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Abstract The first part of this paper introduces a class of discrete multivariate phase-type
(MPH) distributions. Recursive formulas are found for joint probabilities. Explicit expres-
sions are obtained for means, variances and co-variances. The discrete MPH-distributions
are used in the second part of the paper to study multivariate insurance claim processes in
risk analysis, where claims may arrive in batches, the arrivals of different types of batches
may be correlated and the amounts of different types of claims in a batch may be depen-
dent. Under certain conditions, it is shown that the total amounts of claims accumulated
in some random time horizon are discrete MPH random vectors. Matrix-representations of
the discrete MPH-distributions are constructed explicitly. Efficient computational methods
are developed for computing risk measures of the total claims of different types of claim
batches and individual types of claims (e.g., joint distribution, mean, variance, correlation
and value at risk.)

Keywords Matrix-analytic methods · Risk analysis · Markovian arrival process ·
Multivariate phase-type distribution.

Mathematics Subject Classification 60K

1 Introduction

Multivariate Phase-Type Distributions are introduced in Assaf et al. (1984) and Kulkarni
(1989). They have found applications in many areas. For example, in insurance risk mod-
eling, Cai and Li (2005) use it to develop a multivariate risk model in which different
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types of claims are stochastically dependent. In credit risk analysis, Herbertsson (2011)
uses multivariate phase-type distributions to model default contagion in credit risk. Some
other developments can be found in Rabehasaina (2009) and Zaphiropoulos and Zazanis
(2010).

In the first part of the paper, we present a class of discrete multivariate phase-type (MPH)
distributions, which generalizes the discrete univariate phase-type distributions (Neuts 1975,
1981) and is a discrete version of the continuous multivariate phase-type distributions
(Assaf et al. 1984; Kulkarni 1989). Taking advantages of Markovian properties provided
by an auxiliary process, we develop efficient computational methods for the joint distribu-
tion functions and the joint moments of the MPH distributions. According to Assaf et al.
(1984), the set of continuous MPH is dense in the set of nonnegative multivariate distri-
butions. The same conclusion holds for discrete MPH, which implies a wide variety of
applications.

In the second part of this paper, we introduce a novel multivariate insurance claim process
that considers K>1 types of claims and show that the joint distribution of the various types
of losses follow the MPH distribution introduced in the first part of the paper. As a result,
the joint distribution as well as the joint moments of the losses of different types can be
efficiently evaluated.

The remainder of the paper is organized as follows. In Section 2, a class of discrete mul-
tivariate phase-type distributions is introduced. Analyses on the distributions at the batch
level and individual item level are carried out in Sections 2.1 and 2.2, respectively. A multi-
variate insurance claim process is introduced and studied in Section 3. Efficient algorithms
are developed for computing performance measures such as the value at risk. Section 4 gives
a brief discussion on some extensions.

2 Discrete Multivariate Phase-Type Distributions

Similar to the continuous multivariate phase-type distributions (e.g., Kulkarni 1989), we
introduce discrete multivariate phase-type distributions (MPH-distributions). Like the con-
tinuous case, the discrete MPHs are defined as the numbers of different types of batches
arrived before the absorption of a discrete time Markov chain.

Assume that there are K types of items of interest, where K is a positive integer. The set
of batches of interest is denoted as C0, where a batch in C0 is represented by a string of
integers between 1 and K . For example, for K = 2, C0 can be {{1}} , {2}, {11}, {12}, {111},
{112}. In batch h = {112} , there are two type 1 items and one type 2 item. In general, a
batch in C0 can be denoted as h = {k1k2. . . k|h|} , where 1 ≤ k1 ≤ k2 ≤. . .≤ k|h| ≤ K ,
|h|is the number of integers in the string h (counting multiplicities). In other words, |h|is the
number of items in the batch h. Note that we shall use {.} to represent a batch. For example,
“{1} ” represent a batch with a single item of type 1 and “1” represents a type 1 item.

Definition 2.1 Let {B0, Bh, h ∈ C0} be nonnegative matrices of order m, where m is a
positive integer. Assume that B = B0 +∑

h∈C0 Bh is a substochastic matrix (i.e., Be ≤ e).
A multivariate phase-type random vector { Xh, h ∈ C0} can be defined as follows.

i) Define a discrete time Markov chain { In, n ≥ 0} with m+1 phases { 1, 2, . . . , m, m+1}
and transition probability matrix

(
B e − Be
0 1

)

, where phase m+1 of the Markov

chain is (θ, 1– θe), where θ is a substochastic vector of order m.
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ii) Define ξh,0 = 0 for h ∈ C0. If In = i ≤ m, then at time n+1,

a. for h ∈ C0, ξh,n+1 = ξh,n + 1, ξu,n+1 = ξu,n, for u �= h, u ∈ C0 and In+1 = j ≤
m with probability (Bh)i,j ;

b. ξu,n+1 = ξu,n, for all u ∈ C0 andIn+1 = j ≤ m with probability (B0)i,j ; and
c. ξu,n+1 = ξu,n, for all u ∈ C0 and In+1 = m+1 with probability 1–(Be)i .

iii) If In = m+1, then the process is terminated. Define Xh = ξh,n, for h ∈ C0.

In this paper, we also call {Xh, h ∈ C0} a discrete MPH. Intuitively, we interpret Xh as
the number of type h batches arrived before the underlying Markov chain is absorbed into
phase m+1.

We remark that the above definition of discrete time MPH-distributions is similar to the
terminating marked Markovian arrival processes introduced and studied in He and Neuts
(1998) (Also see Li (2003), Lucantoni (1991), and Neuts (1979)). A special case with one
type of items is studied in Latouche et al. (2003). In fact, it was the analogy between the
two types of processes that inspired us utilizing the discrete MPH-distributions to study
multivariate claims processes in risk analysis in Section 3.

For 1 ≤ k ≤ K , let Yk be the total number of type k items arrived before the underlying
process is absorbed into phase m+1. Then we have defined another discrete multivariate
random vector {Yk , 1 ≤ k ≤ K} , which can be expressed in terms of {Xh, h ∈ C0} as

Yk =
∑

h∈C0

|h|kXh, 1 ≤ k ≤ K, (2.1)

where |h|k is the number of times that k appears in the string h. Note that we must have
|h| = ∑K

k=1 |h|k , for h ∈ C0.
The random vectors {Xh, h ∈ C0} and {Yk , 1 ≤ k ≤ K} can be useful in insurance risk

and other areas. For example, Cummins and Wiltbank (1983) commented that:

an organization could be subject to losses from several perils and each loss event from
a given peril could result in claims of more than one type. For example, in workers’
compensation insurance, a single loss event could give rise to r1medical claims and
r2income replacement claims. . . .

