y) ≥ 3; or |y | > 5. For y ∈ �, we have

f1(y) =
{

1, if S(y) > 3 or |y| > 3;
0, otherwise.

f2(y) =
{

1, if 1 ≤ |y| ≤ 3 and S(y)≥4; 4 ≤ |y| ≤ 5 and S(y) ≥ 3; or |y| > 5
0, otherwise.

Under a policy f , only a subset of � can ever be attained by Y (t). This is
because if we decide to dispatch upon reaching state y, Y (t) will immediately
go back to state “0.” Thus Y (t) never actually stays in state y nor gets to any
of its successors in �. Proceeding down each path on the state space tree,
the last node to continue to consolidate is also the last node Y (t) stays on
that path under policy f . If a shipment is dispatched when the system state is
y at the end of a period, we must have f (y) = 1. We also have f (y + x) = 1
for any successor y + x. We note that f (0) = 0 is always true since there
is no dispatch during inactive periods. These observations lead to a basic
assumption on the dispatch policies used in this article.

Assumption 1. For y = 0, we assume that f (y) = 0. If f (y) = 1 for y ∈ �,
then we have f (y + x) = 1 for y + x ∈ �.
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Tree-Structured Markovian Model 529

For dispatch policy f , we denote the set of all reachable states by �( f )

and call it the sub-state space generated by policy f . It is easy to see that

�( f ) = {y : y ∈ �, f (y) = 0}. (6)

Thus, once the dispatch criteria are given, we can assign values to f and
construct �( f ). An example of �( f ) is illustrated in Figure 2 for dispatch
policy f1 defined in Example 2.3.1 and K = 2.

Theoretically, �( f ) may be infinitely large if none of the dispatch criteria
can ever be attained (e.g., if the process can continue indefinitely or there
is no limit on the accumulated weight). However, in practice, a dispatch
policy needs to be “feasible” so that the shipper will not let its customers
wait for too long, and the consolidated shipment weight is limited by vehi-
cle capacity. In other words, dispatch must take place after finite effective
elapsed time and finite accumulation. For dispatch policy f , we define the
maximum accumulated weight allowed W and the longest delay allowed T as
follows:

W = max
y∈�( f )

{S(y)} and T = max
y∈�( f )

{|y |}. (7)

Below is our assumption about feasible policies.

Assumption 2. Dispatch policy f is called feasible if W and T are both finite.

Based on Assumption 2, the state space �( f ) of feasible policy f is a subset
of {y : y ∈ �,S(y) ≤ W , |y | ≤ T}, which has a finite number of states.

FIGURE 2 � f for policy f1 defined in Example 2.3.1.
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530 Cai et al.

2.4. Performance Measures and Costs

For a given dispatch policy, we will use the following performance mea-
sures to assess its effectiveness:

Lc: The consolidation cycle length, i.e., the time between any two consecu-
tive dispatches.

Lidle: The length of an inactive accumulation period, i.e., the consecutive
periods with no order arrival right after a dispatch. The system is empty
during the inactive accumulation period.

Lactive: Lactive = Lc − Lidle, the time in a consolication cycle that the sys-
tem is actively accumulating.

Wc: The total consolidated weight of a shipment.
Nc: The number of non-zero orders in a shipment.
LD: The average delay of non-zero orders in a shipment.

In this article, we consider two types of costs: delay penalty cost and trans-
portation cost. The delay penalty cost, i.e., the customer disutility of waiting or
the order-holding cost, is incurred as customers grow impatient when their
deliveries are held back. In earlier works on shipment consolidation, the de-
lay penalty cost per consolidation cycle was assumed to be linear with respect
to the cycle length. That is, it was charged at a constant rate over time. How-
ever, we argue that it is more realistic when the penalty rate actually grows as
the delay is prolonged. Therefore, our delay penalty cost in a consolidation
cycle may be non-linear with respect to the delay time. This modification
of the delay penalty cost function is among the major contributions of this
article.

We are interested primarily in the long-run average total cost per unit
time, which is denoted by C( f ) since it is a function of the dispatch policy
f . The total cost can be expressed in two components: the delay penalty cost
and the transportation cost per period in the long run, denoted by Cdp( f )
and Ctr( f ), respectively. It is easy to see

C( f ) = Cdp( f ) + Ctr( f ). (8)

Recording information about individual outstanding orders in the sys-
tem state variable Y (t) becomes necessary when the delay penalty rates vary
over time and penalties must be charged to each order. Such penalties are
more intuitive and realistic in practice. Even though the delay penalties are
usually charged upon dispatch, we assume that they are incurred in each pe-
riod throughout the consolidation cycle and summed up to the final amount.
We also assume that the penalties for individual orders are additive. There-
fore, if Y (t) = y1 . . . yn, we can define the penalty cost incurred in period
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Tree-Structured Markovian Model 531

t as

Dp(y1 . . . yn) =
n∑

i=1

dp(n − i + 1, yi ), (9)

where dp(l, k) is the cost incurred in a period by an outstanding order whose
weight is k and has been delayed by l periods. We call dp(l, k) the delay penalty
rate function. Once we know dp(l, k), we can derive Cdp( f ).

Example 2.4.1. Three types of delay penalty rate functions are given as
follows:

2.4.1.1. Linear in weight but constant over time: dp(l, k) = 0.5k.
2.4.1.2. Polynomial in both weight and time: dp(l, k) = 0.1k2l3.
2.4.1.3. Linear in weight but exponential in time: dp(l, k) = 0.03ke l .

Note that the delay penalty rate given in 2.4.1.1 in Example 2.4.1 does
not actually depend on the delay; it is equivalent to the typical order-holding
cost function used in existing shipment consolidation models. Our model,
therefore, generalizes the existing cost structures. The other two cases in
Examples 2.4.1 are more symbolic of delay penalty rates that grow over time.

Our models are capable of computing different types of transportation
costs. If the shipper is a private carrier, the transportation cost per load
is usually fixed to a constant amount KD. However, if the shipper hires
a common carrier, the transportation cost is charged with respect to the
freight rate per unit weight and may be eligible for a volume discount. More
details on this case can be found in Section 3 when the long-run average
costs are discussed.