For this case, {Xh, h ∈ C0} can be used to model the number of loss events that cause
the claim combination {k1,k2,. . . ,kh} and {Yk , 1 ≤ k ≤ K} represents the total number of
different types of claims. Note that the arrivals of different types of claim batches can be
dependent, because, for example, accidents could be more likely to occur in certain time
periods than others.

Let Jn be the type of the batch arrived in period n, if there is a batch arrived; Jn = ϕ,
otherwise. Then Xh and Yk can be rewritten as follows:

Xh =
∞∑

n=1

I{Jn=h, In≤m}, h ∈ C0;

Yk =
∞∑

n=1

∑

h∈C0

|h|kI{Jn=h, In≤m}, 1 ≤ k ≤ K,

(2.2)

where I{.} is the indicator function. The expressions in Eq. (2.2) make an explicit connection
between Definition 2.1 and the continuous MPH-distribution introduced in Kulkarni (1989).
This can be seen if a time period is marked as h when the last transition is due to Bh, h ∈ C0.
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Example 2.1 Assume that Y1 and Y2 are two independent discrete phase-type distributions
with PH-representations (α1, T1) and (α2, T2) with α1e = α2e = 1, respectively. Define a
discrete Markov chain with an absorption state and transition probability B given as follows:

B =

⎛

⎜
⎜
⎝

T1 ⊗ T2 (I − T1)e ⊗ T2 T1 ⊗ (I − T2)e (I − T1)e ⊗ (I − T2)e
0 T2 0 (I − T2)e
0 0 T1 (I − T1)e
0 0 0 1

⎞

⎟
⎟
⎠ , (2.3)

where “⊗” is for the Kronecker product operation of matrices. Consider a case with C0 =
{{1}, {2}, {12}},m = 2, and define random vector (X{1}, X{2}, X{12}) to be an discrete MPH
distribution with representation θ = (α1 ⊗ α2, 0, 0),

B{1} =
(

0 0 0
0 0 0
0 0 T1

)

, B{2} =
(

0 0 0
0 T2 0
0 0 0

)

, B{12} =
(

T1 ⊗ T2 (I − T1)e ⊗ T2 T1 ⊗ (I − T2)e
0 0 0
0 0 0

)

.

(2.4)

It can be shown that Y1 = X{12} + X{1} and Y2 = X{12} + X{2}. It is also easy to see that
X{12} = min{Y1, Y2} . Random vectors (X{1}, X{2}, X{12}) and (Y1, Y2) are both discrete
MPH. While {X{1}, X{2}, X{12}} are dependent, {Y1, Y2} are independent (by assumption).

2.1 Discrete MPH Random Vector {Xh, h ∈ C0}

Define

pi

(
xh, h ∈ C0

)
= P

{
Xh = xh, h ∈ C0|I0 = i

}
, for xh ≥ 0, h ∈ C0, 1 ≤ i ≤ m;

p
(
xh, h ∈ C0

)
=

(
pi

(
xh, h ∈ C0

))

m×1
;

p∗
i

(
zh, h ∈ C0

)
= E

⎡

⎣
∏

h∈C0

z
Xh
h

∣
∣
∣
∣
∣
∣
I0 = i

⎤

⎦

=
∑

{xh≥0, h∈C0}

⎛

⎝
∏

h∈C0

z
xh
h

⎞

⎠pi(xh, h ∈ C0), 1 ≤ i ≤ m;

p∗ (zh, h ∈ C0
)
=

(
p∗

i

(
zh, h ∈ C0

))

m×1
, (2.5)

for 0 ≤ zh ≤ 1, h ∈ C0. Note that p
(
xh, h ∈ C0

)
and p∗ (zh, h ∈ C0

)
are column vectors

of order m.

Proposition 2.1 For the discrete MPH-distribution defined in Definition 2.1, the condi-
tional joint probability generating functions of {Xh, h ∈ C0} are given by

p∗(zh, h ∈ C0) =
⎛

⎝I − B0 −
∑

h∈C0

zhBh

⎞

⎠

−1

(I−B)e, for 0 ≤ zh ≤ 1, h ∈ C0. (2.6)

where I is the identity matrix.
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Proof Recall that Jn is the type of the batch arrived at time n, if there is a batch arrived;
Jn = ϕ, otherwise. By conditioning on the first transition of the underlying Markov chain,
we obtain

pi

(
xh, h ∈ C0

)

= P {Xh = xh, h ∈ C0|I0 = i}
=

m+1∑

j=1

∑

u∈{ϕ}∪C0

P {Xh = xh, h ∈ C0, J1 = u, I1 = j |I0 = i}

=
m+1∑

j=1

∑

u∈{ϕ}∪C0

P {J1 = u, I1 = j |I0 = i}P {Xh = xh, h ∈ C0|J1 = u, I1 = j, I0 = i}

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P {I1 = m + 1|I0 = i}
+

m∑

j=1

P {J1 = ϕ, I1 = j |I0 = i}P {Xh = 0, h ∈ C0|I1 = j}, if xh = 0, for all h ∈ C0;
m∑

j=1

∑

u∈C0,xu≥1,

P {J1 = u, I1 = j |I0 = i}P {Xu = xu − 1, Xh = xh, h �= u, h ∈ C0|I1 = j}

+
m∑

j=1

P {J1 = ϕ, I1 = j |I0 = i}P {Xh = xh, h ∈ C0|I1 = j}, otherwise.

(2.7)

Note that P {I1 = m+1 |I0 = i} = 1–(Be)i , P { J1 = ϕ, I1 = j |I0 = i} = (B0)i,j and
P { J1 =u, I1 = j |I0 = i} = (Bu)i,j . In matrix form, Eq. (2.7) can be written as

p
(
xh = 0, h ∈ C0

) = (I − B)e + B0p
(
xh = 0, h ∈ C0

) ;
p
(
xh, h ∈ C0

) = B0p
(
xh, h ∈ C0

)+ ∑

u∈C0:xu≥1
Bup

(
xu − 1, xh, h �= u, h ∈ C0

)
.