3. MARKOV CHAIN AND PERFORMANCE MEASURES

Recall that at the beginning of period t, the state of the underly-
ing Markov chain for the order-arrival process is Ia(t). Since {Ia(t), t =
0, 1, 2, . . .} is an irreducible Markov chain, and Y (t + 1) depends only on
Y (t), the order arrival in period t, and the dispatch policy f , it is easy to see
that the pair (Y (t), Ia(t)) contains enough information to form a Markov
chain. It follows immediately that the process {(Y (t), Ia(t)), t = 0, 1, 2, . . .}
is a discrete time Markov chain with state space �( f ) × {1, 2, . . . , ma}.
There are four types of transitions for the Markov chain {(Y (t), Ia(t)),
t = 0, 1, 2, . . .}:

i. (0, i) → (k, j): if an order of weight k > 0 arrives at an empty system
and does not trigger a dispatch;

D
ow

nl
oa

de
d 

by
 [

Q
is

hu
 C

ai
] 

at
 1

3:
22

 1
0 

N
ov

em
be

r 
20

14
 



532 Cai et al.

ii. (y , i) → (y + k, j): if an order of weight k > 0 arrives and does not
trigger a dispatch, or a period goes by without an arrival (i.e., k = 0) and
does not trigger a dispatch;

iii. (0, i) → (0, j): if an order of weight k > 0 arrives at an empty system
and gets dispatched immediately, or a period goes by without an arrival
(i.e., k = 0);

iv. (y , i) → (0, j): if all outstanding orders are dispatched at the end of
a period, where 0 ≤ k ≤ K and 1 ≤ i, j ≤ ma. The one-step transition
probabilities can be given in matrix form as

⎧⎪⎪⎨
⎪⎪⎩

P(0, k) = Dk, for 1 ≤ k ≤ K, and k ∈ �( f );
P(y , y + k) = Dk, for y ∈ �( f ), y + k ∈ �( f ), and 0 ≤ k ≤ K ;
P(0, 0) = D0 + B(0);
P(y , 0) = B(y), for y ∈ �( f ) and y �= 0,

(10)

where

B(y) =
K∑

k=0: y+k �∈�( f )

Dk, for y ∈ �( f ). (11)

Theorem 3.1. Assume that D0e �= e and D is irreducible. Under Assumptions 1
and 2, the process {(Y (t), Ia(t)), t = 0, 1, 2, . . .} is an ergodic Markov chain with
finite state space �( f ) × {1, 2, . . . , ma}.

Proof. From the definitions of the order-arrival process and the dispatch
policy, it is easy to verify that the state y = 0 can be reached from any
other state y ∈ �( f ) in finite time. Since the underlying Markov chain {Ia(t),
t = 0, 1, 2, . . .} is irreducible, and the states in �( f ) communicate with one
another, the Markov chain {(Y (t), Ia(t)), t = 0, 1, 2, . . .} is irreducible. As-
sumption 2 and the finiteness of ma guarantee that the state space �( f ) is
finite. Hence, the Markov chain {(Y (t), Ia(t)), t = 0, 1, 2, . . .} is ergodic. �

In the rest of this section, we study (i) the stationary distribution of
{(Y (t), Ia(t)), t = 0, 1, 2, ...}; (ii) long-run performance measures; (iii) the
long-run average cost; and (iv) shipment overshoot.

3.1. Stationary Distribution

Let θ = (θ(y), y ∈ �( f )) be the stationary distribution of the Markov
chain {(Y (t), Ia(t)), t = 0, 1, 2, . . .}, where θ(y) = (θ(y , 1), . . . , θ(y , ma)).
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Tree-Structured Markovian Model 533

Then θ satisfies

⎧⎨
⎩

θ(0) =
∑

y∈�( f )

θ(y)P(y , 0) = θ(0)D0 +
∑

y∈�0
( f )

θ(y)B(y);

θ(y + k) = θ(y)P(y , y + k) = θ(y)Dk, for y + k ∈ �( f ),

(12)

where �0
( f ) = {y : y ∈ �( f ) and ∃ k, y + k �∈ �( f )} = {y : f (y) = 0 and

∃ k, f (y + k) = 1}.
Based on equations (10) and (12), and the definition of stationary dis-

tribution of a Markov chain, the following results can be obtained.

Theorem 3.1.1. Under the assumptions given in Theorem 3.1, the stationary dis-
tribution of the Markov chain {(Y (t), Ia(t)), t = 0, 1, 2, . . .} can be expressed as

θ(y) = θ(0)Dy1 . . . Dyn, for y = y1 . . . yn ∈ �( f ), y �= 0, (13)

where θ(0) is the unique solution to the linear system

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

θ(0) = θ(0)

⎛
⎜⎝D0 + B(0) +

∑
y∈�0

( f ):y �=0

Dy1 . . . DynB(y)

⎞
⎟⎠ ;

1 = θ(0)

⎛
⎝I +

∑
y∈�( f ):y �=0

Dy1 . . . Dyn

⎞
⎠ e.

(14)

Proof. Let PT be the transition probability matrix for the Markov chain
{(Y (t), Ia(t)), t = 0, 1, 2, . . .}. The components of PT are given in equation
(10). It can be easily verified that, according to equation (12), θ is a solu-
tion to the linear system θPT = θ and θe = 1, which can be simplified into
equations (13) and (14). The uniqueness of the solution is guaranteed by
Theorem 3.1. �

For y ∈ �( f ), define matrix R(y) whose (i, j)-th element is the expected
time spent in state (y , j) during an arbitrary consolidation cycle, given that
the cycle started from state (0, i), for 1 ≤ i, j ≤ ma. The matrices {R(y), y ∈
�( f )} are similar to the rate matrix R for the GI/M/1 type Markov chains
(see Ref.[10]). Matrices {R(y), y ∈ �( f )} can be obtained as

{
R(0) = I ;
R(y) = Dy1 . . . Dyn, for y ∈ �( f ), and y �= 0.

(15)
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534 Cai et al.

Using matrices {R(y), y ∈ �( f )}, the stationary distribution θ of equa-
tions (13) and (14) in Theorem 3.1.1 can be rewritten as

θ(y) = θ(0)R(y), for y ∈ �( f ), (16)

and ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

θ(0) = θ(0)

⎛
⎜⎝D0 +

∑
y∈�0

(y)

R(y)B(y)

⎞
⎟⎠ ;

1 = θ(0)

⎛
⎝ ∑

y∈�( f )

R(y)

⎞
⎠ e.

(17)

Since the order-arrival process is not affected by the shipment consol-
idation process, θ is directly related to the stationary distribution of the
underlying Markov chain of the order-arrival process θa.

Proposition 3.1.1. Under the assumptions stated in Theorem 3.1, we have

∑
y∈�( f )

θ(y) = θa. (18)

Proof. First we show that
∑

y∈�( f ) θ(y)D = ∑
y∈�( f ) θ(y). The left hand-

side of the equation can be evaluated as

∑
y∈�( f )

θ(y)D =
∑

y∈�( f )

θ(y)(D0 + D1 + . . . + DK )

= θ(0)D0 + θ(0)
K∑

k=1: f (k)=0

Dk + θ(0)B(0)

+
∑

y∈�( f ): y �=0

⎛
⎝θ(y)

K∑
k=0: f (y+k)=0

Dk + θ(y)B(y)

⎞
⎠

= θ(0)P(0, 0) +
∑

y∈�( f ):y �=0

θ(y)P(y , 0) + θ(0)
K∑

k=1: f (k)=0

P(0, k)

+
∑

y∈�( f ): y �=0

θ(y)
K∑

k=0: f (y+k)=0

P(y , y + k) =
∑

y∈�( f )

θ(y).
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Tree-Structured Markovian Model 535

Since θa is the unique stationary distribution of the underlying Markov chain
D and (

∑
y∈�( f )

θ(y))e = 1, we must have
∑

y∈�( f )
θ(y) = θa. This completes

our proof. �
3.2. Long-Run Performance Measures

Based on the stationary distribution θ, we can find the distributions for
the set of long-run performance measures introduced in Section 2. First, let
p s be the probability of dispatch in an arbitrary period, and Ic be the phase
of the underlying Markov chain of the order-arrival process at the beginning
of an arbitrary consolidation cycle in steady state.

Proposition 3.2.1. Under the assumptions given in Theorem 3.1, we have

p s = θ(0)(I − D0)e (19)

and the distribution of Ic is given by θcyc = θ(0)(I − D0)/p s.

Proof. By equation (17), the probability of dispatch can be expressed as∑
y∈�0

(y)
θ(y)B(y)e = θ(0)(I − D0)e. The distribution of Ic actually corre-

sponds to the stationary distribution of θ(0), conditioned on the event that
a dispatch has just occurred in the period. The results follow. �

Recall that Lc, Lidle, and Lactive are the lengths of an arbitrary consolida-
tion cycle, an arbitrary inactive period, and an arbitrary active accumulation
cycle, respectively.

Proposition 3.2.2. Under the assumptions given in Theorem 3.1, we have that)
Lidle has a discrete phase-type distribution with PH representation (θcyc, D0); and Lc

has a discrete phase-type distribution with PH representation ((θcyc, 0, . . . , 0), P̃T),
where P̃T is obtained by removing {B(y), y ∈ �( f )} from the transition probability
matrix PT.

Proof. The proof is similar to that of Theorem 3.4 in Ref.[1]. Details are
omitted. �

The distributions of Lc and Lidle can be given explicitly as follows:

P{Lc = n} = θcyc

⎛
⎜⎝n−1∑

j=0

D j
0

∑
y : y∈�0

( f ), |y |=n− j

R(y)B(y)

⎞
⎟⎠ e, for n = 1, 2, . . . ;

P{Lidle=n} = θcycDn
0(I − D0)e, for n = 0, 1, 2, . . . .

(20)
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536 Cai et al.

Simple expressions can be obtained for the means of Lc and Lidle:

E [Lc] = 1
p s

= 1
θ(0)(I − D0)e

;

E [Lidle] = θ(0)e
p s

. (21)

The mean of Lactive is E [Lactive] = E [Lc] − E [Lidle].
Let W be the total accumulated weight in the system at the beginning of

an arbitrary period. Under the assumptions in Theorem 3.1, the distribution
of W and the mean of W can be expressed in terms of θ(0) and {R(y), y ∈
�( f )} as follows:

P{W = w} = θ(0)

⎛
⎝ ∑

y∈�( f ): S(y)=w

R(y)

⎞
⎠ e, for w = 0, 1, 2, ..., W ;

E [W ] = θ(0)

⎛
⎝ ∑

y∈�( f )

S(y)R(y)

⎞
⎠ e.

(22)

Recall that Wc, Nc, and LD are the total consolidated weight of a shipment,
the number of non-zero orders in the shipment, and the total delay of the
orders in a shipment, respectively. Under the assumptions in Theorem 3.1,
their distributions can be obtained by conditioning on the event that a
dispatch has just occurred in the period.

P{Wc = w} = 1
p s

θ(0)
∑

y∈�0
( f )

R(y)

⎛
⎝ K∑

k=0: f (y+k)=1, k=w−S(y)

Dk

⎞
⎠ e,

for w = 1, 2, ..., W + K ;

P{Nc = n} = 1
p s

θ(0)
∑

y∈�0
( f )

R(y)

⎛
⎝ K∑

k=0: f (y+k)=1, N (y+k)=n

Dk

⎞
⎠ e,

for n = 1, 2, ..., T + 1;

P{LD ≤ l} = 1
p s

θ(0)
∑

y∈�0
( f )

R(y)

⎛
⎝ K∑

k=0: f (y+k)=1, D(y+k)/N (y+k)≤l

Dk

⎞
⎠ e,

for 0 ≤ l ≤ T , (23)
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Tree-Structured Markovian Model 537

where W and T are defined in Assumption 2 for policy f . The distribution
of LD can be used to determnine the service level of the shipper in the long
run (i.e., the probability of having undesirable average delay or the expected
average delay per order). The means of Wc, Nc, and LD can be computed by
the following expressions:

E [Wc] = 1
p s

θ(0)
∑

y∈�0
( f )

R(y)

⎛
⎝ K∑

k=0: f (y+k)=1

(S(y) + k)Dk

⎞
⎠ e;

E [Nc] = 1
p s

θ(0)
∑

y∈�0
( f )

R(y)

⎛
⎝ K∑

k=0: f (y+k)=1

N (y + k)Dk

⎞
⎠ e; (24)

E [LD] = 1
p s

θ(0)
∑

y∈�0
( f )

R(y)

⎛
⎝ K∑

k=0: f (y+k)=1

D(y + k)
N (y + k)

Dk

⎞
⎠ e.

Similar to Proposition 3.1.1, the shipment consolidation process has no
effect on the long-run weight-arrival rate and order-arrival rate. Thus, we
have

Proposition 3.2.3. For a given dispatch policy, under the assumptions given in
Theorem 3.1,

E [Wc] = λw,a E [Lc];
E [Nc] = λo,a E [Lc].

(25)

Proof. We begin with the first equation, for which λw,a = θa(
∑K

k=0 kDk)e,
E [Lc] = 1/p s, and E [Wc] is as in equation (24). Thus, we find

E [Wc]
E [Lc]

= θ(0)
∑

y∈�0
( f )

R(y)

⎛
⎝ K∑

k=0: f (y+k)=1

(S(y) + k)Dk

⎞
⎠ e

=
∑

y∈�( f )

θ(y)

⎛
⎝ K∑

k=0: f (y+k)=1

(S(y) + k)Dk

⎞
⎠ e

=
∑

y∈�( f )

θ(y)

⎛
⎝ K∑

k=0

kDke +
K∑

k=0

S(y)Dke −
K∑

k=0: y+k∈�, f (y+k)=0

S(y + k)Dke

⎞
⎠
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538 Cai et al.

= λw,a +
∑

y∈�( f )

θ(y)S(y)De −
∑

y∈�( f )

K∑
k=0: f (y+k)=0

S(y + k)θ(y)P(y , y + k)e

= λw,a,

since De = e, S(0) = 0, and θ(y)P(y , y + k) = θ(y + k). The proof for the
second equation is similar to the first one. We just need to substitute N (y)
for S(y) when it is necessary. �

The two relationships in Proposition 3.2.3 are quite intuitive. They can
be used to simplify the formulas for E [Wc] and E [Nc], as well as to check
the accuracy of computation.