(2.8)
Then Eq. (2.6) can be obtained from Eq. (2.8) by routine calculations for probability
generating functions. This completes the proof of Proposition 2.1.

Equation (2.8) directly leads to the following recursive formulas for computing the
conditional joint probabilities of {Xh, h ∈ C0} .

Proposition 2.2 The conditional joint probabilities of { Xh, h ∈ C0} satisfies, for xh ≥ 0,
h ∈ C0,

p
(
xh = 0, for all h ∈ C0

) = (I − B0)
−1(I − B)e;

p
(
xh, h ∈ C0

) = ∑

u∈C0: xu≥1
(I − B0)

−1Bup
(
xu − 1, xh, h �= u, h ∈ C0

)
. (2.9)

We remark that Eq. (2.6) can be rewritten as

p∗ (zh, h ∈ C0
)
= (I − B)e +

⎛

⎝B0 +
∑

h∈C0

zhBh

⎞

⎠

⎛

⎝I − B0 −
∑

h∈C0

zhBh

⎞

⎠

−1

(I − B)e,

(2.10)
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which is equivalent to

p∗ (zh, h ∈ C0
)
= (I − B)e +

⎛

⎝B0 +
∑

h∈C0

zhBh

⎞

⎠p∗ (zh, h ∈ C0
)

. (2.11)

Taking derivatives of both sides of Eq. (2.11) with respect to zu and zv, for u, v ∈ C0,
we obtain

∂p∗(zh, h ∈ C0)

∂zu
=

(

I − B0 − ∑

h∈C0

zhBh

)−1

Bu

(

I − B0 − ∑

h∈C0

zhBh

)−1

(I − B)e;
∂2p∗(zh, h ∈ C0)

∂zv∂zu

=
(

I − B0 − ∑

h∈C0
zhBh

)−1

Bv

(

I − B0 − ∑

h∈C0
zhBh

)−1

Bu

(

I − B0 − ∑

h∈C0
zhBh

)−1

(I − B)e

+
(

I − B0 − ∑

h∈C0

zhBh

)−1

Bu

(

I − B0 − ∑

h∈C0

zhBh

)−1

Bv

(

I − B0 − ∑

h∈C0

zhBh

)−1

(I − B)e.

(2.12)

Letting zh = 1 for all h ∈ C0 in Eq. (2.12), it is easy to obtain the following result.

Proposition 2.3 The conditional first and second moments of {Xh, h ∈ C0} are given by

(E[Xu|I0 = i])m×1 = (I − B)−1 Bue, u ∈ C0;
(E[Xu(Xu − 1)|I0 = i])m×1 = 2 (I − B)−1 Bu (I − B)−1 Bue, u ∈ C0;
(E[XuXv|I0 = i])m×1 = (I − B)−1 (Bu (I − B)−1 Bv + Bv (I − B)−1 Bu

)
e, u �= v ∈ C0.

(2.13)

Once the initial distribution of the underlying Markov chain {In, n ≥ 0} is given, the joint
probability distribution, means, variances, co-variances and coefficients of correlations of{
Xh, h ∈ C0

}
can be found by using Propositions 2.2 and 2.3. Details are omitted.

2.2 Discrete MPH Random Vector {Yk , 1 ≤ k ≤ K}

The joint probabilities, means, variances, co-variances and correlations of {Yk, 1 ≤ k ≤
K} can be obtained directly from that of

{
Xh, h ∈ C0

}
by using relationship (2.1).

The conditional joint probability generating functions of {Yk, 1 ≤ k ≤ K} are defined as

p∗
Y,i (z1, ..., zK) = E

[∏K
k=1 z

Yk

k

∣
∣
∣ I0 = i

]
, 1 ≤ i ≤ m and similar to Proposition 2.1, can be

represented in vector form as

p∗
Y(z1, z2, ..., zK) =

⎛

⎝I − B0 −
∑

h∈C0

⎛

⎝
|h|∏

j=1

zkj

⎞

⎠Bh

⎞

⎠

−1

(I − B)e. (2.14)

The joint probabilities pY(yk , 1 ≤ k ≤ K) = (P {Yk = yk , 1 ≤ k ≤ K |I0 = i})m×1 of
{Yk , 1 ≤ k ≤ K} can be obtained recursively as

pY(yk = 0, k = 1, ..., K) = (I − B0)
−1(I − B)e;

pY(y1, ..., yK) =
∑

u∈C0: yk≥|u|k,k=1,...,K

(I − B0)
−1BupY(y1 − |u|1, ..., yK − |u|K). (2.15)
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By Eq. (2.1), the first and second moments of {Yk , 1 ≤ k ≤ K} can be obtained from
that of {Xh, h ∈ C0} as follows:

E[Yk] =
∑

h∈C0

|h|kE[Xh], 1 ≤ k ≤ K;

E[YkYj ] =
∑

u∈C0

∑

h∈C0

|u|j |h|kE[XuXh], 1 ≤ k, j ≤ K.
(2.16)

3 Risk Analysis: Multivariate Claim Processes

In this section, we introduce a multivariate insurance claim process in which K types of
claims, denoted as type 1, 2, . . . , K , are considered. Different types of claims arrive accord-
ing to a marked Markovian arrival process (He 1996; He and Neuts 1998). Each batch of
claims may consist of different types of claims. For example, a claim batch can be com-
prised of n1 type 1 claims and n2 type 2 claims. In addition, the joint distribution of the sizes
of claims in a batch is assumed to be a discrete MPH, thus allowing dependency between
them. The analysis on claims can be done at both batch level and individual claim level. The
model presented in this paper is quite general since Markovian arrival processes can be used
to approximate general arrival processes (Asmussen and Koole 1993) and phase-type dis-
tributions can be used to approximate any distribution functions with a nonnegative support
(Asmussen 2000) and (O’Cinneide 1990).

We next define the multivariate claim processes.

Assumption A The claim process is defined as follows.

A.1) The claims arrive in batches. The set of possible batches, represented by strings of
integers between 1 and K and denoted as C0, has finite many elements. The length
of each element (string of integers) in C0 is finite.

A.2) The batches of claims arrive according to continuous time marked Markovian arrival
process (MMAP) {D0, Dh, h ∈ C0} , where {Dh, h ∈ C0} are nonnegative matrices
of order ma and D0 is a matrix of order ma and has negative diagonal elements
and nonnegative off-diagonal elements. Let D = D0 + ∑

h∈C0 Dh. Then D is the
infinitesimal generator of the underlying continuous time Markov chain of the arrival
process. We assume that the initial phase distribution of the underlying Markov chain
of the arrival process is stochastic vector η (i.e., η ≥ 0 and ηe = 1).

A.3) Let {Xh,j, 1≤ j ≤|h|} be the vector of the sizes of the claims within a type h batch,
which is assumed to follow a discrete MPH–distribution with matrix representation
(βh, Th,j, 1≤ j ≤|h|) of order mh, for h ∈ C0.

A.4) The random time horizon τ has a continuous time phase-type distribution with
representation ( γ , C) of order mτ .

Under these assumptions, let Sj (τ ) be the total claims (or losses) of type j occurring in
[0, τ ], for j = 1, 2, . . . , K . We define the vector of all types of losses during time interval
[0, τ ] by (S1(τ )), . . . , SK(τ)).

Note 1: Assumptions A.2) and A.4) can be combined into a terminating MMAP for the
claim arrival process (see Example 3.2). This approach can capture the possible depen-
dency between the arrivals and the terminating time. All results in Sections 3.1, 3.2 and
3.3 still hold.
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Note 2: The amount of claims (S1(t)), . . . , SK(t)) in a fixed time interval [0, t] can be
approximated by (S1(τ )), . . . , SK(τ)), where τ has an Erlang distribution with parame-
ters {m, m/t} for a large m (Ramaswami et al. 2008). This is because the mean of τ is t

and the variance of τ is t2/m. The random variable τ approaches constant t as m goes to
infinity.

Assumption A.3) implies that the total amount of claims in a batch has a discrete PH-
distribution with matrix representation (βh, Th), where Th = Th,1+Th,2+. . .+Th,|h|. In
Section 3.3, in order to analyze the amounts of claims of individual types, we further assume
that {Th,j , 1≤ j ≤ |h|} have the following structure:

Th,j =
⎛

⎝
0 ... 0 0 · · · 0

Th,(j,1) ... Th,(j,j) Th,(j,j+1) · · · Th,(j,|h|)
0 ... 0 0 · · · 0

⎞

⎠ , 1 ≤ j ≤ |h|. (3.1)

Intuitively, Eq. (3.1) indicates that phases of the underlying Markov chain are divided into
non-overlapping groups, each group of phases corresponds a specific type of claims. An
important special case of the distributions of claims is given in the following example.

Example 3.1 Assume that i) the size of type k claims in any batch has a discrete phase-type
distribution with PH-representation (βk , Tk) of order mk , 1 ≤ k ≤ K; and ii) the size of
individual claims in any batch are independent random variables. By definition, a batch h =
{k1k2. . . k|h|} ∈ C0 consists of |h|claims of the types k1, . . . and k|h|. It is easy to see that the
amounts of claims of individual types have an MPH-distribution with matrix representation
(βh, Th,j , 1≤ j ≤|h|), where

βh =
⎛

⎝βk1
, (1 − βk1

e)βk2
, (1 − βk1

e)(1 − βk2
e)βk3

, · · · ,

⎛

⎝
|h|−1∏

j=1

(1 − βkj
e)

⎞

⎠ βk|h|

⎞

⎠ ; (3.2)

Th,j =

⎛

⎜
⎜
⎜
⎝

0 ... 0 0 0 · · · 0

0 ... 0 Tkj
(I − Tkj

)eβkj+1
· · · (I − Tkj

)e

⎛

⎝
|h|−1∏

i=j+1

(
1 − βki

e
)
⎞

⎠ βk|h|

0 ... 0 0 0 · · · 0

⎞

⎟
⎟
⎟
⎠

, 1 ≤ j ≤ |h|.

(3.3)

The total amount of claims in a batch is the sum of the amounts of individual types of claims
in that batch. Then the total amount of claims in the batch is the sum of |h|independent
claims of the type k1, . . . and kh, which is also a PH-distribution with matrix representation
(βh, Th), where Th has a upper triangular structure and can be given by

Th =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Tk1 (I − Tk1 )eβk2
(I − Tk1 )e(1 − βk2

e)βk3
· · · (I − Tk1 )e

⎛

⎝
|h|−1∏

j=2

(1 − βkj
e)

⎞

⎠ βk|h|

0 Tk2 (I − Tk2 )eβk3
· · · (I − Tk2 )e

⎛

⎝
|h|−1∏

j=3

(1 − βkj
e)

⎞

⎠ βk|h|

.

.

.
. . .

. . .
. . .

.

.

.
0 · · · 0 Tk|h|−1 (I − Tk|h|−1 )eβk|h|
0 · · · · · · 0 Tk|h|

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(3.4)
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It is easy to see that mh = ∑|h|
j=1 mkj

, for h = {k1k2 . . . kh} ∈ C0. This completes Example
3.1.

Our analysis on (S1(τ )), . . . , SK(τ)) consists of the following parts. From Section 3.1
to Section 3.3, we study i) the numbers of different types of batches (or individual claims)
arrived in [0, τ ]; ii) the total amounts of claims associated with different types of batches;
and iii) the total amounts of different types of claims (S1(τ )), . . . , SK(τ)). For each case,
we show that the random vector(s) involved has a discrete MPH-distribution and we con-
struct a matrix-representation for it explicitly. In Section 3.4, a few numerical examples are
presented. In Section 3.5, the value at risk is analyzed.

3.1 The Numbers of Claims: A Discrete MPH-Distribution

For h ∈ C0, let Nh(t) be the number of type h batches arrived in [0, t]. Then the number of
type h batches arrived in [0, τ ] is given by Nh(τ ). Let Nk(t) be the number of type k claims
arrived in [0, t], 1 ≤ k ≤ K . Then the number of type k claims arrived in [0, τ ] is given
by Nk(τ). The relationship between {Nh(t),h ∈ C0} and {Nk(t), 1 ≤ k ≤ K} is shown in
Eq. (2.1). We are interested in random vectors {Nh(τ ),h ∈ C0} and {Nk(τ), 1 ≤ k ≤ K}.
Since τ has a phase-type distribution by He and Neuts (1998), the random vector {Nh(τ ),
h ∈ C0} is associated with a terminating MMAP and has a discrete MPH-distribution.