3.3. Long-Run Average Cost

The long-run average cost per unit time can be found through θ and the
cost structures defined in Section 2. Under the assumptions in Theorem 3.1,
using equation (9), we obtain the average holding cost per period:

Cdp( f ) =
∑

y∈�( f )

Dp(y)θ(y)e =
∑

y∈�( f )

( |y |∑
n=1

dp(|y | + 1 − n, yn)

)
θ(0)R(y)e.

(26)
Recall from the end of Section 2, transportation cost can be classified as

private carriage cost, if the shipper uses its own fleet and incurs a fixed cost
KD for each dispatch; and as common carriage cost, if the shipper hires a
logistics company and pay according to the amount shipped.

Using the expected cycle length and the distribution of Wc in equations
(21) and (24), we obtain the average dispatch cost per period, for the private-
carriage case,

Ctr( f ) = KD

E [Lc]
= KDθ(0)(I − D0)e (27)

and, for the common carriage case,

Ctr( f ) = E [c(Wc)]
E [Lc]

= θ(0)
∑

y∈�0
( f )

R(y)
K∑

k=0: f (y+k)=1

c(S(y) + k)Dke, (28)
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Tree-Structured Markovian Model 539

where c(w) is the common-carriage transportation cost per shipment and
can be defined as follows:

c(w) =
{

cNw , w < MW T ;
cVw , w ≥ MW T.

(29)

For c(w), w is the weight of the shipment, cV and cN are the volume and non-
volume freight rates, respectively, and cV < cN, and MW T is the minimum
weight required to qualify for a volume discount, as specified by the carrier.

The following algorithm summarizes the key steps in evaluating the long-
run performance measures and average costs of a given dispatch policy.

Algorithm I: Policy Evaluation

I.1 Construct and store the system state space �( f );
I.2 For ∀y ∈ �( f ), compute and store S(y), N (y), D(y), B(y), and R(y) according to equations (4),

(11), and (15), respectively;
I.3 Find θ(0) by solving equations (17), then compute and store {θ(y), ∀y ∈ �( f )} by equation (16);
I.4 Calculate distributions of various long-run performance measures using equations (19), (20),

(22), and (23);
I.5 Calculate the means of of various long-run performance measures using equations (21), (22),

and (24);
I.6 Calculate the long-run average costs according to equations (26) to (28).

Note: Each step in Algorithm I involves going through every state in �( f )

at least once. Therefore, the time and space complexities of Algorithm I are
both of O(|�( f )|). More specifically, |�( f )| has a growth rate of O(K T ) due
to its tree structure. Despite the exponential growth rate, such a structure is
necessary if we want to capture the information unique to each state in �( f ).
In practice, shipment consolidation is often employed when the maximum
order size K and the maximum delay allowed T are both relatively small.
In other situations, order size and time period can be approximated and
discretized with larger units to make K and T reasonably small without
losing too much accuracy. Therefore, we argue that the insights gained by
capturing more information on the system state is enough to justify the
complexity of our model.

3.4. Shipment Weight and Overshoot

In practice, any transportation medium has a finite capacity Q , which
raises our interest in the amount by which an arbitrary shipment exceeds
the capacity. We shall hence refer to this quantity as the “overshoot” beyond
Q and denote it by Oc(Q). It is easy to see that

Oc(Q) = max{Wc − Q , 0}.
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540 Cai et al.

P{Oc(Q) = q} =
⎧⎨
⎩
∑Q

w=0 P{Wc = w}, if q = 0;

P{Wc = q + Q}, if q > 0.
(30)

The distribution of Wc is given in equation (23).
In this article, we assume that the maximum order size K is finite. If that

restriction is removed (i.e., K = ∞), Algorithm I cannot be used for com-
puting the distribution of Wc. Denote by d the weight of an arbitrary order.
Then we have max{0, d − Q} ≤ Oc(Q) ≤ max{0, d − (Q − W )}. Thus, if W
is finite, then the tail distribution of the overshoot Oc(Q) is the same as that
of d.

4. STOCHASTIC COMPARISON AND SENSITIVITY ANALYSIS

In this section, we invesitigate the effect on shipment consolidation of
varying the order-arrival process. More specifically, we study how perfor-
mance measures change if the distribution of the order weight becomes
stochastically larger/smaller. For that purpose, we first make an additional
assumption on feasible dispatch policies in order to arrange states in �( f ) to
be convenient for stochastic comparison.

Assumption 3. For x ∈ �( f ), y ∈ �, i = 0, 1, ..., K , and j = 0, 1, ..., i − 1, 1)
if x + i ∈ �( f ), then x + j ∈ �( f ); 2) if x + i + y ∈ �( f ), then x + j + y ∈
�( f ); and 3) if i + y ∈ �( f ), then j + y ∈ �( f );

Intuitively, Assumption 3 says that a dispatch is more likely to take place
if the total accumulated weight is larger or if the total delay is longer. The
assumption is not restrictive since most of the typical dispatch policies satisfy
the assumption. Part 1 of Assumption 3 also implies that, for any state y ∈
�( f ), there exits an integer k y such that f (y + k) = 0 for all k ≤ k y and
f (y + k) = 1 for all k > k y . (Note: k y = −1 if dispatch occurs for sure beyond
state y.)

Analogous to the concept of stochastic comparison of random variables
in Ref.[13], we give the following definition about the order-arrival process:

Definition 4.1. Consider two BMAPs (D0, D1, . . . , DK ) and (D′
0, D′

1, . . . , D′
K ′).

We say that the second process has “stochastically larger arrivals” than the first one,
denoted as (D0, . . . , DK ) ≤st (D′

0, . . . , D′
K ′), if D0 = D′

0 and

n∑
k=1

Dk ≥
n∑

k=1

D′
k, for n = 1, 2, ..., max{K, K ′}. (31)
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Tree-Structured Markovian Model 541

For notational convenience, we define Dk = 0 if k > K and D′
k = 0 if k >

K ′ in the above definition. Without loss of generality, we assume that K = K ′.
Definition 4.1 implies D = ∑K

k=0 Dk = ∑K
k=0 D′

k = D′. Thus, the underlying
Markov chains of the two order-arrival processes are the same. The condition
is not restrictive if we consider different order-arrival processes in the same
environment.

Let us look at the effect of stochastically larger arrivals on the R -matrices.
First, we decompose �( f ) into mutully exclusive subsets �

(0)
( f ), �

(1)
( f ), . . . , �

(T)
( f ) ,

where �
(0)
( f )={0} and

�
(n)
( f ) = {y : y ∈ �( f ), |y | = n}, for n = 1, 2, ..., T . (32)

We call �
(n)
( f ) the level n set, and these sets correspond to the levels of the

tree of �( f ).

Lemma 4.1. Assume that (D0, . . . , DK ) ≤st (D′
0, . . . , D′

K ). For a feasible dis-
patch policy f satisfying Assumption 3, we have

∑
y∈�

(n)
( f )

R(y) ≥
∑

y∈�
(n)
( f )

R ′(y), for n = 0, 1, 2, ..., T , (33)

where R(y) and R ′(y), for y ∈ �( f ), are defined by equation (15). Conse-
quently, we have

∑
y∈�( f )

R(y) ≥ ∑
y∈�( f )

R ′(y).

Proof. We show the lemma by inducation. For n = 0, R(0) = R ′(0) = I ,
equation (33) holds. For n = 1, by Assumption 3, �

(1)
( f )={1,2,...,k0}. By Definition

4.1, we have

∑
y∈�

(1)
( f )

R(y) =
k0∑

k=1

Dk ≥
k0∑

k=1

D′
k =

∑
y∈�

(1)
( f )

R ′(y).

It is easy to see that for any feasible policy satisfying Assumptions 3, equation
(33) holds for n = 0 and n = 1. Now, suppose that equation (33) holds for
n − 1 for any feasible policy satisfying Assumption 3. Next, we show equation
(33) for n. By Assumption 3, �

(n)
( f )={x+k: x∈�

(n−1)
( f ) , k=0,1,...,kx} for n ≥ 2, which

implies that �
(n)
( f ) is the set of all children in �( f ) of some nodes in �

(n−1)
( f ) , and

�
(n−1)
( f ) contains the set of all the parent nodes of all nodes in �

(n)
( f ). Then we
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542 Cai et al.

obtain, for n ≥ 2,

∑
y∈�

(n)
( f )

(R(y) − R ′(y)) =
∑

x∈�
(n−1)
( f )

⎛
⎝R(x)

kx∑
j=0

D j − R ′(x)
kx∑

j=0

D′
j

⎞
⎠

=
∑

x∈�
(n−1)
( f )

⎛
⎝(R(x) − R ′(x))

kx∑
j=0

D j + R ′(x)
kx∑

j=0

(D j − D′
j )

⎞
⎠ . (34)

The second term in the last line of equation (34) is nonnegative by Definition
4.1. The first term can be rewritten as follows:

K∑
k=0

⎛
⎜⎝ ∑

x: x∈�
(n−1)
( f ) , x+k∈�

(n)
( f )

((R(x) − R ′(x))

⎞
⎟⎠Dk . (35)

Let �
(n,n−1)
( f,k) = {x : x ∈ �

(n−1)
( f ) , x + k ∈ �

(n)
( f )}, for k = 0, 1, ..., K . It is easy

to see that �
(n,n−1)
( f,k) ⊂ �

(n−1)
( f ) . Define �(g) the set of all nodes in �

(n,n−1)
( f,k) and

all nodes in �( f ) which have a successor in �
(n,n−1)
( f,k) , i.e., for any x ∈ �(g),

there exist y ∈ � such that x + y ∈ �
(n,n−1)
( f,k) . Note that �

(n,n−1)
( f,k) ⊂ �(g). We

define a dispatch policy g such that g(x) = 0, if x ∈ �(g); and g(x) = 1,
otherwise. Next, we show that g is a feasible dispatch policy satisfying Assump-
tion 3.

It is easy to see that g is feasible since �(g) ⊂ �( f ). Suppose that x +
i + y ∈ �(g). Then we must have x + i + y + z ∈ �

(n,n−1)
( f,k) for some z ∈ �.

That implies that x + i + y + z + k ∈ �
(n)
( f ). By Assumption 3 for policy f , we

also have x + j + y + z + k ∈ �
(n)
( f ), for all j = 0, 1, ..., i − 1, which implies

that x + j + y + z ∈ �
(n,n−1)
( f,k) . Then x + j + y has a successor in �

(n,n−1)
( f,k) .

Consequently, x + j + y ∈ �(g). Similar results can be obtained for x + i ∈
�(g) and i + y ∈ �(g). Then the dispatch policy g is feasible and satisfies
Assumption 3.

For f and g , it is easy to see that �
(n,n−1)
( f,k) = �

(n−1)
(g) . Applying the inductive

assumption on level n − 1 for policy g , we know that every term of the
first summation in equation (35) is nonnegative. Thus, equation (35) is
nonnegative. Consequently, the expression in equation (34) is nonnegative,
which leads to equation (33).
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Tree-Structured Markovian Model 543

Since {�(0)
( f ), �

(1)
( f ), . . . , �

(T)
( f )} is a mutually exclusive decomposition of

�( f ), we have∑
y∈�( f )

(R(y) − R ′(y)) =
T∑

n=0

∑
y∈�

(n)
( f )

(R(y) − R ′(y)).

The last result of the lemma is obtained from equation (33) directly. �
By the definition of R -matrices, (

∑
y∈�( f )

R(y))i, j represents the ex-
pected time that the underlying Markov chain of the arrival process is in
state j during a consolidation cycle, given it started in state i. Lemma 4.1
suggests that the expected times are shorter if the weight distribution is
stochastically larger. More specifically, equation (17) indicates that θ(0) is
larger (roughly speaking) if the weight distribution is stochastically larger.
Then equations (19) and (21) imply that p s becomes larger and E [Lc]
becomes smaller. The observations are consistent with intuition: if each
order weighs more (in stochastically larger order), under the same dis-
patch policy, dispatch occurs more frequently and the consolidation cycle
becomes shorter. The observations are proved for the case with a compound
renewal arrival process (i.e., ma = 1) in Theorem 4.1 at the end of this
section.

Note: For sensitivity analysis under different environments (i.e., D are
different), Definition 4.1 can be modified to compare partial sums of
{D0e, D1e, ..., DK e}. Similar results for (

∑
y∈�( f )

R(y))e can be obtained if
Dke = ρke, where ρk is a nonnegative constant, for k = 0, 1, ..., K .

Example 4.1. In this example, the dispatch is governed by f1 defined in
Example 2.3.1, the delay penalty rate is given by Example 2.4.1.1, and KD =
15. We evaluate the private carriage consolidation process for the following
three sets of BMAPs.

Part a. Three BMAPs with ma = 1 such that BMAPa.1 ≤st BMAPa.2 ≤st

BMAPa.3, where

• BMAPa.1 Same as Example 2.1.1.1;
• BMAPa.2 D0 = 0.25, D1 = 0.2, D2 = 0.3, D3 = 0.25;
• BMAPa.3 D0 = 0.25, D1 = 0.15, D2 = 0.3, D3 = 0.3.

Part b. BMAPs with independent order weight distributions such that
BMAPb .1 ≤st BMAPb .2 ≤st BMAPb .3:

• BMAPb .1 Same as Example 2.1.1.2;

• BMAPb .2 For D0 =
(

0.3 0.4
0.2 0.3

)
,Dk = p k

(
0.15 0.15
0.25 0.25

)
, where

(p 1, p 2, p 3, p 4) = (0.1, 0.3, 0.4, 0.2) ;
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544 Cai et al.