Theorem 3.1 (Theorem 3.4, He and Neuts 1998)Under Assumption A, the numbers
of batches arrived in the random time horizon τ, {Nh(τ ), h ∈ C0}, have a discrete
MPH-distribution with matrix representation

{
η ⊗ γ, B0 = 0, Bh = − (D0 ⊗ I + I ⊗ C)−1 (Dh ⊗ I ), h ∈ C0

}
(3.5)

The orders of the matrices in the matrix representation are mamτ .

The joint distribution, means, variances, co-variances and correlations of {Nh(τ ), h ∈
C0} and {Nk(τ), 1 ≤ k ≤ K} can be found using the formulas given in Section 2.

3.2 The Amount of Claims of Individual Batches: A Discrete MPH-Distribution

For h ∈ C0, denote by Sh(t) the total amount of claims that come from type h batches
arrived in [0, t]. Then Sh(τ ) is the total amount of claims that come from type h batches
arrived in [0, τ ]. Note the difference between S1(t) andS{1}(t): S1(t) is the total amount of
type 1 claims (which may arrive with different types of batches) in [0, t], while S{1}(t) is
the total amount of batch {1} claims in [0, t].

We show that the random vector {Sh(τ ),h ∈ C0} has a discrete MPH-distribution. For
that purpose, denote by {Ia,n, n ≥ 0} the underlying Markov chain of the discrete MPH
random vector {Nh(τ ),h ∈ C0} defined in Section 3.1. Denote by {Ih,n, n ≥ 0} the underly-
ing Markov chain of the discrete PH–distribution (βh, Th). We introduce a new underlying
Markov chain such that, after each transition in {Ia,n, n ≥ 0} , check the type of the batch
just arrived. Since B0 = 0, there is always a batch arrives after each transition. If the type
is h, then the Markov chain {Ih,n, n ≥ 0} is initialized. If {Ih,n, n ≥0} is initialized in one
of its transient phase (i.e., a non-absorption phase), the clock of the Markov chain {Ia,n,
n ≥ 0} is stopped. When {Ih,n, n ≥ 0} enters its absorption phase, the Markov chain {Ia,n,
n ≥ 0} takes another transition, the type of the next batch is observed and the next cycle
begins. If {Ih,n, n ≥ 0} is initialized in its absorption phase (i.e., the total amount of the
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claims in the batch is zero), the Markov chain {Ia,n, n ≥ 0} continues to its next transition. If
{Ia,n, n ≥ 0} enters its absorption phase, the whole process is terminated. It is easy to see
that Sh(τ ) is the total time that a type h batch is observed while the underlying Markov
chain coincides with {Ih,n, n ≥ 0} .

The state space of the above underlying Markov chain has mtot = mamτ+ mamτ∑
h∈C0 mh phases: the first mamτ phases correspond to transitions with zero claims and the

mamτmh phases correspond to transitions with claims from the batch h, for h ∈ C0.
Let B̂ = ∑

h∈C0 Bh(1 − βhe), which corresponds to phase transitions in {Ia,n, n ≥ 0} if
the amount of claims in the batch is zero. For such a case, the clock of the Markov chain
{Ia,n, n ≥ 0} continues without being stopped. The Markov chain {Ia,n, n ≥ 0} continues
until either a nonzero claim batch is observed or it enters its absorption phase. We remark
that the first mamτ phases of the underlying Markov chain are not necessary if B̂ = 0.

The above analysis leads to the first main result of the paper. For notational convenience,
we assume that the elements in C0 are arranged in certain order (say u is the first batch and
v is the last batch), which is followed whenever the elements appear in vectors or matrices.

Theorem 3.2 The amounts of claims {Sh(τ ), h ∈ C0} have a discrete MPH-distribution
with matrix representation (θ, L0, Lh, h ∈ C0), where

θ =
(

(η ⊗ γ)B̂, ((η ⊗ γ)Bh) ⊗ βh, h ∈ C0
)

, (3.6)

L0 =
(

B̂ Bu ⊗ βu · · · Bh ⊗ βh · · · Bv ⊗ βv
0 0 · · · 0 · · · 0

)

, (3.7)

and, for h ∈ C0,

Lh =
⎛

⎝
0 0 · · · 0 · · · 0

B̂ ⊗ ((I − Th)e) Bu ⊗ ((I − Th)eβu) · · · I ⊗ Th + Bh ⊗ ((I − Th)eβh) · · · Bv ⊗ ((I − Th)eβv)

0 0 · · · 0 · · · 0

⎞

⎠ .

(3.8)

Proof After a transition of the Markov chain {Ia,n, n ≥ 0} , a type h batch arrives with
(matrix) probability Bh. The next batch has a zero amount of claims with probability 1−βhe
and a positive amount of claim with probability distribution βhe. The total probability for a
zero amount of claim is then given by B̂ = ∑

h∈C0 Bh(1 − βhe). With probability Bh ⊗ βh,
the Markov chain {Ih,n, n ≥ 0} is initialized in order to count the amount of claims brought
in by that batch, which leads to L0. Once the Markov chain {Ih,n, n ≥0} is initialized,
the underlying Markov chain is governed by I ⊗ Th, since during this period of time, the
phase of {Ia,n, n ≥ 0} remains the same and the phase of {Ih,n, n ≥ 0} is governed by
Th. When the counting process of the claims in batch h is over, with probability (I − Th)e,
{Ia,n, n ≥ 0} makes its next move and the next batch is u with (matrix) probability Bu.
The counting process for the amount of claims in the batch u is initialized with (matrix)
probability Bu⊗((I − Th)eβu). The Markov chain continues its transition without counting
claims with (matrix) probability B̂, for which case the amount of claims in the batch h (and
all possible batches) is zero. Then the matrix Lh is obtained. The initial distribution vector
θ can be obtained similarly. This completes the proof of Theorem 3.2.