• BMAPb .3 For D0 =
(

0.3 0.4
0.2 0.3

)
, Dk = p k

(
0.15 0.15
0.25 0.25

)
, where

(p 1, p 2, p 3, p 4, p 5) = (0.1, 0.2, 0.4, 0.2, 0.1),
Part c. Regular BMAPs such that BMAPc .1 ≤st BMAPc .2 ≤st BMAPc .3 :

• BMAPc .1 Same as Example 2.1.1.3;

• BMAPc .2 D0 =
(

0.3 0.4
0.2 0.3

)
, D1 =

(
0.1 0.1
0.15 0.15

)
, D2 =(

0.05 0.05
0.1 0.1

)
;

• BMAPc .3 D0 =
(

0.3 0.4
0.2 0.3

)
, D1 =

(
0.02 0.1
0.15 0.1

)
, D2 =(

0.13 0.05
0.1 0.15

)
.

Based on the results shown in Tables 1–3, we observe that with stochas-
tically larger orders, E [Lidle], E [Nc], and E [LD] decrease, while E [Wc] and
C( f )private increase. This supports the conventional belief that shipment
consolidation using private carriage is more cost-effective when order sizes
are likely to be smaller.

For the special case in which the order-arrival process is a compound re-
newal arrival process (i.e., ma = 1), some theoretical results can be obtained.

Theorem 4.1. Assume that (D0, . . . , DK ) ≤st (D′
0, . . . , D′

K ′) and ma = 1. Under
Assumption 3, we have i) p s ≤ p ′

s and ii) E [Lc] ≥ E [L′
c].

TABLE 1 Summary of results for Example 4.1.a

E [Lc] E [Lidle] E [W ] E [Wc] E [Nc] E [LD] C( f )private

BMAPa.1 3.0417 1.3333 1.2123 4.5625 2.2812 0.9036 6.0822
BMAPa.2 2.9765 1.3333 1.2177 4.6136 2.2324 0.8664 6.1958
BMAPa.3 2.8753 1.3333 1.2280 4.7443 2.1565 0.8091 6.3868

TABLE 2 Summary of results for Example 4.1.b

E [Lc] E [Lidle] E [W ] E [Wc] E [Nc] E [LD] C( f )private

BMAPb .1 4.6218 2.4272 1.0275 3.9793 1.8949 1.4627 5.1537
BMAPb .2 4.0538 2.4314 0.9580 4.4876 1.6621 1.0711 5.6187
BMAPb .3 3.8421 2.4324 0.8954 4.7258 1.5753 0.9298 5.7448
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Tree-Structured Markovian Model 545

TABLE 3 Summary of results for Example 4.1.c

E [Lc] E [Lidle] E [W ] E [Wc] E [Nc] E [LD] C( f )private

BMAPc .1 5.2726 2.4176 0.8778 2.6890 2.1618 1.9561 3.9274
BMAPc .2 5.1711 2.4193 0.9186 2.9217 2.1202 1.8779 4.1328
BMAPc .3 5.0272 2.4243 0.9456 3.1596 2.0611 1.7656 4.3347

Proof. According to equations (17) and (21),

p s = θ(0)(1 − d0) = 1 − d0∑
y∈�( f )

R(y)
.

Part i) follows from Definition 4.1 and Lemma 4.1; we have

p s = 1 − d0∑
y∈�( f )

R(y)
≤ 1 − d ′

0∑
y∈�( f )

R ′(y)
= p ′

s.

For part ii), observe that the long-run cycle length has a geometric distribu-
tion since ma = 1 and the probability of dispatch in an arbitrary period is
equal to p s. Thus, part ii) is obtained from part i) immediately. �

5. HEURISTIC ALGORITHM AND OPTIMIZATION

In this section, our objective is to find dispatch policies that have smaller
or the minimal expected total cost defined in equation (8). For that purpose,
we begin by introducing a special set of dispatch policies, to be called “delay
penalty policies.” A heuristic algorithm is developed for finding the optimal
delay penalty policy. It turns out that the optimal delay penalty policy is the
overall optimal policy if the system has a compound renewal arrival process
(i.e., ma = 1).

Recall that each “downward” path of the tree representing � (such as
the one shown in Figure 1 corresponds to a sample path of the consolida-
tion process. A dispatch policy will determine the point where each sample
path terminates and the process goes back to the root node (i.e., y = 0).
Therefore, any dispatch policy can be translated into a set of “cut off” points
on the sample paths. Thus, one can determine the optimal dispatch policy
by traversing through � and finding the set of cut off points that minimizes
our cost function. Of course, the key is how to execute the search process.
To design a process to find a dispatch policy that has a small expected total
cost, we start by showing some properties of the minimum cost function for
the private-carriage case. Denote by f ∗ the optimal dispatch policy. That
is, the long-run average total cost function C( f ) defined in equation (8) is
minimized by policy f ∗.
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546 Cai et al.

Lemma 5.1. Under the private-carriage cost structure, the minimal long-
run average total cost C( f ∗) is less than or equal to KD.

Proof. We simply note that if we dispatch whenever a real order (i.e., order
weight is positive) arrives, then the long-run average cost is given by λo,aKD,
which is less than KD since we assume that there will be no more than one
order per period. The desired result is obtained since the optimal policy f ∗

cannot do worse than that policy. �
Lemma 5.2. Under the private-carriage cost structure, if the delay penalty
per unit time Dp(y), without dispatch, will eventually exceed KD, then �( f ∗)

is finite.

Proof. As we proceed down an arbitrary sample path (i.e., a realization of the
consolidation process starting from an empty system), we will eventually (in
finite steps) reach a state y ∈ � where Dp(y) ≥ KD, since the delay penalty
increases along the path. Therefore, from that point on, we shall no longer
continue to consolidate because each subsequent period will incur a cost
higher than the fixed dispatch cost. Therefore, finite cut off points on each
sample path of � will result in a finite �( f ∗). �

Next, we define the set of delay penalty policies for which the cut off
points are determined by a common delay penalty threshold.

Definition 5.1. For given τ > 0 and for y ∈ �, dispatch policy f τ is defined as
f τ (y) = 1 if and only if Dp(y) > τ . We shall refer to such a dispatch policy as the
“delay penalty policy,” and denote the corresponding system state space as �( f τ ) and
the long-run average total cost as C( f τ ).

Let τ ∗ be the delay penalty threshold of the delay penalty policy that
has the minimal long-run average total cost among all the deplay penalty
policies.

Lemma 5.3. Under the private-carriage cost structure, if τ = KD, then
C( f τ ∗

) ≤ C( f τ ) ≤ KD.