Then (θ , L0, Lh, h ∈ C0) gives a matrix representation of {Sh(τ ),h ∈ C0} . The joint
probabilities, means, variances, co-variances and correlations of { Sh(τ ),h ∈ C0} can then
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be computed using formulas provided in Sections 2.1. The implementation of the computa-
tional methods is straightforward. Let pj (nh, h ∈ C0) be the probability that Sh(τ ) = nh,
for all h ∈ C0, given that the underlying Markov chain is in phase j initially. Let
p(nh, h ∈ C0) = (pj (nh, h ∈ C0))mtot×1. Then Eq. (2.9) leads to

p
(
nh, h ∈ C0

)
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(I − L0)
−1

⎛

⎝I − L0 −
∑

h∈C0

Lh

⎞

⎠ e, if nh = 0 f or h ∈ C0;
∑

u∈C0, nu≥1

(I − L0)
−1Lup(nu − 1, nh, h �= u, h ∈ C0), otherwise.

(3.9)
Since the matrices L0 and {Lh, h ∈ C0} have a special structure shown in Eqs. (3.7) and

(3.8), the recursion (3.9) can be further simplified as follows. Decompose p(nh,h ∈ C0) into(
p0

(
nh, h ∈ C0

)
, pu

(
nh, h ∈ C0

)
,u ∈ C0

)
, where vector p0

(
nh, h ∈ C0

)
is of order mamτ

and pu
(
nh, h ∈ C0

)
is of order mamτmu.

Corollary 3.3 For u ∈ C0, we have, for nh �= 0 for at least one h ∈ C0,

p0
(
nh, h ∈ C0

)

=
∑

u∈C0: nu≥1

((
I − B̂

)−1
Bu ⊗ βu

)(
B̂ ⊗ (I − Tu)e

)
p0

(
nu − 1, nh, h �= u, h ∈ C0

)

+
∑

u∈C0: nu≥1

((
I − B̂

)−1
Bu ⊗ βu

)

(I ⊗ Tu)pu

(
nu − 1, nh, h �= u, h ∈ C0

)

+
∑

u∈C0: nu≥1

∑

v∈C0

((
I − B̂

)−1
Bu ⊗ βu

)

(Bv ⊗ (I − Tu)eβv)pv

× (
nu − 1, nh, h �= u, h ∈ C0

)
,

(3.10)
and, for u ∈ C0 and nu ≥ 1,

pu

(
nh, h ∈ C0

)

= B̂p0

(
nu − 1, nh, h �= u, h ∈ C0

)
+ (I ⊗ Tu)pu

(
nu − 1, nh, h �= u, h ∈ C0

)

+
∑

v∈C0: nu≥1

(Bv ⊗ (I − Tu)eβv)pv

(
nu − 1, nh, h �= u, h ∈ C0

)
.

(3.11)

Compared to the recursion in Eq. (3.9), the recursive formulas in Eqs. (3.10) and (3.11)
are involved with matrices of order less than or equal to mamτ maxh{mh}, instead of mamτ +
mamτ

∑
h∈C0 mh.

Equations (3.9), (3.10) and (3.11) can easily be interpreted probabilistically. For
the initial probability distribution θ, θp(nh, h ∈ C0) gives the probability P {Sh(τ )=nh,
for h ∈ C0}. In addition, the recursive algorithm for computing the joint probabilities can be
further improved by utilizing the special structure in matrices {Th, h ∈ C0} (e.g., Eq. (3.4)).
Details are omitted.

An alternative matrix representation for {Sh(τ ),h ∈ C0} can be found by getting rid of
the first mamτ phases in the matrix representation given in Theorem 3.2. Doing so, the
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transitions of the Markov chain {Ia,n, n ≥ 0} that correspond to zero amount of claims are
censored.

Theorem 3.4 The amounts of claims {Sh(τ ),h ∈ C0} have a discrete MPH-distribution
with matrix representation (θ̄, L̄0, L̄h, h ∈ C0), where

θ̄ =
( (

(η ⊗ γ)(I − B̂)−1Bh

)
⊗ βh, h ∈ C0

)
, (3.12)

L̄0 = 0, and , for h ∈ C0,

L̄h =
⎛

⎝
0 · · ·

(I − B̂)−1Bu ⊗ ((I − Th)eβu) · · · I ⊗ Th
0 · · ·
0 0 · · · 0

+ (I − B̂)−1Bh ⊗ ((I − Th)eβh) · · · (I − B̂)−1Bv ⊗ ((I − Th)eβv)

0 · · · 0 · · · 0

⎞

⎠ .

(3.13)

Proof Since B̂ = ∑
h∈C0 Bh(1 − βhe) includes all the probabilities that the arrived batch

has zero amount of claims, then {(I−B̂)−1Bh, h ∈ C0} give the probabilities that the claims
are nonzero. Then Eqs. (3.12) and (3.13) are obtained accordingly. This completes the proof
of Theorem 3.4.

It is easy to see that the joint probabilities can be computed using Eqs. 3.10 and 3.11
with minor modifications.

Corollary 3.5 The total amount of claims (i.e., the sum of {Sh(τ ), h ∈ C0}) has a discrete
PH-distribution with matrix representation

(
θ, L0,

∑
h∈C0 Lh

)
or

(
θ̄, 0,

∑
h∈C0 L̄h

)
.

3.3 Multivariate Claims of Individual Types: A Discrete MPH-Distribution

Now, we are ready to consider the random vector (S1(τ )), . . . , SK(τ)). An important special
case is C0 = {{1}, {2}, . . . , {K}} , where there is no difference between the batches of claims
and the types of claims. For the general case, by definition, Sh(τ ) is the sum of the amount
of claims of individual types included in the string h. With the structure of (βk , Th,j , 1≤
j ≤|h|) given in Eq. (3.1), we decompose matrices {Lh, h ∈ C0} as follows:Lh =

|h|∑

j=1
Lh,j ,

where Lh,j corresponding to transitions associated with the j -th claim in the batch h. Then
Lh,j is obtained by replacing I − Th by diag(0, I, 0) − Th,j in Eq. (3.8). Note that diag(0,
I , 0) is a matrix with a (block) diagonal structure and diagonal blocks are 0, I and 0. Also
note that we have I − Th = �j (diag(0,I ,0)−Th,j ). Define

Lk =
∑

h={k1...k|h|}∈C0

|h|∑

j=1: kj=k

Lh,j , 1 ≤ k ≤ K (3.14)

It is easy to see that Lk corresponds to the amount of type k claims from all batches, 1≤
k ≤ K . By Theorem 3.2, we obtain
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Theorem 3.6 The random vector (S1(τ )), . . . , SK(τ)) has a discrete MPH-distribution with
matrix representation (θ, L0, L1, L2, . . . , LK), where θ is defined in Eq. (3.6), L0 is defined
in Eq. (3.7) and {L1, L2, . . . , LK } are defined in Eq. (3.14).

Similarly, we can obtain another MPH-representation of (S1(τ )), . . . , SK(τ)) by utilizing
the MPH-representation of {Sh(τ ),h ∈ C0} given in Theorem 3.4. Details are omitted.

Computation of the joint probabilities, means, variances, covariance and correlations of
(S1(τ )), . . . , SK(τ)) can be done accordingly. Details are omitted.

3.4 Examples

Example 3.2 We consider a model with K = 2 and C0 = {{1}, {2}, {12}}. Claims arrive in
batches according to continuous time MMAP with ma = 3, η = (0.5, 0, 0.5),

D0 =
⎛

⎝
−5 2 1
0 −20 0
0 0 −10

⎞

⎠ , D{1} =
⎛

⎝
0 1 0
0 20 0
0 0 0

⎞

⎠ , D{2} =
⎛

⎝
0 0 0
0 0 0
0 0 9

⎞

⎠ , D{12} =
⎛

⎝
1 0 0
0 0 0
1 0 0

⎞

⎠ .

(3.15)
Amounts of claims of type 1 and type 2 have independent discrete phase-type distributions
with PH-representations (βk , Tk), respectively, where

β1 = (0.4, 0.6), T1 =
(

0.2 0.3
0.5 0

)

; β2 = (0.8, 0.2), T2 =
(

0.1 0.5
0.1 0.2

)

. (3.16)

The time horizon τ has a continuous time phase-type distribution with PH-representation
(γ , C):

γ = (0.5, 0.5), C =
(−2 1

1 −5

)

. (3.17)

Using the methods developed in Sections 3.1, 3.2 and 3.3, moments are obtained as

The means

E[N{1}(τ )] E[N{2}(τ )] E[N{12}(τ )] E[N1(τ )] E[N2(τ )]
3.8098 1.8098 0.3152 4.1250 2.125

E[S{1}(τ )] E[S{2}(τ )] E[S{12}(τ )] E[S1(τ )] E[S2(τ )]
7.2987 3.0508 1.1099 7.9292 3.5302

Covariance is given in the following matrices:

Covar(N{1}(τ ),N{2}(τ ),N{12}(τ )) =
⎛

⎝
76.30 −2.73 0.76
−2.73 10.69 0.40
0.76 0.40 0.36

⎞

⎠ ;

Covar(N1(τ ),N2(τ )) =
(

78.19 −1.19
−1.19 11.87

)

.

(3.18)

Covar(S{1}(τ ), S{2}(τ ), S{12}(τ )) =
⎛

⎝
302.68 −7.46 6.41
−7.46 36.32 2.99
6.41 2.99 5..82

⎞

⎠ ;

Covar(S1(τ ), S2(τ )) =
(

310.67 −1.18
−1.18 40.41

)

.
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Note that both the numbers and amounts of type 1 and type 2 claims are negatively
correlated. The joint distribution of S1 and S2 are illustrated in the following table.

The joint distribution of {S1(τ ), S2(τ )}
S1(τ )\S2(τ ) 0 1 2 3 4 5 6 7

0 0.0438 0.0372 0.0295 0.0253 0.0213 0.0181 0.0154 0.0131
1 0.0180 0.0088 0.0054 0.0040 0.0032 0.0027 0.0023 0.0020
2 0.0129 0.0052 0.0037 0.0028 0.0022 0.0018 0.0016 0.0014
3 0.0101 0.0032 0.0025 0.0019 0.0015 0.0013 0.0011 0.0009
4 0.0085 0.0021 0.0018 0.0014 0.0011 0.0009 0.0008 0.0007
5 0.0075 0.0015 0.0013 0.0010 0.0008 0.0007 0.0006 0.0005
6 0.0069 0.0011 0.0011 0.0008 0.0006 0.0005 0.0004 0.0004
7 0.0064 0.0009 0.0009 0.0006 0.0005 0.0004 0.0004 0.0003

In Example 3.2, the claim arrival process (Assumption A.2) and the terminating time
(Assumption A.4) are independent. In the next example, the claim arrival process and the
terminating time are not independent and are defined by a single discrete MPH.

Example 3.3 Let the environment be described by a two-state terminating discrete-time
Markov Chain with two phases: N (stand for normal) and R (stand for risky). The transition
probabilities before termination are given by

P = N

R

(
0.84 0.1
0.8 0.16

)

. (3.19)

Suppose that the auto accident rates in two areas A and B are both affected by the underlying
environment. An auto accident can cause property loss claims (type 1), bodily injury claims
(type 2), or both (type 12). Consider a model in which claims (losses) arrive according to
the following discrete MPH with C0 = {{A1}, {A2}, {A12}, {B1}, {B2}, {B12}}.

θ = (0.2, 0.8), B0 =
(

0.6 0.1
0.8 0.1

)

,

B{A1} =
(

0.08 0
0 0.02

)

, B{A2} =
(

0.04 0
0 0.01

)

, B{A12} =
(

0.04 0
0 0.01

)

,

(3.20)

B{B1} =
(

0.04 0
0 0.01

)

, B{B2} =
(

0.02 0
0 0.005

)

, B{B12} =
(

0.02 0
0 0.005

)

.

Assume the sizes of claims (losses) of individual accidents have the following discrete
MPH-distributions:

β{A1} = (1), T{A1} = (0.1);
β{A2} = (0.9), T{A2} = (0.05);
β{A12} = (0.2, 0.8), T{A12},1 =

(
0.1 0.1
0 0

)

, T{A12},2 =
(

0 0
0.1 0.05

)

;
β{B1} = (1), T{B1} = (0.15);
β{B2} = (0.9), T{B2} = (0.05);
β{B12} = (0.4, 0.4), T{B12},1 =

(
0.1 0.05
0 0

)

, T{B12},2 =
(

0 0
0.01 0.05

)

.

(3.21)
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Note that if an accident causes both type 1 and type 2 claims, then the claim sizes of the
two types are dependent, as indicated by {T{A12},1, T{A12},2, T{B12},1, T{B12},2} . Denote by
SA1(τ ), SA2(τ ), SA12(τ ), SB1(τ ), SB2(τ ) and SB12(τ ) the amounts of claims corresponding
to accident types A1, A2, A12, B1, B2 and B12, respectively. We analyze i) the amounts of
claims of individual accidents (batches) {SA1(τ ), SA2(τ ), SA12(τ ), SB1(τ ), SB2(τ ), SB12(τ )}
; ii) amounts of claims from areas Aand B and iii) amounts of claims of types 1 and 2.