Proof. In each accumulation cycle, there is no accumulated order in the
first period and the dispatch cost KD can be allocated to this period, and
no cost is charged during the subsequent inactive periods. By the definition
of the delay penalty policy, the cost incurred in each subsequent active
accumulation period is less than or equal to KD. Then the cost incurred in
each period is always capped by KD, which leads to the desired result. �
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FIGURE 3 Long-run average cost C( f τ ) versus delay penalty threshold τ for KD = 15.

It is intuitive that, as we raise τ , delay penalty increases but transportation
cost decreases. The optimal threshold will strive to balance the two types of
costs. Therefore, it is reasonable to conjecture that C( f τ ) is unimodal in τ

for 0 ≤ τ . The following numerical examples supports the conjecture.

Example 5.1. Suppose that delay penalty rate is given by Example 2.4.1.2 and
KD = 15. For the three different order-arrival processes of Example 2.1.1, we
plot C( f τ ) over τ for 0 ≤ τ ≤ KD in Figure 3.

Based on the unimodality observation on C( f τ ), the following heuristic
algorithm to search for τ ∗ is introduced. Note that in many cases, it is safe
to assume that 0 ≤ τ ∗ ≤ KD, because intuition suggests that delay penalty
should not be allowed to exceed the fixed dispatch cost. However, we can
always extend our search range in the following algorithm beyond KD to be
accurate:

Algorithm II: Delay Penalty Threshold Heuristic

II.1 Initialize ϕ = 2 − 1+√
5

2 , a = 0, b = ϕKD, c = KD and choose a precision factor ε;
II.2 If c − a < ε, STOP and RETURN τ ∗ = (c − a)/2;
II.3 If c − b > c − a, set η = b + ϕ(c − b); else set η = b − ϕ(b − a);
II.4 Compute C( f η) and C( f b ) according to Algorithm I;
II.5 If C( f η) < C( f b ) and c − b > b − a, set a = b , b = η, c = c ; else if C( f η) < C( f b ) and

c − b ≤ b − a, set a = a, b = η, c = b ; else if C( f η) ≥ C( f b ) and c − b > b − a, set a = a, b = b ,
c = η; else, set a = η, b = b , c = c . Go back to Step 2;

Note that Algorithm II is a golden ratio search algorithm over the range
[0, KD]. The total number of iterations is O(log KD

ε
). In each iteration, the

bulk of the work lies in Step 4, which has time complexity of O(|�(KD)|),
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548 Cai et al.

since the maximum number of states we will consider is bounded by |�(KD)|
according to Lemma 5.1. Therefore, the overall time complexity of this
algorithm is O(|�(KD)| log KD

ε
).

If the delay penalty rate is strictly increasing over time, it is easy to see
that the optimal hybrid policy outperforms the optimal quantity policy and
optimal time policy, since in finite delay or finite accumulation, the penalty
rate will eventually exceed KD. Without a way to systematically study any other
classes of policies, we only compare the optimal delay penalty policy against
the optimal hybrid policy. Our numerical example below suggests that the
delay penalty policy outperforms the quantity, time, and hybrid policies.

Example 5.2. Recall that a hybrid policy is specified by parameters q and
t. Dispatch is triggered in state y if |y | > t or S(y) > q . Suppose that delay
penalty rate is given by Example 2.4.1.2 and KD = 15. For the order-arrival
processes of Example 2.1.1, we shall plot the long-run average cost C( f )
over the parameters ranges 1 ≤ q ≤ 10 and 1 ≤ t ≤ 6 (see Figures 4–6). The
optimal policy parameters for both delay penalty (found in Example 5.1)
and hybrid policies under different order-arrival processes are summarized
in Table 4.

The order-arrival process in Example 2.1.1.1 is a compound renewal
arrival process, where ma = 1. In this case, the optimal delay penalty policy
is actually the overall optimal policy. Next, we give a mathematical proof of
its optimality.
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FIGURE 4 Long-run average cost C( f ) versus hybrid policy parameters q and t for Example 2.1.1.1.
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FIGURE 5 Long-run average cost C(f ) versus hybrid policy parameters q and t for Example 2.1.1.2.

Consider two arbitrary dispatch policies denoted by f anf f ′. These two
policies are uniquely identifiable by their corresponding system state spaces
�( f ) and �( f ′). Define

�+
f, f ′ = {y : f (y) = 1, f ′(y) = 0} and �−

f, f ′ = {y : f (y) = 0, f ′(y) = 1}.
(36)
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FIGURE 6 Long-run average cost C(f ) versus hybrid policy parameters q and t for Example 2.1.1.3.
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550 Cai et al.

TABLE 4 Optimal policy comparison

Or der Ar r ivalPr oce s s τ ∗ C( f τ∗
) (q ∗, t∗) C( f hyb)

1.1) in Example 2.1.1 [4.4, 5.8] 5.5605 (4,2) 5.8054
1.2) in Example 2.1.1 [3.9, 4.1] 4.1329 (4,2) 4.3945
1.3) in Example 2.1.1 [3.5, 3.59] 3.6661 (4,2) 3.7652

It is easy to see �+
f, f ′ ∈ � \ �( f ), �−

f, f ′ ∈ �( f ), and

�( f ′) = �( f ) ∪ �+
f, f ′ \ �−

f, f ′ . (37)

We shall call �+
f, f ′ and �−

f, f ′ “state space modifications” from f to f ′.
Now we are ready to determine the overall optimal policy under the

private-carriage cost structure and compound renewal arrival process.

Proposition 5.1. For any two dispatch policies f and f ′, we have

C( f ) − C( f ′)

=

∑
x∈�+

f, f ′

(
C( f ) − Dp(x)

)
R(x) +

∑
z∈�−

f, f ′

(Dp(z) − C( f )
)

R(z)∑
y∈�( f )

R(y) +
∑

x∈�+
f, f ′

R(x) −
∑

z∈�−
f, f ′

R(z)
, (38)

where �+
f, f ′ and �−

f, f ′ are defined in equation (36).

Proof. Since C( f ) = Ctr( f ) + Cdp( f ), we will look at each component
seperately. First, we note that

∑
y∈�( f ′)

R(y) =
∑

y∈�( f )

R(y) +
∑

x∈�+
f, f ′

R(x) −
∑

z∈�−
f, f ′

R(z).