For part i), by Theorem 3.2 or 3.4, the random vector (SA1(τ ), SA2(τ ), SA12(τ ), SB1(τ ),
SB2(τ ), SB12(τ )) has a discrete MPH-distribution with matrix representation, say, ( θ , L0,
LA1 , LA2 , LA12 , LB1 , LB2 , LB12). Using the formulas given in Section 2, the means and
coefficients of correlations of the losses associated with accidents are found as follows.

Mean(SA1(τ ), SA2(τ ), SA12(τ ), SB1(τ ), SB2(τ ), SB12(τ ))

= (0.0101, 0.0035, 0.0067, 0.0051, 0.0018, 0.0021);
Correlation(SA1(τ ), SA2(τ ), SA12(τ ), SB1(τ ), SB2(τ ), SB12(τ ))

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1.0000 0.0898 0.0844 0.0895 0.0645 0.0574
0.0898 1.0000 0.0622 0.0655 0.0469 0.0421
0.0844 0.0622 1.0000 0.0616 0.0447 0.0395
0.0895 0.0655 0.0616 1.0000 0.0471 0.0419
0.0645 0.0469 0.0447 0.0471 1.0000 0.0302
0.0574 0.0421 0.0395 0.0419 0.0302 1.0000

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(3.22)

For part ii), the analysis on SA(τ) and SB(τ) can be done by using: SA(τ) = SA1(τ )+
SA2(τ ) + SA12(τ ) and SB(τ) = SB1(τ ) + SB2(τ ) + SB12(τ ). Then (SA(τ), SB(τ)) has a
bivariate PH-distribution with matrix representation (θ, L0, LA1 +LA2 +LA12 , LB1 +LB2 +
LB12). The means and coefficients of correlations are:

Mean (SA(τ), SB(τ)) = (0.0203, 0.0089);
Correlation (SA(τ), SB(τ)) =

(
1 0.1556

0.1556 1

)

.
(3.23)

For part iii), S1(τ ) = SA1(τ ) + SA12(τ ) + SB1(τ ) + SB12(τ ) and S2(τ ) = SA2(τ ) +
SA12(τ ) + SB2(τ ) + SB12(τ ). The means and coefficients of correlations can be found from
that of (SA1(τ ), SA2(τ ), SA12(τ ), SB1(τ ), SB2(τ ), SB12(τ )).

Mean(S1(τ ), S2(τ )) = (0.0194, 0.0097);
Correlation(S1(τ ), S2(τ )) =

(
1 0.1977

0.1977 1

)

.
(3.24)

Note that both the claim amounts from different areas and of different types are posi-
tively correlated. According to Proposition 2.2, the joint distributions of the above random
variables can be calculated recursively. Details are omitted.

3.5 Value at Risk

Assume that the premium rate of type k insurance is μk; and the initial reserve for type k

insurance is vk , k =1, 2, . . . , K . The operating losses at time t for type k insurance can be



Methodol Comput Appl Probab

Table 1 Values at risk for α = 0.95 and E[τ ] = 2

m 5 10 20 30 40 50 60 70 80 90 100 110

Var(τ) 0.8 0.4 0.2 0.13 0.1 0.08 0.067 0.057 0.05 0.044 0.04 0.037

VaR1 59 43 34 30 29 27 27 26 26 25 25 25

VaR2 −20 −21 −21 −21 −21 −22 −22 −22 −22 −22 −22 −22

VaRtotal 4 −13 −23 −27 −29 −30 −31 −32 −32 −33 −33 −33

defined as Sk(t)–μkt–vk . Given a confidence level α ∈(0, 1) and a time horizon t , we define
the value at risk (VaR) for type k insurance as

VaRk(α, t) = inf {x : P {Sk(t) − μkt − vk ≤ x} ≥ α} , 1 ≤ k ≤ K. (3.25)

The value at risk for the total claim S1(t)+ . . .+SK(t) can be defined similarly.
We remark that if the VaR value is positive, then the probability that the premiums and

the initial reserve cannot cover the losses is greater than the acceptable level 1–α.
As pointed out in Note 2, the distribution of (S1(t)), . . . , SK(t)) for fixed t can be approx-

imated by that of (S1(τ )), . . . , SK(τ)), where τhas an Erlang distribution with parameters
{m, m/t} and m is a positive integer. The latter quantity can be computed using Proposi-
tion 2.2. The total claim S1(t)+ . . .+SK(t) can be approximated by S1(τ )+ . . .+ SK(τ),
with the latter having a discrete PH-distribution so the value at risk can be computed. Note
that since Proposition 2.2 provided an algorithm for the joint distribution of (S1(τ )), . . . ,
SK(τ)), one may actually evaluate the VaR of any combinations of the K types of losses.

Example 3.4 (Example 3.2 continued) We choose α = 0.95, t = 2, μ1 = 10, v1 =
50, μ2 = 15, and ν2 = 30. For the Erlang approximation, we choose m = 5, 10, 20, . . . ,
100 and 110. For Example 3.2, the values at risk for different type of claims are computed
and presented in the following table.

First, we comment that the values at risk seem to converge for each case, which validates
the approximation approach. Second, the numerical results show that for type 2 insurance,
the value at risk is negative. Thus, there is at least 95 % chance that the insurance company
can use its initial capital and premium income to cover the potential losses. However, this
is not true for type 1 insurance. Nevertheless, if the two are combined, the initial capital
and premium income may cover all the potential claims with probability 0.95. This shows
the benefit of diversification in insurance management. Third, when m becomes larger, the
variance of the terminating time is smaller. Table 1 shows that, if the terminating time is less
variable, the value at risk is smaller, which is consistent with intuition.

4 Discussion

The analysis in this paper can be extended easily to the following two modified models. The
first modified model is obtained from the one defined in Section 3 by changing the arrival
process and the time horizon from continuous time to discrete time. The analysis of the new
model is almost parallel to that of Section 3. The second modified model can be obtained
by changing the claims from discrete distributions to continuous distributions. For this case,
the total amounts of claims are continuous. The analysis is similar to that of Section 3 with
minor modifications.
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