According to equations (17), (21), and (27), we have

Ctr( f ) − Ctr( f ′)

= KD[θ(0)(1 − d0) − θ ′(0)(1 − d0)]

= KD(1 − d0)

⎛
⎜⎝ 1∑

y∈�( f )
R(y)

− 1∑
y∈�( f )

R(y) +
∑

x∈�+
f, f ′

R(x) −
∑

z∈�−
f, f ′

R(z)

⎞
⎟⎠

=
Ctr( f )

(∑
x∈�+

f, f ′
R(x) −

∑
z∈�−

f, f ′
R(z)

)
∑

y∈�( f )
R(y) +

∑
x∈�+

f, f ′
R(x) −

∑
z∈�−

f, f ′
R(z)

;
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Tree-Structured Markovian Model 551

and from equations (16), (17), and (26), we have

Cdp( f ) − Cdp( f ′)

=
∑

y∈�( f )

Dp(y)θ(y) −
∑

y∈�( f ′)

Dp(y)θ ′(y) =
∑

y∈�( f )
Dp(y)R(y)∑

y∈�( f )
R(y)

−

∑
y∈�( f )

Dp(y)R(y) +
∑

x∈�+
f, f ′

Dp(x)R(x) −
∑

z∈�−
f, f ′

Dp(z)R(z)∑
y∈�( f )

R(y) +
∑

x∈�+
f, f ′

R(x) −
∑

z∈�−
f, f ′

R(z)

=
Cdp( f )

(∑
x∈�+

f, f ′
R(x) −

∑
z∈�−

f, f ′
R(z)

)
+
(∑

z∈�−
f, f ′

Dp(z)R(z) −
∑

x∈�+
f, f ′

Dp(x)R(x)
)

∑
y∈�( f )

R(y) +
∑

x∈�+
f, f ′

R(x) −
∑

z∈�−
f, f ′

R(z)
.

Summing the two components and rearranging the terms will lead to equa-
tion (38). �
Proposition 5.2. Under the private-carriage cost structure and a compound re-
newal arrival process, C( f τ ) is unimodal for 0 ≤ τ ≤ KD and τ ∗ = C( f τ ∗

).

Proof. If τ < C( f τ ), let us define another policy τ ′ = τ + ε for positive ε <

C( f τ ) − τ . For notational convenience, we shall use f τ or f τ ′
to represent

their corresponding delay penalty policy and define �( f τ ) and other sets of
nodes similar to that of �( f ). Note that �( f τ ) ⊂ �( f τ ′ ), so �−

f τ , f τ ′ = ∅, and

Dp(x) ≤ C( f τ ) for all x ∈ �+
f τ , f τ ′ ⊂ �( f τ ). By Proposition 5.1, we have

C( f τ ) − C( f τ ′
) =

∑
x∈�+

f τ , f τ ′

(
C( f τ ) − Dp(x)

)
R(x)

∑
y∈�( f τ )

R(y) +
∑

x∈�+
f τ , f τ ′

R(x)
≥ 0.

Now let τ ′′ = τ − ε. Then �( f τ ′′ ) ⊂ �( f τ ), �+
f τ , f τ ′′ = ∅, and Dp(z) ≤ C( f τ )

for all z ∈ �−
f τ , f τ ′′ . Again, by Proposition 5.1, we have

C( f τ ) − C( f τ ′′
) =

∑
z∈�−

f τ , f τ ′′

(Dp(z) − C( f τ )
)

R(z)

∑
y∈�( f τ )

R(y) −
∑

z∈�−
f τ , f τ ′′

R(z)
≤ 0.

Thus, we have shown that C( f τ ) is non-increasing when τ < C( f τ ). Similar
arguments can be applied to show that C( f τ ) is non-decreasing when τ >

C( f τ ). Hence, the function C( f τ ) is minimized at τ ∗ satisfying τ ∗ = C( f τ ∗
).

This completes our proof. �
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In general, C( f τ ) may be minimized in an interval including τ ∗, i.e.,
∃[τ1, τ2] such that τ ∗ ∈ [τ1, τ2] and C( f τ ) = C( f τ ∗

) = τ ∗, ∀τ ∈ [τ1, τ2]. See
Examples 5.1 and 5.2 for evidence.

Theorem 5.1. The optimal delay penalty policy f τ ∗
is the overall optimal

policy for the private-carriage cost structure and a compound renewal arrival
process.

Proof. For the optimal delay penalty policy τ ∗ = C( f τ ∗
), we show that any

state space modification to �( f τ∗ ) will result in higher expected cost. Let f
be such a policy; according to equation (36), we can find the two sets �+

f τ∗
, f

and �−
f τ∗

, f . Note that Dp(x) ≥ C( f τ ∗
) for all x ∈ �+

f τ∗
, f and Dp(z) ≤ C( f τ ∗

)
for all z ∈ �−

f τ∗
, f . Then by Proposition 5.1, we have

C( f τ ∗
) − C( f )

=

∑
x∈�+

f τ∗
, f

(
C( f τ ∗

) − Dp(x)
)

R(x) +
∑

z∈�−
f τ∗

, f

(Dp(z) − C( f τ ∗
)
)

R(z)

∑
y∈�( f τ∗ )

R(y) +
∑

x∈�+
f τ∗

, f

R(x) −
∑

z∈�−
f τ∗

, f

R(z)

≤ 0.

The theorem is proved. �

6. CONCLUSIONS AND FUTURE RESEARCH

We conclude that if a penalty is charged to each outstanding order
in every period depending on both the size and delay of the order, then
our model can be used to evaluate a variety of dispatch policies. We have
gained some insights on how to design an efficient consolidation strategy,
and mathematical proofs of several conjectures are presented for the case
of compound renewal order-arrival processes. Both the evaluation and op-
timization algorithms introduced here have reasonable complexity, despite
the fact that the problem itself demands large input.

We are currently working to prove our conjectures for Markovian order-
arrival processes. Our goal is to understand what effect the underlying phases
of the input process has on the system performance and cost. We are also
trying to extend some results to the common carriage cost structure and
some other cost structures under the broader class of problem known as
“stochastic clearing systems”[15]. Eventually, we hope to extend our model
to continuous time and continuous quantity settings, and to models with
stochastic input processes such as Brownian motion and the Lévy process.
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8. Mutlu, F.; Çetinkaya, S.; Bookbinder, J. H. An analytical model for computing the optimal time-and-

quantity-based policy for consolidated shipments. IIE Trans. 2003, 42, 367–377.
9. Neuts, M. F. A versatile markovian point process. J. Appl. Probab. 1979, 16, 764–779.

10. Neuts, M. F. Matrix-geometric Solutions in Stochastic Models - An Algorithmic Approach. Johns Hopkins
University Press: Baltimore, 1981.

11. Quinn, F. J. The payoff. Logistics Management 1997, 36, 37–41.
12. Ross, S. M. Introduction to Probability Models, Elsevier: Kidlington, Oxford, 2010.
13. Shaked, M.; Shanthikumar, J. G., Stochastic Orders; Springer: New York, 2007.
14. Simchi-Levi, D. Operations Rules: Delivering Customer Value through Flexible Operation. MIT Press: Cam-

bridge, 2010.
15. Stidham, S. J. Stochastic clearing systems. Stochastic Proc. Appl. 1974, 2, 85–113.
16. Trunick, P. A. Colgate logistics delivers smiles. Inbound Logistics 2011, 31, 103–108.
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